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Abstract. This paper proves a unique continuation property for the elliptic differential inequality

j�uj 6 Ajuj+Bjruj;

where the coefficients A and B are functions in the Lorentz space with small weak type norm.
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1. Introduction

We will prove the following result.

THEOREM 1. If d > 3, then there are p < 2d=(d + 2) and a constant "d > 0
making the following true. Assume that 
 � R

d is a domain, A : 
 ! R and
B : 
! R are functions such that

lim
r!0

kAkLd=21(D(a;r)) 6 "d (1.1)

lim
r!0

kBkLd1(D(a;r)) 6 "d (1.2)

for each a"
. Assume also that u"W 2p
loc(
) satisfies

j 4 uj 6 Ajuj+Bj 5 uj: (1.3)

Then if u vanishes on an open set it vanishes identically.
Here W 2p is the Sobolev space, i.e., functions whose second derivatives are in

Lp. Our proof will show (see the remark at the end of Section 2) that p can be taken
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604 GUOZHEN LU AND THOMAS WOLFF

to be any number greater than 1 if d = 3, any number greater than 8
7 if d = 4 and

any number greater than 2d(d � 3)=(d2 � d � 4) if d > 5. kAkLq1(D(a;r)) is the
weak type norm defined as follows

kAkLq1(D(a;r)) = sup
�>0

�
�qjfx 2 D(a; r) : jA(x)j > �gj)1=q :

Theorem 1 improves on a result of [7] where A and B are assumed to be in
L
d=2
loc and Ldloc respectively, in the same way as the result of [6] improves on the

result of [2]. It should be pointed out, however, that in contrast to the result of [6]
Theorem 1 is not known to be sharp.

A word about the proof: we will use the main lemma (Lemma 1) of [7], but the
method used in [7] to derive unique continuation theorems from that lemma does
not work here because it depends on the fact that

X
j

kAkq
Lq(Ej)

6 kAkqq;

if fEjg are disjoint sets, and this is clearly false if the Lq norm is replaced by the
Lq1 norm.

Section 2 of this paper shows the Carleman inequalities needed for Theorem 1,
and Section 3 is the proof of the theorem.

2. Carleman Inequalities

We first state a Carleman inequality due to [3].

LEMMA 2.1. Let p0 = 2d=(d + 2); d > 3. Then for any p satisfying

(i) j1=p� 1=p0j < 1=2d and
(ii) 1=p� 1=q = 2=d,

we have for any k 2 R
d and u 2 C1

0 (Rd )

kek�xukqp 6 Ckek�x4 ukp;

with C = C(p; d).
We note in the above that k � kqp is the Lorentz norm defined by

kfkqp =

�
q

Z 1

0
sp�1jfx : jf(x)j > sgjp=q ds

�1=p

:

We now assume mk(�) = i� � k=(j�j2 � i� � k � jkj2) for k 2 R
d , i.e., a

multiplier such that

(ek�x5 u)^(�) = mk(�)(e
k�x4 u)^(�);
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UNIQUE CONTINUATION WITH WEAK TYPE LOWER ORDER TERMS 605

foru 2 C1
0 (Rd). We set' 2 C1

0 (D(0; 2)) and'k(�) = '(jkj�1�), whereD(0; 2)
is the disk centered at the origin with radius 2. Define two multiplier operators T1

and T2 by

dT1f = (mk(1 � 'k))f̂ ;

dT2f = (mk'k)f̂ :

Also let s be the Stein–Tomas exponent, s = 2d+ 2=(d + 3). Then we can show
the following lemma.

LEMMA 2.2. Let 1 < p < s when d = 3 and 2d(d � 3)=(d2 � d � 4) < p < s

when d > 4. Assume k 2 R
d ; E � R

d ; jEj > jkj�d; u 2 W 2p has compact
support. Then there exists some �(p) with 0 < �(p) < 1=d such that for any � with
�(p) < � < 1=d the following two inequalities hold:

(i) kT2(e
k�x4 u)kLq(E) 6 C�(jkj

djEj)�jkjd=r�1kek�x4 ukp,
provided 1=d < 1=p� 1=q = 1=r < 1=d+ �.

