
Author's personal copy

Advances in Mathematics 217 (2008) 1838–1868
www.elsevier.com/locate/aim

Inhomogeneous infinity Laplace equation ✩

Guozhen Lu, Peiyong Wang ∗

Department of Mathematics, Wayne State University, 656 W. Kirby, 1150 FAB, Detroit, MI 48202, USA

Received 25 August 2006; accepted 29 November 2007

Available online 3 January 2008

Communicated by Michael J. Hopkins

Abstract

We present the theory of the viscosity solutions of the inhomogeneous infinity Laplace equation
∂xi u∂xj u∂2

xixj
u = f in domains in Rn. We show existence and uniqueness of a viscosity solution of the

Dirichlet problem under the intrinsic condition f does not change its sign. We also discover a characteristic
property, which we call the comparison with standard functions property, of the viscosity sub- and super-
solutions of the equation with constant right-hand side. Applying these results and properties, we prove the
stability of the inhomogeneous infinity Laplace equation with nonvanishing right-hand side, which states
the uniform convergence of the viscosity solutions of the perturbed equations to that of the original inho-
mogeneous equation when both the right-hand side and boundary data are perturbed. In the end, we prove
the stability of the well-known homogeneous infinity Laplace equation ∂xi u∂xj u∂2

xixj
u = 0, which states

the viscosity solutions of the perturbed equations converge uniformly to the unique viscosity solution of the
homogeneous equation when its right-hand side and boundary data are perturbed simultaneously.
© 2007 Elsevier Inc. All rights reserved.
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0. Introduction

Since the introduction of absolute minimizers by G. Aronsson in his works [1–3] in the 1960s,
the infinity Laplace equation has undergone several phases of extensive study. According to
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Aronsson, an absolute minimizer in a domain Ω ⊂ Rn is a continuous real-valued function
which has the least possible Lipschitz constant in every open set whose closure is compactly
contained in Ω . In the fundamental work [14] by R. Jensen, equivalence of the absolute mini-
mizers and viscosity solutions of the homogeneous infinity Laplace equation was established and
an original proof of the uniqueness of absolute minimizers was provided. A special property of
absolute minimizers was discovered, namely, the difference of an absolute minimizer and a cone
function verifies the weak maximum principle in any domain excluding the vertex of the cone
and where they are defined. This is the so-called comparison with cone property.

Since then, many people have contributed to the theory of absolute minimizers which are also
called infinity harmonic functions. To mention a few of such contributions which are of course
far from a complete list, we refer to the works of [10,9,8] by Crandall, Evans and Gariepy, [16]
by Lindqvist and Manfredi, [15] by Juutinen, and [7] by Barron, Jensen and Wang which help to
complete the theory of absolute minimizers.

There are some further development in the theory of absolute minimizers. For instance, the
work [18] of Manfredi, Petrosyan and Shahgholian dealt with a free boundary problem of the
homogeneous infinity Laplace equation.

A systematic treatment of the theory of absolute minimizers can be found in the manuscript [5]
by Aronsson, Crandall and Juutinen, and the references therein.

Uniqueness of absolute minimizers is worth special attention in the theory. After Jensen’s
fundamental work [14], Barles and Busca gave a second proof of the uniqueness of absolute
minimizers in [6], which is quite different from Jensen’s original one and works for a broad class
of degenerate elliptic equations. Recently, Crandall, Gunnarsson and Wang provided a third proof
of the uniqueness of absolute minimizers in bounded domains and they successfully applied their
truncation method to many unbounded domains including all exterior domains, i.e. the domains
obtained from the whole space Rn by deleting a compact set, and to some non-euclidean norms
(see [11]).

This paper is our first attempt to analyze the inhomogeneous degenerate equations. The inho-
mogeneous infinity Laplace equation is the prototype of such highly degenerate nonlinear partial
differential equations. Our motive to study the inhomogeneous infinity Laplace equation is not
only for the theory’s own good but also for the seeking of the connection between the homoge-
neous infinity Laplace equation and the inhomogeneous infinity Laplace equation, namely the
property preserved under the perturbation of the homogeneous infinity Laplace equation.

We concentrate on the inhomogeneous ∞-Laplace equation

�∞u :=
n∑

i,j=1

∂xi
u∂xj

u∂2
xixj

u = f

(the notation is explained in Section 1), where the right-hand side function f is continuous but
stays strictly away from 0.

In Section 2, a Perron’s method is applied to establish the existence of a viscosity solution of
the Dirichlet problem for the inhomogeneous ∞-Laplace equation. More precisely, a family of
admissible super-solutions is constructed and the infimum of the family is shown to be a viscosity
solution. A fact worth of noting is the nonexistence of classical (i.e. C2) solutions, which follows
from our uniqueness theorem in the coming section.

In Section 3, a penalization method initially introduced in the work of Crandall, Ishii and Li-
ons, [12], for elliptic equations and later applied in [11] is employed to lead to a contradiction,
if a comparison theorem were untrue. The uniqueness theorem is an immediate consequence
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of the comparison principle proved. A significant feature of the uniqueness theorem is the as-
sumption the right-hand side f stays strictly away from 0. This is an intrinsic condition instead
of a technical reason. The uniqueness theorem is invalid if f changes its sign. We provide a
counter-example in this case in Appendix A.

In Section 4, we present the comparison with standard functions property for sub- and super-
solutions of the inhomogeneous infinity Laplace equation �∞u = 1. The proof bears the ideas
in Crandall’s work [8] and the joint work of Crandall and Wang, [13]. We found a special family
of singular radial classical solutions, the standard functions with which every viscosity sub- or
super-solution of the equation enjoys comparison in a sense to be made clear in the section, of
the inhomogeneous infinity Laplace equation with nonzero constant right-hand side. We believe
it is not accidental, as a well-known characteristic property of the infinity harmonic functions
(i.e. viscosity solutions of the homogeneous infinity Laplace equation) is the comparison with
cone functions. Unlike the homogeneous case, we need to separate the standard functions into
two sub-families and formulate the comparison property for sub- and super-solutions of the in-
homogeneous equation with the two sub-families separately. The two comparison properties thus
obtained for sub- and super-solutions, called the comparison with standard functions from above
and from below, characterize the viscosity sub- and super-solutions of �∞u = 1 completely.
A closely related parabolic version of the comparison principle can be found in the second part
of [13].

In Section 5, we perturb the right-hand side f and boundary data g of the Dirichlet problem{
�∞u = f in Ω,

u = g on ∂Ω.

We assume f and g are continuous functions in their respective domains, and the values of f are
kept strictly away from 0. Our analysis shows that the viscosity solutions of the perturbed equa-
tions with perturbed boundary data converge uniformly to the viscosity solution of the original
inhomogeneous Dirichlet problem, provided that the perturbations converge uniformly to 0. It is
a surprise to us as the equation is highly degenerate.

In Section 6, we establish a connection between the inhomogeneous infinity Laplace equation
with its well-studied homogeneous counterpart. As we did to the inhomogeneous infinity Laplace
equation in Section 5, we perturb the homogeneous infinity Laplace equation and the boundary
data, and we prove the uniform convergence of the viscosity solutions of the perturbed equa-
tions to the viscosity solution of the homogeneous infinity Laplace equation, if the perturbations
converge uniformly to 0 in their respective domains.

At last, we provide a counter-example of the uniqueness of a viscosity solution of the Dirich-
let problem for the inhomogeneous equation �∞u = f , if f is allowed to change its sign, in
Appendix A. It was modified from a counter-example constructed in [19].

We end this introduction by pointing out that existence, uniqueness and stability results, and
comparison property with cone-like functions have been recently established for the normalized
infinity Laplace equation using PDE methods in [17].

1. Definitions and notations

For two vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ∈ Rn,

〈x, y〉 =
n∑

i=1

xiyi



Author's personal copy

G. Lu, P. Wang / Advances in Mathematics 217 (2008) 1838–1868 1841

is the inner product of x and y, while x ⊗ y is the tensor product ytx, or [yixj ]n×n in the matrix

form, of the vectors x and y. For x ∈ Rn, |x| denotes the Euclidean norm 〈x, x〉 1
2 of x and x̂ = x

|x|
denotes the normalized vector for x 	= 0.

The standard notations in the set theory and analysis are adopted here. For example, ∂Ω and Ω̄

mean the boundary and closure of a set Ω respectively, while ∂xi
u denotes the partial derivative

of u with respect to xi . V � Ω means V is compactly contained in Ω , i.e. V is a subset of Ω

whose closure is also contained in Ω . Also, for two positive numbers λ and μ, λ 
 μ means λ

is bounded above by a sufficiently small multiple of μ. ◦(ε) denotes quantities whose quotients
by ε approach 0 as ε does, while O(ε) denotes quantities that are comparable to ε.

