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Abstract

We present the theory of the viscosity solutions of the inhomogeneous infinity Laplace equation
Ox; U0y juafi XU = f in domains in R". We show existence and uniqueness of a viscosity solution of the
Dirichlet problem under the intrinsic condition f does not change its sign. We also discover a characteristic
property, which we call the comparison with standard functions property, of the viscosity sub- and super-
solutions of the equation with constant right-hand side. Applying these results and properties, we prove the
stability of the inhomogeneous infinity Laplace equation with nonvanishing right-hand side, which states
the uniform convergence of the viscosity solutions of the perturbed equations to that of the original inho-
mogeneous equation when both the right-hand side and boundary data are perturbed. In the end, we prove
the stability of the well-known homogeneous infinity Laplace equation 0y, u0x jua)%i XU = 0, which states
the viscosity solutions of the perturbed equations converge uniformly to the unique viscosity solution of the
homogeneous equation when its right-hand side and boundary data are perturbed simultaneously.
© 2007 Elsevier Inc. All rights reserved.
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0. Introduction

Since the introduction of absolute minimizers by G. Aronsson in his works [1-3] in the 1960s,
the infinity Laplace equation has undergone several phases of extensive study. According to
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Aronsson, an absolute minimizer in a domain £2 C R” is a continuous real-valued function
which has the least possible Lipschitz constant in every open set whose closure is compactly
contained in £2. In the fundamental work [14] by R. Jensen, equivalence of the absolute mini-
mizers and viscosity solutions of the homogeneous infinity Laplace equation was established and
an original proof of the uniqueness of absolute minimizers was provided. A special property of
absolute minimizers was discovered, namely, the difference of an absolute minimizer and a cone
function verifies the weak maximum principle in any domain excluding the vertex of the cone
and where they are defined. This is the so-called comparison with cone property.

Since then, many people have contributed to the theory of absolute minimizers which are also
called infinity harmonic functions. To mention a few of such contributions which are of course
far from a complete list, we refer to the works of [10,9,8] by Crandall, Evans and Gariepy, [16]
by Lindqvist and Manfredi, [15] by Juutinen, and [7] by Barron, Jensen and Wang which help to
complete the theory of absolute minimizers.

There are some further development in the theory of absolute minimizers. For instance, the
work [18] of Manfredi, Petrosyan and Shahgholian dealt with a free boundary problem of the
homogeneous infinity Laplace equation.

A systematic treatment of the theory of absolute minimizers can be found in the manuscript [5]
by Aronsson, Crandall and Juutinen, and the references therein.

Uniqueness of absolute minimizers is worth special attention in the theory. After Jensen’s
fundamental work [14], Barles and Busca gave a second proof of the uniqueness of absolute
minimizers in [6], which is quite different from Jensen’s original one and works for a broad class
of degenerate elliptic equations. Recently, Crandall, Gunnarsson and Wang provided a third proof
of the uniqueness of absolute minimizers in bounded domains and they successfully applied their
truncation method to many unbounded domains including all exterior domains, i.e. the domains
obtained from the whole space R" by deleting a compact set, and to some non-euclidean norms
(see [11]).

This paper is our first attempt to analyze the inhomogeneous degenerate equations. The inho-
mogeneous infinity Laplace equation is the prototype of such highly degenerate nonlinear partial
differential equations. Our motive to study the inhomogeneous infinity Laplace equation is not
only for the theory’s own good but also for the seeking of the connection between the homoge-
neous infinity Laplace equation and the inhomogeneous infinity Laplace equation, namely the
property preserved under the perturbation of the homogeneous infinity Laplace equation.

We concentrate on the inhomogeneous co-Laplace equation

n
— 2 —
Aot 1= Z Oy Udy; U0y, u = f
i.j=1

(the notation is explained in Section 1), where the right-hand side function f is continuous but
stays strictly away from 0.

In Section 2, a Perron’s method is applied to establish the existence of a viscosity solution of
the Dirichlet problem for the inhomogeneous oco-Laplace equation. More precisely, a family of
admissible super-solutions is constructed and the infimum of the family is shown to be a viscosity
solution. A fact worth of noting is the nonexistence of classical (i.e. C 2) solutions, which follows
from our uniqueness theorem in the coming section.

In Section 3, a penalization method initially introduced in the work of Crandall, Ishii and Li-
ons, [12], for elliptic equations and later applied in [11] is employed to lead to a contradiction,
if a comparison theorem were untrue. The uniqueness theorem is an immediate consequence
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of the comparison principle proved. A significant feature of the uniqueness theorem is the as-
sumption the right-hand side f stays strictly away from 0. This is an intrinsic condition instead
of a technical reason. The uniqueness theorem is invalid if f changes its sign. We provide a
counter-example in this case in Appendix A.

In Section 4, we present the comparison with standard functions property for sub- and super-
solutions of the inhomogeneous infinity Laplace equation Axu = 1. The proof bears the ideas
in Crandall’s work [8] and the joint work of Crandall and Wang, [13]. We found a special family
of singular radial classical solutions, the standard functions with which every viscosity sub- or
super-solution of the equation enjoys comparison in a sense to be made clear in the section, of
the inhomogeneous infinity Laplace equation with nonzero constant right-hand side. We believe
it is not accidental, as a well-known characteristic property of the infinity harmonic functions
(i.e. viscosity solutions of the homogeneous infinity Laplace equation) is the comparison with
cone functions. Unlike the homogeneous case, we need to separate the standard functions into
two sub-families and formulate the comparison property for sub- and super-solutions of the in-
homogeneous equation with the two sub-families separately. The two comparison properties thus
obtained for sub- and super-solutions, called the comparison with standard functions from above
and from below, characterize the viscosity sub- and super-solutions of Asu = 1 completely.
A closely related parabolic version of the comparison principle can be found in the second part
of [13].

In Section 5, we perturb the right-hand side f and boundary data g of the Dirichlet problem

u=g on 0f2.

We assume f and g are continuous functions in their respective domains, and the values of f are
kept strictly away from 0. Our analysis shows that the viscosity solutions of the perturbed equa-
tions with perturbed boundary data converge uniformly to the viscosity solution of the original
inhomogeneous Dirichlet problem, provided that the perturbations converge uniformly to 0. It is
a surprise to us as the equation is highly degenerate.

In Section 6, we establish a connection between the inhomogeneous infinity Laplace equation
with its well-studied homogeneous counterpart. As we did to the inhomogeneous infinity Laplace
equation in Section 5, we perturb the homogeneous infinity Laplace equation and the boundary
data, and we prove the uniform convergence of the viscosity solutions of the perturbed equa-
tions to the viscosity solution of the homogeneous infinity Laplace equation, if the perturbations
converge uniformly to O in their respective domains.

At last, we provide a counter-example of the uniqueness of a viscosity solution of the Dirich-
let problem for the inhomogeneous equation Asu = f, if f is allowed to change its sign, in
Appendix A. It was modified from a counter-example constructed in [19].

We end this introduction by pointing out that existence, uniqueness and stability results, and
comparison property with cone-like functions have been recently established for the normalized
infinity Laplace equation using PDE methods in [17].