(ii) kek�x5 ukLqp(E) 6 C�(jkj
djEj)�kek�x4 ukp

provided 1=p� 1=q = 1=d.

Proof. First we show that with k = e1 = (1; 0; : : : ; 0) 2 R
d the following holds

kT2(e
x1 4 u)kLq(E) 6 C�jEj

�kex1 4 ukp:

It is shown in [7], page 264, that kT2fkq1 6 Ckfkp1 provided

1 6 p1 6 s and
1
q1

<
1
p01

+
1
2
�

s0

2p01
; where s0 =

s

s� 1
: (2.3)

Note that (2.3) is equivalent to

1 6 p1 6 s and
1
p1
�

1
q1

> �(p1);

where

�(p1) =
1
p1

�
d� 3
d� 1

�
�

d� 5
2(d� 1)

:

We also note that �(p1) is decreasing in p1 and 1=d < �(p1) < 2=d provided
that 1 6 p1 6 s when d = 3 and 2d(d� 3)=(d2 � d� 4) < p1 < s when d > 4.

Set �(p1) = �(p1) � 1=d and for any �(p1) < � < 1=d select q1 such that
�(p1) < 1=p1 � 1=q1 < � + 1=d. Thus for any q < q1 and 1=p1 � 1=q > 1=d we
get

kT2(e
x1 4 u)kLq(E) 6 jEj1=q�1=q1kT2(e

x1 4 u)kq1

6 CjEj1=q�1=q1kex1 4 ukp1 6 CjEj�kex1 4 ukp1 ;
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606 GUOZHEN LU AND THOMAS WOLFF

since 1=q � 1=q1 < �. By scaling, we thus have proved that

kT2(e
k�x4 u)kLq(E) 6 C�(jkj

djEj)�jkjd=r�1kek�x4 ukp1 ;

provided that q > p1 satisfies 1=p1 � 1=q = 1=r and 1=d < =1=r < � + 1=d. The
condition that p1 satisfies here is the same as p in Lemma (2.2). This proves (i) of
Lemma (2.2).

We now turn to the proof of Lemma 2.2, part (ii). We still first assume k = e1. We
split the multiplier and then define T1 and T2 as before. We note that the multiplier

forT1 can be written as
�
1 + j�j2

��1=2
�, where� satisfies the Hörmander multiplier

condition. Thus

kT1(e
x1 4 u)kLqp 6 Ckex1 4 ukp for any p > 1 and

1
p
�

1
q
=

1
d
: (2.4)

In the proof of (i), we have actually shown for any given � > �(p) that

kT2(e
x1 4 u)kq1p 6 kex1 4 ukp;

provided that p is as assumed in the statement of Lemma 2.2 and � + 1=d >

1=p�1=q1 > �(p). Thus for such p and the corresponding q with 1=p�1=q = 1=d
we get

kT2(e
x1 4 u)kLqp(E) 6 jEj1=q�1=q1kT2(e

x1 4 u)kLq1p 6 jEj�kex1 4 ukp:

Hence by scaling

kek�x4 ukLqp(E) 6
�
jEjjkjd

��
kek�x4 ukp;

this proves (ii) of Lemma 2.2. 2

We remark here that the value of p in Lemma 2.2 satisfies j1=p � 1=p0j <
1=d(d� 3) for d > 4 and j1=p� 1=p0j <

1
6 when d = 3. Thus for such p Lemma

(2.1) holds when d = 3 and d > 5. In order for Lemma (2.1) to hold when d = 4, we
further restrict in this case 8

7 < p < 10
7 . Thus if p is as discussed after the statement

of Theorem 1 and sufficiently close to the lower bound there, both Lemmas (2.1)
and (2.2) are applicable.