Suppose S is a subset of Rn. A function f :S → R is said to be Lipschitz continuous on S if
there is a constant L such that

∣∣f (x) − f (y)
∣∣ � L|x − y|,

for any x and y in S. The least of such constant is denoted by Lf (S). If S is an open subset Ω

of Rn, we use the symbol Lip(Ω) to denote the set of all Lipschitz continuous functions on Ω .
If instead S = ∂Ω is the boundary of an open subset Ω of Rn, we use the symbol Lip∂ (Ω) to
denote the set of all Lipschitz continuous functions on ∂Ω . Ω always denotes an open subset
of Rn and is usually bounded. C(Ω) denotes the set of continuous functions defined on Ω and
C(Ω̄) denotes the set of continuous functions on Ω̄ . C2(Ω) denotes the set of functions which
are continuously twice differentiable on Ω . A smooth function usually means a C2 function in
this paper. If f ∈ C(Ω), then ‖f ‖L∞(Ω) := supx∈Ω |f (x)| denotes the L∞-norm of f on Ω .

Throughout this paper, the infinity Laplace operator �∞ is the highly degenerate nonlinear
partial differential operator defined on C2 functions u by

�∞u = ∂xi
u∂xj

u∂2
xixj

u,

where the right-hand side is the sum over i, j = 1,2, . . . , n. �∞u is usually called the infinity
Laplacian of u.

Sn×n denotes the set of all n × n symmetric matrices with real entries. We use I to denote
the identity matrix in Sn×n. For an element S ∈ Sn×n, ‖S‖ denotes its operator norm, namely
supx∈Rn\{0}

〈Sx,x〉
|x|2 .

u ≺x0 ϕ means u − ϕ has a local maximum at x0. In this case, we say ϕ touches u by above
at x0. Almost always in this paper, u ≺x0 ϕ is understood as u(x) � ϕ(x) for all x ∈ Ω in interest
and u(x0) = ϕ(x0), as subtracting a constant from ϕ does not cause any problem in the standard
viscosity solution argument applied in the paper. On the other hand, if ϕ ≺x0 u, we say ϕ touches
u by below at x0.

Definition 1. A continuous function u defined in an open subset Ω of Rn is called a viscosity
sub-solution, or simply abbreviated sub-solution, of the inhomogeneous infinity Laplace equa-
tion �∞w = f (x), if

�∞ϕ(x0) � f (x0),

whenever u ≺x0 ϕ for any x0 ∈ Ω and any C2 test function ϕ. Occasionally, we use the phrase
‘�∞u(x) � f (x) is verified in the viscosity sense’ instead.
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The second-order superjet of u at x0 is defined to be the set

J
2,+
Ω u(x0) = {(

Dϕ(x0),D
2ϕ(x0)

)
: ϕ is C2 and u ≺x0 ϕ

}
,

whose closure is defined to be

J̄
2,+
Ω u(x0) = {

(p,X) ∈ Rn × Sn×n: ∃(xn,pn,Xn) ∈ Ω × Rn × Sn×n such that

(pn,Xn) ∈ J
2,+
Ω u(xn) and

(
xn,u(xn),pn,Xn

) → (
x0, u(x0),p,X

)}
.

On the other hand, u is called a viscosity super-solution, or simply super-solution, of the
inhomogeneous infinity Laplace equation �∞w = f (x), if

�∞ϕ(x0) � f (x0),

whenever ϕ ≺x0 u for any x0 ∈ Ω and any C2 test function ϕ.
The second-order subjet of u at x0 is defined to be the set

J
2,−
Ω u(x0) = {(

Dϕ(x0),D
2ϕ(x0)

)
: ϕ is C2 and ϕ ≺x0 u

}
,

whose closure is defined to be

J̄
2,−
Ω u(x0) = {

(p,X) ∈ Rn × Sn×n: ∃(xn,pn,Xn) ∈ Ω × Rn × Sn×n such that

(pn,Xn) ∈ J
2,−
Ω u(xn) and

(
xn,u(xn),pn,Xn

) → (
x0, u(x0),p,X

)}
.

A viscosity solution, or simply solution, of the inhomogeneous infinity Laplace equation
�∞w = f (x), is both a sub-solution and a super-solution.

When f (x) ≡ 0, the sub- and super-solutions are called the infinity sub- and super-harmonic
functions in Ω respectively.

A similar definition of a strict differential inequality is the following

Definition 2. Suppose u ∈ C(Ω). We say u verifies the differential inequality

|Du| > 0

in Ω in the viscosity sense if

∣∣Dϕ(x0)
∣∣ > 0

for every C2 function ϕ such that u ≺x0 ϕ and x0 ∈ Ω .

Let us caution that the negative of a sub-solution of the equation �∞u = f (x) is a super-
solution of the equation �∞u = −f (x) instead of �∞u = f (x).

In this paper, whenever we consider the inhomogeneous infinity Laplace equation �∞w = C

with constant right-hand side C, for simplicity, we always take C = 1 in the statements of the
theorems.
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In the end, we give an example to justify our conclusion about the nonexistence of classical

solutions of the equation �∞w = 1. An example is u(x, y, z) = x
4
3 − y

4
3 + c0z

4
3 in any open

subset of R3 which intersects with both the xz- and yz-planes but does not intersect with the

xy-plane. Here and anywhere else in this paper the constant c0 = 3 3√3
4 . This is a nonclassical vis-

cosity solution in such open sets. Assuming the uniqueness of solutions of the Dirichlet problem
which is proved in Section 3, we can see that no classical solution to the Dirichlet problem with
the same continuous boundary data exists.

2. Existence

We prove the existence of a viscosity solution of the inhomogeneous infinity Laplace equation
by constructing a solution as the infimum of a family of admissible super-solutions.

Theorem 1. Suppose Ω is a bounded open subset of Rn, f ∈ C(Ω) with infΩ f > 0 and g ∈
C(∂Ω).

Then there exists u ∈ C(Ω̄) such that u = g on ∂Ω and

�∞u(x) = f (x)

in Ω in the viscosity sense.

Proof. We define the admissible set to be

Af,g = {
v ∈ C(Ω̄): �∞v � f (x) in Ω, and v � g on ∂Ω

}
.

Here the differential inequality �∞v(x) � f (x) is verified in the viscosity sense as introduced
in Section 1.

Take

u(x) = inf
v∈Af,g

v(x), x ∈ Ω̄.

We may take a constant function which is bigger than the supremum of g on ∂Ω . This constant
function is clearly an element of Af,g . So the admissible set Af,g is nonempty.

As the infimum of a family of continuous functions, u is upper-semicontinuous on Ω̄ .
According to the standard theory of viscosity solutions, u, as the infimum of viscosity super-

solutions, is clearly a viscosity super-solution of �∞u(x) = f (x) in Ω and the inequality u � g

holds on ∂Ω .
We prove �∞u(x) � f (x) in Ω in the viscosity sense. Suppose not, there exists a C2 function

ϕ and a point x0 ∈ Ω such that

u ≺x0 ϕ,

but �∞ϕ(x0) < f (x0).
We write

ϕ(x) = ϕ(x0) + ∇ϕ(x0) · (x − x0) + 1

2

〈
D2ϕ(x0)(x − x0), x − x0

〉 + ◦(|x − x0|2
)
.
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For any small ε > 0, we define

ϕε(x) = ϕ(x0) + ∇ϕ(x0) · (x − x0) + 1

2

〈
D2ϕ(x0)(x − x0), x − x0

〉 + ε|x − x0|2.

Clearly, u ≺x0 ϕ ≺x0 ϕε , and �∞ϕε(x) < f (x) for all x close to x0, if ε is taken small enough,
thanks to the continuity of f . Moreover, x0 is a strict local maximum point of u − ϕε . In other
words, ϕε > u for all x near but other than x0 and ϕε(x0) = u(x0).

We define ϕ̂(x) = ϕε(x) − δ for a small positive number δ. Then ϕ̂ < u in a small neighbor-
hood, contained in the set {x: �∞ϕε(x) < f (x)}, of x0 but ϕ̂ � u outside this neighborhood, if
we take δ small enough.

