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Abstract. Convex functions in Euclidean space can be characterized as universal viscosity
subsolutions of all homogeneous fully nonlinear second order elliptic partial differential
equations. This is the starting point we have chosen for a theory of convex functions on the
Heisenberg group.
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1. Introduction

In the past decade research in fully nonlinear equations in Euclidean spaces has
made considerable progress. We refer to two monographs in this direction by
Caffarelli-Cabré [CC1] and Gutierrez [G]. An important example is the so-called
Monge-Ampère equation

det(D2u) = f.

In considering solutions to the above equation convex functions play a crucial role.
The notion of generalized weak solution, introduced by A.D. Aleksandrov, relies
on the properties of convex functions.

Motivated by the role that convex functions play in the theory of fully nonlin-
ear equations, we formulate several notions of convexity in the Heisenberg group
toward the aim of developing an intrinsic theory of subelliptic fully nonlinear equa-
tions, see [M]. We will discuss the notion of group convexity, horizontal convexity
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and viscosity convexity. The advantage of this last definition is that it can be consid-
ered even in the general case of Hörmander vector fields where no group operation
exists. Our proofs are based on the viscosity theory for subelliptic equations and
the geometric role played by the Carnot-Carathéodory metric. This metric is used
to build “subelliptic cones”.

The uniqueness theorem for viscosity solutions of second order subelliptic equa-
tions, including the subelliptic ∞-Laplacian was recently proved by Bieske ([B,
M]) in the case of the Heisenberg group. This result provides evidence for a fully
nonlinear subelliptic theory.

Here is the plan of the paper. In Sect. 2 we review the Euclidean case. In Sect. 3
we study convex functions defined by requiring that their symmetrized horizontal
second derivatives are non-negative in the viscosity sense. We call these functions v-
convex. The main result of this section is to establish their local Lipschitz continuity.
In Sect. 4 we will present the notion of horizontal convexity, which we believe has
many interesting properties. This notion is quite natural in the stratified groups
setting. Other researchers have independently studied it. Horizontal convexity is
equivalent to a notion of convexity considered by Caffarelli and Cabré in [Ca]. It
has also been studied in the forthcoming article [DGN]. Our methods are based on
the theory of viscosity solutions of the infinite-Laplacian in the Heisenberg group
and are significantly different from those in [DGN].

We will show that upper-semicontinuous horizontally convex functions are v-
convex, and therefore Lipschitz continuous. At the present time we are able to show
that these two notions of convexity are equivalent if the functions are assumed to
be C2 by deriving a subelliptic Taylor’s formula with integral reminder.1 Another
result of this section states that the symmetrized horizontal second derivatives of
horizontally convex functions are signed Radon measures.

Let us briefly recall some basic facts about the Heisenberg group H. The group
operation in H = (R3, ·) is given by:

p · q =
(

x1 + x2, y1 + y2, z1 + z2 +
1
2
(x1y2 − x2y1)

)
,

where p = (x1, y1, z1) and q = (x2, y2, z2). The Lie algebra h is spanned by the
left-invariant vector fields X1, X2 and X3 given by

X1(p) =
∂

∂x
− y

2
∂

∂z
,

X2(p) =
∂

∂y
+

x

2
∂

∂z

and

X3(p) =
∂

∂z
= [X1, X2],

1 In fact, with the help of Petri Juutinen we have been able to prove recently that these
two notions of convexity agree for upper semi-continous functions. This will be the subject
of a future publication.
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where p = (x, y, z) ∈ R
3. The Lie algebra h admits a stratification. It decomposes

as the vector space direct sum

h = h1 ⊕ h2,

where h1 is the subspace generated by X1 and X2 and h2 = [h1, h1] is the one-
dimensional space generated by X3. For this reason H is called a Carnot Group of
step 2.

The group H has a family of dilations that are group homomorphisms, param-
eterized by r > 0 and given by

δr(x, y, z) = (rx, ry, r2z).

The exponential mapping takes the vector xX1 + yX2 + zX3 in the Lie algebra h
to the point (x, y, z) in the Lie group H. These are called exponential coordinates
of the first kind and allow us to identify vectors in h with points in H. We denote
by H0 the set of horizontal vectors of the form h = (x, y, 0), which we may also
think as the vectors of the form xX1 + yX2. The horizontal subspace at p ∈ H is
the 2-dimensional subspace that is linearly spanned by X1(p) and X2(p). With the
above notations the horizontal subspace can be identified with the left translation
by p of H0, that is we have

p · H0 = Linear-span {X1(p), X2(p)} .

