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Abstract. This paper proves a unique continuation property for the elliptic differential inequality
|Au| < Alu| + B|Vul,
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1. Introduction

We will prove the following resullt.

THEOREM 1. Ifd > 3, thentherearep < 2d/(d + 2) and a constant 4 > 0
making the following true. Assume that Q C R? is a domain, A: Q@ — R and
B: Q — R arefunctions such that

T[i_r;r(])||AHLd/2<>o(D(a,r)) < &4 (1.3)
M [ Bl pase (p(ar) < €4 1.2)

for each a=Q2. Assume also that ue W, 2(2) satisfies
| Au|l < Alu| + Bl 7 ul. (1.3

Then if u vanisheson an open set it vanishesidentically.
Here W2 is the Sobolev space, i.e., functions whose second derivatives are in
LP. Our proof will show (seetheremark at the end of Section 2) that p can be taken
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to be any number greater than 1 if d = 3, any number greater than % ifd =4and
any number greater than 2d(d — 3)/(d? — d — 4) if d > 5. || Al| zex (p(a,) IS the
weak type norm defined as follows

[l Laso (D(ary) = fli%(/\ql{x € D(a,r) : |A(z)] > A}|)Y1.

Theorem 1 improves on aresult of [7] where A and B are assumed to be in

d/ 2 and L oc respectively, in the same way as the result of [6] improves on the
result of [2] It should be pointed out, however, that in contrast to the result of [6]
Theorem 1 is not known to be sharp.

A word about the proof: we will use the main lemma (Lemma 1) of [7], but the
method used in [7] to derive unique continuation theorems from that lemma does
not work here because it depends on the fact that

Zwm <Ay,

if {E;} aredigoint sets, and thisis clearly falseif the L? norm is replaced by the
L9%° norm.

Section 2 of this paper shows the Carleman inequalities needed for Theorem 1,
and Section 3 isthe proof of the theorem.

2. Carleman Inequalities
Wefirst state a Carleman inequality dueto [3].
LEMMA 2.1. Let po = 2d/(d + 2),d > 3. Then for any p satisfying

(i) 11/p — 1/po| < 1/2d and
(i) 1/p — 1/q = 2/d,

we havefor any k € R? and u € C§°(R?)
le" P ullgy < Clle™™ A ully,
with C' = C(p, d).
We note in the abovethat || - ||, isthe Lorentz norm defined by

00 1/17
£k = (a [ 57tz 17601 > sppra )

We now assume my(¢) = i€ — k/(|€]2 — i€ - k — |k|?) for k € R?, i.e, a
multiplier such that

("7 7 u)™ (&) = mp(€) (" A u)"(€),
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foru € C§°(RY). Wesetp € C°(D(0,2)) and vy (&) = ¢(|k| 1), where D(0, 2)
isthe disk centered at the origin with radius 2. Define two multiplier operators T3
and T» by

Tof = (me(1— i) f,

Tof = (mrpr)f-

Also let s be the Stein—Tomas exponent, s = 2d + 2/(d + 3). Then we can show
the following lemma.

LEMMA 2.2. Let1 < p < swhend = 3and 2d(d — 3)/(d*> —d —4) <p < s
whend > 4. Assume k € RO, E C RY|E| > |k|~% u € W% has compact
support. Then there exists some f(p) with 0 < 6(p) < 1/d such that for any 6 with
f(p) < 6 < 1/d the following two inequalities hold:

() 1T2(e"* A u)llagmy < Co(lkI* B[k |e"™ A ullp,
provided1/d < 1/p —1/q=1/r < 1/d+ 6.

(i) lle*® 7 ull pan(iy < Co([k|1E) [l e*® A ull,
provided1/p — 1/q = 1/d.