Take v̂ = min{ϕ̂, u}. Because u is a viscosity super-solution in Ω and ϕ̂ also is in the small
neighborhood of x0, v̂ is a viscosity super-solution of �∞w(x) = f (x) in Ω , and along ∂Ω , v̂ =
u � g. This implies v̂ ∈Af,g , but v̂ = ϕ̂ < u near x0, which is a contradiction to the definition of
u as the infimum of all elements of Af,g . Therefore,

�∞u(x) � f (x)

in Ω in the viscosity sense.
We now show u = g on ∂Ω . For any point z ∈ ∂Ω , and any ε > 0, there is a neighborhood

Br(z) of z such that |g(x) − g(z)| < ε for all x ∈ Br(z). Take a large number C > 0 such that
Cr > 2‖g‖L∞(∂Ω). We define

v(x) = g(z) + ε + C|x − z|,
for x ∈ Ω̄ . For |x − z| < r and x ∈ ∂Ω , v(x) � g(z) + ε � g(x); while for |x − z| � r and
x ∈ ∂Ω , v(x) � g(z) + ε + Cr � ‖g‖L∞(∂Ω) � g(x). In addition, �∞v = 0 � f (x) in Ω , as
infΩ f > 0. So v ∈ Af,g and v(z) = g(z) + ε. So

g(z) � u(z) � g(z) + ε,

∀ε > 0. So u(z) = g(z), ∀z ∈ ∂Ω .
Let us construct another set of admissible functions by defining

Sf,g = {
w ∈ C(Ω̄): �∞w � f (x) in Ω, and w � g on ∂Ω

}
.

Again �∞w � f (x) is satisfied in the viscosity sense. Sf,g is nonempty with a particular ele-

ment Cψz,bd(x) := C(c0|x − z| 4
3 + d) for a constant C such that C3 > ‖f ‖L∞(Ω), any fixed

point z ∈ ∂Ω and some negative number d with sufficiently large absolute value, because
�∞(Cψz,bd(x)) = C3 > ‖f ‖L∞(Ω) � f (x) for x ∈ Ω and Cψz,bd � g on ∂Ω . We refer the
reader to the computation for ψz,bd in Section 4.

We take

ū(x) = sup
w∈Sf,g

w(x)

for every x ∈ Ω̄ . Clearly, ū is lower-semicontinuous in Ω̄ and ū(z) � g(z) for any z ∈ ∂Ω .
Fix a point z ∈ ∂Ω and a positive number ε. Since g is continuous on ∂Ω , there exists a

positive number r such that |g(x) − g(z)| < ε for all x ∈ Br(z). As Ω is a bounded domain, the
values of |x − z| are bounded above and bounded below from zero for all x ∈ Ω\Br(z). We take
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positive numbers A and B such that A > 3|x − z| for all x ∈ Ω̄ and B = 1
4A

4
3 . So particularly

B − 1

4
(A − 3r)

4
3 > 0.

We take a positive number C � 1 such that

C

(
B − 1

4
(A − 3r)

4
3

)
� 2‖g‖L∞(∂Ω)

and C3 � ‖f ‖L∞(Ω). We define

w(x) = g(z) − ε − C

{
B − 1

4

(
A − 3|x − z|) 4

3

}

with A, B and C as chosen.
Computation shows that

�∞w(x) = C3 � ‖f ‖L∞(Ω) � f (x)

for all x ∈ Ω . Furthermore, on ∂Ω ∩ Br(z), w(x) � g(z) − ε < g(x); while on ∂Ω\Br(z),

w(x) � g(z) − ε − C(B − 1
4 (A − 3r)

4
3 ) < g(z) − 2‖g‖L∞(∂Ω) � −‖g‖L∞(Ω) � g(x). So the

function w defined above is in the family Sf,g . Note that w(z) = g(z) − ε according to our
choice of A and B . So ū(z) � g(z) − ε for any ε > 0, which implies that ū(z) � g(z) for any
z ∈ ∂Ω . As ū is lower-semicontinuous on Ω̄ , we know that

lim inf
x∈Ω→z

ū(x) � g(z)

for any z ∈ ∂Ω .
In the end, we prove u ∈ C(Ω̄).
Indeed, as �∞u = f (x) � inf∂Ω f � 0 in Ω , it is well known that u which is ∞-subharmonic

is locally Lipschitz continuous in Ω (see e.g. [5, Lemma 2.9]). Therefore all we need to prove is
that for ∀z ∈ ∂Ω ,

lim
x∈Ω→z

u(x) = g(z).

About this matter, as u is upper-semicontinuous on Ω̄ and u = g on ∂Ω , we know

lim sup
x∈Ω→z

u(x) � g(z)

for any z ∈ ∂Ω .
On the other hand, the comparison theorem, Theorem 3, in the next section implies that w � v

on Ω̄ for every v ∈Af,g and every w ∈ Sf,g . As a result, ū � u on Ω̄ . In particular,

lim inf
x∈Ω→z

u(x) � lim inf
x∈Ω→z

ū(x) � g(z)

for every point z ∈ ∂Ω .
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Thus we have shown

lim
x∈Ω→z

u(x) = g(z),

for ∀z ∈ ∂Ω . �
Remark 1. We applied the comparison theorem, Theorem 3, from the next section in the above
proof. The proof of the comparison theorem is independent of the existence result.

The following theorem is obtained from the above one by considering v = −u and the proof
is clear.

Theorem 2. Suppose Ω is a bounded open subset of Rn, f ∈ C(Ω) with supΩ f < 0 and g ∈
C(∂Ω).

Then there exists u ∈ C(Ω̄) such that u = g on ∂Ω and

�∞u(x) = f (x)

in Ω in the viscosity sense.

In the following Sections 5 and 6, we only apply the theorems proved in this section in the
cases f (x) ≡ c or f (x) ≡ −c for positive constants c on most occasions.

3. Uniqueness

Ω always denotes a bounded open subset of Rn.
We first prove a strict version of a comparison principle.

Lemma 1. For j = 1,2, suppose uj ∈ C(Ω̄) and

�∞u1 � f1 and �∞u2 � f2

in Ω , where f1 < f2 in Ω , and fj ∈ C(Ω). Assume also u1 � u2 on ∂Ω .
Then u1 � u2 in Ω .

Proof. Suppose u1(x
∗) < u2(x

∗) for certain x∗ ∈ Ω . For any small ε > 0, we define

wε(x, y) = u2(x) − u1(y) − 1

2ε
|x − y|2, ∀(x, y) ∈ Ω̄ × Ω̄.

We define M0 = maxΩ̄ (u2 − u1) and

Mε = max
Ω̄×Ω̄

wε = u2(xε) − u1(yε) − 1

2ε
|xε − yε|2 for some (xε, yε) ∈ Ω̄ × Ω̄.

Our assumption implies M0 > 0.
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By Lemma 3.1 of [12], we know

lim
ε↓0

Mε = M0,

lim
ε↓0

1

2ε
|xε − yε|2 = 0

and

lim
ε↓0

(
u2(xε) − u1(yε)

) = M0.

As a result of the second equality, limε↓0 |xε − yε| = 0.
As M0 > 0 � max∂Ω(u2 − u1), we know xε , yε ∈ Ω1 for some Ω1 � Ω and all small ε.
Theorem 3.2 of [12] implies that there exist X, Y ∈ Sn×n such that (

xε−yε

ε
,X) ∈ J̄

2,+
Ω u2(xε),

(
yε−xε

ε
, Y ) ∈ J̄

2,−
Ω u1(yε) and

−3

ε

(
I 0
0 I

)
�

(
X 0
0 −Y

)
� 3

ε

(
I −I

−I I

)
.

In particular, X � Y .
The meaning of J̄

2,+
Ω u2(xε) and J̄

2,−
Ω u1(yε) implies that

f2(xε) �
〈
X

(
xε − yε

ε

)
,
xε − yε

ε

〉

�
〈
Y

(
xε − yε

ε

)
,
xε − yε

ε

〉
=

〈
Y

(
yε − xε

ε

)
,
yε − xε

ε

〉
� f1(yε).

On the other hand, for certain subsequences xεj
and yεj

of xε and yε and some x0 ∈ Ω̄1 ⊂ Ω ,
xεj

, yεj
→ x0, as a result of xε , yε ∈ Ω1 � Ω and limε↓0 |xε − yε| = 0. If we send ε to 0 in

f2(xεj
) � f1(yεj

), we get f2(x0) � f1(x0) which is in contradiction with f1(x0) < f2(x0) given
in the hypothesis. The proof is complete. �

To prove the uniqueness of viscosity solutions to the Dirichlet problem, we need to prove the
following comparison principle.

Theorem 3. Suppose u, v ∈ C(Ω̄) satisfy

�∞u � f (x)

and

�∞v � f (x)

in the viscosity sense in the domain Ω , where f is a continuous function defined on Ω and
infΩ f (x) > 0.

Then u � v on ∂Ω implies u � v in Ω .