A horizontal curve γ(t) is a piece-wise smooth curve whose tangent vector
γ′(t) is in the the horizontal tangent space (γ(t)) · H0 whenever it exists. Given
two points p and q we consider the set of all possible horizontal curves joining these
points:

Γ (p, q) = {γ horizontal curve : γ(0) = p, γ(1) = q}
This set is never empty by Chow’s theorem (see for example [BR]). The Carnot-
Carathéodory distance is then defined as the infimum of the length of horizontal
curves of the set Γ :

dCC(p, q) = inf
Γ (p,q)

∫ 1

0
|γ′(t)|dt.

We compute the length of a tangent vector by considering the vectors {X1, X2}
as an orthonormal basis of a sub-riemannian metric defined on the distribution of
horizontal subspaces p · H0. The Carnot-Carathéodory ball of radius R centered at
a point p is given by

B(p, R) = {q ∈ H : dCC(p, q) < r}.

The Carnot-Carathéodory gauge is given by

|p|CC = d(0, p).

The Carnot-Carathéodory distance, being constructed in terms of left-invariant vec-
tor fields, is left-invariant and positively homogeneous of degree 1 on H.

An important cone-like property of this gauge is that it solves the eikonal equa-
tion away from the vertical axis. This can be computed explicitly in the case of the



4 G. Lu et al.

Heisenberg group because explicit formulas for the Carnot-Carathéodory gauge
are available, [BR]. We take the opportunity to quote a recent result of Monti and
Serra-Cassano [MSc] which is valid in general Carnot groups.

Theorem 1.1. Consider the horizontal gradient of |p|CC given by

X (|p|CC) = (X1 (|p|CC) , X2 (|p|CC)) .

Then, for a.e. p ∈ R
3, we have

|X (|p|CC) | =
(
(X1|p|CC)2 + (X2|p|CC)2

) 1
2 = 1.

For a smooth function u : H �→ R the horizontal gradient of u at a point p is
the projection of the gradient of u at p onto the horizontal subspace p · H0 and is
given by

Dhu = (X1u)X1 + (X2u)X2.

The symmetrized horizontal second derivative matrix, denoted by (D2
hu)� has en-

tries

(D2
hu)�

ij =
1
2
(XiXju + XjXiu)

for i, j = 1, 2. We recall that the derivative with respect to the z-axis plays the role
of second derivative in the Taylor’s expansion, see [FS].

We shall also use a smooth gauge, called the Heisenberg gauge, given by

|p|H =
(
(x2 + y2)2 + t2

)1/4
.

By a simple version of the “ball-box” theorem, see for example [BR], there
exists a constant C such that for all p ∈ H we have

1
C

|p|H ≤ |p|CC ≤ C|p|H.

The corresponding distance

dH(p, q) = |q−1 · p|H
is bi-Lipschitz equivalent to the Carnot-Carathéodory distance.

2. Convexity in the viscosity sense in R
n

We reprove here some well known facts about convex functions in Euclidean space.
The point being that the proofs presented here generalize, at least in principle, to
the subelliptic case.

We will always assume that the upper-semicontinuous functions considered in
this section are not identically −∞.

Let Ω ⊂ R
n be an open set. Consider a continuous function F (x, z, p, M) in

Ω × R × R
n × Sn that satisfies


F (x, z, p, 0) = 0,
F (x, z, p, M) ≤ F (x, z′, p, M) if z ≤ z′, and
F (x, z, p, M) ≤ F (x, z, p, M ′) if M ′ ≤ M.

(2.1)
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The last two conditions indicate that F is proper and degenerate elliptic according
to the terminology of [CIL]. Here Sn denotes the class of n × n real symmetric
matrices.

An upper-semicontinuous function u : Ω → R is a viscosity subsolution of the
equation

F (x, u(x), Du(x), D2u(x)) = 0

if whenever we have a C2 function φ and a point x0 ∈ Ω such that φ touches u
from above at x0 ( u(x0) = φ(x0) and u(x) ≤ φ(x) for x �= x0), the inequality

F (x0, φ(x0), Dφ(x0), D2φ(x0)) ≤ 0

holds.
This definition makes sense also for some operator valued functions F (x, z, p,

M). For example, we say that

D2(u) ≥ 0

in the viscosity sense, if whenever we have a C2 function φ and a point x0 ∈ Ω
such that φ touches u from above at x0, the inequality

D2φ(x0) ≥ 0

holds.