Proof. Firstweshowthatwithk =e; = (1,0,...,0) € R? thefollowing holds
I1T2(e™ A )| Loy < ColEI’[l€™ A ullp.
Itisshownin [7], page 264, that ||T>f||4, < C||f||p, provided

1 1 1 !
1<p1<s and —<—,+——S—,, where s’ =
@ Py 2 2p) Ch

Note that (2.3) is equivalent to

(2.3)

1 1
1<p1<s and — — — > u(pa),
D1 q1

where

1/d-3 d—5
We also note that 1:(p1) is decreasingin py and 1/d < u(p1) < 2/d provided
that 1 < p1 < swhend = 3and 2d(d — 3)/(d?> — d — 4) < p1 < swhend > 4.
Set 0(p1) = p(p1) — 1/d and for any O(p1) < 6 < 1/d select g1 such that
n(p1) < 1/p1—1/q1 < 6+ 1/d. Thusforany ¢ < g1 and 1/py — 1/q > 1/d we
get

IT2(e"* A w)llpagpy < BN YA To(e" A )l

< C|BMYTHalle™ Aully, < CIE1 e A ullp,,

~X
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sincel/q — 1/q1 < 6. By scaling, we thus have proved that
ITo(e" A w)l| oy < Collk|ED? k|9 eF T Aullp,,

provided that ¢ > p1 satisfies1/p1 — 1/¢ =1/rand1/d < /1/r < 08+ 1/d. The
condition that p, satisfies hereisthe ssmeasp in Lemma (2.2). This proves (i) of
Lemma(2.2).

Wenow turnto the proof of Lemma2.2, part (ii). Wetill first assumek = e;. We
split the multiplier and then define Ty and T as before. We note that the multiplier
for T, canbewrittenas (1 + |£]?) 12 1, where 1, satisfiesthe Hormander multiplier
condition. Thus

. (2.4)

Ul

1 1
|Th(e™ Au)|ree < Clle™ Aull, foranyp>1 and = — ==
p q

In the proof of (i), we have actually shown for any given 6 > 6(p) that
[T2(e™ A u)llgp < ll€™ Aully,
provided that p is as assumed in the statement of Lemma 2.2 and 6 + 1/d >
1/p—1/q1 > p(p). Thusfor suchp and the corresponding g with1/p—1/q = 1/d
we get

1T2(e" A w)ll oy < [BIY4 Y4 To(e™ A )| par < B [l€™ A ull,.
Hence by scaling
0
14 Al oy < (IEIEI) 1652 A ull,,
this proves (ii) of Lemma2.2. |

We remark here that the value of p in Lemma 2.2 satisfies |1/p — 1/po| <
1/d(d — 3) ford > 4and |1/p — 1/po| < & whend = 3. Thus for such p Lemma
(2.2) holdswhend = 3andd > 5.Inorder for Lemma(2.1) toholdwhend = 4, we
further restrict inthiscase 8 < p < L. Thusif p is asdiscussed after the statement
of Theorem 1 and sufficiently close to the lower bound there, both Lemmas (2.1)
and (2.2) are applicable.

3. Proof of Theorem 1

We first make areduction. Lete; = (O,...,0,1).
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LEMMA 3.1. If Theorem1fails, thenfor every ¢ > Othereisafunction: Q=R
where

0 =R\ D(—eq,1/2), (32)
such that

supp @ C D(—egq,1), 0 € supp i, (3.3)

e W2, (3.4)

| Aal < Alal +B| v al, (35)
where

1Al ar250 63y < €5 1Bl paoo 3y < E- (36)

Proof. Fix € > 0. Let © and v satisfy (1.1)—«1.3) for a sufficiently small «
(= C~1¢ for a suitable constant C'). Assume u vanishes on an open set but not
identically. Let D bean opendisc containedin 2\ supp « suchthat 9D N supp u #
(. Fix a € 0D N supp u. Considering points on the line segment connecting a to
the center of D, itisclear that for every sufficiently small § thereisapoint ws € Q
such that dist(ws, supp u) = § = |ws — al. Let 6 be small, let T' be a rotation
taking eq t0 (a — ws)/|a — wg| and consider the function

v(z) = u(ws + 0T (z)).

