Unique Continuation with Weak Type Lower Order Terms*

GUOZHEN LU¹ and THOMAS WOLFF²

¹Department of Mathematics and Statistics, Wright State University, Dayton, Ohio 45435; e-mail: gzlu@discover.wright.edu, gzlu@math.wright.edu ²Department of Mathematics, California Institute of Technology, Pasadena; CA 91125; e-mail: wolff@cco.caltech.edu

(Received: 12 December 1994; accepted: 5 May 1995)

Abstract. This paper proves a unique continuation property for the elliptic differential inequality

 $|\Delta u| \leqslant A|u| + B|\nabla u|,$

where the coefficients A and B are functions in the Lorentz space with small weak type norm.

Mathematics Subject Classifications (1991): 35, 42.

Key words: Unique continuation, elliptic equation, Lorentz norm, Carleman's inequalities.

1. Introduction

We will prove the following result.

THEOREM 1. If $d \ge 3$, then there are p < 2d/(d+2) and a constant $\varepsilon_d > 0$ making the following true. Assume that $\Omega \subset \mathbb{R}^d$ is a domain, $A : \Omega \to \mathbb{R}$ and $B : \Omega \to \mathbb{R}$ are functions such that

$$\lim_{r \to 0} \|A\|_{L^{d/2\infty}(D(a,r))} \leqslant \varepsilon_d \tag{1.1}$$

$$\lim_{r \to 0} \|B\|_{L^{d\infty}(D(a,r))} \leqslant \varepsilon_d \tag{1.2}$$

for each $a \in \Omega$. Assume also that $u \in W^{2p}_{loc}(\Omega)$ satisfies

$$|\bigtriangleup u| \leqslant A|u| + B| \bigtriangledown u|. \tag{1.3}$$

Then if *u* vanishes on an open set it vanishes identically.

Here W^{2p} is the Sobolev space, i.e., functions whose second derivatives are in L^p . Our proof will show (see the remark at the end of Section 2) that p can be taken

^{*} The first author is supported in part by NSF Grant #DMS93-15963. The second author is supported in part by NSF Grant #DMS93-07872.

to be any number greater than 1 if d = 3, any number greater than $\frac{8}{7}$ if d = 4 and any number greater than $2d(d-3)/(d^2 - d - 4)$ if $d \ge 5$. $||A||_{L^{q\infty}(D(a,r))}$ is the weak type norm defined as follows

$$||A||_{L^{q\infty}(D(a,r))} = \sup_{\lambda > 0} (\lambda^q | \{x \in D(a,r) : |A(x)| > \lambda\} |)^{1/q}.$$

Theorem 1 improves on a result of [7] where A and B are assumed to be in $L_{loc}^{d/2}$ and L_{loc}^{d} respectively, in the same way as the result of [6] improves on the result of [2]. It should be pointed out, however, that in contrast to the result of [6] Theorem 1 is not known to be sharp.

A word about the proof: we will use the main lemma (Lemma 1) of [7], but the method used in [7] to derive unique continuation theorems from that lemma does not work here because it depends on the fact that

$$\sum_{j} \|A\|_{L^q(E_j)}^q \leqslant \|A\|_q^q$$

if $\{E_j\}$ are disjoint sets, and this is clearly false if the L^q norm is replaced by the $L^{q\infty}$ norm.

Section 2 of this paper shows the Carleman inequalities needed for Theorem 1, and Section 3 is the proof of the theorem.

2. Carleman Inequalities

We first state a Carleman inequality due to [3].

LEMMA 2.1. Let $p_0 = 2d/(d+2)$, $d \ge 3$. Then for any p satisfying

(i) $|1/p - 1/p_0| < 1/2d$ and (ii) 1/p - 1/q = 2/d,

we have for any $k \in \mathbb{R}^d$ and $u \in C_0^{\infty}(\mathbb{R}^d)$

$$||e^{k \cdot x}u||_{qp} \leqslant C ||e^{k \cdot x} \bigtriangleup u||_{p},$$

with C = C(p, d).