Theorem 2.1. Let Ω ⊂ R
n be an open set and u : Ω → R be an upper-semiconti-

nuous function. Then, the following statements are equivalent:

i) whenever x, y ∈ Ω and the segment joining x and y is also in Ω we have

u(λx + (1 − λ)y) ≤ λu(x) + (1 − λ)u(y)(2.2)

for all 0 ≤ λ ≤ 1.
ii) u is a viscosity subsolution of all equations

F (x, u(x), Du(x), D2u(x)) = 0,

where F (x, z, p, M) is a continuous function in Ω × R × R
n × Sn satisfying

(2.1).
iii) u is a viscosity subsolution of all linear equations with constant coefficients

F (x, u, Du, D2u) = − trace
(
A · D2u

)
= 0,

where A ∈ Sn is positive definite.
iv) u satisfies the inequality

D2u ≥ 0

in the viscosity sense.

When one of the above statements hold, the function is said to be convex.
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Proof. The equivalence among Definitions ii), iii) and iv) follows by a linear algebra
observation: A symmetric matrix M is nonnegative definite (denoted by M ≥ 0)
if and only for all positive definite symmetric matrices A the inequality

trace (A · M) ≥ 0

holds. The equivalence between i) and iv) is part of viscosity folklore. See [LMS]
and [ALL]. 
�

We note that, in particular, convex functions are viscosity subsolutions of the
following equations:

i) the Laplacian
−∆u = 0,

ii) the Q-Laplacian for Q > 2,

− div
(|Du|Q−2Du

)
= 0,

and
iii) the ∞-Laplacian

−
n∑

i,j=1

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj
= 0.

These are all equations that can be expressed as

F (x, u(x), Du(x), D2u(x)) = 0

for a continuous (this is the reason for Q > 2) function F satisfying (2.1).

Corollary 2.1. Let u be convex in an open set Ω ⊂ R
n and let BR be a ball such

that B4R ⊂ Ω. Then u is locally bounded and we have the bound

‖u‖L∞(BR) ≤ C −
∫

B4R

|u| dx.(2.3)

Proof. A convex function u is a viscosity subsolution of the Laplace equation. It
then follows easily from the arguments in [CIL] that u is subharmonic; that is, it
satisfies the comparison principle with respect to harmonic functions. For a de-
tailed argument, valid also for the Q-Laplacian, see [JLM]. Bounded sub-harmonic
functions are in W 1,2

loc and are weak subsolutions of the Laplace equation. See for
example [HKM]. Inequality (2.3) then follows easily for non-negative convex func-
tions from the properties of weak subsolutions of the Laplace equation. For general
convex functions a further argument with comparison with cones is needed. We
present the details in the subelliptic case in the proof of the estimate (3.2) below.
For a more classical proof see Chapter 6 in [EG]. 
�
Corollary 2.2. Let u be convex in an open set Ω ⊂ R

n and let BR be a ball such
that B2R ⊂ Ω. Then u is locally Lipschitz and we have the bound

‖Du‖L∞(BR) ≤ C

R
‖u‖L∞(B2R)(2.4)

Proof. A convex function is a viscosity subsolution of the ∞-Laplace equation.
Jensen proved in [J2] that these subsolutions are Lipschitz and essentially obtained
the inequality (2.4). A different proof can be found in [LM2]. 
�
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3. Convexity in the viscosity sense

We choose the analogue of Definition iv) as our starting point. As in the previous
section, upper-semicontinous functions are assumed to be not identically −∞.

Definition 3.1. Let Ω ⊂ H be an open set and u : Ω → R be an upper-semicon-
tinuous function. We say that u is convex in the viscosity sense, or just v-convex, in
Ω if

(D2
hu)∗ ≥ 0

in the viscosity sense. That is, if p ∈ Ω and φ ∈ C2 touches u from above at p
(φ(p) = u(p) and φ(q) ≥ u(q) for q near p) we have (D2

hφ)∗(p) ≥ 0.

This definition is compatible with the Heisenberg group structure since v-convexity
is preserved by left-translations and by dilations. Uniform limits of v-convex func-
tions are v-convex and the supremum of a family of v-convex functions is v-convex
since these results hold for viscosity subsolutions.