Author's personal copy

1848 G. Lu, P. Wang / Advances in Mathematics 217 (2008) 1838–1868

Proof. For any δ > 0, we define uδ = (1 + δ)u − δ‖u‖L∞(∂Ω) on Ω̄ . Then

�∞uδ � (1 + δ)3f > f � �∞v

in Ω and uδ � u � v on ∂Ω . Then apply the preceding Lemma 1 to conclude that uδ � v in Ω

for all δ > 0. Sending δ to 0, we have u � v in Ω . �
It is obvious that the theorem is true if the condition infΩ f > 0 is replaced by supΩ f < 0.
We may write the previous comparison principle in the form of a maximum principle as

follows.

Theorem 4. Suppose u,v ∈ C(Ω̄) satisfy

�∞u � f (x)

and

�∞v � f (x)

in the viscosity sense in the domain Ω , where f is a continuous function defined in Ω and either
infΩ f (x) > 0 or supΩ f < 0 holds.

Then

sup
Ω

(u − v) � max
∂Ω

(u − v).

As a direct corollary of this theorem, the uniqueness result is stated below.

Theorem 5. Suppose Ω is a bounded open subset of Rn, and u and v ∈ C(Ω̄) are both viscosity
solutions of the inhomogeneous infinity Laplace equation �∞w = f (x) in Ω , where f is a con-
tinuous function defined on Ω such that either infΩ f > 0 or supΩ f < 0 holds. If, in addition,
u = v on ∂Ω , then u = v in Ω .

The condition infΩ f > 0 in the above theorems is necessary and intrinsic. The uniqueness
theorem is untrue if this condition is omitted, though the strict comparison principle, Lemma 1,
does not require the condition. A counter-example is provided in Appendix A to justify our
conclusion.

4. Comparison with standard functions

In this section, we demonstrate comparison properties of sub-solutions and super-solutions of
the inhomogeneous equation �∞u = 1 with special classes of standard functions. Those com-
parison properties characterize the sub- and super-solutions of this equation completely. On some
occasions, they may also be regarded as the maximum and minimum principles for this nonlinear
inhomogeneous degenerate elliptic equation.

For any x0 ∈ Rn, b and d ∈ R, we define

ψx0,bd (x) = c0
(|x − x0| + b

) 4
3 + d,
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which we will call a standard function in the following. Here and in the following the constant

c0 = 3 3√3
4 . We define the domain D(x0, b) of differentiability of ψx0,bd as

D(x0, b) =
{

R\{x0}, if b � 0,

R\{x: x = x0 or |x − x0| = −b}, if b < 0.

We call those values in D(x0, b) admissible points of ψx0,bd . In the following, we will use ψ

for ψx0,bd quite often when there is no ambiguity.
We first carry out a computation for the standard function ψx0,bd in D(x0, b).

Write r = |x − x0|. Then ψ(x) = c0(r + b)
4
3 + d .

If we differentiate ψ and denote Dψ(x) = p at any admissible point, then it is easy to find
that

D2ψ(x) = 1

|p|2 p̂ ⊗ p̂ + |p|
r

(I − p̂ ⊗ p̂).

So

�∞ψ = 〈D2ψDψ,Dψ〉 = 1

|p|2 |p|2 + |p|
r

(|p|2 − |p|2) = 1

at any admissible point.

Lemma 2. For any x0 ∈ Rn, b ∈ R and d ∈ R, ψx0,bd is a classical solution, and hence a viscosity
solution, of �∞ψ = 1 in D(x0, b).

Proof. The fact that a classical solution is a viscosity solution follows easily from the definition
of a viscosity solution. �

For a continuous function u defined in Ω , we use the notation u ∈ MaxP(Ω) to denote the
fact that u verifies the weak maximum principle

sup
V

u = max
∂V

u

for any compact set V ⊆ Ω . Similarly, u ∈ MinP(Ω) means u verifies the weak minimum
principle

inf
V

u = min
∂V

u

for any compact set V ⊆ Ω .
Though the following lemma is a direct corollary of the maximum principle, Theorem 4, we

would like to give an elementary proof to make the comparison property an independent part of
the theory.

Lemma 3. Let Ω and Σ be two open subsets of R. Assume u ∈ C(Ω) is a viscosity sub-solution
of

�∞u = 1
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in Ω and v ∈ C2(Σ) is a classical solution of

�∞u = 1

in Ω ∩ Σ and v is bounded on Ω ∩ Σ . Then u − v ∈ MaxP(Ω ∩ Σ).
Similarly, if u ∈ C(Ω) is a viscosity super-solution of

�∞u = 1

in Ω and v ∈ C2(Σ) is a classical solution of

�∞u = 1

in Ω ∩ Σ and v is bounded on Ω ∩ Σ . Then u − v ∈ MinP(Ω ∩ Σ).

Proof. In the first case, �∞u � 1 in the viscosity sense in Ω . Suppose V ⊂ (Ω ∩ Σ) is a
compact set and ∃x∗ ∈ V such that

u(x∗) − v(x∗) > max
∂V

(u − v),

say

u(x∗) − v(x∗) = max
∂V

(u − v) + δ

for some δ > 0.
For small ε > 0 to be taken, we define

w(x) = (1 − ε)v(x).

Then

u(x∗) − w(x∗) = u(x∗) − v(x∗) + εv(x∗)

� max
∂V

(u − v) + δ − ε‖v‖L∞(V )

� max
∂V

(u − w) + δ − 2ε‖v‖L∞(V )

� max
∂V

(u − w) + δ

2
, for ε > 0 small enough

> max
∂V

(u − w).

Without loss of generality, we assume u − w assumes its maximum on V at x∗, i.e.

(u − w)(x∗) = max
V

(u − w).

In particular, we know u ≺x∗ w.
By the definition of viscosity sub-solutions, �∞w(x∗) � 1.
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However,

�∞w(x∗) = (1 − ε)3�∞v(x∗) = (1 − ε)3 < 1,

as ε > 0. We obtain a contradiction.
To prove the second half for super-solutions, one needs only to modify the above argument by

taking w = (1 + ε)v instead of w = (1 − ε)v and change max to min and reverse the direction of
the inequalities accordingly. We omit the detailed proof. �

The following comparison principles with standard functions for viscosity sub-solutions and
super-solutions of the equation �∞u = 1 are the main results in this section. We want to point
out that if u is replaced by −u in the above lemma, we can obtain parallel comparison principles
with standard functions of the dual equation �∞u = −1.

The idea of the following comparison principles can be traced back to a parallel comparison
principle for ∞-heat equation established in a joint work of one of the authors with M. Cran-
dall, [13].

Theorem 6. Assume u ∈ C(Ω) verifies |Du| > 0 in Ω in the viscosity sense. Then

�∞u � 1

in the viscosity sense in Ω if and only if u − ψx0,bd ∈ MaxP(Ω\{x0}) for any x0 ∈ Rn, b � 0
and d ∈ R.

We say u enjoys comparison with standard functions from above in Ω if the condition
u − ψx0,bd ∈ MaxP(Ω\{x0}) for all x0 ∈ Rn, b � 0 and d ∈ R stated in the theorem holds.

Remark 2. Without the additional assumption |Du| > 0 in the viscosity sense, we may have
constant functions as counter-examples of the sufficiency in the theorem.

Now we prove the comparison principle with standard functions.

Proof. “Only if”: One simply apply the previous Lemmas 2 and 3.
“If”: Assume u enjoys comparison with standard functions from above in Ω . Suppose u is

not a viscosity subsolution of �∞u = 1 in Ω . Then at some point x∗ in Ω , ∃ϕ ∈ C2(Ω) that
touches u by above at x∗ and �∞ϕ(x∗) < 1.

Without loss of generality, we assume x∗ = 0. Denote p = Dϕ(0) and S = D2ϕ(0). Then
〈Sp,p〉 < 1. Note that |p| > 0 as |Du| > 0 in the viscosity sense in Ω .

We will construct a standard function

ψx0,b(x) = c0
(|x − x0| + b

) 4
3

such that u − ψx0,b /∈ MaxP(Ω\{x0}) with x0 	= 0 and b � 0.
It suffices to construct ψ = ψx0,b such that 0 is a strict local maximum point of ϕ −ψ . Then 0

is also a strict local maximum point of u − ψ . In a small neighborhood of 0, u − ψx0,b violates
the maximum principle, i.e. u − ψx0,b /∈ MaxP(Ω\{x0}).
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It is sufficient to construct ψx0,b such that

p = Dϕ(0) = Dψx0,b(0)

and

S = D2ϕ(0) < D2ψx0,b(0).