We note in the above that $\|\cdot\|_{qp}$ is the Lorentz norm defined by

$$||f||_{qp} = \left(q \int_0^\infty s^{p-1} |\{x \colon |f(x)| > s\}|^{p/q} \,\mathrm{d}s\right)^{1/p}$$

We now assume $m_k(\xi) = i\xi - k/(|\xi|^2 - i\xi \cdot k - |k|^2)$ for $k \in \mathbb{R}^d$, i.e., a multiplier such that

$$(e^{k \cdot x} \bigtriangledown u)^{\wedge}(\xi) = m_k(\xi)(e^{k \cdot x} \bigtriangleup u)^{\wedge}(\xi),$$

for $u \in C_0^{\infty}(\mathbb{R}^d)$. We set $\varphi \in C_0^{\infty}(D(0,2))$ and $\varphi_k(\xi) = \varphi(|k|^{-1}\xi)$, where D(0,2) is the disk centered at the origin with radius 2. Define two multiplier operators T_1 and T_2 by

$$\widehat{T_1 f} = (m_k (1 - \varphi_k)) \widehat{f},$$
$$\widehat{T_2 f} = (m_k \varphi_k) \widehat{f}.$$

Also let s be the Stein–Tomas exponent, s = 2d + 2/(d + 3). Then we can show the following lemma.

LEMMA 2.2. Let 1 when <math>d = 3 and $2d(d-3)/(d^2 - d - 4)$ $when <math>d \ge 4$. Assume $k \in \mathbb{R}^d$, $E \subset \mathbb{R}^d$, $|E| \ge |k|^{-d}$, $u \in W^{2p}$ has compact support. Then there exists some $\theta(p)$ with $0 < \theta(p) < 1/d$ such that for any θ with $\theta(p) < \theta < 1/d$ the following two inequalities hold:

- (i) $||T_2(e^{k \cdot x} \bigtriangleup u)||_{L^q(E)} \leq C_{\theta}(|k|^d |E|)^{\theta} |k|^{d/r-1} ||e^{k \cdot x} \bigtriangleup u||_p$, provided $1/d < 1/p - 1/q = 1/r < 1/d + \theta$.
- (ii) $\|e^{k \cdot x} \bigtriangledown u\|_{L^{qp}(E)} \leq C_{\theta}(|k|^d |E|)^{\theta} \|e^{k \cdot x} \bigtriangleup u\|_p$ provided 1/p - 1/q = 1/d.

Proof. First we show that with $k = e_1 = (1, 0, ..., 0) \in \mathbb{R}^d$ the following holds

$$||T_2(e^{x_1} \bigtriangleup u)||_{L^q(E)} \leqslant C_{\theta} |E|^{\theta} ||e^{x_1} \bigtriangleup u||_p$$

It is shown in [7], page 264, that $||T_2f||_{q_1} \leq C ||f||_{p_1}$ provided

$$1 \leq p_1 \leq s$$
 and $\frac{1}{q_1} < \frac{1}{p_1'} + \frac{1}{2} - \frac{s'}{2p_1'}$, where $s' = \frac{s}{s-1}$. (2.3)

Note that (2.3) is equivalent to

$$1 \leqslant p_1 \leqslant s$$
 and $\frac{1}{p_1} - \frac{1}{q_1} > \mu(p_1),$

where

$$\mu(p_1) = \frac{1}{p_1} \left(\frac{d-3}{d-1} \right) - \frac{d-5}{2(d-1)}.$$

We also note that $\mu(p_1)$ is decreasing in p_1 and $1/d < \mu(p_1) < 2/d$ provided that $1 \leq p_1 \leq s$ when d = 3 and $2d(d-3)/(d^2 - d - 4) < p_1 < s$ when $d \geq 4$.

Set $\theta(p_1) = \mu(p_1) - 1/d$ and for any $\theta(p_1) < \theta < 1/d$ select q_1 such that $\mu(p_1) < 1/p_1 - 1/q_1 < \theta + 1/d$. Thus for any $q < q_1$ and $1/p_1 - 1/q > 1/d$ we get

$$\begin{aligned} \|T_2(e^{x_1} \bigtriangleup u)\|_{L^q(E)} &\leqslant \|E|^{1/q-1/q_1} \|T_2(e^{x_1} \bigtriangleup u)\|_{q_1} \\ &\leqslant C |E|^{1/q-1/q_1} \|e^{x_1} \bigtriangleup u\|_{p_1} \leqslant C |E|^{\theta} \|e^{x_1} \bigtriangleup u\|_{p_1}, \end{aligned}$$

since $1/q - 1/q_1 < \theta$. By scaling, we thus have proved that

$$||T_2(e^{k \cdot x} \bigtriangleup u)||_{L^q(E)} \leqslant C_\theta(|k|^d |E|)^\theta |k|^{d/r-1} ||e^{k \cdot x} \bigtriangleup u||_{p_1},$$

provided that $q > p_1$ satisfies $1/p_1 - 1/q = 1/r$ and $1/d < /1/r < \theta + 1/d$. The condition that p_1 satisfies here is the same as p in Lemma (2.2). This proves (i) of Lemma (2.2).