Similarly, we may consider the analogue to Definition iii).

Definition 3.2. Let Ω ⊂ H be an open set and u : Ω → R be an upper-semicon-
tinuous function. The function u is v-convex if it is a viscosity subsolution of all
linear equations with constant coefficients

− trace
(
A · (D2

hu)�
)

= 0,

where A ∈ S2 is positive definite.

As in the Euclidean case these two Definitions 3.1 and 3.2 are equivalent. There
is also an equivalent analogue to Definition ii), see Definition 3.3 below, involving
fully nonlinear equations. The equations in question are of the form

F (p, u(p), Du(p), (D2
hu)�(p)) = 0,

where
Du = (X1u)X1 + (X2u)X2 + (X3u)X3

is the (complete) gradient of u.
A point of clarification is due here. From the non-isotropic point of view, the

derivative X3u behaves like a second derivative since it belongs second term in the
derived series h2 = [h1, h1] of the Lie algebra h. However, it also behaves like a
first derivative. Suppose u : Ω → R is a smooth function with an local maximum
or minimum at x0 ∈ Ω. Then, a simple calculation based on the stratified Taylor
expansion gives

X1u(x0) = 0, X2u(x0) = 0, and X3u(x0) = 0.

This is the starting point of the theory of subelliptic jets developed in [B] and [MSt].
Consider continuous functions

F : H × R × R
3 × S2 → R
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that are homogeneous, proper, and degenerate elliptic:


F (x, z, p, 0) = 0,
F (x, z, p, M) ≤ F (x, z′, p, M) if z ≤ z′, and
F (x, z, p, M) ≤ F (x, z, p, M ′) if M ′ ≤ M.

(3.1)

Definition 3.3. Let Ω ⊂ R
n be an open set and u : Ω → R be an upper-semicon-

tinuous function. The function u is v-convex if it is a viscosity subsolution of all
equations

F (p, u(p), Du(p), (D2
hu)�(p)) = 0,

where F (x, z, p, M) is a continuous functions satisfying (3.1).

This definition is equivalent to Definitions 3.1 and 3.2. It implies 3.1 since we can
always take F (x, z, p, M) = − trace (A · M) for positive definite A ∈ S2. It is
implied by definition 3.2 since

F (p, φ(p), Dφ(p), (D2
hφ)�(p0)) ≤ F (p, φ(p), Dφ(p), 0) = 0

whenever φ ∈ C2 touches u from above at p0.
What about the analogue to Definition i)? This is the notion of h-convexity that

we study in Sect. 4 below.
We note that, in particular, convex functions are viscosity subsolutions of the

following equations:

i) the Hörmander or Kohn Laplacian

−∆hu = −(X2
1u + X2

2 )u = 0,

ii) the subelliptic Q-Laplacian for Q > 2,

−∆Q,hu = − divh
(|Dhu|Q−2Dhu

)
= 0,

and
iii) the subelliptic ∞-Laplacian

−∆∞,hu = −
2∑

i,j=1

(Xiu)(Xju)(XiXju) = 0.

Here divh is the natural divergence associated to the family {X1, X2} and given
by

divh(aX1 + bX2) = X1a + X2b.

These are all equations that can be expressed as

F (p, u(p), Du(p), (D2
hu)�(p)) = 0

for a continuous function F satisfying (3.1). Next, we state the main theorem of
this section:
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Theorem 3.1. Let Ω ⊂ H be an open set and u : Ω → R be a v-convex function.
Let BR be a ball such that B4R ⊂ Ω. Then u is locally bounded and we have.

‖u‖L∞(BR) ≤ C −
∫

B4R

|u| dx.(3.2)

Moreover, u is locally Lipschitz and we have the bound

‖Dhu‖L∞(BR) ≤ C

R
‖u‖L∞(B2R).(3.3)

Here C is a constant independent of u and R. If, in addition, u is C2, then the
symmetrized horizontal second derivatives are nonnegative

(D2
hu)∗ ≥ 0.(3.4)

The general scheme of the proof will parallel the arguments of Sect. 2 once we find a
substitute for Euclidean cones. We will use the fact that v-convex functions are vis-
cosity subsolutions of the Hörmander-Kohn Laplacian and viscosity subsolutions
of the subelliptic ∞-Laplacian.

