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On Conformally Invariant Equation ( - A  )P u - K ( x )  u N-2, = 0 

and Its Generalizations (*). 

GUOZHEN Lu - JUNCHENG WEI  - XINGWANG XU 

Abstract .  - We consider the question of existence and non-existence of positive entire solutions for con- 
formally invariant equations involving polyharmonic operator. We obtain existence of infinitely 
many positive solutions if  the potential decays sufficiently fast at infinity and the nonexistence of po- 
sitive solutions if  the potential grows too fast at infinity. We also establish a Kazdan-Warner type 
condition for non-existence of solutions decaying at infinity. 

1. - I n t r o d u c t i o n .  

Let us start with the concept of conformally invariant operators. On a general Rieman- 
nian manifold M with metric g, a metrically defined operator A is said to be conformally in- 
variant if metrics gw and g are pointwise conformally related, i.e., if gw = e2Wg, the pair of 
corresponding operators Aw and A are related by 

(1.1) Aw(qg) = e-bWA(eaWq)) 

for all c p ~ C ~ ( M ) .  

Conformal Laplacian 4(n - 1 ) / (n  - 2 ) A - k ,  where k is the scalar curvature of the met- 
ric g, is a well known second order conformally invariant operator. Associated with this well 
understood operator, there is a prescribed scalar curvature problem. Given a smooth positi- 
ve function K defined on a Riemannian manifold (M, go) of dimension n I> 2, we ask 
whether there exists a metric g pointwise conformal to go such that K is the scalar curvature 

4 
of the new metric g. Let g = e2Ug o for n = 2 or g = u ,-2 go for n I-- 3, then the problem is re- 
duced to find solutions of the following nonlinear elliptic equations: 

(1.2) A go u + Ke ~ = ko 
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for n = 2 ,  or 

4 ( n - 1 ) A  +Ku~+-~-22 kou 
(1.3) n - 2  goU 

u > 0  on M 

for n/> 3, where A go denotes the Beltrami-Laplacian operator of (M, go) and k0 is the scalar 
curvature of go. When M = R n or equivalently, S", this question has been received a lot of at- 
tention in the past two decades. 

In this paper we consider the question of existence and nonexistence of positive sol- 
utions of the following polyharmonic equation 

(1.4) ( - A ) P  u -  K(x) u q= 0 

in R N with N>~2p+ 1, q >  1. 

One of its characters is its conformal invariance. By comparing with (1.3), they are quite 
similar. In fact, it is known that P2p = ( - A ) P  is a conformally invariant operator on R 2p 
which is a special form of the general operator discovered by Paneitz [17] when p = 2, see 
also Branson [1] and Djadli-Hebey-Ledoux [6] for further related results. It is generally 
known for p > 2 just as being verified in [7]. But one does not know the exact form of this 
operator on a general Riemannian manifold unless p = 2. 

There is a 2pth operator on R N with N > 2p which is similar to conformal Laplacian op- 
erator. In fact, when p = 2, on a general Riemannian manifold (M, g0), we can explicitly de- 
fine the so-called Q-curvature as the following 

(1.5) Qgo = 
2(N - 1 ) 

AR + dN R2 + CNRiC 2 

where 

2 N 3 -  4N 2 + 1 6 N -  16 
CN = dN = 

(N - 2 )2 ' 8(N - 1 )2 (N - 2 )2 

Let 

P4 = ( - A )  2 + 6(aNR + bNRiC) d 

N - 2  1 4 
be the Paneitz operator in M with a N -  - -  + and b~ - - - -  

4(N-1 (N-  1)(N-2) N - 2  
Given a smooth function Q(x) on M, the prescribing Q-curvature problem is the follow- 

4 

ing: find a conformal metric g such that Qg = Q. If we let g = u ~ go, then the problem is 
reduced to find out solutions to the following equation 

N - 4  N - 4  N,4 
(1.6) P4u + - - Q o u  = - - Q u  N-4 

2 2 

When M = R N, then equation (1.6) is exactly (1.4) with p = 2. 
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We will restrict our attention to the case M = R N since one does not have much informa- 
tion about this operator in general case. However, for more recent results concerning this 
general case, one refers the reader to [3]. 

Theorems proved in this paper are in spirit motivated by and inspired to the earlier re- 
suits for second order semilinear equations by W.-M. Ni [16] and the subsequent works by 
Kenig and Ni [8], Lin [11], Li and Ni [12], and many others. In particular, we will avoid 
using the comparison method with radial equations in order to use the sub-super solution 
scheme. We also refer the interested reader to the recent work by the first two authors [13] 
and [14] for this sort of argument, where the Yamabe-type problem was studied for subel- 
liptic operators on the Heisenberg and stratified groups. 