3. Proof of Theorem 1

We first make a reduction. Let ed = (0; : : : ; 0; 1).
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UNIQUE CONTINUATION WITH WEAK TYPE LOWER ORDER TERMS 607

LEMMA 3.1. If Theorem 1 fails, then for every ~" > 0 there is a function ~u : ~
 7! R

where

~
 = R
d nD(�ed; 1=2); (3.2)

such that

supp ~u � D(�ed; 1); 0 2 supp ~u; (3.3)

~u 2W
2p
loc; (3.4)

j 4 ~uj 6 ~Aj~uj+ ~Bj 5 ~uj; (3.5)

where

k ~AkLd=21(~
) < ~"; k ~BkLd1(~
) < ~": (3.6)

Proof. Fix ~" > 0. Let 
 and u satisfy (1.1)–(1.3) for a sufficiently small "
(= C�1~" for a suitable constant C). Assume u vanishes on an open set but not
identically. LetD be an open disc contained in
nsupp u such that @D\ supp u 6=
;. Fix a 2 @D \ supp u. Considering points on the line segment connecting a to
the center of D, it is clear that for every sufficiently small � there is a point w� 2 

such that dist(w� ; supp u) = � = jw� � aj. Let � be small, let � be a rotation
taking ed to (a� w�)=ja� w�j and consider the function

v(x) = u(w� + ��(x)):

We regard v as a function on D(0; 2) which is clearly possible for small �. Then

v = 0 on D(0; 1); ed 2 supp v; (3.7)

v 2W
2p
loc(D(0; 2)); (3.8)

j 4 vj 6 Ajvj+Bj 5 vj; (3.9)

where

kAkLd=21(D(0;2)) < "; kBkLd1(D(0;2)) < ": (3.10)

Here (3.7) follows from the defining property of w� , (3.8) is clear, (3.9) is also
clear with

A(x) = �2A(w� + ��(x)); B(x) = �B(w� + ��(x))
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608 GUOZHEN LU AND THOMAS WOLFF

and then (3.10) follows for small � since

kAkLd=21(D(0;2)) = kAkLd=21(D(w�;2�))
6 kAkLd=21(D(a;4�)) < ";

by (1.1), and similarly with kBkLd1(D(0;2)).
Now consider the Kelvin transform ~u(x) = jx+ edj

2�dv(x+ ed=jx+ edj
2). Its

domain is ~

def
=
�
x : (x+ ed)=jx+ edj

2 2 D(0; 2)
	
= R

dnD(�ed;
1
2), i.e., (3.2)

holds. (3.3) follows from (3.7), and (3.4) follows from (3.8) since �ed 62 ~
. One
checks using the chain rule that (3.5) holds with

~A(x) = const: � jx+ edj
�4A

�
x+ ed

jx+ edj2

�
;

~B(x) = const: � jx+ edj
�2B

�
x+ ed

jx+ edj2

�
;

then (3.10) clearly implies

k ~Ak
Ld=21(D(�ed;1)nD(�ed;1=2))

6 C";

k ~Bk
Ld1(D(�ed;1)nD(�ed;1=2))

6 C":

Outside D(�ed; 1) we can replace ~A and ~B by 0 in view of (3.3), so the proof
is complete. 2

By Lemma 3.1, if Theorem 1 fails, we may assume u satisfies (3.2)–(3.6)
(dropping the tilde’s here).

We now let K be the convex hull of supp u
T
fxd > � 1

4g. Select � : Rd ! R

such that �(x) = 0 when xd 6 �1
3 and � = 1 on a neighborhood of the boundary

of K . Set v = �u, then

j 4 vj 6 Ajvj+Bj 5 vj+
�
Buj 5 �j+ 2j 5 � � 5u+ u4 �j

�
= Ajvj+Bj 5 vj+ �;

where � 2 Lp and supp � � A1 [A2, where

A1 = D(�ed; 1)
\�

x : �
1
3
6 xd 6 �

1
4

�
;

A2 = a compact subset of IntK .