Let us first dispose of (3.4). This follows right away from the definition of
v-convexity using u as a test function.

To prove (3.2) and (3.3) we need to introduce a subelliptic analogue to a cone.

Definition 3.4. A cone based on the Carnot-Carathéodory ball BR(p) of radius
R, centered at p is the unique ∞-harmonic function ωR,p in BR(p)\{p} satisfying
ωR,p(p) = 0 and ωR,p(q) = R for q ∈ ∂BR(p).

Note that for Q > 4 a point has positive Q-capacity. Therefore, the Dirichlet
problem in the punctured ball is well posed. The existence and uniqueness of cones
as viscosity solutions of −∆∞,hu = 0 follows from [B]. A upper bound on cones
follows easily from Theorem 1.1.

Proposition 3.1. For R > 0 and p ∈ H consider the cone ωR,p. We have the upper
bound

ωR,p(q) ≤ dCC(p, q)

for q ∈ BR(p).

Proof. Write

ωR,p(q) = ωR,p(q) − ωR,p(p) ≤ ‖DhωR,p‖∞ dCC(p, q).

We need to check that ‖DhωR,p‖∞ ≤ 1. By Bieske’s uniqueness Theorem, vis-
cosity solutions of the subelliptic ∞-Laplacian can be expressed as the limit as
Q → ∞ of a sequence of Q-harmonic functions with the same boundary val-
ues. These Q-harmonic functions minimize ‖Dhu‖Q which easily implies that
their limit minimizes ‖Dhu‖∞. That is, viscosity solutions of the subelliptic ∞-
Laplacian are absolute minimizers of the functional ‖Dhu‖∞ (see the proof of
Theorem 3.2 below). Therefore we have

‖DhωR,p‖∞ ≤ ‖Dhd‖∞ = 1

by Theorem 1.1. 
�
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A lower bound follows from the Harnack inequality. We present a subelliptic
version of the Harnack inequality for∞-harmonic functions proved in the Euclidean
case by Evans [E] for smooth functions and [LM] for viscosity solutions.

Theorem 3.2. Suppose u is nonnegative viscosity solution of −∆∞,hu = 0 in a
domain Ω. Then, for all ζ ∈ C∞

0 (Ω) we have the inequality

‖ζ Dh log u‖∞ ≤ ‖Dhζ‖∞.

Proof. The proof of this inequality parallels to the one of the Euclidean case given
in [LM] once we have Bieske’s extension [B] of Jensen’s uniqueness [J2] result for
viscosity solutions of −∆∞,hu = 0. For the reader’s convenience, we include a
complete proof in the subelliptic setting.

One way to get estimates for ∞-harmonic functions, is to obtain estimates for
Q-harmonic functions that remain stable as Q → ∞. For the classical Moser-Serrin
inequality, the constants blow up when Q goes to ∞. An alternative method is to
look for energy bounds for Dh log u, for Q large.

First, if uQ ≥ 0 is a nonnegative weak solution of the Q-Laplace equation


Qu = divh
(|Dhu|Q−2Dhu

)
= 0,(3.5)

we have the inequality

‖ζDh log uQ‖Q
Q ≤

(
Q

Q − 1

)Q

‖Dhζ‖Q
Q.(3.6)

To obtain inequality (3.6), use as a test function

ζp

ε + up−1

in (3.5) and let ε > 0 go to zero.
Select a bounded domain D such that supp ζ ⊂ D ⊂ D̄ ⊂ Ω. From a Theorem

of [B] we have that u is in W 1,∞(Ω). For Q > 4 consider the auxiliary problem:{
div(|DhuQ|Q−2DhuQ) = 0 in D

uQ − u ∈ W 1,Q
0 (D)

Let Q > 4. Then by the Hölder embedding Theorem (see [L1]) we have

|uQ(x) − uQ(y)| ≤ CdCC(x, y)1− 4
Q ||DhuQ||LQ(D)

for some constant C independent of uQ. Since Q-harmonic functions minimize the
LQ-norm of the gradient

||DhuQ||LQ(D) ≤ ||Dhu||LQ(D).

It then follows that

|uQ(x) − uQ(y)| ≤ CdCC(x, y)1− 4
Q ||Dhu||LQ(D)

≤ CdCC(x, y)1− 4
Q |D| 1

Q ||Dhu||L∞(D).
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Let u∞ = limQ→∞ uQ, then

|u∞(x) − u∞(y)| ≤ cd(x, y)||Dhu||L∞(D).