Weregard v asafunction on D(0, 2) whichis clearly possible for small §. Then

v=00nD(0,1), eq € sSUpp v, (3.7

v € Wid(D(0,2)), (39)

| A | < Alp| + Bl v v, (3.9
where

[l sz (p(02)) < & [1BllLase(po2)) < €- (3.10)

Here (3.7) follows from the defining property of w;, (3.8) isclear, (3.9) isalso
clear with

A(z) = 0%A(ws + 60(z)),  B(z) = 6B(ws + 6T(z))
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and then (3.10) follows for small ¢ since
[All ar200 (p(0,2)) = 1Al par2se (D(ug 28)) < 1Al par200 (p(a,a8)) < €5
by (1.1), and similarly with || B|| .4 (p(0,2))-
Now consider the Kelvintransform ii(z) = |z + eq|> 9v(z + eq/|z + eq|?). Its
domainis @ ¥ {z: (z + eq)/|z + ea? € D(0,2)} = RI\D(—e4, 1), i€, (3.2)

holds. (3.3) follows from (3.7), and (3.4) follows from (3.8) since —e,; ¢ (2. One
checks using the chain rule that (3.5) holds with

~ A T+ eq
A(z) = congt. - A
(@ o+ ed 7 (k)

Bz) = const.-|x+ed|—2§< L ed )

|z + eq|?

then (3.10) clearly implies

1Al

<
£4/20(D(=ey,\D(=eg,1/2)) Ce,

Ce.

1B

<
£doo(D(=eg,\D(—eg,1/2))

Outside D(—eg4, 1) we can replace A and B by 0in view of (3.3), so the proof
is complete. O

By Lemma 3.1, if Theorem 1 fails, we may assume v satisfies (3.2)—3.6)
(dropping the tilde’s here).

We now let K be the convex hull of supp uN{zs > —5}. Select ¢: R? — R
such that ¢(z) = Owhen z4 < —% and ¢ = 1 on aneighborhood of the boundary
of K. Setv = ¢u, then

| Av] < A+ Bl v+ (Bul v ¢l +2/ V- vu+uld )
= A+ B|vv|+x,
where y € LP and supp x C A1 U A,, where

- 1 1
= — i ——= K< < —=
Al -D( ed,l)ﬂ{ﬂf 3\$d\ 4}7

Ay = acompact subset of Int K.

LetT bethecone {k € R? : k; > 4,/|k|2 — k3}. Then the proof of Lemma7.1
in [7] applies also here and we have
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LEMMA 3.11. If k € T and |k| issufficiently large, then [|e¥ ||, < [|e¥(Alv| +
Bl 7 v])lp-

We now let M be large enough such that Lemma 3.11 holds for £ € T and
k| > 3 M. We apply Lemma1in[7] to the measure

1= (App| + B| v v|)’ dz,
asin the Theorem 1, and take C = D(pMey,pM/100). If | € C, then u; hasthe
form [e**(A|v| + B| 7 v|)] dz, where k = [ /p satisfies M /2 < |k| < 2M, k € T.

Then we have the following.

LEMMA 3.12. Under theassumptions(3.2)—(3.6), wecanselect {£; } and disjoint
{E;} satisfying

IM < |kj| < 2M, k; €T, (3.13)

€57 (Alo] + Bl 7 o) lliaey) > 272 b (Afo] + Bl 7 v}, (314)

Y IEj|t> C M, (3.15)
J

|E;| > M~ foreach j, diam E; < CM~/2) for each j, (3.16)
1Bl 00 1,y > Cy H(ME|E5])~, (3.17)

for all 1/d > 6 > 6(p), and
1Bl () > Oy H(M B, )~ M/, (3.18)
providedf(p) < 0 < 1/dand1/d < 1/r < 1/d + 6.
Proof. (3.13)«3.16) follow from Lemma 1’ in [7]. For so selected {k;} and
{E;}, weapply Lemma2.1and LemmaZ2.2, (i), and weget for g with1/p—1/q =
€% (Alo| + Bl 7 )| Lo (1)
<N 0llgpll All parzse i,y + 1€ 7 0ll Larn () | Bl oo (5,