One of the most intriguing results in this paper is Theorem 1.3. The main difficulty in 
proving this lies in the lack of the Maximum Principle for higher order elliptic operators. As 
a substitute in this setting, we use Lemma 1.4 below which is really the key machinery to de- 
rive Theorem 1.3. We hope that this lemma will be found useful in studying other related 
problems for higher order operators. By adapting similar ideas of proving Lemma 1.4 given 
in this paper, the second and third authors have subsequently obtained analogous result 
when K = 1 in [18], which the authors use it to prove the following 

THEOREM A .  - Let K = 1. Then the equation (1.4) has no positive entire solution for 
q < (N + 2 p ) / ( N  - 2p). 

We should mention that, regarding to equation (1.4), the above theorem was derived 
earlier by Lin in [10], and the third author with different method, in [20] for p = 2. 

We now turn to state the main results of this paper. Our first result is an existence theo- 
rem which is an extension of the results of [16]. 

THEOREM 1.1. -- Let K(x) be a bounded locally HSlder continuous function in R N. Let 
(xl, x2) ~ R to- m x R ~ and suppose that m > 2p and 

C 
IK(Xl, x2)l * 

I 

for [x2 [ large, uniformly in Xl ~ R N- m for some constants C > 0 and l > 2 p . Then the equa- 
tion (1.4) has infinitely many bounded positive solutions with the property that lim u(x) = N-~oo 
= Co for some positive Co. Furthermore, let 8~k (R N) be the set ofnonnegative polynomials with 
degree k. I f  m > 2p > k and l > 2p + kq then for any sufficiently small positive constants 
ao > O, al > 0 and for any Pk(x) ~ 8'k(Rm), there exists a solution u of (1.4) such that 

lim [u(xl, x 2 ) -  (ao+alPk(x2))] = 0 ,  
Ix2 i-~0o 

lim ( -A) i[U(Xl ,  x2) -  (ao+alPk(x2))] = 0 ,  i =  1, . . . , p -  1 . 
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REMARK. - -  Theorem (1.1) shows that the solution structure of (1.4) is somehow more 
complicated than that for the classical Yamabe-type problem 

(1.7) Au + K(x) u q -- O, q> 1 

(see [16]). 
Next we discuss some non-existence results. 

THEOREM 1.2. -- Suppose that K(x) = O( Ixl -l) for some K e  CI(R N) and l>  2p and that 
the function 

L(x) = [ N -  ( N -  2p)(q + X) ] K(x) + 

never changes sign in R N (N > 2p). Then the equation (1.4) does not possess any bounded po- 
sitive solution u with lim infu(x) = 0. 

Ix l  - ~  | 

Finally we show that if K(x) grows too fast, then there are no positive solutions. 

THEOREM 1.3. -- I f  K(x) >I ClxJl for some l > - q(N - 2p) - N. Then the equation (1.4) has 
no positive solutions for q > 1. 

Theorems 1.1 and 1.2, in such general forms, are new for the equation (1.4). As we can 
see, there is a difference between the decay power in Theorem 1.2 and the growth power of 
K(x) in Theorem 1.3. It will be an interesting open question to study the case when K(x) lies 
in between. Our Theorem 1.3, under additional hypothesis that the inequality (1.8) holds 
and that u is radial, was derived in [15]. Our theorem does not require any of the aforemen- 
tioned extra hypothesis given in [15]. 

As we have mentioned earlier, unlike the second order equation, the major difficulty in 
studying equation (1.5) is that the Maximum Principle can not be directly applied to u with- 
out any information of ( -A)iu, i =  1 . . . . .  p - 1. Thus, we have to get sufficient informa- 
tion about ( - A ) i u  from equation (1.4). 

The following is the key lemma. 

LEMMA 1.4. -- Let u be a positive solution of (1.4) with K(x) >- C[x[ l with l >- q(N - 2p) - 
- N .  Then u must satisfy the following 

(1.8) ( - A ) i  u(x) > O , i=  l ,  . . . ,  p - 1 .  

We now sketch briefly the ideas employed to derive our theorems. We prove Theorem 
1.1 by sub-super solution method. Here, we compare both u and ( - A ) i u ,  i = 1, . . . ,  p - 1 
by using the sub-super solutions for elliptic systems. 

Theorem 1.2 is proved via the Pohozaev identity. To apply Pohozaev identity, we have to 
obtain a priori estimates on the asymptotic behavior of u and ( - A )i u, i = 1 . . . . .  p - 1. This 
is given in Theorem 2.4. 

To obtain Theorem 1.3 we take the average on both sides of (1.4) and obtain a 2p-th dif- 
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ferential inequality. Then we use Lemma 1.4 and standard blow up argu.ments to 
conclude. 

The organization of the paper is the following: In Section 2, we present some a priori es- 
timates for some Newtonian potential. We prove Theorem 1.1 in Section 3. Section 4 con- 
tains the Pohozaev identity and the proof of Theorem 1.2. Finally we prove Lemma 1.4, 
which is stated as Theorem 5.2, and Theorem 1.3 in Section 5. 