This shows that u∞ is locally Lipschitz in Ω.
Given any positive integer m, we have for any Q > m

(
1

|D|
∫

D

|DhuQ|m
) 1

m

≤
(

1
|D|

∫
D

|DhuQ|Q
) 1

Q

≤
(

1
|D|

∫
D

|Dhu|Q
) 1

Q

≤ ||Dhu||L∞,D.

Letting Q → ∞ we get

(
1

|D|
∫

D

|Dhu∞|m
) 1

m

≤ ||Dhu||L∞,D.

Next, letting m → ∞, we derive

||Dhu∞||L∞,D ≤ ||Dhu||L∞,D.

By the uniqueness result of L∞ minimizer in the subelliptic setting (see [B]), we
conclude u∞ = u.

Therefore, the Theorem follows by taking limit Q → ∞ in the inequality for
uQ. 
�

Given BH
r and BH

R two concentric balls with respect to the smooth Heisenberg
gauge in Ω with radius r and R. We can always find a smooth function ζ, a radial
function of the smooth gauge, such that ζ = 1 on BH

r and 0 outside BH
R , and

|Dhζ| ≤ C
R−r . From the above Theorem we obtain

‖Dh log u‖BH
r ,∞ ≤ C

R − r
.(3.7)

This easily implies the following:

Corollary 3.1. Let u be a non-negative viscosity solution of −∆∞,hu = 0 in a
domain Ω. Let B be a ball with respect to the smooth gauge such that 2B ⊂ Ω.
Then, there exists a constant C so that

sup
B

u ≤ C inf
B

u.

In fact it follows from (3.7) that

u(p) ≤ exp
{

C

(
dH(p, q)
R − r

)}
u(q).

A consequence of the Harnack inequality that we mention in passing is the
following Liouville Theorem:
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Theorem 3.3. The only ∞-harmonic functions bounded from below in the whole
group H are the constants.

We now return to the subelliptic cones.

Proposition 3.2. The cone ωR,p satisfies

inf
{

ωR,p(q) :
R

2
≤ dCC(p, q) ≤ R

}
≥ C0R,

where C0 is an absolute constant independent of R and p.

Proof. By dilation and translation invariance, we may assume that p = 0 and
R = 1. From the Harnack inequality (Corollary 3.1) we deduce

inf
{

ω1,0(q) : dCC(0, q) =
1
2

}
= C0 > 0.

The lemma follows then from the comparison principle. 
�

Lemma 3.1. Let u be v-convex, then u is locally bounded.

Proof. Without loss of generality, we may assume that u is locally bounded from
above because u is upper semicontinuous. We may further assume that u ≤ 0.
Suppose u(p) = −∞, p ∈ Ω and B(p, R) ⊂ Ω. Then for k > 0 we have

u(q) ≤ −k(R − ωR,p(q))

for q ∈ ∂B(p, R)∪{p}. From Bieske’s comparison principle we conclude that this
inequality is indeed valid for q ∈ ∂B(p, R). Let k → ∞ to get u(q) = −∞ on
B(p, R). Consequently u(q) = −∞ in Ω by covering Ω with chains of balls. This
is a contradiction.

Suppose now that for some p ∈ Ω there is a sequence pk → p satisfying
u(pk) ≤ −kR. Then we can conclude in the same way as above that

u(q) ≤ −k(R − ωR,pk
(q))

for q ∈ B(pk, R). In particular we must have

u(p) ≤ −k(R − ωR,pk
(p)).

Using the fact ωR,pk
(p) ≤ dCC(pk, q) for k large enough we have

u(p) ≤ −k
r

2
.

Letting k → ∞, we conclude that u(p) = −∞. This is again a contradiction. 
�

Lemma 3.2. A viscosity subsolution of the Hörmander-Kohn Laplacian −∆h is
subharmonic.
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Proof. This is standard and we include it for the sake of completeness. Let u be
a viscosity subsolution. Suppose that we have a bounded domain Ω ⊂ H and a
function h in Ω such that

−∆hhε = ε > 0(3.8)

and
lim sup

q→p
u(q) ≤ lim inf

q→p
hε(q)

where q ∈ Ω, for all p ∈ ∂Ω and both sides are not simultaneously +∞ or −∞.
We claim that u(q) ≤ hε(q) for all q ∈ Ω.