Recall that

ψ(x) = ψx0,b(x) = c0
(|x − x0| + b

) 4
3

so that

Dψ(x) = c0
4

3

(|x − x0| + b
) 1

3
x − x0

|x − x0|
and

D2ψ(x) = 1

|Dψ(x)|2 Dψ̂(x) ⊗ Dψ̂(x) + |Dψ(x)|
|x − x0|

(
I − Dψ̂(x) ⊗ Dψ̂(x)

)
,

at any x ∈D(x0, b).

So Dψ(0) = −c0
4
3 (r + b)

1
3 x̂0 and

D2ψ(0) = 1

|Dψ(0)|2 x̂0 ⊗ x̂0 + |Dψ(0)|
r

(I − x̂0 ⊗ x̂0),

where r = |x0|.
Write a = c0

4
3 = 3

√
3. The sufficiency conditions become

Dψ(0) = −a(r + b)
1
3 x̂0 = p (1)

and

1

|Dψ(0)|2 x̂0 ⊗ x̂0 + |Dψ(0)|
r

(I − x̂0 ⊗ x̂0) > S. (2)

Condition (1) implies

x̂0 = −p̂

and

a(r + b)
1
3 = |p|.

We rewrite condition (2) as

D2ψ(0) = 1

|p|2 p̂ ⊗ p̂ + |p|
r

(I − p̂ ⊗ p̂) > S.
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It suffices to prove, for r > 0 small,

〈
D2ψ(0)x, x

〉
> 〈Sx, x〉 for any x ∈ Rn\{0}.

If we write x = αp̂ + y1 with 〈p̂, y1〉 = 0, then

〈
D2ψ(0)x, x

〉 = α2

|p|2 + |p|
r

∣∣y1
∣∣2

and

〈Sx, x〉 = α2〈Sp̂, p̂〉 + 2α
〈
Sp̂, y1〉 + 〈

Sy1, y1〉.
For any ε > 0 small,

α2〈Sp̂, p̂〉 + 2α
〈
Sp̂, y1〉 + 〈

Sy1, y1〉
� α2

|p|2 〈Sp,p〉 + α2ε|Sp̂|2 + 1

ε

∣∣y1
∣∣2 + 〈

Sy1, y1〉

� α2

|p|2
(〈Sp,p〉 + ε|Sp|2) +

(
1

ε
+ ‖S‖

)∣∣y1
∣∣2

<
α2

|p|2 + |p|3
r

∣∣y1
∣∣2

for ε > 0 small and r > 0 small, as 〈Sp,p〉 < 1. The condition (2) is proved.

b = |p|3
3 − r is determined as well. The proof is complete. �

Theorem 6 clearly implies the following theorem.

Theorem 7. Assume u ∈ C(Ω) verifies |Du| > 0 in the viscosity sense. Suppose, in addition,
f ∈ C(Ω) satisfies infx∈Ω f (x) > 0.

If u is a viscosity sub-solution of the equation

�∞u = f (x)

in Ω then u − Cψx0,bd ∈ MaxP(Ω̃\{x0}) for any Ω̃ � Ω , positive constant C with C3 �
infΩ̃ f (x), x0 ∈ Rn, b � 0 and d ∈ R.

On the other hand, if u−Cψx0,bd ∈ MaxP(Ω̃\{x0}) for any Ω̃ � Ω , positive constant C with
C3 � supΩ̃ f (x), x0 ∈ Rn, b � 0 and d ∈ R, then u is a viscosity sub-solution of the equation

�∞u = f (x)

in Ω .

We now state a comparison principle for super-solutions.
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Theorem 8. Assume u ∈ C(Ω). Then

�∞u � 1

in the viscosity sense in Ω if and only if u − ψx0,bd ∈ MinP(Ω ∩ D(x0, b)) for any x0 ∈ Rn,
b < 0 and d ∈ R, where D(x0, b) denotes the set of admissible points of ψx0,bd .

We say u enjoys comparison with standard functions from below in Ω if the condition
u − ψx0,bd ∈ MinP(Ω ∩ D(x0, b)), for any x0 ∈ Rn, b < 0, and d ∈ R, stated in the theorem
holds.

Proof. Again the necessity is given by Lemmas 2 and 3.
Now we assume u enjoys comparison with standard functions from below in Ω .
Suppose u is not a viscosity super-solution in Ω . Then ∃x∗ ∈ Ω and ϕ ∈ C2(Ω) such that ϕ

touches u by below at x∗ and �∞ϕ(x∗) > 1. Without loss of generality, we may assume x∗ = 0.
Denote p = Dϕ(0) and S = D2ϕ(0). 〈Sp,p〉 > 1 and it clearly implies |p| > 0.
We will construct a standard function

ψx0,b(x) = c0
(|x − x0| + b

) 4
3

such that u − ψx0,b /∈ MinP(Ω ∩D(x0, b)) with x0 	= 0 and b < −|x0| < 0.
It suffices to construct ψx0,b such that 0 is a strict local minimum point of ϕ − ψx0,b . Then 0

is also a strict local minimum point of u − ψ . In a small neighborhood of 0, u − ψx0,b violates
the minimum principle.

It is sufficient to construct ψx0,b such that

Dϕ(0) = Dψx0,b(0)

and

D2ϕ(0) > D2ψx0,b(0).

One can express the above two conditions explicitly as follows:

Dψ(0) = −a(r + b)
1
3 x̂0 = p (3)

and

1

|Dψ(0)|2 x̂0 ⊗ x̂0 + |Dψ(0)|
r

(I − x̂0 ⊗ x̂0) < S, (4)

where a = 4
3c0 and r = |x0|, the second of which in turn is equivalent to, as a result of b + r < 0,

I >
r

a(r + b)
1
3

S − r

3(r + b)
x̂0 ⊗ x̂0 + x̂0 ⊗ x̂0.
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We must take x̂0 = p̂ and enforce a(r +b)
1
3 = −|p|. Denote q = p̂ = x̂0 and μ = r

a|(r+b)1/3| =
r

|p| > 0. In order to secure the second condition, we also need to establish

I > −μS − r

3(r + b)
q ⊗ q + q ⊗ q

under the condition 〈Sp,p〉 = 1
|p|2 〈Sq, q〉 > 1, by taking suitable values of b < 0 and r > 0.

Denote the right-hand side matrix by M , i.e.

M = −μS − r

3(r + b)
q ⊗ q + q ⊗ q.

For our purpose, it suffices to show

〈Mx,x〉 < |x|2,
for any nonzero vector x ∈ Rn.

We can write x = αq + y1 for any nonzero x ∈ Rn, where 〈q, y1〉 = 0 and α ∈ R. Then

〈Mx,x〉 = α2〈Mq,q〉 + α
{〈

Mq,y1〉 + 〈
My1, q

〉} + 〈
My1, y1〉

= α2
{
−μ〈Sq, q〉 − r

3(r + b)
+ 1

}
− μ

{
2α

〈
Sq, y1〉 + 〈

Sy1, y1〉}

� α2
{
−μ〈Sq, q〉 − r

3(r + b)
+ 1

}
+ μ

{
α2ε|Sq|2 + 1

ε

∣∣y1
∣∣2 + ‖S‖∣∣y1

∣∣2
}

= α2
{

1 − r

3(r + b)
− μ

(〈Sq, q〉 − ε|Sq|2)} + μ

{
1

ε
+ ‖S‖

}∣∣y1
∣∣2

,

where ε > 0 is an interpolation constant whose value will be taken in the following.
Note that

μ〈Sq, q〉 = r

|p|3 〈Sp,p〉

= r

a3|r + b| 〈Sp,p〉

= − r

3(r + b)
〈Sp,p〉, as a3 = 3

> − r

3(r + b)
, as 〈Sp,p〉 > 1.

Therefore

1 − r

3(r + b)
− μ

(〈Sq, q〉 − ε|Sq|2)
= 1 − μ

|p|2 + μ

|p|2 〈Sp,p〉 + με|Sq|2 as
r

3(r + b)
= − μ

|p|2
= 1 − μ

|p|2
(〈Sp,p〉 − 1 − ε|Sq|2).
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Taking ε > 0 small enough while keeping the value of μ > 0 free, we have

1 − r

3(r + b)
− μ

(〈Sq, q〉 − ε|Sq|2)
= 1 − μ

|p|2
(〈Sp,p〉 − 1 − ε|Sq|2)

< 1.

Then we take μ > 0 small enough so that

μ

{
1

ε
+ ‖S‖

}
< 1.

Therefore 〈Mx,x〉 < α2 + |y1|2 = |x|2 if x 	= 0.

So r = μ|p| is determined and b is determined by b = −|p|3
3 − r < −r . The proof is now

complete. �
A generalized form of the comparison principle from below is the following theorem which

follows from the previous theorem directly.