1. Definitions and notations
For two vectors x = (x1,x2,...,x,) and y = (y1, ¥2, ..., yn) € R",

(x,y) =) xiyi

i=1
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is the inner product of x and y, while x ® y is the tensor product y’x, or [yiXjlnxn in the matrix

form, of the vectors x and y. For x € R", | x| denotes the Euclidean norm (x, x)% of x and X = |;—|
denotes the normalized vector for x £ 0.

The standard notations in the set theory and analysis are adopted here. For example, 352 and £2
mean the boundary and closure of a set §2 respectively, while 9, u denotes the partial derivative
of u with respect to x;. V € £2 means V is compactly contained in §2, i.e. V is a subset of £2
whose closure is also contained in §2. Also, for two positive numbers A and @, A < @ means A
is bounded above by a sufficiently small multiple of u. o(¢) denotes quantities whose quotients
by ¢ approach 0 as ¢ does, while O (¢) denotes quantities that are comparable to ¢.

Suppose S is a subset of R”. A function f: S — Ris said to be Lipschitz continuous on § if
there is a constant L such that

|f@) = fD] < Lix =yl

for any x and y in S. The least of such constant is denoted by L ¢(S). If S is an open subset £2
of R", we use the symbol Lip(£2) to denote the set of all Lipschitz continuous functions on £2.
If instead S = 0£2 is the boundary of an open subset §2 of R", we use the symbol Lip,(§2) to
denote the set of all Lipschitz continuous functions on 0£2. §2 always denotes an open subset
of R" and is usually bounded. C(£2) denotes the set of continuous functions defined on 2 and
C(£2) denotes the set of continuous functions on §2. C2(£2) denotes the set of functions which
are continuously twice differentiable on £2. A smooth function usually means a C? function in
this paper. If f € C(£2), then || f||1>(2) :=sup,cq | f(x)| denotes the L°°-norm of f on £2.

Throughout this paper, the infinity Laplace operator A, is the highly degenerate nonlinear
partial differential operator defined on C? functions u by

2
At = 3x,-“3xj”ax,-xj”,

where the right-hand side is the sum over i, j =1,2,...,n. Axu is usually called the infinity
Laplacian of u.
Snxn denotes the set of all n x n symmetric matrices with real entries. We use / to denote

the identity matrix in S, x,. For an element S € S,,«,, ||S|| denotes its operator norm, namely
(Sx,x)
supxeRn\{O} |x|2 .

U <y, ¢ means u — ¢ has a local maximum at x¢. In this case, we say ¢ touches u by above
at xo. Almost always in this paper, u <y, ¢ is understood as u(x) < ¢(x) for all x € £2 in interest
and u(xo) = ¢(xp), as subtracting a constant from ¢ does not cause any problem in the standard
viscosity solution argument applied in the paper. On the other hand, if ¢ <,, u, we say ¢ touches
u by below at x.

Definition 1. A continuous function u defined in an open subset §2 of R" is called a viscosity
sub-solution, or simply abbreviated sub-solution, of the inhomogeneous infinity Laplace equa-
tion Asow = f(x), if

Asop(x0) = f(x0),

whenever u <y, ¢ for any xo € £2 and any C? test function ¢. Occasionally, we use the phrase
‘Asou(x) = f(x) is verified in the viscosity sense’ instead.
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The second-order superjet of u at xq is defined to be the set

Jé’+u(x0) = {(D(p(xo), D2<p(x0)): @ is C? and u ~<x0 go},
whose closure is defined to be

.]_[22’+u(x0) = {(P, X) e R" x Snxn: 3(xn, Pns Xn) € 2 x R" x Snxn such that

(Pns Xn) € I3 Tu(xy) and (x, u(xn), pus Xn) = (¥0, u(x0), p, X)}.

On the other hand, u is called a viscosity super-solution, or simply super-solution, of the
inhomogeneous infinity Laplace equation Ay ow = f(x), if

Asop(x0) < f(x0),

whenever ¢ <y, u for any xo € £2 and any C? test function ¢.
The second-order subjet of u at xq is defined to be the set

Jé’_u(xo) = {(Dg(x0), D*¢(x0)): ¢ is C* and ¢ <y, u},
whose closure is defined to be
T3 u(xo) = {(p, X) €R" X Syxn: 30tn, pr, Xn) € 2 X R % Sy such that
(Pns Xn) € Jg3 " uxy) and (xn, u(xn), puy Xn) = (x0, u(x0), p, X)}.

A viscosity solution, or simply solution, of the inhomogeneous infinity Laplace equation
Asow = f(x), is both a sub-solution and a super-solution.

When f(x) = 0, the sub- and super-solutions are called the infinity sub- and super-harmonic
functions in 2 respectively.

A similar definition of a strict differential inequality is the following

Definition 2. Suppose u € C(£2). We say u verifies the differential inequality
|Du| >0
in £2 in the viscosity sense if
|De(x0)| > 0

for every C? function ¢ such that u < xo ¢ and xo € £2.

Let us caution that the negative of a sub-solution of the equation Asu = f(x) is a super-
solution of the equation Asou = — f(x) instead of Asou = f(x).

In this paper, whenever we consider the inhomogeneous infinity Laplace equation Ajow = C

with constant right-hand side C, for simplicity, we always take C = 1 in the statements of the
theorems.
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In the end, we give an example to justify our conclusion about the nonexistence of classical

solutions of the equation Ay w = 1. An example is u(x, y, z) = X3 — y% + coz% in any open
subset of R? which intersects with both the xz- and yz-planes but does not intersect with the
xy-plane. Here and anywhere else in this paper the constant cp = %ﬁ. This is a nonclassical vis-
cosity solution in such open sets. Assuming the uniqueness of solutions of the Dirichlet problem
which is proved in Section 3, we can see that no classical solution to the Dirichlet problem with
the same continuous boundary data exists.

2. Existence

We prove the existence of a viscosity solution of the inhomogeneous infinity Laplace equation
by constructing a solution as the infimum of a family of admissible super-solutions.

Theorem 1. Suppose 2 is a bounded open subset of R", f € C($2) with infg f >0 and g €
C(0£2). .
Then there exists u € C($2) such that u = g on 052 and

Acott(x) = f(x)
in §2 in the viscosity sense.
Proof. We define the admissible set to be
Afe=1{veC(2): Axv < f(x)in 2, and v > g on IR}.

Here the differential inequality Asv(x) < f(x) is verified in the viscosity sense as introduced
in Section 1.
Take

u(x) = inf v(x), xe£.
ve f.g

We may take a constant function which is bigger than the supremum of g on d£2. This constant
function is clearly an element of A ,. So the admissible set A 7, is nonempty.

As the infimum of a family of continuous functions, u is upper-semicontinuous on §2.

According to the standard theory of viscosity solutions, u, as the infimum of viscosity super-
solutions, is clearly a viscosity super-solution of Ay u(x) = f(x) in £2 and the inequality u > g
holds on 952.