If this is not the case u − hε has a positive interior maximum, say at the point
q0 ∈ Ω. Let m = v(q0) − hε(q0) > 0. Consider the smooth function hε + m. It
touches u from above at the point q0. By the definition of viscosity subsolution we
get −∆hhε(q0) ≤ 0 in contradiction with (3.8).

The case where ε = 0 follows by approximating h by hε = h − ε
2 (x2 + y2)

and noticing that if u − h has a positive interior local minima, so must be u − hε

for small ε > 0. 
�
Lemma 3.3. Bounded sub-harmonic functions are weak subsolutions of the Hör-
mander-Kohn Laplacian.

The point here is to show that bounded sub-harmonic functions are in W 1,2. This
is certainly known, but we have been unable to locate a reference.

Proof. Once again we need to adapt a well-known argument in the Euclidean
case to the case of the Heisenberg group. See Chapters 3 and 7 of [HKM] for
the degenerate quasiliner case in R

n. We need the fact that balls with respect to
the smooth Heisenberg gauge are regular sets for the Dirichlet problem for the
Hörmander-Kohn Laplacian (for example see [Ga] and [LU]).

Let u be a bounded sub-harmonic function in a domain Ω. Select a regular
subdomain D whose closure is D̄ ⊂ Ω. Choose a decreasing sequence of functions
φi ∈ C∞ converging to u in D̄. Let ui be the solution to the obstacle problem
in D with obstacle φi. The existence of this solution follow from a variational
principle as in the Euclidean case. That is, the function ui ∈ C(D̄) ∩ W 1,2(D)
and ui = φi on ∂D, each ui is subharmonic in D, and harmonic in the open set
Ui = {x ∈ D : ui < φi}. The sequence ui is decreasing and u ≤ ui in Ui by the
comparison principle since

lim sup
x→y

u(x) ≤ u(y) ≤ φi(y) = lim
x→y

ui(x)

for all y ∈ ∂Ui. Conclude that u ≤ ui in D and

u = lim
i→∞

φi ≥ lim
i→∞

ui ≥ u

in D.
We have shown the existence of a decreasing sequence of subsolutions ui ∈

C(D̄) ∩ W 1,2(D) such that u = limi→∞ ui in D. Moreover, the functions ui are
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subharmonic in D. If, in addition, u is bounded, we have a uniform bound for ui.
It then follows by Caccioppoli’s inequality [L2] that the sequence ui is, in fact,
uniformly bounded in W 1,2(D′) for any subdomain D′ compactly contained in
D. It then follows by standard limit theorems that u ∈ W 1,2

loc and u is a weak
subsolution. 
�

Estimate (3.2) for non-negative convex functions follows by combining Lem-
mas 3.1, 3.2, and 3.3 with well known properties of nonnegative weak subsolutions.
See for example [L2]. In fact since u+ is convex, this shows that for u+ we always
have

‖u+‖L∞(BR) ≤ C −
∫

B2R

u+ dx.(3.9)

To present an argument valid for general u we need the fact that u is continuous. This
follows from Proposition 3.3 below, whose proof is independent of (3.2). Suppose
then that u is continuous and bounded as we may. Consider a ball BR such that
B2R ⊂ Ω. If we denote by

M+
2R = ‖u+‖L∞(B2R)

then v = u − M+
2R is a negative convex function in BR. Fix a point p ∈ BR, set

S = dCC(p, ∂B2R) ≥ R and consider the inequality

v(q) ≤ v(p)
S

(S − ωS,p(q))(3.10)

for q ∈ BS(p), where the cone ωS,p is the cone based on the ball BS(p). Inequality
(3.10) holds at the center q = p and at the boundary q ∈ ∂BS(p) since v is negative.
By the comparison principle we conclude that (3.10) holds for all q ∈ BR(p). Using
Proposition 3.2 we conclude

v(q) ≤ C1v(p)

whenever dCC(p, q) ≤ S/2. For q ∈ BS/2(p) we then have

u(q) − M+
2R ≤ C1

(
u(p) − M+

2R

)
.

Choose p ∈ BR/2 to be a point for which

‖u−‖L∞(BR) = −u−(p),

which in turn gives

u(q) − M+
2R ≤ C1

(−‖u−‖L∞(BR) − M+
2R

)
Therefore, for all q ∈ BR/2(p) we obtain

C1‖u−‖L∞(BR) ≤ −u(q) + (C1 + 1)M+
2R.