Acknowledgments. The research of the first author is supported in part by the National 
Science Foundation Grant #DMS96-22996. The research of the second author is supported 
by an Earmarked Grant from RGC of Hong Kong. The authors wish to express their thanks 
to the referee for his/her helpful comments which improve the exposition of the 
paper. 

2. - A priori  e s t imates .  

In this section, we shall study the asymptotic behavior of positive solutions of the equa- 
tion (1.4), i.e., 

(-A)Pu(x)  - K ( x )  uq(x) = 0 x ~ R  N 

for N > 2p, q > 1 under various hypotheses on K. 
Let us first estimate the Newtonian potential of f where f satisfies 

(2.1) If(x) l Clxl z< - 2 p  . 

LEMMA 2.1. -- Let w be the Newtonian potential o f f ,  Le., 

f f(Y) (2.2) w(x) = CN I x-yl -2 p dy, 
R~ 

where f satisfies the assumption (2.1). Then w is well-defined and at oo, the following esti- 
mates hold true. 

CIxl v-N, if  l < - m  ; 

]w(x)[~< CJxJ2P-NlogJx l, ~ f l = - N ;  

CJxl zp+l, i f - N < l < - 2 p ;  

PROOF. -- The proof is rather standard. We include a proof here just for the sake of 
completeness. 
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It is easy to see that w(x) is well-defined since by (2.2) that there exists a constant C > 0 
such that 

(1 + l y l )  z , 
Iw(x) I -< c f ay 

R N 

.... for some l < - 2 p .  Keep in mind that in the following the positive constant C may be varied 
from line to line. 

Next we decompose the above integral as follows: 

I.Xx/l ( f + f + f 
rx-yl<lxl/2 Ixl/2<-lx-yl<-2lx I 21xl<-lx-yl 

=11+12+13. 

We shall estimate Ii, (i = 1 ,2 ,  3) separately. 

C(1 + Ixl /  
11 = f ix_ylN_2 dY 

Ix-yl-< Ixl/2 

<'Clxl ~ f 
Ix-yl <~ Ixl/2 

By evaluating the integral, we get 

11 ~< Clxl "2~. 

To estimate 13, we note that I x - y l ~  > 21xl implies 
+ l y l - < 2 1 y l ,  i.e., lyl I> Ix-yl/2.  Hence 

C 

ix_ylN-2,  dy" 

)(: C(I + Iyl)I ) 
ix_ylN_2p dy 

= Clxl2P +l. 

f ( 1 +  lyl/l 
13 =C ix_ylt~_e,  dY 

Ix-yl>~21xl 

(1 + Ix-yl/2) z . 
<<.C f . . . . . .  

Ix-yl ~>21xl ix_ylN_2 p dy 

~ C  f r2p+l-ldr 
21xl 

lYl ~ Ix[ so that I x - y [  ~ Ix[ + 
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We now estimate/2 as follows: 

<<- Clxl f 
IxV2<~ I~-yl <~21~1 

Note 

(1+ lYl)Zdy 

<Clxl2'-N( f ( 1 +  lyl)'dy+ f ( 1 +  lyl)'dy 
lyl~<l 1<~ lyl ~<3lxl 

. 

C if N - I + I < - I ;  

f [YlldY ~< Clog Ix I if m - l + l = - l ;  
l~<[Yl~<3lxl Clx] N+l if N - l + / >  - 1 .  

Thus estimate for /2  follows. 
Similarly we have 

LEMMA 2.2. -- I f  f>. 0 in R N and If(x) [ I-- C lx] ~ at infinity for some l < - 2p , C > O, then 
the Newtonian potential w,  if it exists, defined by (2.2) has the following lower 
bounds 

C[x[ p-N i f l < - N ;  

[w(x) I ~> Clxl2P-Nloglx[ if I = - N ;  

Clxl  2p+l i f - N < I < - 2 p .  

The proof of this lemma is similar to that of lemma 2.1. We shall omit it here. 

LEMMA 2.3. -- Let v be a bounded solution of  

( - A ) ~ v  - f =  0 

in R N, where N >  2p, [f(x) [ <<. C[x[ l, l <  - 2 p .  
Then v~o = lim v(x) exists and 

f ( Y )  dy 
V ( X ) = V ~ 1 7 6  [ x _ _ y l N - 2 p  " 

R N 

f(y) . PROOF. - Let w(x) =R ix _--~N- 2~ ay. Then 

( - A)P w(x) = f (x )  

and 

( - A Y ( w - v )  = 0 .  

Note that w - v is bounded in R N and then by the LiouviUe theorem for the polyharmonic 
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operator we have 

W - - V  = - C  

for some constant C (we include a proof of it at the end of this section since we can not lo- 
cate a reference for this well-known fact, see Lemma 2.5 in this section). Since lim w(x)  = 

H-~00 
= 0 ,  we have C--vow. 

The following is the main estimate of this section. 