We prove Asou(x) > f(x) in £2 in the viscosity sense. Suppose not, there exists a C> function
@ and a point x( € £2 such that

U <x, ¢,

but Aso(x0) < f (x0)-
We write

1 2
@(x) =@ (xo) + Vo(xo) - (x —xo) + §<D 9 (x0) (x — x0), X — x0) + o(|x — x0[*).
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For any small ¢ > 0, we define

@ (X) = 9(x0) + Ve (xo) - (x — x0) + %(Dzﬁf)(xo)(x — x0), X — x0) + &|x — xo[*.

Clearly, u <y, ¢ <x, ¢s, and Aso@. (x) < f(x) for all x close to xo, if ¢ is taken small enough,
thanks to the continuity of f. Moreover, xg is a strict local maximum point of u — ¢.. In other
words, ¢, > u for all x near but other than xg and ¢, (xg) = u(xg).

We define ¢(x) = ¢.(x) — § for a small positive number 8. Then ¢ < u in a small neighbor-
hood, contained in the set {x: Axo@s(x) < f(x)}, of xo but ¢ > u outside this neighborhood, if
we take § small enough.

Take v = min{Q, u}. Because u is a viscosity super-solution in §2 and ¢ also is in the small
neighborhood of xq, v is a viscosity super-solution of Asow(x) = f(x) in §2, and along 952, v =
u > g. This implies v € Ay ,, but U = ¢ < u near xo, which is a contradiction to the definition of
u as the infimum of all elements of A .- Therefore,

Asott(x) = f(x)

in §2 in the viscosity sense.

We now show u = g on 02. For any point z € 9§2, and any ¢ > 0, there is a neighborhood
B, (2) of z such that |g(x) — g(z)| < € for all x € B,(z). Take a large number C > 0 such that
Cr > 2||gllL>(a52). We define

vix)=g(@)+e+Clx —z|,

for x € 2. For |x —z| <r and x € 382, v(x) > g(z) + ¢ > g(x); while for |x — z| > r and
x €932, v(x) = g@) +¢e+Cr=|gllLene) = g). In addition, Asxv =0 < f(x) in £2, as
info f>0.Sove Af, and v(z) = g(z) +¢. So

g(z) <u(z) <gz) +e,

Ve > 0.So u(z) =g(z), Vz € 952.
Let us construct another set of admissible functions by defining

Sre={weC(R): Asw > f(x)in £2, and w < g on 352}.

Again Aw > f(x) is satisfied in the viscosity sense. Sy, is nonempty with a particular ele-

ment Cy; pa(x) := C(colx — zlg + d) for a constant C such that C3 > | fllLe(s2), any fixed
point z € 952 and some negative number d with sufficiently large absolute value, because
Ao (CYz pa(x)) = Cc3 > | fllLe(2y = f(x) for x € £2 and Cr; pg < g on 3§2. We refer the
reader to the computation for ¥, 54 in Section 4.

We take

u(x) = sup wix)
wESf,g

for every x € £2. Clearly, i is lower-semicontinuous in £2 and it(z) < g(z) for any z € 3S2.

Fix a point z € 0§2 and a positive number €. Since g is continuous on 952, there exists a
positive number r such that |g(x) — g(z)| < ¢ for all x € B,(z). As £2 is a bounded domain, the
values of |x — z| are bounded above and bounded below from zero for all x € £2\ B, (z). We take
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positive numbers A and B such that A > 3|x — z| forall x € 2 and B = %A%

So particularly
1 4
B—-(A-3r)3 >0.
4
We take a positive number C > 1 such that

1 4
C(g i 3r)3> > 2lglliL=@e)

and C3 > || f|| L (q). We define

NS

1
w(x):g(z)—s—C{B—Z( —3lx —z[)° }

with A, B and C as chosen.
Computation shows that

Asow(x) = C3 > || fllLe() = f(x)

for all x € §2. Furthermore, on 92 N B (2), wx) < g(@) — & < g(x); while on 082\ B, (2),
w(x) < g(z) —e—C(B — 1(A — 3r)3) < g(2) = 2llgllLe@n) < —lgllLe) < g(x). So the
function w defined above is in the family Sy,. Note that w(z) = g(z) — & according to our
choice of A and B. So u(z) > g(z) — ¢ fog any ¢ > 0, which implies that u(z) > g(z) for any
z € 082. As u is lower-semicontinuous on §2, we know that

lim 1nf ulx) = g2

XENR—

forany z € 952.

In the end, we prove u € C (£2).

Indeed, as Asou = f(x) 2 infy f > 0in £2, itis well known that u which is co-subharmonic
is locally Lipschitz continuous in §2 (see e.g. [5, Lemma 2.9]). Therefore all we need to prove is
that for Vz € 052,

hm u(X) = g(2).

xef
About this matter, as u is upper-semicontinuous on §2 and u = g on 32, we know

limsupu(x) < g(2)
XER—z

for any z € 952.
On the other hand, the comparison theorem, Theorem 3, in the next section implies that w < v
on §2 for every v € A f.¢ and every w € S f.g- As aresult, u < u on £2. In particular,

liminf u(x) > llrglnfu(x) =g

XeEN—>7z

for every point z € 952.
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Thus we have shown

li =
i () =52

forVzed$2. O

Remark 1. We applied the comparison theorem, Theorem 3, from the next section in the above
proof. The proof of the comparison theorem is independent of the existence result.

The following theorem is obtained from the above one by considering v = —u and the proof
is clear.

Theorem 2. Suppose 2 is a bounded open subset of R", f € C(82) with sup, f <0 and g €

C(082). _
Then there exists u € C($2) such that u = g on 952 and

Acott(x) = f(x)
in §2 in the viscosity sense.

In the following Sections 5 and 6, we only apply the theorems proved in this section in the
cases f(x) =c or f(x)= —c for positive constants ¢ on most occasions.

3. Uniqueness

§2 always denotes a bounded open subset of R".
We first prove a strict version of a comparison principle.

Lemma 1. For j =1, 2, suppose u; € C(2) and
Acoui < fi and Asouz > fo

in 2, where fi < f2in §2, and f; € C(82). Assume also uy = up on 952.
Then uy > us in S2.

Proof. Suppose u1(x*) < uy(x*) for certain x* € £2. For any small ¢ > 0, we define
1 2 —_— -
wg(x,y)zuz(x)—ul(y)—Elx—yl . Vx,y)e 2 x12.

We define My = maxg (u2 — u1) and

1 - -
Mg = max we = uz(xg) —ui(ye) — ——|xe — }’8|2 for some (x¢, ye) € £2 X £2.
2x02 2¢

Our assumption implies My > 0.
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By Lemma 3.1 of [12], we know
lim Ms - MO,
el0
lim - | >=0
im—|x; — =
£l0 2¢ e Ye
and
li — = M.
Slfol(uz(xs) u1(ye)) 0
As aresult of the second equality, limg o |x; — y.| =0.

As My > 0 > maxyo (ua — uyp), we know x, y, € £21 for some §£21 € £2 and all sn_1a11 e.
Theorem 3.2 of [12] implies that there exist X, Y € S, such that (=2£, X) € J_?Z’Jruz(xs),

(X Y) € T3 ui(ye) and

&€
3(1 0 X 0 301 —1I
_E(o 1)<<0 —Y)<E<—I I)'
In particular, X <Y.