Theorem 9. Assume u ∈ C(Ω) and f ∈ C(Ω) satisfies infx∈Ω f (x) > 0.
If u is a viscosity super-solution of the equation

�∞u = f (x)

in Ω then u − Cψx0,bd ∈ MinP(Ω̃\{x0}) for any Ω̃ � Ω , positive constant C with C3 �
supΩ̃ f (x), x0 ∈ Rn, b < 0 and d ∈ R.

On the other hand, if u−Cψx0,bd ∈ MinP(Ω̃\{x0}) for any Ω̃ � Ω , positive constant C with
C3 � infΩ̃ f (x), x0 ∈ Rn, b < 0 and d ∈ R, then u is a viscosity super-solution of the equation

�∞u = f (x)

in Ω .

5. Stability of �∞u = f with f �= 0

In this section, Ω again denotes a bounded open subset of Rn.
We need the strict comparison principle, Lemma 1, and the following lemmas to prove the

perturbation theorem.

Lemma 4. Assume f ∈ C(Ω) such that either infΩ f > 0 or supΩ f < 0. For j = 1,2, suppose
cj > 0, gj ∈ C(∂Ω) and uj ∈ C(Ω̄) is the viscosity solution of the Dirichlet problem

{
�∞uj = cjf in Ω,

uj = gj on ∂Ω.
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Then ∥∥∥∥ u1
3
√

c1
− u2

3
√

c2

∥∥∥∥
L∞(Ω)

�
∥∥∥∥ g1

3
√

c1
− g2

3
√

c2

∥∥∥∥
L∞(∂Ω)

.

If, in particular g1 = g2 = g ∈ C(∂Ω), then

∥∥∥∥ u1
3
√

c1
− u2

3
√

c2

∥∥∥∥
L∞(Ω)

�
∣∣∣∣ 1

3
√

c1
− 1

3
√

c2

∣∣∣∣‖g‖L∞(∂Ω).

Proof. Let

vj = 1
3
√

cj

uj .

Then vj is the viscosity solution of the Dirichlet problem

{
�∞vj = f in Ω,

vj = 1
3√cj

gj on ∂Ω,

j = 1,2. Applying the maximum principle, Theorem 4, one obtains

‖v1 − v2‖L∞(Ω) �
∥∥∥∥ g1

3
√

c1
− g2

3
√

c2

∥∥∥∥
L∞(∂Ω)

,

which implies the desired inequality. �
Lemma 5. Assume f ∈ C(Ω) such that either infΩ f > 0 or supΩ f < 0. Suppose ck → 0, gk ,
g ∈ C(∂Ω) such that ‖gk − g‖L∞(∂Ω) → 0, and uk and u in C(Ω̄) are the viscosity solutions of
the following Dirichlet problems respectively

{
�∞uk = (1 + ck)f in Ω,

uk = gk on ∂Ω

and

{
�∞u = f in Ω,

u = g on ∂Ω.

Then

sup
Ω

(uk − u) → 0

as k → ∞.
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Proof. The previous lemma implies

∥∥∥∥ 1
3
√

1 + ck

uk − u

∥∥∥∥
L∞(Ω)

�
∥∥∥∥ gk

3
√

1 + ck

− g

∥∥∥∥
L∞(∂Ω)

,

which in turn implies

1
3
√

1 + ck

‖uk − u‖L∞(Ω) −
∣∣∣∣ 1

3
√

1 + ck

− 1

∣∣∣∣‖u‖L∞(Ω)

� 1
3
√

1 + ck

‖gk − g‖L∞ +
∣∣∣∣1 − 1

3
√

1 + ck

∣∣∣∣‖g‖L∞(∂Ω).

Therefore

‖uk − u‖L∞(Ω) �
∣∣ 3
√

1 + ck − 1
∣∣(‖u‖L∞(Ω) + ‖g‖L∞(Ω)

) + ‖gk − g‖L∞(∂Ω).

So limk→∞ ‖uk − u‖L∞(Ω) = 0. �
The main result in this section is the following perturbation theorem.

Theorem 10. Suppose {fk} is a sequence of continuous functions in C(Ω) which converges
uniformly in Ω to f ∈ C(Ω) and either infΩ f > 0 or supΩ f < 0. Furthermore, {gk} is a
sequence of functions in C(∂Ω) which converges uniformly on ∂Ω to g ∈ C(∂Ω). Assume uk ∈
C(Ω̄) is a viscosity solution of the Dirichlet problem

{
�∞uk = fk in Ω,

uk = gk on ∂Ω,

while u ∈ C(Ω̄) is the unique viscosity solution of the Dirichlet problem

{
�∞u = f in Ω,

u = g on ∂Ω.

Then supΩ |uk − u| → 0 as k → ∞.

Proof. Without loss of generality, we assume infΩ f > 0.
Let εk = supΩ |fk − f |. Then εk → 0 as k → ∞ and

f (x) − εk � fk(x) � f (x) + εk for all x ∈ Ω.

To forbid εk = 0, we replace εk by εk + 1
k

and still denote the new quantity by εk , as the new
εk → 0. And now

f (x) − εk < fk(x) < f (x) + εk for all x ∈ Ω.
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Since infΩ f > 0, the sequence {ck} defined by ck = εk

infΩ f
converges to 0 but never equals 0.

So, for all x ∈ Ω ,

(1 − ck)f (x) < fk(x) < (1 + ck)f (x),

as a result of εk � ckf (x).
We define u1

k and u2
k to be the viscosity solutions of the following Dirichlet problems respec-

tively {
�∞u1

k = (1 − ck)f in Ω,

u1
k = gk on ∂Ω

and {
�∞u2

k = (1 + ck)f in Ω,

u2
k = gk on ∂Ω.

By Lemma 1, we know that u2
k � uk � u1

k on Ω̄ , since (1 − ck)f (x) < fk(x) < (1 + ck)f (x)

for all x ∈ Ω . In addition, the previous Lemma 5 implies supΩ |uj
k − u| → 0 for j = 1,2. Con-

sequently,

sup
Ω

|uk − u| → 0

as k → ∞. �
6. Stability of �∞u = 0

Now we are at a position to prove the main theorem of this paper stated below.

Theorem 11. Ω is a bounded open subset of Rn. Suppose g ∈ Lip∂ (Ω) and {fk} is a sequence
of continuous functions on Ω which converges uniformly to 0 in Ω . If uk ∈ C(Ω̄) is a viscosity
solution of the Dirichlet problem {

�∞uk = fk in Ω,

uk = g on ∂Ω,

and u ∈ C(Ω̄) is the unique viscosity solution of the Dirichlet problem{
�∞u = 0 in Ω,

u = g on ∂Ω,

then uk converges to u uniformly on Ω̄ , i.e.

sup
Ω

|uk − u| → 0

as k → ∞.
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Proof. Let ck = ‖fk‖L∞(Ω) and {εk} denotes a sequence of positive numbers that converges to 0.
Let u1

k and u2
k ∈ C(Ω̄) be the respective viscosity solutions of the following Dirichlet prob-

lems {
�∞u1

k = −ck − εk in Ω,

u1
k = g on ∂Ω

and {
�∞u2

k = ck + εk in Ω,

u2
k = g on ∂Ω.

By Lemma 1, we know that

u2
k � uk � u1

k

on Ω̄ .
So it suffices to show that supΩ |uj

k − u| → 0 as k → ∞, for both j = 1 and 2. As the
proof of either case of the above convergence implies that of the other, we will only prove
supΩ(u − u2

k) → 0 as k → ∞. The proof of supΩ(u1
k − u) → 0 follows when one considers

−u1
k and −u. In other words, we reduce the problem to the case in which uk is a viscosity solu-

tion of the Dirichlet problem {
�∞uk = δk in Ω,

uk = g on ∂Ω

where δk > 0 and δk → 0 as k → ∞, and our goal is to prove

sup
Ω

(u − uk) → 0

as k → ∞, since uk � u is clear. For simplicity, we omitted the superscript 2 in the above and
will do the same in the following.

We use argument by contradiction. Suppose there is an ε0 > 0 and a subsequence {ukj
} such

that supΩ(u − ukj
) � ε0, for all j = 1,2,3, . . . . In addition, we may assume {δkj

} is a strictly
decreasing sequence that converges to 0.

Without further confusion, we will abuse our notation by using {uk} for the subsequence {ukj
}

and δk for δkj
.