THEOREM 2.4. -- Let  u be a bounded positive solution of (1.4) in R N, N > 2p ,  q >  O, and 

lim infu(x) = 0. Suppose that K is a locally Hdlder continuous function which satisfies the fol- 

lowing decay 

IK(x)l ~ Clxl  l, at oo, 

for  some l <  - 2 p.  Then 

N + I  
Clx l  2p-t4 at oo i f  p > - - ;  

' N - 2 p  
u(x) <~ 

~' - ~)" + ~p) N + l 
C~ [ x I ~ - q at oo i / p < < . -  

' N - 2 p  

where C~ only depends on E. 

P R O O F .  - -  Let f ( x )  = K(x)  uq(x) ,  we then have 

( - A ) P u - f = O  in R N. 

By Lemma 2.3, we have 

Since Uoo = 

t h r e e  cases. 

f ( y )  
u(x)=cN f ix_ylN_2 dy. 

R N 

lira u(x) always exist and is thus equal to zero. We shall divide the proof into 
Ixl - - -  | 

Case 1. l < - N .  In this case the result follows directly from Lemma 2.1. 

Case 2. l =  - N .  Lemma 2.1 implies that for ]x[ large enough 

2p - N  

lu(x) I ~< Clxl2P-Nlog Ixl ~ Clxl  2 

thus 

If(x)  I = IK(x ) I .  lu (x ) I  p ~ Clxll+q(2p-N~,2 
for Ix] large. 
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Since l = - N ,  q > 0, we have l+  q(2p - N) /2  < - N ,  and thus our result follows from 
Lemma 2.1 again. 

Case 3. - 2 p  > l >  - N .  From Lemma 2.1 we have for Ix[ large 

[fix)[ = [K(x)[ .  [u(x)]q ~< C[x[ l+q(l+2p). 

If l + q(l + 2p) ~< - N, then we are done by Cases 1 and 2. Otherwise, apply Lemma 2.1 
to get 

lU(X) I ~ Clx l  l+q(l+ 2p)+ 2p = Clxl(l+ 2p)(q +1) 

for large [xl . We iterate this process to conclude that after k-th iteration 

{Clxl if -(N-2p) 
lu(x) l Clxl,  if Zk> -(N-2p), 

where lk = ( l + q + q 2 + . . . + q  k) ( l + 2 p ) .  

If q~> 1, then lk----> - oo as k----> oo since l <  - 2 p .  For q <  1, when q >  N+___~/, since 
N - 2 p  

l k + 1 - - l k = q k + l ( l + 2 p ) < O  and limlk = ( l + 2 p ) / ( 1 - q ) < - ( N - 2 p ) ,  there exists a 
k---) oo 

very large k such that lk ~< - ( N -  2p) and then it follows that 

lu(x) l -<Clxl 2 , - N  at 0o. 

When q<~ N+l , lk ~ l+2p >1 _ ( N - 2 p )  and thus our result follows from lemma 2.1. 
N-2p 1 -q  

Finally, we state and prove a Liouville theorem for polyharmonic functions, which is of 
independent interest. 

LEMMA 2.5. -- Let ~ be a bounded function such that ( -A)P~)  = 0 .  Then 
q) -- Constant. 

P R O O F .  - Let ~b0 = 0 ,  0 i  = ( - A ) i ~  ), i =  1, . . . ,  p - 1. We first prove that 

0 p - 1  ~ 0 .  

Suppose not, there exists Xo ~ R N such that 

q~p- I(X0) < 0 .  

Without loss of generality, we assume that x0 = 0. 
Let ~(r) be the spherical average of u(x), namely, 

~(r) - 1 ~ u(x) ds 
WN- 1 ~N- I ~ 

Then we have 

d ~ 0 - - ~ l  : 0  , A-~1-[ - -~2:0 ,  . . . ,  A ~ p _ l = O .  
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Since ~ p - l ( 0 )  < 0 and ~ p - 1  = 0, we have 

~p_l ( r )  = ~p_ l (0 )  < 0  

Then it is easy to see that  

Hence  

for r large. 

Same arguments  show that  

and 

for all r > ? l = 0 .  

D 

( - q~p- 1 (0)) 
~;_~ > 

N 

r 2(r) >- c2r 2 

~ p - 3 ( r )  ~< -c3 r4 

r .  

( - -1) i -~p_i (r )  >~ ci r2(i-1),  i =  1, . . . ,  p 

for r large, which is a contradic t ion to the  fact that  @ 0 = q~(x) is bounded .  

Hence  q~ p _ 1 I> 0. By changing q~ to - q~, we have - @ p _ 1/> 0. So q~ p _ 1 = 0. Similarly 

we have 

( - A ) i ~  = 0 ,  i = 1, . . . ,  p - 1 .  

So ~ is harmonic  and the lemma is thus proved.  �9 

3. - Proof  o f  Theorem 1.1. 