We now turn to the proof of Lemma 2.2, part (ii). We still first assume $k = e_1$. We split the multiplier and then define T_1 and T_2 as before. We note that the multiplier for T_1 can be written as $(1 + |\xi|^2)^{-1/2} \mu$, where μ satisfies the Hörmander multiplier condition. Thus

$$||T_1(e^{x_1} \Delta u)||_{L^{qp}} \leq C ||e^{x_1} \Delta u||_p \text{ for any } p > 1 \text{ and } \frac{1}{p} - \frac{1}{q} = \frac{1}{d}.$$
 (2.4)

In the proof of (i), we have actually shown for any given $\theta > \theta(p)$ that

$$||T_2(e^{x_1} \bigtriangleup u)||_{q_1p} \leqslant ||e^{x_1} \bigtriangleup u||_p,$$

provided that p is as assumed in the statement of Lemma 2.2 and $\theta + 1/d > 1/p - 1/q_1 > \mu(p)$. Thus for such p and the corresponding q with 1/p - 1/q = 1/d we get

$$||T_2(e^{x_1} \Delta u)||_{L^{q_p}(E)} \leqslant |E|^{1/q - 1/q_1} ||T_2(e^{x_1} \Delta u)||_{L^{q_1 p}} \leqslant |E|^{\theta} ||e^{x_1} \Delta u||_p.$$

Hence by scaling

$$\|e^{k \cdot x} \bigtriangleup u\|_{L^{qp}(E)} \leqslant \left(|E||k|^d\right)^{\theta} \|e^{k \cdot x} \bigtriangleup u\|_p,$$

this proves (ii) of Lemma 2.2.

We remark here that the value of p in Lemma 2.2 satisfies $|1/p - 1/p_0| < 1/d(d-3)$ for $d \ge 4$ and $|1/p - 1/p_0| < \frac{1}{6}$ when d = 3. Thus for such p Lemma (2.1) holds when d = 3 and $d \ge 5$. In order for Lemma (2.1) to hold when d = 4, we further restrict in this case $\frac{8}{7} . Thus if <math>p$ is as discussed after the statement of Theorem 1 and sufficiently close to the lower bound there, both Lemmas (2.1) and (2.2) are applicable.

3. Proof of Theorem 1

We first make a reduction. Let $e_d = (0, \ldots, 0, 1)$.

LEMMA 3.1. If Theorem 1 fails, then for every $\tilde{\varepsilon} > 0$ there is a function $\tilde{u} : \Omega \to \mathbb{R}$ where

$$\tilde{\Omega} = \mathbb{R}^d \setminus \overline{D(-e_d, 1/2)},\tag{3.2}$$

such that

$$\operatorname{supp} \tilde{u} \subset \overline{D(-e_d, 1)}, \ 0 \in \operatorname{supp} \tilde{u}, \tag{3.3}$$

$$\tilde{u} \in W_{\text{loc}}^{2p},\tag{3.4}$$

$$|\Delta \tilde{u}| \leqslant \tilde{A} |\tilde{u}| + \tilde{B} |\nabla \tilde{u}|, \tag{3.5}$$

where

$$\|\tilde{A}\|_{L^{d/2\infty}(\tilde{\Omega})} < \tilde{\varepsilon}, \ \|\tilde{B}\|_{L^{d\infty}(\tilde{\Omega})} < \tilde{\varepsilon}.$$
(3.6)

Proof. Fix $\tilde{\varepsilon} > 0$. Let Ω and u satisfy (1.1)–(1.3) for a sufficiently small ε (= $C^{-1}\tilde{\varepsilon}$ for a suitable constant C). Assume u vanishes on an open set but not identically. Let D be an open disc contained in $\Omega \setminus \text{supp } u$ such that $\partial D \cap \text{supp } u \neq \emptyset$. Fix $a \in \partial D \cap \text{supp } u$. Considering points on the line segment connecting a to the center of D, it is clear that for every sufficiently small δ there is a point $w_{\delta} \in \Omega$ such that $\text{dist}(w_{\delta}, \text{ supp } u) = \delta = |w_{\delta} - a|$. Let δ be small, let Γ be a rotation taking e_d to $(a - w_{\delta})/|a - w_{\delta}|$ and consider the function

$$v(x) = u(w_{\delta} + \delta \Gamma(x)).$$

We regard v as a function on D(0, 2) which is clearly possible for small δ . Then

$$v = 0 \text{ on } D(0,1), \qquad e_d \in \text{ supp } v, \tag{3.7}$$

$$v \in W_{\text{loc}}^{2p}(D(0,2)),$$
(3.8)

$$|\Delta v| \leqslant \overline{A}|v| + \overline{B}| \bigtriangledown v|, \tag{3.9}$$

where

$$\|\overline{A}\|_{L^{d/2\infty}(D(0,2))} < \varepsilon, \ \|\overline{B}\|_{L^{d\infty}(D(0,2))} < \varepsilon.$$
(3.10)