Let � be the cone fk 2 R
d : kd > 4

q
jkj2 � k2

dg. Then the proof of Lemma 7.1
in [7] applies also here and we have
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UNIQUE CONTINUATION WITH WEAK TYPE LOWER ORDER TERMS 609

LEMMA 3.11. If k 2 � and jkj is sufficiently large, then kek�x�kp 6 kek�x(Ajvj+
Bj 5 vj)kp.

We now let M be large enough such that Lemma 3.11 holds for k 2 � and
jkj > 1

2M . We apply Lemma 1 in [7] to the measure

� = (Ajvj+Bj 5 vj)p dx;

as in the Theorem 1, and take C = D(pMed; pM=100). If l 2 C, then �l has the
form [ekx(Ajvj+Bj5vj)]p dx, where k = l=p satisfiesM=2 < jkj < 2M;k 2 �.
Then we have the following.

LEMMA 3.12. Under the assumptions (3:2)–(3:6), we can select fkjg and disjoint
fEjg satisfying

1
2M < jkj j < 2M; kj 2 �; (3.13)

kekj �x(Ajvj +Bj 5 vj)kLp(Ej) > 2�(1=p)kekj �x(Ajvj +Bj 5 vj)kp; (3.14)

X
j

jEj j
�1
> C�1Md; (3.15)

jEj j >M�d for each j; diam Ej 6 CM�(1=2) for each j; (3.16)

kBkLd1(Ej) > C�1
� (MdjEj j)

��; (3.17)

for all 1=d > � > �(p), and

kBkLr(Ej) > C�1
� (MdjEj j)

��M 1�(d=r); (3.18)

provided �(p) < � < 1=d and 1=d < 1=r < 1=d+ �.

Proof. (3.13)–(3.16) follow from Lemma 1’ in [7]. For so selected fkjg and
fEjg, we apply Lemma 2.1 and Lemma 2.2, (ii), and we get for q with 1=p�1=q =
2=d and 1=p� 1=q1 = 1=d,

kekj �x(Ajvj +Bj 5 vj)kLp(Ej)

6 kekj �xvkqpkAkLd=21(Ej)
+ kekj �x5 vkLq1p(Ej)kBkLd1(Ej)

6 Ckekj �x4 vkpkAkLd=21(Ej)
+ C�ke

kj �x4 vkp(M
djEj j)

�kBkLd1(Ej)

6 C�[kAkLd=21(Ej)
+ kBkLd1(Ej)(M

djEj j)
�]kekj �x4 vkp:
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610 GUOZHEN LU AND THOMAS WOLFF

Noticing by Lemma (3.11)

kekj �x4 vkp 6 kekj �x(Ajvj +Bj 5 vj) + ekj �x�kp

6 2kekj �x(Ajvj+Bj 5 vj)kp;

which by (3.14) is

6 Ckekj �x(Ajvj+Bj 5 vj)kLp(Ej):

Thus we obtain,

kAkLd=21(Ej)
+ (MdjEj j)

� kBkLd1(Ej) > C�1
� :

By dropping kAkLd=21(Ej)
since it is very small by (3.6) we get

kBkLd1(Ej) > C�1
� (MdjEj j)

��;

for all 1=d > � > �(p):
On the other hand, by (2.4) we have kT1(e

k�x4 v)kq1p 6 kek�x4 vkp provided
1=p� 1=q1 = 1=d. Thus by Lemma (2.2), (i) and Lemma 2.1, we get

kekj �x(Ajvj +Bj 5 vj)kLp(Ej)

6 kekj �xAjvj+BjT1(e
kj �x4 v)jkLp(Ej) + kBjT2(e

kj �x4 v)jkLp(Ej)

6 C[kAkLd=21(Ej)
+ kBkLd1(Ej)

+kBkLr(Ej)(M
djEij)