So we will derive a contradiction from the fact

sup
Ω

(u − uk) � ε0 > 0, ∀k,

where uk ∈ C(Ω̄) is a viscosity solution of the Dirichlet problem{
�∞uk = δk in Ω,

uk = g on ∂Ω

and {δk} decreases to 0.
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By Lemma 1, one obtains

uk � uk+1 � u

in Ω , ∀k. So {uk} converges pointwise on Ω̄ , as uk = g on ∂Ω .
Moreover, {uk} is equicontinuous on any compact subset of Ω . In fact, let K be any compact

subset of Ω . Then the distance from K to ∂Ω defined by

dist(K, ∂Ω) = inf
{
dist(x, ∂Ω): x ∈ K

}
,

must equal to some positive number ε. Take R > 0 such that 4R < ε. Then for any z ∈ K ,
B4R(z) ⊂ Ω . Since uk is infinity sub-harmonic in Ω , i.e. �∞uk � 0 in the viscosity sense, it is
well known, e.g. [5, Lemma 2.9], that

∣∣uk(x) − uk(y)
∣∣ �

(
sup

B4R(z)

uk − sup
BR(z)

uk

) |x − y|
R

,

for any x, y ∈ B4R(z). As u1 � uk � u in Ω , we have

∣∣uk(x) − uk(y)
∣∣ �

(
sup

B4R(z)

u − sup
BR(z)

u1

) |x − y|
R

� LR

|x − y|
R

,

where LR = supΩ u − infΩ u1 � 0, which is independent of k. As K can be covered by finitely
many balls B4R(z), z ∈ K , {uk} must be equicontinuous on K .

Therefore a subsequence of {uk} converges locally uniformly to some function ū ∈ C(Ω)

in Ω . We once again abuse our notation by denoting the convergent subsequence by {uk}.
We claim that ū verifies

(i) �∞ū = 0 in the viscosity sense in Ω ,
(ii) ∀x0 ∈ ∂Ω , limx∈Ω→x0 ū(x) = g(x0), and

(iii) ū ∈ C(Ω̄) if we extend the definition of ū to ∂Ω by defining ū|∂Ω = g.

(i) is proved by a standard viscosity solution approach. In fact, suppose ϕ ∈ C2(Ω) touches u by
above at x0 ∈ Ω . Then, for any small ε > 0, the function x �→ u(x) − (ϕ(x) + ε

2 |x − x0|2) has a
strict maximum at x0. In particular,

u(x0) − ϕ(x0) > max
y∈∂Br (x0)

(
u(y) −

(
ϕ(y) + ε

2
|y − x0|2

))

for all small r > 0 and Br(x0) � Ω .
As {uk} converges to u uniformly on B̄r (x0), for all large k,

sup
x∈Br (x0)

(
uk(x) −

(
ϕ(x) + ε

2
|x − x0|2

))

� uk(x0) − ϕ(x0) > max
y∈∂Br (x0)

(
uk(y) −

(
ϕ(y) + ε

2
|y − x0|2

))
.
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So the function x �→ uk(x) − (ϕ(x) + ε
2 |x − x0|2) assumes its maximum over B̄r (x0) at some

point xk ∈ Br(x0).
By the definition of viscosity solutions,

�∞
(

ϕ(x) + ε

2
|x − x0|2

)
� δk

at x = xk , i.e.

�∞ϕ(xk) + O(ε) � δk,

∀ε > 0 and ∀k � k(r), where k(r) ↑ ∞ as r ↓ 0. If we send r to 0, we obtain �∞ϕ(x0) � O(ε)

for any ε > 0, which implies �∞ϕ(x0) � 0, i.e. �∞u(x0) � 0 in the viscosity sense.
The fact �∞u(x0) � 0 in the viscosity sense can be similarly proved.
As the local uniform limit of {uk} in Ω , ū is clearly in C(Ω). In order to prove (ii) and

(iii), we will apply the comparison with standard functions properties of the viscosity sub- and
super-solutions of the equation �∞v = 1.

In fact,

�∞
uk

3
√

δk

= 1

in the viscosity sense in Ω . Fix x0 ∈ ∂Ω . For any b > 0, the comparison with standard functions
by above property states that

uk(x)
3
√

δk

− c0
(|x − x0| + b

) 4
3 � max

y∈∂Ω

(
uk(y)

3
√

δk

− c0
(|y − x0| + b

) 4
3

)

for all x ∈ Ω , or equivalently

uk(x) − c0
3
√

δk

(|x − x0| + b
) 4

3 � max
y∈∂Ω

(
g(y) − c0

3
√

δk

(|y − x0| + b
) 4

3
)
.

For large b > 0

c0
3
√

δk

(|y − x0| + b
) 4

3

= c0
3
√

δkb
4
3

(
1 + |y − x0|

b

) 4
3

= c0
3
√

δkb
4
3

(
1 + 4

3

|y − x0|
b

+ ◦
( |y − x0|

b

))

= c0
3
√

δkb
4
3 + 4

3
c0

3
√

δkb
1
3 |y − x0| + c0

3
√

δkb
4
3 ◦

( |y − x0|
b

)
.

Take b = bk large enough so that 4
3c0

3
√

δkb
1
3 = CLg(∂Ω) for some universal constant C � 1.

So, for y ∈ ∂Ω ,
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g(y) − c0
3
√

δk

(|y − x0| + b
) 4

3

� g(y) − c0
3
√

δkb
4
3 − CLg(∂Ω)|y − x0|

� g(x0) − c0
3
√

δkb
4
3 ,

i.e.

max
y∈∂Ω

(
g(y) − c0

3
√

δk

(|y − x0| + b
) 4

3
) = g(x0) − c0

3
√

δkb
4
3 .

As a result, for x ∈ Ω near x0,

uk(x) � g(x0) + c0
3
√

δk

(|x − x0| + b
) 4

3 − c0
3
√

δkb
4
3

= g(x0) + 4

3
c0

3
√

δkb
1
3 |x − x0| + 3

√
δkb

4
3 ◦

( |x − x0|
b

)
� g(x0) + CLg(∂Ω)|x − x0|.

On the other hand, the comparison with standard functions from below property states that,
for sufficiently large b > 0 and all x in Ω ,

uk(x)
3
√

δk

− c0
(
b − |x − x0|

) 4
3 � max

y∈∂Ω

(
uk(y)

3
√

δk

− c0
(
b − |y − x0|

) 4
3

)
,

or equivalently

uk(x) − c0
3
√

δk

(
b − |x − x0|

) 4
3 � max

y∈∂Ω

(
g(y) − c0

3
√

δk

(
b − |y − x0|

) 4
3
)
.

For large b > 0,

c0
3
√

δk

(
b − |x − x0|

) 4
3

= c0
3
√

δkb
4
3

(
1 − |x − x0|

b

) 4
3

= c0
3
√

δkb
4
3

(
1 − 4

3

|x − x0|
b

+ ◦
( |x − x0|

b

))

= c0
3
√

δkb
4
3 − 4

3
c0

3
√

δkb
1
3 |x − x0| + c0

3
√

δkb
4
3 ◦

( |x − x0|
b

)
.

Take b > 0 large enough so that

4

3
c0

3
√

δkb
1
3 = CLg(∂Ω)

for some C � 1 (so that c0
3
√

δkb
4
3 ◦ (

|x−x0|
b

) 
 4
3c0

3
√

δkb
1
3 |x − x0|).

As a result, for y ∈ ∂Ω ,
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g(y) − c0
3
√

δk

(
b − |y − x0|

) 4
3

� g(y) − c0
3
√

δkb
4
3 + CLg(∂Ω)|y − x0|

� g(x0) − c0
3
√

δkb
4
3 ,

which means

min
∂Ω

(
g(x) − c0

3
√

δk

(
b − |x − x0|

) 4
3
) = g(x0) − c0

3
√

δkb
4
3 .

So, for x ∈ Ω near x0,

uk(x) � g(x0) + c0
3
√

δk

(
b − |x − x0|

) 4
3 − c0

3
√

δkb
4
3

= g(x0) − 4

3
c0

3
√

δkb
1
3 |x − x0| + 3

√
δkb

4
3 ◦

( |x − x0|
b

)
� g(x0) − CLg(∂Ω)|x − x0|.

Therefore, for some C � 1 independent of k,

g(x0) − CLg(∂Ω)|x − x0| � uk(x) � g(x0) + CLg(∂Ω)|x − x0|,
for all k and all x ∈ Ω near x0.

Sending k to ∞, we have

g(x0) − CLg(∂Ω)|x − x0| � ū(x) � g(x0) + CLg(∂Ω)|x − x0|,
for all k and all x ∈ Ω near x0.

Now it is clear that (ii) and (iii) hold.
The uniqueness of a solution in C(Ω̄) of the Dirichlet problem for homogeneous equation

�∞u = 0 in Ω under u|∂Ω = g implies that ū = u on Ω̄ . As a result, {uk} converges to u locally
uniformly in Ω .