The meaning of J_522’+u2(x8) and J__é‘_ul(yg) implies that

Fa(xe) <<X(x.s _ys)’ Xe _y8>
& &

<<Y(-x8_y8>’x8_y8>:<y<y8 _x£>’ Ye _xg><fl()75)-
& & I &

On the other hand, for certain subsequences Xe; and Ve, of x, and y, and some xq € 2| C £2,
Xej, Ye; = X0, @S @ result of x¢, y. € 21 € 2 and limg o |x — y¢| = 0. If we send ¢ to 0 in
J2(xe j) < f1(ye j), we get f2(xg) < f1(xg) which is in contradiction with f1(xg) < f2(xo) given
in the hypothesis. The proof is complete. O

To prove the uniqueness of viscosity solutions to the Dirichlet problem, we need to prove the
following comparison principle.

Theorem 3. Suppose u, v € C(£2) satisfy
Asot = f(x)
and
AsoV < f(x)
in the viscosity sense in the domain §2, where f is a continuous function defined on §2 and

info f(x) > 0.
Then u < v on 382 impliesu <vin S2.
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Proof. For any § > 0, we define us = (1 + 8)u — §||u| L) on 2. Then
Asotts > (14+8)° f > f > A

in £2 and us <u < v on d52. Then apply the preceding Lemma 1 to conclude that us < v in £2
for all § > 0. Sending § to 0, we have u < vin 2. O

It is obvious that the theorem is true if the condition inf,; f > 0 is replaced by sup,, f <O.
We may write the previous comparison principle in the form of a maximum principle as
follows.

Theorem 4. Suppose u, v € C(82) satisfy

Aot = f(x)

and

AoV < f(x)

in the viscosity sense in the domain S2, where f is a continuous function defined in §2 and either
info f(x) > 0orsupg f <0 holds.
Then

sup(# — v) < max(u — v).
Q 982

As a direct corollary of this theorem, the uniqueness result is stated below.

Theorem 5. Suppose 2 is a bounded open subset of R", and u and v € C(2) are both viscosity
solutions of the inhomogeneous infinity Laplace equation Asow = f(x) in §2, where f is a con-
tinuous function defined on §2 such that either infg f > 0 or supy, f < 0 holds. If, in addition,
u=vonads2, thenu=vin S2.

The condition inf, f > 0 in the above theorems is necessary and intrinsic. The uniqueness
theorem is untrue if this condition is omitted, though the strict comparison principle, Lemma 1,
does not require the condition. A counter-example is provided in Appendix A to justify our
conclusion.

4. Comparison with standard functions

In this section, we demonstrate comparison properties of sub-solutions and super-solutions of
the inhomogeneous equation Ay.u = 1 with special classes of standard functions. Those com-
parison properties characterize the sub- and super-solutions of this equation completely. On some
occasions, they may also be regarded as the maximum and minimum principles for this nonlinear
inhomogeneous degenerate elliptic equation.

For any xg € R", b and d € R, we define

Wl

Yxobd (X) = co(lx — x0| +b)* +d,
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which we will call a standard function in the following. Here and in the following the constant
3
co= 3“75. We define the domain D(xy, b) of differentiability of v/, »4 as

_ [R\txol, ifb >0,
D(XO’b)_{R\{xiX:XOOrlx_x0|:_b}’ if b <O.

We call those values in D(xo, b) admissible points of v/, 4. In the following, we will use ¥
for ¥y, pa quite often when there is no ambiguity.

We first carry out a computation for the standard function ¥y, 54 in D(xg, b).

Write r = |x — xo|. Then v (x) = co(r + b)3 + d.

If we differentiate v and denote D1r(x) = p at any admissible point, then it is easy to find
that

Dzdf(—lA . Ipll A
X)—Wp®p+7( —pRp).

So

1 yd
Aoty = (D> DY, DY) = WW +==(1pP = 1pP) =1
at any admissible point.

Lemma 2. For any xo € R", b e Rand d € R, Yy pa is a classical solution, and hence a viscosity
solution, of AcoW =1 in D(xg, b).

Proof. The fact that a classical solution is a viscosity solution follows easily from the definition
of a viscosity solution. O

For a continuous function # defined in £2, we use the notation u € Max P (§2) to denote the
fact that u verifies the weak maximum principle

supu = maxu
1% A%

for any compact set V C §2. Similarly, # € Min P(£2) means u verifies the weak minimum
principle
infu = minu
14 oV
for any compact set V C £2.
Though the following lemma is a direct corollary of the maximum principle, Theorem 4, we

would like to give an elementary proof to make the comparison property an independent part of
the theory.

Lemma 3. Let 2 and X' be two open subsets of R. Assume u € C(82) is a viscosity sub-solution

of
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in 2 and v € C%(X) is a classical solution of

in 2N X and v is bounded on 2 N X. Then u — v € Max P(£2 N X).
Similarly, if u € C(£2) is a viscosity super-solution of

Asou =1
in 2 and v € C3(X) is a classical solution of
Acott =1
in 2N X and v is bounded on 2 N X. Then u — v € Min P(£2 N X).

Proof. In the first case, Axu > 1 in the viscosity sense in £2. Suppose V C (2 N X) is a
compact set and 3x, € V such that

U(xy) —v(xy) > max(u — v),
vV
say

u(xy) —v(xy) =max(u —v)+46
av

for some § > 0.
For small ¢ > 0 to be taken, we define

wx)=(1—¢e)v(x).
Then

u(xy) — wxy) = u(xy) — v(xg) + v (xs)

> rral?/x(u —v) +68 —¢|vllLey)

> ng%x(u —w) + 38 —2¢||v||Lev)

)
= ngax(u —w)+ 3 for ¢ > 0 small enough
1%
> max(u — w).
v
Without loss of generality, we assume # — w assumes its maximum on V at x,, i.e.

(u—w)(xy) = m‘ex(u —w).

In particular, we know u <, w.
By the definition of viscosity sub-solutions, Asow(x,) > 1.
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However,
Avow(xs) = (1 — &)} Asou(x) = (1 —)* < 1,

as ¢ > (. We obtain a contradiction.

To prove the second half for super-solutions, one needs only to modify the above argument by
taking w = (1 + €)v instead of w = (1 — ¢)v and change max to min and reverse the direction of
the inequalities accordingly. We omit the detailed proof. O

The following comparison principles with standard functions for viscosity sub-solutions and
super-solutions of the equation As,u = 1 are the main results in this section. We want to point
out that if u is replaced by —u in the above lemma, we can obtain parallel comparison principles
with standard functions of the dual equation Ayou = —1.

The idea of the following comparison principles can be traced back to a parallel comparison
principle for co-heat equation established in a joint work of one of the authors with M. Cran-
dall, [13].

Theorem 6. Assume u € C(82) verifies |Du| > 0 in $2 in the viscosity sense. Then
Acott 2> 1

in the viscosity sense in S2 if and only if u — Yy, pa € Max P(8£2\{xo}) for any xo € R", b >0
andd € R.

We say u enjoys comparison with standard functions from above in 2 if the condition
u — Yyy.pd € Max P(£2\{xo}) for all xo € R", b > 0 and d € R stated in the theorem holds.