Here (3.7) follows from the defining property of w_{δ} , (3.8) is clear, (3.9) is also clear with

$$\overline{A}(x) = \delta^2 A(w_{\delta} + \delta \Gamma(x)), \qquad \overline{B}(x) = \delta B(w_{\delta} + \delta \Gamma(x))$$

and then (3.10) follows for small δ since

$$\|\overline{A}\|_{L^{d/2\infty}(D(0,2))} = \|A\|_{L^{d/2\infty}(D(w_{\delta},2\delta))} \leq \|A\|_{L^{d/2\infty}(D(a,4\delta))} < \varepsilon,$$

by (1.1), and similarly with $\|\overline{B}\|_{L^{d\infty}(D(0,2))}$.

Now consider the Kelvin transform $\tilde{u}(x) = |x + e_d|^{2-d}v(x + e_d/|x + e_d|^2)$. Its domain is $\tilde{\Omega} \stackrel{\text{def}}{=} \{x: (x + e_d)/|x + e_d|^2 \in D(0, 2)\} = \mathbb{R}^d \setminus \overline{D(-e_d, \frac{1}{2})}$, i.e., (3.2) holds. (3.3) follows from (3.7), and (3.4) follows from (3.8) since $-e_d \notin \tilde{\Omega}$. One checks using the chain rule that (3.5) holds with

$$\begin{split} \tilde{A}(x) &= \operatorname{const.} \cdot |x + e_d|^{-4} \overline{A} \left(\frac{x + e_d}{|x + e_d|^2} \right), \\ \tilde{B}(x) &= \operatorname{const.} \cdot |x + e_d|^{-2} \overline{B} \left(\frac{x + e_d}{|x + e_d|^2} \right), \end{split}$$

then (3.10) clearly implies

$$\begin{split} \|\tilde{A}\|_{L^{d/2\infty}\left(\overline{D(-e_d,1)}\setminus\overline{D(-e_d,1/2)}\right)} &\leqslant C\varepsilon, \\ \|\tilde{B}\|_{L^{d\infty}\left(\overline{D(-e_d,1)}\setminus\overline{D(-e_d,1/2)}\right)} &\leqslant C\varepsilon. \end{split}$$

Outside $\overline{D(-e_d, 1)}$ we can replace \tilde{A} and \tilde{B} by 0 in view of (3.3), so the proof is complete.

By Lemma 3.1, if Theorem 1 fails, we may assume u satisfies (3.2)–(3.6) (dropping the tilde's here).

We now let K be the convex hull of supp $u \bigcap \{x_d \ge -\frac{1}{4}\}$. Select $\phi \colon \mathbb{R}^d \to \mathbb{R}$ such that $\phi(x) = 0$ when $x_d \le -\frac{1}{3}$ and $\phi = 1$ on a neighborhood of the boundary of K. Set $v = \phi u$, then

$$\begin{split} | \bigtriangleup v | &\leq A |v| + B | \bigtriangledown v | + (Bu | \bigtriangledown \phi | + 2 | \bigtriangledown \phi \cdot \bigtriangledown u + u \bigtriangleup \phi |) \\ &= A |v| + B | \bigtriangledown v | + \chi, \end{split}$$

where $\chi \in L^p$ and supp $\chi \subset A_1 \cup A_2$, where

$$A_1 = \overline{D(-e_d, 1)} \bigcap \left\{ x : -\frac{1}{3} \leqslant x_d \leqslant -\frac{1}{4} \right\},\,$$

 $A_2 = a \text{ compact subset of Int } K.$

Let Γ be the cone $\{k \in \mathbb{R}^d : k_d \ge 4\sqrt{|k|^2 - k_d^2}\}$. Then the proof of Lemma 7.1 in [7] applies also here and we have

LEMMA 3.11. If $k \in \Gamma$ and |k| is sufficiently large, then $||e^{k \cdot x}\chi||_p \leq ||e^{k \cdot x}(A|v| + B| \nabla v|)||_p$.