< Cllef ™ A UHPHAHLd/ZOO(Ej) + Cylle® ™ A U||p(Md|Ej|)0||B||Ld°<>(Ej)

< Colll All sz () + 1B | pase ;) (M| E5 ) Y[ €¥5° A o]l
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Noticing by Lemma (3.11)
le¥s ™ Al < [le¥i?(Alv| + B| 7 v]) + 5 x|l
< 2ller (Al + Bl 7 v])lp,
which by (3.14) is
< Ot (Alo| + B 7 )| o()-
Thuswe obtain,
1Al sz (1) + (MBS 1Bl oo,y > Cy ™
By dropping ||A||Ld/200(Ej) sinceit isvery small by (3.6) we get
1Bll a1,y > C (M),
foral1/d > 60 > 6(p).
On the other hand, by (2.4) we have || T1(e*® A v)]|4,p < |leF® A ]|, provided
1/p —1/q1 = 1/d. Thusby Lemma(2.2), (i) and Lemma 2.1, we get
1" (Afo| + B| 7 o))l o)
< le® T Afo| + BITu(e"" A v)|[| oy + I1BIT2(e A 0)|l| o)
< ClllAllzarze ;) + 1Bl pase (55
HIB I 1 (1) (M i) M| h% Aol
< Cll| Al sz (i5y) + | Bll oo () + 1Bl iy (M By ) M1,
1e%5° (Alo| + B 7 )| Lo (1;)-
The last inequality above follows from (3.14) and Lemma 3.11. Thus
1Al paszse (1) + | Bll oo () + | Bll iy (MO B ) MAT1 > 07
We drop || Al La/zse 5,y @d || B| oo (17;) 8g@in by (3.6), we get
1Bl (&) > C (M E;|) MY,
providedf(p) < § < 1/dand1/d < 1/r < 1/d + 6. O

We now prove
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LEMMA 3.19. Under theassumptions(3.2)—(3.6), thereexist disjoint sets £; such
that
S IEj|™t > ctMe, (3.20)
J

CIM~ < |Ej| < CM Y2 (3.21)

and there exist 01, 6, with 0(p) < 01,62, < 1/d and r < d such that for each 7,
there exists some \; such that

{z € Ej:|B(x)| > A} > Cp,t A (M| Ey|) ™ (322)
and
CH MY By Chd=Dld N < N < O(MYE;|) P2/ 4T (3.23)
Proof. (3.20) and (3.21) follow immediately from (3.15) and (3.16) respectively.
By taking £ small we may actually assumethat Md|Ej| > (4 forasufficiently large
constant C; > 0 for each 7, since if there exists some j such that Md|Ej| < Oy,
then by (3.17) we get ||B||Ldoo(E]_) > const, which isimpossible by the assumption
(3.6). We now choose # = 64 in (3.17), 6 = 0, in (3.18), and » < d such that
91—92+1/d—1/7">0.
By (3.17), there exists some A = Ap; such that

o € Bj:|B(a)| > A} > Gy A4 (MY By )=, (3.24)
Wenote |{z € E;:|B(x)| > A}| < |Ej| fordl A, thus (3.24) leadsto

A > CTYIB || By )~

= C Y M| By|) OV E (3.25)
Let now \g be the smallest A such that (3.24) holds. We now consider
1Bz, = v [ X o € Byz|Bla)| > AdA

A* Ao o9
(7’/0 +r/}\* +r/}\o > (W Y{z € B;:[B(z)| > A}]) dA

A* A
CV X“*1|Ej|dA+/ AT I (M B |) 0 dA
0 A*

IN

+ Ay —d dA]
Ao

N

C(r) XN 1B + N7~ M A By )~ + X571,
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We used (3.6) here to estimate the integral over A > Ag. Next we note that
N Bj| = AT (M E;])~%1. We want to show that