Remark 2. Without the additional assumption |Du| > 0 in the viscosity sense, we may have
constant functions as counter-examples of the sufficiency in the theorem.

Now we prove the comparison principle with standard functions.

Proof. “Only if”: One simply apply the previous Lemmas 2 and 3.

“If”: Assume u enjoys comparison with standard functions from above in §2. Suppose u is
not a viscosity subsolution of Asou = 1 in 2. Then at some point x in §2, g € C?(£2) that
touches u by above at x, and Ao (xy) < 1.

Without loss of generality, we assume x, = 0. Denote p = D¢(0) and S = D2<p(0). Then
(Sp, p) < 1. Note that | p| > 0 as |Du| > 0 in the viscosity sense in £2.

We will construct a standard function

4
3

Y.b (X) = co(|x — x0| + b)

such that u — vy » ¢ Max P(£2\{x0}) with xg #0 and b > 0.

It suffices to construct ¥y = ¥y, , such that 0 is a strict local maximum point of ¢ — . Then 0
is also a strict local maximum point of ¥ — . In a small neighborhood of 0, u — ¥, ;, violates
the maximum principle, i.e. u — ¥y, » € Max P(£2\{xo}).
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It is sufficient to construct ¥y, 5 such that

P = D@(0) = Dy, 5(0)

and
S = D*¢(0) < D>y 5(0).
Recall that
i
Y (x) = Yyy,p(x) = co(|lx — x0| + b) 3
so that
4 X — X
Dyr(x) =co (Ix—x0|+b)
lx — xol
and
Py = piwepiw + YN - pie e piw).
| Dy (x)|? lx — xo
atany x € D(xg, b).
So DY (0) = —cod(r +b)’ %9 and
2 _ IDyOI .
D4 (0) = |D1/f(0)|2 X0 ® Xo + —— (I = X0 ® X0),

where r = |xg]|.
Write a = ¢ * 3= = /3. The sufficiency conditions become

DY (0) = —a(r +b)3to=p
and

1 |Dw< )
Dy@p 0 ®HT

Condition (1) implies

X0=—p
and
a(r+b)7 =|pl.
We rewrite condition (2) as
DO = 5@+ D =@ f)=S.

(I —Xo ® xo) > S.

)

2)
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It suffices to prove, for r > 0 small,
(D*y (0)x, x) > (Sx,x) forany x € R"\{0}.
If we write x = a p + y!' with (p, y!) =0, then

(DX (O)x, x) = — + @| 2

and
(Sx, x) = a?(Sp, p) +2(Sp, y') + (Sy', y').
For any & > 0 small,
o (Sp, p) +2a(Sp, y!) + (Sy', 1)

a?

R 1
<o spp) +a2e|SpI2 + ;|y1\2 +(sy', y")

2

1
W(<S”’ p)+elSpl?) + (; + ||S||)|y1\2

1pl3
WJF—} 1\

for ¢ > 0 small and r > 0 small, as (Sp, p) < 1. The condition (2) is proved.
3
b= % — r is determined as well. The proof is complete. O

Theorem 6 clearly implies the following theorem.

Theorem 7. Assume u € C(S2) verifies |Du| > 0 in the viscosity sense. Suppose, in addition,
f € C(£2) satisfies infc f(x) > 0.
If u is a viscosity sub-solution of the equation

Acout = f(x)

in 2 then u — Cryy pa € Max P(Q\{xo}) for any Qe R, positive constant C with C3 <
infs f(x), xo € R", b>0andd e R.

On the other hand, if u — Cry, pa € Max P(Q\{xo})for any e, positive constant C with
c3 2 supg f(x), x0 e R", b>0andd € R, then u is a viscosity sub-solution of the equation

Aocou = f(x)
in $2.

We now state a comparison principle for super-solutions.
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Theorem 8. Assume u € C(82). Then
Acou <1

in the viscosity sense in 2 if and only if u — Yy, pa € Min P(£2 N D(xg, b)) for any xo € R”,
b <0andd € R, where D(x¢, b) denotes the set of admissible points of Y, pd-

We say u enjoys comparison with standard functions from below in 2 if the condition
U — Yyy.ba € Min P(£2 ND(xg, b)), for any xo € R", b <0, and d € R, stated in the theorem
holds.

Proof. Again the necessity is given by Lemmas 2 and 3.
Now we assume u enjoys comparison with standard functions from below in 2.
Suppose u is not a viscosity super-solution in £2. Then Jx, € £2 and ¢ € C%(£2) such that ¢
touches u by below at x, and Ao (x4) > 1. Without loss of generality, we may assume x, = 0.
Denote p = D¢(0) and S = D2<p(0). (Sp, p) > 1 and it clearly implies |p| > 0.
We will construct a standard function

4
3

Yxo,b(x) = co(|x — xo| + b)

such that u — ¥y, » ¢ Min P(§2 N D(xg, b)) with xo # 0 and b < —|xp| < 0.
It suffices to construct ¥y, ; such that 0 is a strict local minimum point of ¢ — ¥y, . Then 0
is also a strict local minimum point of # — . In a small neighborhood of 0, u — ¥/, , violates

the minimum principle.
It is sufficient to construct ¥y, ; such that

D@(0) = Dyryy 5(0)
and
D?¢(0) > D*Yryy 5(0).

One can express the above two conditions explicitly as follows:

Dy (0) = —a(r + )35 = p 3)

and

1 | Dy (0)]
r

W%@foﬂ- (I —Xo®x0) <8, 4)

where a = %co and r = |xg|, the second of which in turn is equivalent to, as aresult of b +r < 0,

r

S
a(r+b)% 3(r+b)

I > X0 ® X0 + Xo ® Xo.
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We must take xo = p and enforce a(r+b)% = —|p|.Denote ¢ = p = xp and u =

x

r _
al(r+p)13]
ks 0. In order to secure the second condition, we also need to establish

I>—uS—

.
30+ p) @194

under the condition (Sp, p) = Ip% (Sq,q) > 1, by taking suitable values of b <0 and r > 0.
Denote the right-hand side matrix by M, i.e.

M=—uS —

r
3(r+b)CI®5]+C]®Q-

For our purpose, it suffices to show
(Max, x) < |x]?,

for any nonzero vector x € R”".
We can write x = ag + y' for any nonzero x € R", where (¢, y!) =0 and « € R. Then

(Mx,x) =a*(Mgq,q) +a{(Mq,y") + (My', q)} + (My', y')

=a’{—u(Sq.q) — 3(r:b) +1} — u{2a(Sq. ') +{sy", ')}

2 _ r 2 2, L2 12
<a”1—u(Sq,q) 3(r+b)+1}+u{a &lSq| +8}y 1+ 111y }
=1 u((Sq q)—8|561|2)}+/L{l+||5||}|y12

3(r +b) ’ £ ’

where ¢ > 0 is an interpolation constant whose value will be taken in the following.
Note that

-
w(Sq.q) = W(&D,p)

r

=—(§ ,
a3|r+b|( P, p)
= (Sp.p). asdP=3
T T30 1p) PP B
r
S — Sp, 1.
> 301 0) as (Sp, p) >
Therefore
1— ——— — u((Sq.q) — £1Sq?)
3(r + b) ’
u u 2 w
=1——5+ ——=(Sp, p) + nelSq|” as =—
Ipl>  Ipl? 3(r +b) IpI?
)
=1-—"=((Sp, p) — 1 —&|Sq|?).