We now let M be large enough such that Lemma 3.11 holds for $k \in \Gamma$ and $|k| > \frac{1}{2}M$. We apply Lemma 1 in [7] to the measure

$$\mu = (A|v| + B| \bigtriangledown v|)^p \,\mathrm{d}x,$$

as in the Theorem 1, and take $\mathcal{C} = D(pMe_d, pM/100)$. If $l \in \mathcal{C}$, then μ_l has the form $[e^{kx}(A|v|+B|\bigtriangledown v|)]^p dx$, where k = l/p satisfies $M/2 < |k| < 2M, k \in \Gamma$. Then we have the following.

LEMMA 3.12. Under the assumptions (3.2)–(3.6), we can select $\{k_j\}$ and disjoint $\{E_j\}$ satisfying

$$\frac{1}{2}M < |k_j| < 2M, \qquad k_j \in \Gamma, \tag{3.13}$$

$$\|e^{k_j \cdot x} (A|v| + B| \bigtriangledown v|)\|_{L^p(E_j)} \ge 2^{-(1/p)} \|e^{k_j \cdot x} (A|v| + B| \bigtriangledown v|)\|_p, \quad (3.14)$$

$$\sum_{j} |E_{j}|^{-1} \ge C^{-1} M^{d}, \tag{3.15}$$

$$|E_j| \ge M^{-d}$$
 for each j , diam $E_j \le CM^{-(1/2)}$ for each j , (3.16)

$$\|B\|_{L^{d\infty}(E_j)} \ge C_{\theta}^{-1} (M^d |E_j|)^{-\theta},$$
(3.17)

for all $1/d > \theta > \theta(p)$, and

$$||B||_{L^{r}(E_{j})} \ge C_{\theta}^{-1} (M^{d}|E_{j}|)^{-\theta} M^{1-(d/r)},$$
(3.18)

provided $\theta(p) < \theta < 1/d$ and $1/d < 1/r < 1/d + \theta$.

Proof. (3.13)–(3.16) follow from Lemma 1' in [7]. For so selected $\{k_j\}$ and $\{E_j\}$, we apply Lemma 2.1 and Lemma 2.2, (ii), and we get for q with 1/p - 1/q = 2/d and $1/p - 1/q_1 = 1/d$,

$$\begin{split} \|e^{k_{j}\cdot x}(A|v|+B|\bigtriangledown v|)\|_{L^{p}(E_{j})} \\ &\leqslant \|e^{k_{j}\cdot x}v\|_{qp}\|A\|_{L^{d/2\infty}(E_{j})} + \|e^{k_{j}\cdot x}\bigtriangledown v\|_{L^{q_{1}p}(E_{j})}\|B\|_{L^{d\infty}(E_{j})} \\ &\leqslant C\|e^{k_{j}\cdot x}\bigtriangleup v\|_{p}\|A\|_{L^{d/2\infty}(E_{j})} + C_{\theta}\|e^{k_{j}\cdot x}\bigtriangleup v\|_{p}(M^{d}|E_{j}|)^{\theta}\|B\|_{L^{d\infty}(E_{j})} \\ &\leqslant C_{\theta}[\|A\|_{L^{d/2\infty}(E_{j})} + \|B\|_{L^{d\infty}(E_{j})}(M^{d}|E_{j}|)^{\theta}]\|e^{k_{j}\cdot x}\bigtriangleup v\|_{p}. \end{split}$$

Noticing by Lemma (3.11)

$$\begin{aligned} \|e^{k_j \cdot x} \bigtriangleup v\|_p &\leqslant \|e^{k_j \cdot x} (A|v| + B| \bigtriangledown v|) + e^{k_j \cdot x} \chi\|_p \\ &\leqslant 2 \|e^{k_j \cdot x} (A|v| + B| \bigtriangledown v|)\|_p, \end{aligned}$$

which by (3.14) is

$$\leqslant C \|e^{k_j \cdot x} (A|v| + B| \bigtriangledown v|)\|_{L^p(E_j)}.$$

Thus we obtain,

$$||A||_{L^{d/2\infty}(E_j)} + (M^d|E_j|)^{\theta} ||B||_{L^{d\infty}(E_j)} \ge C_{\theta}^{-1}.$$

By dropping $||A||_{L^{d/2\infty}(E_i)}$ since it is very small by (3.6) we get

$$||B||_{L^{d\infty}(E_j)} \ge C_{\theta}^{-1} (M^d |E_j|)^{-\theta},$$

for all $1/d > \theta > \theta(p)$.