�Md=r�1]kekj �x4 vkp

6 C[kAkLd=21(Ej)
+ kBkLd1(Ej) + jBkLr(Ej)(M

djEj j)
�Md=r�1]�

kekj �x(Ajvj+Bj 5 vj)kLp(Ej):

The last inequality above follows from (3.14) and Lemma 3.11. Thus

kAkLd=21(Ej)
+ kBkLd1(Ej) + kBkLr(Ej)(M

djEj j)
�Md=r�1

> C�1:

We drop kAkLd=21(Ej)
and kBkLd1(Ej) again by (3.6), we get

kBkLr(Ej) > C�1(MdjEj j)
��Md=r�1;

provided �(p) < � < 1=d and 1=d < 1=r < 1=d+ �. 2

We now prove
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UNIQUE CONTINUATION WITH WEAK TYPE LOWER ORDER TERMS 611

LEMMA 3.19. Under the assumptions (3:2)–(3:6), there exist disjoint setsEj such
that X

j

jEj j
�1
> C�1Md; (3.20)

C�1M�d
6 jEj j 6 CM�d=2 (3.21)

and there exist �1; �2 with �(p) < �1; �2 < 1=d and r < d such that for each j,
there exists some �j such that

jfx 2 Ej : jB(x)j > �jgj > C�1
�2
��dj (MdjEj j)

�d�2 (3.22)

and

C�1(MdjEjj)
(��1d�1)=dM 6 �j 6 C(MdjEj j)

�2r=(d�r)M: (3.23)

Proof. (3.20) and (3.21) follow immediately from (3.15) and (3.16) respectively.
By taking ~" small we may actually assume thatMdjEj j > C1 for a sufficiently large
constant C1 > 0 for each j, since if there exists some j such that MdjEj j 6 C1,
then by (3.17) we get kBkLd1(Ej) > const, which is impossible by the assumption
(3.6). We now choose � = �1 in (3.17), � = �2 in (3.18), and r < d such that
�1 � �2 + 1=d� 1=r > 0.

By (3.17), there exists some � = �Ej
such that

jfx 2 Ej : jB(x)j > �gj > C�1
�1
��d(MdjEj j)

�d�1 : (3.24)

We note jfx 2 Ej : jB(x)j > �gj 6 jEj j for all �, thus (3.24) leads to

� > C�1[jEj j
�1(MdjEj j)

�d�1 ]1=d

= C�1(MdjEj j)
(��1d�1)=d �M

def
= ��: (3.25)

Let now �0 be the smallest � such that (3.24) holds. We now consider

kBkrLr(Ej)
= r

Z 1

0
�r�1jfx 2 Ej : jB(x)j > �gjd�

=

 
r

Z ��

0
+r

Z �0

��
+r

Z 1

�0

!
(�r�1jfx 2 Ej : jB(x)j > �gj) d�

6 C

"Z ��

0
�r�1jEjj d�+

Z �

��
�r�1��d(MdjEjj)

�d�1 d�

+

Z 1

�0

�r�1��d d�

#

6 C(r)[��
r

jEj j+ ��r�d(MdjEj j)
�d�1 + �r�d0 ]:
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612 GUOZHEN LU AND THOMAS WOLFF

We used (3.6) here to estimate the integral over � > �0. Next we note that
��

r
jEj j � ��

r�d
(MdjEj j)

�d�1 . We want to show that

(C(r)��
r

jEj j)
1=r

6 C�1[(MdjEj j)
�2Md=r�1]�1 (3.26)

for an arbitrarily prescribed constant C provided that ~" is small enough.
After some calculation (3.26) is equivalent to

(MdjEj j)
�1��2+1=d�1=r

> a large constant: (3.27)

But (3.27) is true since �1 � �2 + 1=d � 1=r > 0 and MdjEj j > a large constant
by assumption. We note that the right-hand side of (3.26) is the lower bound of
kBkLr(Ej) by (3.18), thus by (3.26) and the inequality preceding it we get