(CN BN < O (M By)) P2 M1 (3.26)

for an arbitrarily prescribed constant C' provided that £ is small enough.
After some calculation (3.26) is equivalent to

(M?|E;|)=02+1/d=1/r 5 alarge constant. (3.27)

But (3.27) istrue since §; — 6, + 1/d — 1/r > 0 and M¢|E;| > alarge constant
by assumption. We note that the right-hand side of (3.26) is the lower bound of
| Bl|r ;) by (3.18), thus by (3.26) and the inequality preceding it we get

Ny > OB,y > CUMA B2 MY~
and by the selection of r, i.e., r < d we obtain
Mo < C[(M) B )2 =37/ = (M| By ) Per/ @) 1.
This completes the proof of Lemma 3.19. O

REMARK. Aswe pointed out in the introduction, ||f||%doo(E) > ZijHdeoo(Ej)
is not true in general even for the digoint union £ = |J; E;. An easy example
is f(z) = |z[* since || f|| pase (ray < C @ || fl| o0 (o~ 41 ¢ g -y = C 7 for
each k. Though we have the lower bound || B|[ L4~ (1, for each Ej, we can not get
control over the lower bound || B|| ¢ (u ;) by simply adding || B|| pie ;). Thisis
the reason we need the bounds (3.23) for the values of A satisfying (3.22). These

boundstogether with the following combinatorial lemmawill allow usto complete
the proof of Theorem 1.

LEMMA 3.28. Assume {z;} and {);} are two sequences of positive numbers
satisfying the following conditions:

(i) =; > 1for each j,
(i) oot > 1,
(iii) ;™ < \j < ) for somery; > 0,72 > 0.

Fix0 < a < 1, then there exists some A > 0 such that

d
A
=) >Cc
5 o0 (3)

FA>A
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where C' dependson « ,y1, 2.

Proof. Letay = {j: 2F < \; < 2F+1Y,

I, = Z x;o‘, By = Z 33;1.

JjE€ay JjE€a
Then
—a, . —1lta
Bi= Y te Y rytate
JEay J€Eag

Wefirst consider the case k > 0. Wenote \; < z %, SOx]f”a < 2k/72)(=1+a)
Hence, By, < (Zjeakg;j—a)z—(k/w)(l—a) — [, - 2~ (k/2) (A=)

Letnow k < 0, wenote ; > z; " then By = Sjeq, 2 b < I - 2K+,
By the assumption X; By, > 1, thus

1<ZB,c =Y Bi+ )Y By

k>0 k<0
< Z[k (k/72)(1-c) +Z[k ((k+1)/m)(1~-a)
k>0 k<0

< (SupIk> (Z 2-(b/)(d-a) | § 2((k+1>/71>(1a)>
k

k>0 k<0
< C sup Ika
k
therefore Iy, > C 1 for some ko. This proves the lemma. O

Proof of Theorem1. Set z; = Md|Ej|. Then (i) and (ii) of Lemma 3.28 are
immediate from the properties (3.20) and (3.21) of the sets { /; }. By (3.23) we get

- Aj 72

Z; \M< I

wherey; = (df1 + 1)/d andy2 = 6or/(d — ). By (3.22),
A d
Nz € UE: [B@) > M > C15 051 (y) 5y
J

d
| 12 —db
= O Xy /msn (W) R
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where = A\/M. Since o = df, < 1, it follows by Lemma (3.28) that for some p
the summation is bigger than a constant, which is a contradiction with (3.6).

REMARK. There is an aternate way of sharpening the result of [2], using
Campanato—Morrey type conditions instead of weak type conditions. This was
first done by [2]. We have nothing to add to the known results (e.g., [2], [5]) inthis
direction.

Added in Proof : The result of this paper has been extended to the variable coefficient casein [4].
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