On the other hand, by (2.4) we have $||T_1(e^{k \cdot x} \triangle v)||_{q_1 p} \leq ||e^{k \cdot x} \triangle v||_p$ provided $1/p - 1/q_1 = 1/d$. Thus by Lemma (2.2), (i) and Lemma 2.1, we get

$$\begin{split} \|e^{k_{j}\cdot x}(A|v|+B|\bigtriangledown v|)\|_{L^{p}(E_{j})} \\ &\leqslant \|e^{k_{j}\cdot x}A|v|+B|T_{1}(e^{k_{j}\cdot x}\bigtriangleup v)|\|_{L^{p}(E_{j})}+\|B|T_{2}(e^{k_{j}\cdot x}\bigtriangleup v)|\|_{L^{p}(E_{j})} \\ &\leqslant C[\|A\|_{L^{d/2\infty}(E_{j})}+\|B\|_{L^{d\infty}(E_{j})} \\ &+\|B\|_{L^{r}(E_{j})}(M^{d}|E_{i}|)^{\theta}M^{d/r-1}]\|e^{k_{j}\cdot x}\bigtriangleup v\|_{p} \\ &\leqslant C[\|A\|_{L^{d/2\infty}(E_{j})}+\|B\|_{L^{d\infty}(E_{j})}+|B\|_{L^{r}(E_{j})}(M^{d}|E_{j}|)^{\theta}M^{d/r-1}] \cdot \\ &\|e^{k_{j}\cdot x}(A|v|+B|\bigtriangledown v|)\|_{L^{p}(E_{j})}. \end{split}$$

The last inequality above follows from (3.14) and Lemma 3.11. Thus

$$\|A\|_{L^{d/2\infty}(E_j)} + \|B\|_{L^{d\infty}(E_j)} + \|B\|_{L^r(E_j)} (M^d |E_j|)^{\theta} M^{d/r-1} \ge C^{-1}.$$

We drop $||A||_{L^{d/2\infty}(E_i)}$ and $||B||_{L^{d\infty}(E_i)}$ again by (3.6), we get

$$||B||_{L^r(E_j)} \ge C^{-1} (M^d |E_j|)^{-\theta} M^{d/r-1},$$

provided $\theta(p) < \theta < 1/d$ and $1/d < 1/r < 1/d + \theta$.

We now prove

LEMMA 3.19. Under the assumptions (3.2)–(3.6), there exist disjoint sets E_j such that

$$\sum_{j} |E_{j}|^{-1} \ge C^{-1} M^{d}, \tag{3.20}$$

$$C^{-1}M^{-d} \leqslant |E_j| \leqslant CM^{-d/2} \tag{3.21}$$

and there exist θ_1, θ_2 with $\theta(p) < \theta_1, \theta_2 < 1/d$ and r < d such that for each j, there exists some λ_j such that

$$\{x \in E_j : |B(x)| > \lambda_j\} | \ge C_{\theta_2}^{-1} \lambda_j^{-d} (M^d |E_j|)^{-d\theta_2}$$
(3.22)

and

$$C^{-1}(M^{d}|E_{j}|)^{(-\theta_{1}d-1)/d}M \leqslant \lambda_{j} \leqslant C(M^{d}|E_{j}|)^{\theta_{2}r/(d-r)}M.$$
(3.23)

Proof. (3.20) and (3.21) follow immediately from (3.15) and (3.16) respectively. By taking $\tilde{\varepsilon}$ small we may actually assume that $M^d |E_j| \ge C_1$ for a sufficiently large constant $C_1 > 0$ for each j, since if there exists some j such that $M^d |E_j| \le C_1$, then by (3.17) we get $||B||_{L^{d\infty}(E_j)} \ge \text{const}$, which is impossible by the assumption (3.6). We now choose $\theta = \theta_1$ in (3.17), $\theta = \theta_2$ in (3.18), and r < d such that $\theta_1 - \theta_2 + 1/d - 1/r > 0$.

By (3.17), there exists some $\lambda = \lambda_{E_i}$ such that

$$|\{x \in E_j : |B(x)| > \lambda\}| \ge C_{\theta_1}^{-1} \lambda^{-d} (M^d |E_j|)^{-d\theta_1}.$$
(3.24)

We note $|\{x \in E_j : |B(x)| > \lambda\}| \leq |E_j|$ for all λ , thus (3.24) leads to

$$\lambda \ge C^{-1}[|E_j|^{-1}(M^d|E_j|)^{-d\theta_1}]^{1/d}$$

= $C^{-1}(M^d|E_j|)^{(-\theta_1d-1)/d} \cdot M \stackrel{\text{def}}{=} \lambda^*.$ (3.25)