�r�d0 > C�1kBkrLr(Ej)
> C[(MdjEj j)

�2Md=r�1]�r

and by the selection of r, i.e., r < d we obtain

�0 6 C[(MdjEj j)
�2Md=r�1]r=(d�r) = C(MdjEj j)

�2r=(d�r)M:

This completes the proof of Lemma 3.19. 2

REMARK. As we pointed out in the introduction, kfkd
Ld1(E) > �jkfk

d
Ld1(Ej)

is not true in general even for the disjoint union E =
S
j Ej . An easy example

is f(x) = jxj�1 since kfkLd1(Rd) 6 C and kfkLd1(2�(k+1)6jxj62�k) > C�1 for
each k. Though we have the lower bound kBkLd1(Ej) for each Ej , we can not get
control over the lower bound kBkLd1([Ej) by simply adding kBkLd1(Ej). This is
the reason we need the bounds (3.23) for the values of � satisfying (3.22). These
bounds together with the following combinatorial lemma will allow us to complete
the proof of Theorem 1.

LEMMA 3.28. Assume fxjg and f�jg are two sequences of positive numbers
satisfying the following conditions:

(i) xj > 1 for each j,
(ii)

P
x�1
j > 1,

(iii) x�1
j 6 �j 6 x

2
j for some 1 > 0; 2 > 0.

Fix 0 < � < 1, then there exists some � > 0 such that

X
j:�j>�

x��j

 
�

�j

!d
> C�1;
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UNIQUE CONTINUATION WITH WEAK TYPE LOWER ORDER TERMS 613

where C depends on � ,1, 2.

Proof. Let ak = fj : 2k 6 �j 6 2k+1g,

Ik =
X
j2ak

x��j ; Bk =
X
j2ak

x�1
j :

Then

Bk =
X
j2ak

x�1
j =

X
j2ak

x��j x�1+�
j :

We first consider the case k > 0. We note �j 6 x
2
j , so x�1+�

j 6 2(k=2)(�1+�).

Hence, Bk 6 (�j2akx
��
j )2�(k=2)(1��) = Ik � 2�(k=2)(1��):

Let now k < 0, we note �j > x
�1
j then Bk = �j2akx

�1
j 6 Ik � 2(k+1=1)(1��).

By the assumption �kBk > 1, thus

1 6
X
k

Bk =
X
k>0

Bk +
X
k<0

Bk

6
X
k>0

Ik2�(k=2)(1��) +
X
k<0

Ik2((k+1)=1)(1��)

6

 
sup
k

Ik

!0
@X
k>0

2�(k=2)(1��) +
X
k<0

2((k+1)=1)(1��)

1
A

6 C sup
k

Ik;

therefore Ik0 > C�1 for some k0. This proves the lemma. 2

Proof of Theorem 1. Set xj = MdjEj j. Then (i) and (ii) of Lemma 3.28 are
immediate from the properties (3.20) and (3.21) of the sets fEjg. By (3.23) we get

x
�1
j 6

�j

M
6 x

2
j ;

where 1 = (d�1 + 1)=d and 2 = �2r=(d� r). By (3.22),

�djfx 2
S
Ej : jB(x)j > �gj > C�1P

j:�j>�

 
�

�j

!d
x�d�2
j

= C�1P
j:�j=M>�

 
�

�j=M

!d
x�d�2
j ;
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where � = �=M . Since � = d�2 < 1, it follows by Lemma (3.28) that for some �
the summation is bigger than a constant, which is a contradiction with (3.6).

REMARK. There is an alternate way of sharpening the result of [2], using
Campanato–Morrey type conditions instead of weak type conditions. This was
first done by [2]. We have nothing to add to the known results (e.g., [2], [5]) in this
direction.

Added in Proof : The result of this paper has been extended to the variable coefficient case in [4].
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