IpI?
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Taking ¢ > 0 small enough while keeping the value of u > 0 free, we have

1= ——— — u((Sq. q) — £1Sq|?)
3(r +b) ’
n
=1—-——((Sp. p) — 1 —¢€|Sq|*)
Ipl
< 1.

Then we take © > 0 small enough so that

1
14—+HW}<L
€
Therefore (Mx, x) < a? + |y'|> = |x|? if x #£0.
3
So r = pu|p| is determined and b is determined by b = —% — r < —r. The proof is now

complete. O

A generalized form of the comparison principle from below is the following theorem which
follows from the previous theorem directly.

Theorem 9. Assume u € C(§2) and f € C(82) satisfies infyco f(x) > 0.
If u is a viscosity super-solution of the equation

Acou = f(x)

in §2 then u — Cryy pg € Min P(S}\{xo}) for any Qe positive constant C with C> >
supgs f(x), xo € R", b <0and d e R.

On the other hand, if u — Cry, pa € Min P(S}\{xo})for any Ren, positive constant C with
C3 < infs f(x), xo € R", b <0 and d € R, then u is a viscosity super-solution of the equation

Acou = f(x)
in 2.
S. Stability of Acu = f with f #0
In this section, £2 again denotes a bounded open subset of R”.
We need the strict comparison principle, Lemma 1, and the following lemmas to prove the

perturbation theorem.

Lemma 4. Assume f € C(82) such that either info f > 0 or supg, f < 0. For j =1, 2, suppose
cj>0,g;€C(082) and uj € C(£2) is the viscosity solution of the Dirichlet problem

Acouj=cjf inS2,
uj=g;j on d§2.
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Then
ui us 81 82
_ = < — )
43/C1 .3/6'2 L% (£2) 3C] 43/6'2 L®(382)
If, in particular g1 = g = g € C(052), then
L < 1 'u ||
- 5= = gllL>@0)-
A Yl Ve Yal

Proof. Let
1
vV =

Then v; is the viscosity solution of the Dirichlet problem

uj.

AoV = in $2,
oolj
on 052,

-1 ,.
b= 8

j =1,2. Applying the maximum principle, Theorem 4, one obtains

o1 — vall ooy < || 2= — 22
11—l < | m=— —= ,
43/6'1 43/ ) L%°(882)

which implies the desired inequality. O

Lemma 5. Assume f € C(82) such that either infp f > 0 or supy f < 0. Suppose cx — 0, gk,
g € C(082) such that || gk — gllL>@2) —> 0, and uy and u in C(£2) are the viscosity solutions of
the following Dirichlet problems respectively

Aty = (1 4cx) f in $2,
U = 8k on 052

and

Ao = f in$2,
u=g on d§2.

Then

sup(ur —u) — 0
2

as k — oo.
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Proof. The previous lemma implies

1
S Uk U S H BT /gk— B
1 + Ck L®(£2) 1 + Ck LX)
which in turn implies
: | | Liflull
—||Uf — U||LoQ Ul L2
Tt o (£2) — \/— (£2)

< el gl + ‘ J:‘nguL w352
Therefore
luk = ullzoei2) < W1+ e = 1 (lullzce) + lglle@) + gk — gllxpa).
So limy o0 lux — ull Loy =0. O
The main result in this section is the following perturbation theorem.
Theorem 10. Suppose {fi} is a sequence of continuous functions in C(52) which converges
uniformly in §2 to f € C(82) and either infg f > 0 or supy, f < 0. Furthermore, {gi} is a

sequence of functions in C(952) which converges uniformly on 052 to g € C(952). Assume uy €
C(82) is a viscosity solution of the Dirichlet problem

Acoty = fr in £2,
Ui = gk on 0§2,

while u € C(82) is the unique viscosity solution of the Dirichlet problem

A= f inS2,
u=g on 0§2.

Then supg |ux — u| — 0 as k — oo.

Proof. Without loss of generality, we assume info f > 0.
Let ex =supg | fk — f|. Then & — 0 as k — oo and

) —er < fix) L f(x)+ e forallx € £2.

To forbid e = 0, we replace ¢ by e + % and still denote the new quantity by &g, as the new
&r — 0. And now

fx)—er < filx) < f(x)+ e forallx € £2.
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Since infg; f > 0, the sequence {cx} defined by c¢x = infeé 7 converges to 0 but never equals O.

So, for all x € £2,

(I =) f(x) < fix) < (A +cp) f(x),
as aresult of g < ¢ f(x).

We define u}( and u,% to be the viscosity solutions of the following Dirichlet problems respec-
tively

Aot} = (1 —cp) f in £2,
u,ﬁ=gk on d52

and

Ao = (1 +cp)f in 2,
u,%:gk on d52.

By Lemma 1, we know that u7 < ux < u} on £2, since (1 — cx) f(x) < fi(x) < (1 +cx) f (%)
for all x € £2. In addition, the previous Lemma 5 implies supg, |u,]( —u|—0for j =1,2. Con-
sequently,

sup |lug —u| — 0
2

ask—oo. O
6. Stability of Aocu =0
Now we are at a position to prove the main theorem of this paper stated below.
Theorem 11. §2 is a bounded open subset of R". Suppose g € Lip,(§2) and { fi} is a sequence

of continuous functions on 2 which converges uniformly to 0 in 2. If uy € C(82) is a viscosity
solution of the Dirichlet problem

AOOuk:fk anv
Uy =g on 082,

and u € C(82) is the unique viscosity solution of the Dirichlet problem

Accut =0 in $2,
u=4g on 052,

then uy converges to u uniformly on £2, i.e.

sup luy —u| — 0
Q

as k — oo.



1860 G. Lu, P. Wang / Advances in Mathematics 217 (2008) 1838—1868

Proof. Let ¢y = || fillL> () and {ex} denotes a sequence of positive numbers that converges to 0.
Let u,i and u% € C(£2) be the respective viscosity solutions of the following Dirichlet prob-
lems

Aoou,i =—cr—¢&; 1in§2,
u,izg on 052

and

Aoou,% =cy+e& in 2,
u,%:g on d52.

By Lemma 1, we know that

up <up <uy
on £2. .

So it suffices to show that supg |ui —u| — 0 as k — oo, for both j =1 and 2. As the
proof of either case of the above convergence implies that of the other, we will only prove
supo (u — u%) — 0 as k — oo. The proof of sup, (u,l — u) — 0 follows when one considers
—u,i and —u. In other words, we reduce the problem to the case in which uy is a viscosity solu-
tion of the Dirichlet problem

Aso =68 1n £2,
Uy =g on 952

where §; > 0 and 6 — 0 as k — oo, and our goal is to prove

sup(u —uy) — 0
Q

as k — oo, since uy < u is clear. For simplicity, we omitted the superscript 2 in the above and
will do the same in the following.