Theorem 1.1 can be  proved  by  using sub-super  solut ion method.  Let  us first state a com- 

parison theorem.  

THEO~M 3.1. -- Le t  (u 1, v~, . . . ,  V~- l )  and  (u 2, v~ 2 . . . . .  v / - 1 )  be a pair o f  funct ions  

satisfying 

A u  1+ vl ~ >~ A u  2 + v~, 

Avi  i + vii+ 1 >t A vi 2 + vi2+ 1, i = 1, . . . ,  p - 2 , 

and  

A v l -  1 + K(x ) (u l )  q >" Av2-  1 + K(x)(u2)  q 

with  u l  <<. u 2, vil <~ vi2, i = l ,  . . . ,  p - 1  and  q > l. 
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Then there exists a solution (u, vx . . . .  , vp-1) o f  the following problem 

A U + v l = O ;  A v i + v i + l = O ,  i = 1  . . . . .  p - 2 ;  

Avp_ l + Kuq = O ; 

Moreover, u 1 <~ u <~ u 2 and vi 1 <~ vi <- v~ , i = 1 . . . . .  p - 1. 

PROOF. -- Note that our system is quasi-monotone. On bounded domains with Dirichlet 
boundary condition, please see the proof of Theorem 1.2-5 of [9]. On R N, we can use an ap- 
proximate procedure as in the proof of Lemma 2.7 of [5]. Since the proofs are standard, we 
omit the details. 

We now use Theorem 3.1 to prove Theorem 1.1. Equation (1.4) can he rewritten 
a s  

m u  + v I = 0 , A v  I + v 2 = O ,  . . . ,  A v p  _ 1 + K ( x )  u q = 0 

PROOF OF THEOREM 1.1. -- By our assumption on K, there exists a continuous function 
[((x2) such that 

[K(x) I <-[((x2), K ( x 2 ) ~ ( l + l x 2 ] )  t. 

Let a > 0 and MI, M2 > 0 be numbers to be chosen later, Let u+ (x) = a(M1 + M2 ~) + 
+ @0) and u_ = a(M1 + M2~b - r  where @ ~ ~Pk(R m) and 

(-Ax2)pq)o(X2)- [ k(x2)I(1  + r = 0 ,  

(-Ax2)iq)o(X2)~O as ]x2l---,oo for all i = 1 , 2 ,  . . . , p - 1 .  

(This implies that ( -A~2) i  $ o > O, i =  1, . . . ,  p - 1.) 
Note that when ~6(x2) = 0 we need to require 

Ik(x~)l ~<CIx~ I ~, l< -2p ,  
while when ~ # 0 we require 

Ik(x2)l <~Clx2l ~, l< - 2 p - k q ,  

so that /K(x2)(1 +r  <<.Clx2 [ l, l <  - 2 p .  

Thus lim [$0(x2) I = 0 by Lemmas 2.1 and 2.4. 

Define vi + and vi - ,  i =  1 . . . . .  p -  1 so that 

( - A ) i u +  =v i  +, ( - A ) i u - = v i - ,  i = l  . . . . .  p - 1 .  

Thus 

A u  + + vl + = 0 = A u _ + v l -  

Avi + + v,++ 1 = Av i -  + vi-+ 1, i - - 1 ,  . . . , p - 2  
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and 

Avp +- 1 + K(x) uq+ 

= - a[ K(x2 ) 1( 1 + r + K(x) ctq(M1 + M2 ~) + ~) o) q 

<<. [[((x2) [ ( - a ( l  + ~b)q + aq(Ml  + MEq) + ~o)  q) 

~< [ K(x2) [(aq(max (2Mr, M2)) q - a)( 1 + ~0)q 

~<0 

provided that a t> aq(max (2M1, ME)) q and -M1 ~< q~0 ~< M1. Similarly we have 

Avp-_ 1 + K(x )u  q- 

= a] K(x2)](1 + r aq(M1 +M24) - r q 

>t ][( (xz)](a  - aq (max (2M1 ,  Mz))q)(1 + q~)q 

i > 0  

provided that a > aq(max (2M1, ME)) q. Thus, 

Au+ + Vl + = A U _  + v 1- = 0 , Avi + + vi + 1 = Avi -  + vi+ 1, i = 1, . . . ,  p - 2 

and 

Av~_l  + K(x) uq+ <.0 <~Avp--1 + K(x )u  q- 

and u+ I> u_ and vi + - vi- = 2a(  -A)i~b 0 > 0. Therefore, by Theorem 3.1 there exists a sol- 
ution to the equations 

A U + V l = O ,  A v i + v i + l = O ,  A V p _ l + K ( x )  u q = O .  

Theorem 1.1 is thus proved. 

4. - Proo f  o f  T h e o r e m  1.2. 

In this section we prove Theorem 1.2. To this end, we first state a Pohozaev 
identity. 