Let now λ_0 be the smallest λ such that (3.24) holds. We now consider

$$\begin{split} \|B\|_{L^{r}(E_{j})}^{r} &= r \int_{0}^{\infty} \lambda^{r-1} |\{x \in E_{j} : |B(x)| > \lambda\}| d\lambda \\ &= \left(r \int_{0}^{\lambda^{*}} +r \int_{\lambda^{*}}^{\lambda_{0}} +r \int_{\lambda_{0}}^{\infty} \right) (\lambda^{r-1} |\{x \in E_{j} : |B(x)| > \lambda\}|) d\lambda \\ &\leqslant C \left[\int_{0}^{\lambda^{*}} \lambda^{r-1} |E_{j}| d\lambda + \int_{\lambda^{*}}^{\lambda} \lambda^{r-1} \lambda^{-d} (M^{d}|E_{j}|)^{-d\theta_{1}} d\lambda \right. \\ &\qquad + \int_{\lambda_{0}}^{\infty} \lambda^{r-1} \lambda^{-d} d\lambda \right] \\ &\leqslant C(r) [\lambda^{*^{r}} |E_{j}| + \lambda^{*r-d} (M^{d}|E_{j}|)^{-d\theta_{1}} + \lambda_{0}^{r-d}]. \end{split}$$

We used (3.6) here to estimate the integral over $\lambda > \lambda_0$. Next we note that $\lambda^{*^r}|E_j| \approx \lambda^{*^{r-d}} (M^d|E_j|)^{-d\theta_1}$. We want to show that

$$(C(r)\lambda^{*^{r}}|E_{j}|)^{1/r} \leqslant C^{-1}[(M^{d}|E_{j}|)^{\theta_{2}}M^{d/r-1}]^{-1}$$
(3.26)

for an arbitrarily prescribed constant C provided that $\tilde{\varepsilon}$ is small enough.

After some calculation (3.26) is equivalent to

$$(M^d|E_j|)^{\theta_1 - \theta_2 + 1/d - 1/r} \ge \text{ a large constant.}$$
(3.27)

But (3.27) is true since $\theta_1 - \theta_2 + 1/d - 1/r > 0$ and $M^d |E_j| \ge a$ large constant by assumption. We note that the right-hand side of (3.26) is the lower bound of $||B||_{L^r(E_i)}$ by (3.18), thus by (3.26) and the inequality preceding it we get

$$\lambda_0^{r-d} \ge C^{-1} \|B\|_{L^r(E_j)}^r \ge C[(M^d |E_j|)^{\theta_2} M^{d/r-1}]^{-r}$$

and by the selection of r, i.e., r < d we obtain

$$\lambda_0 \leqslant C[(M^d | E_j |)^{\theta_2} M^{d/r-1}]^{r/(d-r)} = C(M^d | E_j |)^{\theta_2 r/(d-r)} M.$$

This completes the proof of Lemma 3.19.

REMARK. As we pointed out in the introduction, $||f||_{L^{d\infty}(E)}^d \ge \sum_j ||f||_{L^{d\infty}(E_j)}^d$ is not true in general even for the disjoint union $E = \bigcup_j E_j$. An easy example is $f(x) = |x|^{-1}$ since $||f||_{L^{d\infty}(R^d)} \le C$ and $||f||_{L^{d\infty}(2^{-(k+1)} \le |x| \le 2^{-k})} \ge C^{-1}$ for each k. Though we have the lower bound $||B||_{L^{d\infty}(E_j)}$ for each E_j , we can not get control over the lower bound $||B||_{L^{d\infty}(\cup E_j)}$ by simply adding $||B||_{L^{d\infty}(E_j)}$. This is the reason we need the bounds (3.23) for the values of λ satisfying (3.22). These bounds together with the following combinatorial lemma will allow us to complete the proof of Theorem 1.

LEMMA 3.28. Assume $\{x_j\}$ and $\{\lambda_j\}$ are two sequences of positive numbers satisfying the following conditions:

(i)
$$x_j \ge 1$$
 for each j ,
(ii) $\sum x_j^{-1} \ge 1$,
(iii) $x_j^{-\gamma_1} \le \lambda_j \le x_j^{\gamma_2}$ for some $\gamma_1 > 0, \gamma_2 > 0$.

Fix $0 < \alpha < 1$ *, then there exists some* $\lambda > 0$ *such that*

$$\sum_{j:\lambda_j > \lambda} x_j^{-\alpha} \left(\frac{\lambda}{\lambda_j}\right)^d \ge C^{-1},$$

where C depends on α , γ_1 , γ_2 .