We use argument by contradiction. Suppose there is an g9 > 0 and a subsequence {uy; } such
that supg (u — ukj) > g, forall j =1,2,3,.... In addition, we may assume {8kj} is a strictly
decreasing sequence that converges to 0.

Without further confusion, we will abuse our notation by using {u} for the subsequence {u; }
and &, for Sk; -

So we will derive a contradiction from the fact

sup(u —uy) =>¢e9 >0, Vk,
2

where u; € C(£2) is a viscosity solution of the Dirichlet problem

Asol =6; 1n §2,
Uy =g on 452

and {§;} decreases to 0.
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By Lemma 1, one obtains
Uk S Uk+1 S U
in £2, Vk. So {uy} converges pointwise on Q2,as up = gonoas2.
Moreover, {uy} is equicontinuous on any compact subset of §2. In fact, let K be any compact
subset of £2. Then the distance from K to 052 defined by
dist(K, 052) = inf{dist(x, 902): x € K},
must equal to some positive number ¢. Take R > 0 such that 4R < ¢. Then for any z € K,

B4r(z) C £2. Since uy is infinity sub-harmonic in §2, i.e. Asoug = 0 in the viscosity sense, it is
well known, e.g. [5, Lemma 2.9], that

lx — vl
|ur (x) — up ()| < ( sup uy — sup uk) z
Byg(2) Bgr(2)

for any x, y € B4r(z). Asu; < ux <uin §2, we have

lx — yl lx — |
<L
R R TR

b

k() = ue | < (sup w— sup uy)
B4r(2) Br(2)

where Lg = sup, u — inf u1 > 0, which is independent of k. As K can be covered by finitely
many balls B4g(z), z € K, {uy} must be equicontinuous on K.

Therefore a subsequence of {uy} converges locally uniformly to some function u € C(£2)
in £2. We once again abuse our notation by denoting the convergent subsequence by {uy}.

We claim that u verifies

(i) Aoout =0 in the viscosity sense in £2,
(i) Vxo € 982, limye@—x, u(x) = g(x0), and
(i) u € C(£2) if we extend the definition of & to 92 by defining u|yo = g.

(i) is proved by a standard viscosity solution approach. In fact, suppose ¢ € C2(£2) touches u by
above at xg € £2. Then, for any small ¢ > 0, the function x — u(x) — (p(x) + %Ix —x0/?) has a
strict maximum at xg. In particular,

u(xo) — (xo) > max (a(y)—(w(y)+§|y—xo|2>)

y€d By (x0)

for all small » > 0 and B, (xg) € £2. )
As {uy} converges to u uniformly on B, (xo), for all large k,

sup (ukm - ((p(X) + §|x - x0|2>)
X€By(x0)

> ui(x0) — p(x) > _max )(ukm— (so(y)+ §|y—xo|2)>.

yeodB,(xo
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So the function x — uy(x) — (p(x) + %|x — x0|?) assumes its maximum over B, (xg) at some
point xx € By (xp).
By the definition of viscosity solutions,

£
Aco <<o<x> 5= x0|2> > 8
at x = xy, 1.e.

Ao (xr) + O () = b,

Ve > 0 and Vk > k(r), where k(r) 1 oo as r | 0. If we send r to 0, we obtain As,¢@(xg) = O(¢)
for any ¢ > 0, which implies Aso@(xg) = 0, i.e. Asou(xp) = 0 in the viscosity sense.

The fact Asou(xp) < 0 in the viscosity sense can be similarly proved.

As the local uniform limit of {u;} in §2, u is clearly in C(£2). In order to prove (ii) and
(iii), we will apply the comparison with standard functions properties of the viscosity sub- and
super-solutions of the equation Ay,v = 1.

In fact,

Uk

A~ ——
* o

in the viscosity sense in §2. Fix xg € 0£2. For any b > 0, the comparison with standard functions
by above property states that

=1

ug(x) 4 ur(y) 4)
—— —col|x — xo| +b)° < max — ¢ — xgo| +b)3
o ofl ol +b) yem< T o(ly — xol + b)

for all x € §2, or equivalently

4
3

Wl

e (x) — cov/k (1x — xol +b)? < ynelgé(g(y) — cov/8k(Iy — xol + b)?).

For large b > 0

Wl

co/8(1y — xo| +b)
4

b

41y — _
=co§78_kb§<1+—|y x0|_|_o(|y x0|>>

3 b b

4 4 1 4 — X
= co/Bib + gcombﬂy — xol + co/dkb3 o ('y 5 0').

Take b = by large enough so that ‘3—‘003/519% = CL,(352) for some universal constant C > 1.
So, for y € 042,
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2 — co/8e(ly = xol +b)
< 8(y) — cov/3kh’ — CLy(32)]y — xo
< g(xo) — 60\3/5_kb%,
i.e.

4
3

max () - cov/8c(1y — xol + b)) = g(x0) — coy/5b3.

As aresult, for x € £2 near xg,

4
3

e (x) < g(x0) + co/8 (Ix — xol +b)3 — co/8xb

4 .
:g(x°)+5603@b3lx—xol+3/£bso<' . 0|>

< 8(x0) + CLg(382)]x — xo.

On the other hand, the comparison with standard functions from below property states that,
for sufficiently large » > 0 and all x in 2,

ug(x) 4

ur(y)
i —co(b— |x — xol) S;ggg( oo —co(b—|y—x0|)~),

Wl

or equivalently

4
3

Wl

i (x) — con/8k (b — |x — x0l)? < yrggé(g(y) — coy/8k (b — 1y — x01)?).

For large b > 0,

4 4 |x — xo| lx — x|
—codepif1-2
€OV Ok 3 b + o0 5
4 —
=cov 5cb3 — §C0\3/3kb%|x — xol + coy/8xb3 o (|x bx()l).

Take b > 0 large enough so that
4 1
§c0¢5_kb3 =CLy(382)

for some C > 1 (so that comb% o (Ix—b_xol) < %coﬁ/ﬁb% |x — xo|).
As aresult, for y € 052,
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4
3

g(y) — coy/8k (b — |y — xol)
4
> g(y) — cov/8kb3 + CLg(32)]y — xo]
> g(x0) — co /b3,

which means

4
3

min(g(x) — cov/3k (b — [x = %0l)*) = gx0) — cov/aub .

So, for x € £2 near xo,

4
3

ui(x) = g(x0) + coy/k (b — Ix — x0l)3 — C0\3/3—kb%

4 —
= g(x0) — gcomb%lx—xm + Ioebt o (Ix bx0|>

2 g(xo) — CLg(382)|x — xol.
Therefore, for some C >> 1 independent of k,
g(x0) — CLg(382)|x — xo| < ug(x) < g(xo) + CLg(382)[x — xol,

for all k and all x € 2 near xg.
Sending k to oo, we have

8(x0) — CLg(982)|x — xo| < u(x) < g(xo) + CLG(382)[x — Xol,

for all k and all x € 2 near xg.

Now it is clear that (ii) and (iii) hold.

The uniqueness of a solution in C(£2) of the Dirichlet problem for homogeneous equation
Aoou = 01in 2 under u|s = g implies that it = u on £2. As aresult, {u;} converges to u locally
uniformly in £2.