LEMMA 4.1. -- Let u be a solution of  ( - A ) P u  = f ( x ,  u), then we have 

(4.1) i I n F ( x  n - 2p ~l ) 
~ .  2 

- - u f ( x ,  U)+x 'VF(x ,  u)] dx= - f Bp(u) da 
Og2 
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where when p = 2 m, 

Bp(u)= 2 -  ~ k=l 
8(-A)k-lu 8(-A)P-ku 

8v 8v 
--A)k-lu] + 

m Xk[ 
+2 ~ ( -A)P-Ju  

k=l j=l 

8( -A)J - lu  8(-A)P-Ju 

8v 8v 
( -A)J - lu ]  + 

+k=l ~ [(X, V(-A) k-lu) 
8( -A )P-ku  

8v 
[( _A)P_ku ] 8(x, V(sv-A)ku) ] + 

+1/2((-A)mu)2(x, v ) -  F(x, u)(x, v); 

when p = 2 m + 1, 

-Bv(u)=V(x'u)(x'v)-2 k=, ~ j~ [(-A)P-Ju= 8( ( -A)  i-lu) ((_A)~-~u) 8 ( - A F  -iu ] + 
8v 8v ] 

+(1 -n /2 )k= l  ~ [ ( ( -A)k- lu)  
8(--A)P-ku ( - A ) m u S ( - A ) m u  ] + ] 8v 8v 

+k -~-1 X, V(--A)k-lu) 
8( -A )P-ku  

8v 
[( - A Y - k u ]  a(x, v(-~)k- 1 u ) s v  ] - 

--1/2 IV[(--A)mU] 12(X, V)+ (X, V(-A)mu) 8( -A)m u 

8v 
u 

where F(x, u) = f f (x,  s) ds and v is the unit outward normal vector along the boundary 
8~2. o 

PROOF. - Notice that 

(--m)[(x, V(-m)iu)] = 2 ( - m )  u+ (x, V(-A)i+lu).  

By repeatedly using this fact and the second Green's identity, we can get the above formula 
easily. 

Let u be a bounded positive solution of 

( -A)Pu - K(x) u q = 0 

where [K(x)[~ < C[x[ l for some l< -2p .  We set f i x ) = K ( x ) u  q. Then we have 

lu(x)l =O(IxI2P-N), at oo, 
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and 

If(x) l <~C(1 + Ixl)l-q(N-2P ), 

Note that l -  q(N - 2p) < - N  and 

for la[ ~<2p- 1. 
We have 

x ~ R  N. 

n N ix _ylN-2p f(y) dy 

N- 2p + lal  

Ixl~-~+M IV~ ~ c  f ix_ylN_2}xll,q(1 + ]yl)q(~_2p)_idY. 
R N 

We can argue as in Lemma 2.1 to get 

[xlN-~+ I< iWu(x) i ~ c .  

We now apply the Pohazaev identity for f (x ,  u) = K(x) u q on ~ = B R to get 

N K(x) + x'VK(x) - - K ( x )  uq+ldx = - Bp(u) do 
BR q +  1 q +  1 2 ~R 

where Bp(u) is defined by Lemma 4.1. 
We only prove the case when p = 2 m. The odd case is similar. 
We now estimate each term on the right hand side: 

a~ (x, v) K(x)uq+ldal <~ CRN.Rt.R -(q+I)(N-2p)-->0, since l <  --2p; 

[ f i~ 
8(-A)k-* u 

8v 
dcr I ~ CR N-1R 2P-N-2(2m-k) R 2p-N-2(k-1)- I = CR 2p-N_-->O 

0~ ~" c~(--A)2m-ku ] ~CRN_I R2P_N_2(2m_k)_i R2P_N_2(k_I)=CR2p_N__> 0 
i=1 8v ( -A)k - l  uda 

( -A )P- /u  ( - A ) / - 1  do <~ 
k = ~ j = 8v 8v 

<~ CR N- 1R2p-2N+ 1__> 0 
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a~ (( -A)mu)2(x' v) do I ~ CR2p-N---~O 

m 
k__~l(X, V(--A)k- l  u) 

B A ~P ~ k u 8( 
[ ( - A ) P - k u ]  �9 

8v k = 

8(x, V(-A)ku) 
8v 

da] ~ CR2p-N--->O 

Therefore we have 

f[x.VK(x) + ( N -  --N- 2p (q + l )) K(x)] uq+l d x = O . 
RN 2 

The rest of the proof follows a method similar to the proof of Theorem 1.4 in Section 3.1 of 
[12]. 

5. - P r o o f  o f  T h e o r e m  1.3. 

Throughout this section we assume that K(x) ~ 0 and u(x) is a solution of (1.4). We 
define 

-~(r) - 1 [ u(x) da 
WN_I YN-1 ~ Ixl =r 

and 

WN-I~'N-11x I =r 

p-1 
i - 7 -  

K(x)- ~-~ da . 