Proof. Let
$$a_k = \{j : 2^k \leq \lambda_j \leq 2^{k+1}\},\$$
$$I_k = \sum_{j \in a_k} x_j^{-\alpha}, \qquad B_k = \sum_{j \in a_k} x_j^{-1}.$$

Then

$$B_k = \sum_{j \in a_k} x_j^{-1} = \sum_{j \in a_k} x_j^{-\alpha} x_j^{-1+\alpha}.$$

We first consider the case $k \ge 0$. We note $\lambda_j \le x_j^{\gamma_2}$, so $x_j^{-1+\alpha} \le 2^{(k/\gamma_2)(-1+\alpha)}$. Hence, $B_k \le (\sum_{j \in a_k} x_j^{-\alpha}) 2^{-(k/\gamma_2)(1-\alpha)} = I_k \cdot 2^{-(k/\gamma_2)(1-\alpha)}$.

Let now k < 0, we note $\lambda_j \ge x_j^{-\gamma_1}$ then $B_k = \sum_{j \in a_k} x_j^{-1} \le I_k \cdot 2^{(k+1/\gamma_1)(1-\alpha)}$. By the assumption $\sum_k B_k \ge 1$, thus

$$\begin{split} 1 &\leq \sum_{k} B_{k} = \sum_{k \geq 0} B_{k} + \sum_{k < 0} B_{k} \\ &\leq \sum_{k \geq 0} I_{k} 2^{-(k/\gamma_{2})(1-\alpha)} + \sum_{k < 0} I_{k} 2^{((k+1)/\gamma_{1})(1-\alpha)} \\ &\leq \left(\sup_{k} I_{k} \right) \left(\sum_{k \geq 0} 2^{-(k/\gamma_{2})(1-\alpha)} + \sum_{k < 0} 2^{((k+1)/\gamma_{1})(1-\alpha)} \right) \\ &\leq C \sup_{k} I_{k}, \end{split}$$

therefore $I_{k_0} \ge C^{-1}$ for some k_0 . This proves the lemma.

Proof of Theorem 1. Set $x_j = M^d |E_j|$. Then (i) and (ii) of Lemma 3.28 are immediate from the properties (3.20) and (3.21) of the sets $\{E_j\}$. By (3.23) we get

$$x_j^{-\gamma_1} \leqslant \frac{\lambda_j}{M} \leqslant x_j^{\gamma_2},$$

where $\gamma_1 = (d\theta_1 + 1)/d$ and $\gamma_2 = \theta_2 r/(d - r)$. By (3.22),

$$\lambda^{d} |\{x \in \bigcup E_{j} \colon |B(x)| > \lambda\}| \geq C^{-1} \sum_{j : \lambda_{j} > \lambda} \left(\frac{\lambda}{\lambda_{j}}\right)^{d} x_{j}^{-d\theta_{2}}$$
$$= C^{-1} \sum_{j : \lambda_{j} / M > \mu} \left(\frac{\mu}{\lambda_{j} / M}\right)^{d} x_{j}^{-d\theta_{2}},$$

where $\mu = \lambda/M$. Since $\alpha = d\theta_2 < 1$, it follows by Lemma (3.28) that for some μ the summation is bigger than a constant, which is a contradiction with (3.6).

REMARK. There is an alternate way of sharpening the result of [2], using Campanato–Morrey type conditions instead of weak type conditions. This was first done by [2]. We have nothing to add to the known results (e.g., [2], [5]) in this direction.

Added in Proof: The result of this paper has been extended to the variable coefficient case in [4].

References

- 1. Chanillo, S. and Sawyer, W.: Unique Continuation for $\triangle + V$ and the C. Fefferman–Phong class, *Trans. Amer. Math. Soc.* **318** (1990), 275–300.
- Jerison, D. and Kenig, C.: Unique continuation and absence of positive eigenvalues for Schrödinger operators, Ann. Math. 12 (1985), 463–492.
- Kenig, C., Ruiz, A. and Sogge, C.: Sobolev inequalities and unique continuation for second order constant coefficient differential operators, *Duke Math. J.* 55 (1987), 329–347.
- Lu, G.: Unique continuation with weak type lower order terms: The variable coefficient case, *Publicacions Matemàtiques* 39 (1995), 187–200.
- 5. Ruiz, A. and Vega, L.: Unique continuation for the solutions of the Laplacian plus a drift, *Ann. Institute Grenoble* **41**(3) (1991), 651–663.
- 6. Stein, E.: Appendix to Unique continuation, Ann. Math. 121 (1985), 492-494.
- 7. Wolff, T.: A property of measures in \mathbb{R}^N and an application to unique continuation, *Geometric* and Functional Analysis **2**(2) (1992), 225–284.