Recall that supg, (u — ux) > &o. There exists, for each k, an x; € £2 such that

u(xg) > ur(xg) + €o

and x; approaches the boundary 9£2, since {uy} converges to u locally uniformly in £2. Without
loss of generality, we assume x; — xo € 952.

Then we will have the following contradiction by previous estimate on uy(x) for x € £2
near xg:

g(xp) = lilgnu(xk) > limsup ug (xx) + €o
k

> lim sup(g (x0) — CLg (952)xx — xo| + &0)
k
= g(xo) + €o.

This completes the proof. O
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We may also perturb the boundary data and still have the uniform convergence desired. This
is the content of the following theorem.

Theorem 12. §2 is a bounded open subset of R". Suppose {gi} is a sequence of functions in
Lip, (§2) which converges to g € Lip,(§2) uniformly on 02, and { f} is a sequence of continuous
functions on §2 which converges uniformly to 0 in 2. If uy € C(82) is a viscosity solution of the
Dirichlet problem

Aot = fx in 2,
Uy = gk on 0§2
and u € C(82) is the unique viscosity solution of the Dirichlet problem

Accut =0 in$2,
u=4g on 052,

then uy, converges to u uniformly on 2, i.e.

sup |lug —u| — 0
2

as k — oo.

Proof. Let ¢y = || fillL> () and {ex} denotes a sequence of positive numbers that converges to 0.
Proceeding as in the proof of the previous theorem, we let u ,i and u% € C(S£2) be the respective
viscosity solutions of the following Dirichlet problems

Aoou}{ =—cr—¢&; 1in§2,
u,i:gk on 052

and

Aoott} = ci + & in £2,
u,%:gk on 0f2.

By Lemma 1, we know that

on 2.

So it suffices to show that sup, (u,]< —u) — 0as k — oo, forboth j =1 and 2.

We introduce v,i and v,% € C(£2) as the viscosity solutions of the following Dirichlet problems
respectively

AoV, = —Cr — & 1n §2,

1
k
v,lzg on 052
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and

Aoov,% =cr+é& inS2,
v,%:g on 052.

The maximum principle, Theorem 4, implies that

sqp}ui —v,ﬁ} grggx|gk—g|—>0, as k — oo,
Q

for j =1, 2.
The previous Theorem 11 implies that

sup‘v,{ —u| — 0, ask— oo,
Q

for j =1, 2. Therefore we have

sup|u£ —u| —0, ask— oo,
Q

for j =1, 2, as expected. O
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Appendix A. A counter-example

In the appendix, we would like to provide a counter-example of the uniqueness theorem with-
out the sign-assumption infp f > 0. This example is modified from a counter-example provided
in [19]. We include this example for the completeness of this work.

A viscosity solution of the infinity Laplace equation Aou = 0 in R?\{0} is given by

W=

4 1
cos@(1 —tan3 2)2 73
G:|: ( 2 ]r_

49 8 9
1 4 tan3 5 +tan3 3

provided by Aronsson (see [4]).
One may write G = w(@)r‘é, where ¢ is real-analytic except at km for k € Z, and ¢ is

differentiable at km, as long as r > 0. Furthermore, |VG]| is comparable to r3 So, for any
L > 0, if one defines the set Z;, to be the set

Z,={xeR*||VG)|> L},
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then Z is bounded and contains an open neighborhood of 0 but not 0, and the outer radius of
Zp shrinks to 0 as L — oo. Let Ry, =sup{|x|: x € Zp} and rp = inf{|x|: x ¢ Z; U {0}} be the
outer and inner radii of Z,.

We take L so large that Z; € B;. Denote

A = BI\B’TL-

We also use AM (£2) to denote the set of viscosity solutions of the homogeneous infinity
Laplace equation in £2.

Lemma A. Suppose u € AM(Ar) withu =G on 83% and u = c on d By for a fixed constant c.
If L is sufficient large, then u = G in Zp.

Proof. Let w be the unique absolute minimizer in AM(B1\Z) such that w = G on Z; and
w =u on dB;.

We claim that w € AM(Ap). If the claim is true, then w =u on dA implies w =u in A,
and thus G =u in Zj.

To prove the claim, we first note that Lip,w < L, Vx € B1\Z, as Lipyp,uyz, w < L.

We complete the proof of the lemma by showing Lipy, w < Lip,y w for any V € A;. Without
loss of generality, we assume V is connected. If V N Z; = &, nothing to prove. Assume V N

Z;p #®.Then Ly :=LipyG > L.3x; #y; € dV and a path y; C V U9V connecting x; and
IG(x))=G(y))l
1(yj)
Gyl > Li(y)).Soy;NZy # ®. Letx’; = y;(11) where 1 = inf{s: (=00, )N y N (Z1) + @)

and y;. = y(tp) where 1, = sup{s : )/_1 (Zp) N (s, 00) # ®}. It is obvious that

y; such that lim; = Ly, where [(y;) denotes the length of y;. For large j, |G(x;) —

d(x},xj) d(y;,yj)
Iyp) ~ 1)

as j — oo. Since sup, 4z, Lip, G < L, sup, ¢, Lip,w < L and w = G in Z, the inequalities
|IG(xj) —w(x;)| < 2Ld(xj,x;.) and |G (y;) —w(y;)| <2Ld(y;, y;) hold. Thus

lwxj) —wy)l  1Gx) — Gyl N
I(yj) I(yj)

0

as j — 0o. So Lipyyw > Lipyw=Li.Sow € AM(AL). O

Next, for any ro > 0, one can construct a viscosity solution v:R?* — R of Asv = g in R?
and v=G in RZ\B,O, where g is a continuous function. Take C* increasing functions a(r) and

MA(r) sothata(r) = r_% and A(r) =1forallr > r—; and A = a = 0 in a small neighborhood of 0.

_tan? 22

Define v(r, ) = a(r) (A (")) + (1 — A(r)) cosd), where @(8) = [0 2" 15 45 in the
1+tan3 %—I—tanj

definition of the Aronsson’s solution G. It can be checked that ¢(0) =1 — ﬁ@g - % +0(63)

for 6 near 0. Clearly, if 6 # kmr, Axov is C*. For 6 very close to 0, computation shows that
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A ( /)2 y 1 ( ,)L+ )L/) ,,9% 4)\3613 N 4)\3a3 ( /)L+ )\/)9%
V= a — ——=(a a a — a a
> 72 81rt  813/2r4(a’)?
P(rv)\'a}\'/’a’a/) ; 2
34+ 0(607),
76(61’)2 + ( )

where P is a polynomial. So limg_,o A v exists. So such a continuous function g exists.
Intheend, letu; € AM(AL) suchthatu; = G on aB% andu; = jondBy,for j=1,2.The

preceding lemma implies u1 =G =usin Z; NAr. As Z N AL D BrL\BrTL, one may ‘glue’ u;
to v with overlapping on Z; \ B . to obtain a viscosity solution of the inhomogeneous equation

in By if rq is taken small enough. Now take v; =u; — jin Ay and v; = v — j for [x| < %L One
can see that v; =0 on dB; and Ay v; = g in the viscosity sense in By, but v; # v in Z . This
is the end of the construction of the counter-example.
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