Then we have 

LEMMA 5.1. -- Let u be a positive solution of (1.4) in R N. Then -~(r) satisfies the following 
differential inequality 

(-A);E-~(r)~q>>-O in [0, oo) 

and 

~ ' (O)=O, ( ( -A) i~ ) ' (O)=O,  i= l,  . . . , p - 1 .  

PROOF. - By a slight modification of the proof of Lemma 3.1 in [16]. 
The following theorem, which is stated as Lemma 1.4 in the introduction, is the key re- 

sult in this section. 
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THEOREM 5.2. -- Let u be a positive solution o f (  - A ) P  u = K(x)  u q with K(x)  >I C[x] l and 

l >I q (N  - 2p) - N, q > 1. Then we have 

- A ) i u ~ > 0 ,  i = l , . . . , p - 1 .  

PROOF. -- Let vi= ( - A ) ' u ,  i =  0, 1 , 2  . . . .  , p - 1  with v0 = u. We first prove the 
following 

(5.1) vp _ 1 ~> 0 .  

Suppose not, there exists Xo E R n such that 

Vp_ l (Xo) < 0 .  

Without loss of generality, we assume that x0 = O. By Lemma 5.1 and the assumptions on 
K(x),  

A U + V l = 0 ,  Avl  + v 2 = 0  . . . . .  A-Vp_l+Crl(-u)q<<.O 

Since ~p-x(0)  < 0  and ~ - l ( r )  ~<0, we have 

(5.2) ~ p _ x ( r ) < ~ p _ 1 ( 0 ) < 0 ,  for all r > ? 1 = 0 .  

Then integrating the second last equation we have 

(-vp_~(o)) 
m t 
Vp_2> r.  

N 

Hence 

(5.3) vp-2(r)  >t c2r 2, 

Same arguments show that 

(5.4) ~p-3(r) ~< - c 3 r  4, 

and 

(5.5) ( - 1 )ivp_i(r) >t ci r2(i- 1), 

for r~> r2 > rl . 

for r t> 73 > 72 

for r >~ ri, i = l ,  . . . ,  p . 

Hence if p is odd, we have a contradiction to the fact that u > 0. 
So p must be even and we have 

(5.6) ~(r) ~>Co r~176 a o = 2 (  p - 1) 

and 

for r >  ~0>0.  

( -  1 ) i~p_ i>  0 



GUOZHEN Lts - JUNCHENG WEI - XINGWANG XU: On conformally invariant, etc. 325 

We can now start the iteration. Setting A - - ( 2 q ( p - 1 ) + l + N + 2 p ) .  Note 
A > 1 2 q ( p -  1) + q ( N -  2p) + 2 p  = q ( N -  2) + 2 p  > O. 

Suppose now that 

r~ for r I> rk. (5.7) ~(r) >I c~ k A b k , 

Then we have 

r 

rN- l (~p_  l)'  <<. r f f -~(Fp_l) '  (rk) - I s t+N-~ uq(s) ds 
rk 

--p r q O k + l + l  _ rgOk +l+1  qk+l 

Vp_l <<. - A q b k ( q e k + l + N  ) c~ 

Hence 

--r 
V p _ l  ~ --  

C~k+i rqOk + l+ 1 

2 A  qbk(qa k + l + N) 

! 

for r >- 2 ~  rk. 
Similarly 

1 1 
for r ~ > 2 ~ 2 q o k + Z + 2  rk. 

Hence 

cffk+ l rqo k + l + 2 

4 A  qbk(qa k + l + N)(qcr k + l + 2) 

~ p _ l  <~ --  

C~k+ l rqok + l + 2 

Aqbk4(qak + l +  N) 2 

2 

for r>>r 2qok+l+z r k .  

By induction, we have 

(5.8) ( - 1 )i~p-i(r) >~ 
c~k+ l rqOk + 1+2i 

(qak + N + l + 2p)2iAqbk4 i ' 

2i 
r I> 27;k+~+2 rk. 

Hence 

(5.9) ~(r) >t 
C~ k+l  pqCrk+l+2p 

22PAqbk(qO'k + l + N + 2p) 2p ' 

2p 

r >--2q~k § rk. 

that 
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Set 

a o = 2 ( p -  1), ro=?o 

ek+l = q o k  + l+  2p , 

2p 

rk+ 1 = 2 qok+l+l r k .  

(Note that the condition that l > - q ( N -  2 p ) -  N ensures that 

l + 2  + 2 q ( p -  1) > ~ q ( N - 2 p )  + 2 - N + 2 q ( p -  1) = ( q -  1 ) ( N - 2 )  > 0 .  

Therefore it is easy to check that 

q a k + / + 2  > 0  

so that the previous arguments do work.) 
First of all, by mathematical induction, it is easy to see that 

22P(qcrk + N + l + 2p) 2p ~< A 2p(k+ 1) 

by noticing that 

qak+ N +  l+  2p <~A(qak-1 + N +  l+  2p). 