Recall that supΩ(u − uk) > ε0. There exists, for each k, an xk ∈ Ω such that

u(xk) > uk(xk) + ε0

and xk approaches the boundary ∂Ω , since {uk} converges to u locally uniformly in Ω . Without
loss of generality, we assume xk → x0 ∈ ∂Ω .

Then we will have the following contradiction by previous estimate on uk(x) for x ∈ Ω

near x0:

g(x0) = lim
k

u(xk) � lim sup
k

uk(xk) + ε0

� lim sup
k

(
g(x0) − CLg(∂Ω)|xk − x0| + ε0

)
= g(x0) + ε0.

This completes the proof. �
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We may also perturb the boundary data and still have the uniform convergence desired. This
is the content of the following theorem.

Theorem 12. Ω is a bounded open subset of Rn. Suppose {gk} is a sequence of functions in
Lip∂ (Ω) which converges to g ∈ Lip∂ (Ω) uniformly on ∂Ω , and {fk} is a sequence of continuous
functions on Ω which converges uniformly to 0 in Ω . If uk ∈ C(Ω̄) is a viscosity solution of the
Dirichlet problem

{
�∞uk = fk in Ω,

uk = gk on ∂Ω

and u ∈ C(Ω̄) is the unique viscosity solution of the Dirichlet problem

{
�∞u = 0 in Ω,

u = g on ∂Ω,

then uk converges to u uniformly on Ω̄ , i.e.

sup
Ω

|uk − u| → 0

as k → ∞.

Proof. Let ck = ‖fk‖L∞(Ω) and {εk} denotes a sequence of positive numbers that converges to 0.
Proceeding as in the proof of the previous theorem, we let u1

k and u2
k ∈ C(Ω̄) be the respective

viscosity solutions of the following Dirichlet problems

{
�∞u1

k = −ck − εk in Ω,

u1
k = gk on ∂Ω

and {
�∞u2

k = ck + εk in Ω,

u2
k = gk on ∂Ω.

By Lemma 1, we know that

u2
k � uk � u1

k

on Ω̄ .
So it suffices to show that supΩ(u

j
k − u) → 0 as k → ∞, for both j = 1 and 2.

We introduce v1
k and v2

k ∈ C(Ω̄) as the viscosity solutions of the following Dirichlet problems
respectively

{
�∞v1

k = −ck − εk in Ω,

v1
k = g on ∂Ω
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and {
�∞v2

k = ck + εk in Ω,

v2
k = g on ∂Ω.

The maximum principle, Theorem 4, implies that

sup
Ω̄

∣∣uj
k − v

j
k

∣∣ � max
∂Ω

|gk − g| → 0, as k → ∞,

for j = 1,2.
The previous Theorem 11 implies that

sup
Ω̄

∣∣vj
k − u

∣∣ → 0, as k → ∞,

for j = 1,2. Therefore we have

sup
Ω̄

∣∣uj
k − u

∣∣ → 0, as k → ∞,

for j = 1,2, as expected. �
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Appendix A. A counter-example

In the appendix, we would like to provide a counter-example of the uniqueness theorem with-
out the sign-assumption infΩ f > 0. This example is modified from a counter-example provided
in [19]. We include this example for the completeness of this work.

A viscosity solution of the infinity Laplace equation �∞u = 0 in R2\{0} is given by

G =
[

cos θ(1 − tan
4
3 θ

2 )2

1 + tan
4
3 θ

2 + tan
8
3 θ

2

] 1
3

r− 1
3

provided by Aronsson (see [4]).

One may write G = ϕ(θ)r− 1
3 , where ϕ is real-analytic except at kπ for k ∈ Z, and ϕ is

differentiable at kπ , as long as r > 0. Furthermore, |∇G| is comparable to r− 4
3 . So, for any

L > 0, if one defines the set ZL to be the set

ZL = {
x ∈ R2

∣∣ ∣∣∇G(x)
∣∣ > L

}
,



Author's personal copy

G. Lu, P. Wang / Advances in Mathematics 217 (2008) 1838–1868 1867

then ZL is bounded and contains an open neighborhood of 0 but not 0, and the outer radius of
ZL shrinks to 0 as L → ∞. Let RL = sup{|x|: x ∈ ZL} and rL = inf{|x|: x /∈ ZL ∪ {0}} be the
outer and inner radii of ZL.

We take L so large that ZL � B1. Denote

AL = B1\BrL
2

.

We also use AM(Ω) to denote the set of viscosity solutions of the homogeneous infinity
Laplace equation in Ω .

Lemma A. Suppose u ∈ AM(AL) with u = G on ∂BrL
2

and u = c on ∂B1 for a fixed constant c.

If L is sufficient large, then u = G in ZL.

Proof. Let w be the unique absolute minimizer in AM(B1\ZL) such that w = G on ZL and
w = u on ∂B1.

We claim that w ∈ AM(AL). If the claim is true, then w = u on ∂AL implies w = u in AL

and thus G = u in ZL.
To prove the claim, we first note that Lipxw � L, ∀x ∈ B1\ZL, as Lip∂B1∪∂ZL

w � L.
We complete the proof of the lemma by showing LipV w � Lip∂V w for any V � AL. Without

loss of generality, we assume V is connected. If V ∩ ZL = Φ , nothing to prove. Assume V ∩
ZL 	= Φ . Then L1 := LipV G > L. ∃xj 	= yj ∈ ∂V and a path γj ⊂ V ∪ ∂V connecting xj and

yj such that limj
|G(xj )−G(yj )|

l(γj )
= L1, where l(γj ) denotes the length of γj . For large j , |G(xj )−

G(yj )| > Ll(γj ). So γj ∩ZL 	= Φ . Let x′
j = γj (t1) where t1 = inf{s: (−∞, s)∩ γ −1(ZL) 	= Φ}

and y′
j = γ (t2) where t2 = sup{s : γ −1(ZL) ∩ (s,∞) 	= Φ}. It is obvious that

d(x′
j , xj )

l(γj )
,
d(y′

j , yj )

l(γj )
→ 0,

as j → ∞. Since supx /∈ZL
LipxG � L, supx /∈ZL

Lipxw � L and w = G in ZL, the inequalities
|G(xj ) − w(xj )| � 2Ld(xj , x

′
j ) and |G(yj ) − w(yj )| � 2Ld(yj , y

′
j ) hold. Thus

|w(xj ) − w(yj )|
l(γj )

− |G(xj ) − G(yj )|
l(γj )

→ 0

as j → ∞. So Lip∂V w � LipV w = L1. So w ∈ AM(AL). �
Next, for any r0 > 0, one can construct a viscosity solution v : R2 → R of �∞v = g in R2

and v = G in R2\Br0 , where g is a continuous function. Take C∞ increasing functions a(r) and

λ(r) so that a(r) = r− 1
3 and λ(r) = 1 for all r � r0

2 and λ = a = 0 in a small neighborhood of 0.

Define v(r, θ) = a(r)(λ(r)ϕ(θ) + (1 − λ(r)) cos θ), where ϕ(θ) = [ cos θ(1−tan
4
3 θ

2 )2

1+tan
4
3 θ

2 +tan
8
3 θ

2

] 1
3 as in the

definition of the Aronsson’s solution G. It can be checked that ϕ(θ) = 1 − 1
2 3√2

θ
4
3 − θ2

6 + O(θ3)

for θ near 0. Clearly, if θ 	= kπ , �∞v is C∞. For θ very close to 0, computation shows that
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�∞v = (a′)2a′′ − 1
3
√

2
(a′λ + aλ′)a′′θ

4
3 − 4λ3a3

81r4
+ 4λ3a3

81 3
√

2r4(a′)2
(a′λ + aλ′)θ

4
3

+ P(r,λ,λ′, a, a′)
r6(a′)2

θ
2
3 + O

(
θ2),

where P is a polynomial. So limθ→0 �∞v exists. So such a continuous function g exists.
In the end, let uj ∈ AM(AL) such that uj = G on ∂BrL

2
and uj = j on ∂B1, for j = 1,2. The

preceding lemma implies u1 = G = u2 in ZL ∩ AL. As ZL ∩ AL ⊃ BrL\BrL
2

, one may ‘glue’ uj

to v with overlapping on ZL\BrL
2

to obtain a viscosity solution of the inhomogeneous equation

in B1 if r0 is taken small enough. Now take vj = uj − j in AL and vj = v − j for |x| < rL
2 . One

can see that vj = 0 on ∂B1 and �∞vj = g in the viscosity sense in B1, but v1 	= v2 in ZL. This
is the end of the construction of the counter-example.
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