Hence we also can set 

Then we have 

bo = 0 ,  bk + 1 = qbk + 2p(k + 1 ). 

c(•k+lrek+l 
"u(r) >I r >~ rk+ 1. 

Abk+i ' 

Notice that 

rk+a ~<Cro 

2p 
where c can be chosen to be 2~Xo,~-~+2 �9 

Also notice that, by using the iteration formulas above, we have 

a k = 2  
p ( q k + l _  1 ) - q +  1 

q - 1  

and 

bk = 2p 
qk+1_ (k+ 1)q2 + k 

( q -  1) 2 

Hence, if we take M > I  is large enough so that MA2/(q-1)>-2cro if co~>1 and 
MA 2/(q- I)co1 I> 2 cro if Co < 1, and then take rl = MA 2/(q- 1) or MA 2/(q- 1)Co1 depending on 
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whether Co is greater than or less than 1, then we have 

-~(r~ ) >! [A i/(q = 1 )2 ]2pqk + 1 _ 4(p + q) + 4 + 2p(k + i ) q2 _ 2pk ~ 00  

Since rx is independent of k, a contradiction is reached. 
Hence 

Next we claim that 

as k--> oo . 

V p - l ~ O .  

vp_2~>0. 

The proof is exactly the same as before except now that we need take extra care about the 
case that p is odd. We omit the details. 

Next we recall the following lemma. 

LEMMA 5.3. - Let  u ~ c 2 m ( R N ) ,  m > - 1 be radially symmetric satisfying the inequali- 

ties 

( - A ) k u > - O  in R N for O < . k < . m  

where 2 m < N.  Then necessarily we  have 

(5.I0) (ru '  (r) + ( N -  2m) u(r)) '  < O . 

PROOF. -- See example 2.3 in [2]. 

R E M A R K .  - -  Note that (5.10) is equivalent to (rN-2mu(r) )  ' >10. hence 

(5.11) ~(r) ~ C r  2m-N, C > 0 ,  r>ro .  

We are now ready to prove Theorem 1.3. 

PROOF OF THEOREM 1.3. -- As in the proof of Lemma 5.1, we apply the spherical mean op- 
erator to (1.1) and we obtain for r e (0, co) 

A U + V l = 0 ,  . . . , A-vp _ 1 +  Crl u q ~ O . 

Hence we have 

(5.12) 

(5.13) 

( r N - l u ' )  ' + r N - l v  1 = 0 ,  . . . ,  

(r?~-lp~_l) '  + C r l + n - l - ~ p = O .  

Integrating (5.12)-(5.13) on (0, r) and taking into account that u, vi are non-increasing, we 
obtain 

-u(r) >I Cr2 vx (r), vl (r) >I Cr2 v2 (r), . . . ,  Vp-x(r) I> Cr2 + l-uq (r) . 
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Therefore we have 

and 

Hence 

(5.14) 

-~(r) >- Cr 2(p- 1)~p - l(r) 

--A Vp_ l(r) t> Cr l+ 2q(p- 1)(~p_ 1)q(r) . 

vp- I (r) <~ Cr -(1+2 + 2q(p - 1))/(q- 1) 

(5.15) 

Hence we have 

Thus if 

On the other hand, it follows from (5.11) with m = 1 that 

Vp_ l(r) t> Cr 2-N 

/+2 +2q(p - 1) 
Cr2-N<.vp_x(r) <~Cr q-~ 

/ + 2  + 2 q ( p -  1) > q ( N - 2 p ) - N + 2  + 2 q ( p -  1) = ( N - 2 ) ( q -  1) 

we obtain a contradiction for large r. 
For the case l +  2 + 2 q ( p -  1 ) =  ( q -  1 ) ( N - 2 ) ,  we proceed as follows. 
By equation (5.12) and (5.13), we have 

(5.16) 

Hence we have 

-A~p_  l(r) I> Cr l+2q(p- 1)~_ l(r)" 

- ( r~p -1  + ( N - 2 )  V)'~> C r l + l + 2 q ( p - 1 ) v  q. 

Let t be a fixed large number. Integrating the above equation from r to t, we have 

t t 

r V p _  1 -[- ( N - 2 ) V p _  l ( r )  i> C I r l + l + 2 q ( p - 1 ) ~ q _ l  I> C(-~p_irN-2)qf~l+/+2q(p-X)+q(2-N)d~ " 
r r 

Letting t----~ o0, we obtain 

rye_ 1 + ( N - 2 )  Vp-x(r) I> C(Vp-lrN-2)qr I+2+q(2p-N)>>- C(Vp-lrN-2)qr 2-N 

since l + 2p = (q -- 1 )(N - 2p). 
Hence we obtain 

Integrating the last 
contradiction. 

(~p_lrN-2)' ~ C(~p_lrN-2)qr -1 

inequality from r to t and noting that q >  1, we reach a 
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