Averaging on the ball BR/2(p) and using (3.9) we get (3.2).
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Proposition 3.3. If u is a viscosity subsolution of the subelliptic ∞-Laplacian in
a domain Ω ⊂ H, then u is locally Lipschitz. Moreover, we have the bound

|Dhu(p)| ≤ C‖u‖Ω,∞
distCC(p, ∂Ω)

,

for a. e. p ∈ Ω and C is an constant independent of u.

Proof. This is a subelliptic version of Jensen’s original proof [J2] where the Eu-
clidean cones are replaced by the cones introduced in definition 3.4. Denote by
M = ‖u‖Ω,∞ and for ε > 0 consider the subdomain

Ωε = {p ∈ Ω : dCC(p, ∂Ω) > ε}.

We want to estimate the supremum

sup
p,q∈Ωε

|u(p) − u(q)|
dCC(p, q)

.

Fix two poinst p0, q0 ∈ H. If dCC(p0, q0) ≥ ε, we clearly have

|u(p0) − u(q0)|
d(p0, q0)

≤ 2M

ε
= λ.

Suppose now that dCC(p0, q0) < ε. We will argue by using the comparison with
the cones ωε,p0 and ωε,q0 .

For p ∈ ∂B(p0, ε) ∪ {p0}, we have

u(p) − u(p0) ≤ λ ωε,p0(p).

and for q ∈ ∂B(q0, ε) ∪ {q0}, we have

u(q) − u(q0) ≤ λ ωε,q0(q).

By Bieske’s comparison principle, the above inequalities hold inside their re-
spective balls. Since dCC(p0, q0) < ε, we conclude

u(q0) − u(p0) ≤ λωε,p0(q0)

and
u(p0) − u(q0) ≤ λωε,q0(p0).

It follow from Lemma 3.1 that ωε,p0(q0) ≤ dCC(p0, q0) and ωε,q0(p0) ≤ dCC(p0,
q0) and these two inequalities imply

|u(p0) − u(q0)| ≤ λd(p0, q0). 
�

Combining Lemma 3.1 and Lemma 3.3, we have completed the proof of in-
equality 3.3, and therefore, that of Theorem 3.1.
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4. Horizontal convexity

Given a point p ∈ H the line segment joining p·h−1 to p·h, denoted by [p·h−1, p·h]
is always contained in the horizontal subspace p · H0.

Definition 4.1. Let Ω be an open set in H and u : Ω → R be an upper-semicon-
tinuous function. We say that u is horizontally convex or just h-convex in Ω, if for
all p ∈ Ω and h ∈ H0 such that [p · h−1, p · h] ⊂ Ω we have

u(p) ≤ 1
2
{u(p · h) + u(p · h−1)}.

Remark 1. If in this definition we require the point h to be in H rather than H0
we obtain a notion that we could call group convexity. This definition is clearly
stronger than h-convexity. It coincides with the Euclidean convexity with respect
to the coordinates (x, y, z). This is the case because we always have

p · h + p · h−1

2
= p.

By using the Campbell-Hausdorff formula, one can easily see that for any Carnot
group of step 2, group convexity is just Euclidean convexity.

Let us consider a point p in H and a point q ∈ Th(p). We can write q = p · h,
for some horizontal h ∈ H0. The segment [p, q] joining p and q on Th(p) is also
contained in Th(q). In fact, writing pt = p · δt(h) for a point in this segment,
we need to check that pt = q · h′ for some h′ ∈ H0. The choice h′ = h · δt(h)
works. Taking into account this remark, it is now natural to consider the following
definition due to Cabré and Caffarelli [Ca].

Definition 4.2. An upper semi-continuous function u is CC-convex in Ω if for any
two points p and q ∈ Ω such that the segment [p, q] ⊂ Ω ∩ p ·H0, we have that the
restriction of u to [p, q] is a convex function of the variable t in the parametrization
p · δt(h) of the segment [p, q].

The two definitions are indeed equivalent.

Lemma 4.1. An upper semi-continuous function is h-convex if and only if it is
CC-convex.

Proof. Let us begin with assuming CC-convexity. If h-convexity fails, then there
exist a point p ∈ Ω and a horizontal vector h ∈ H0 such that

u(p) >
u(p · h) + u(p · h−1)

2
Set q = p · h−1 and consider the function of one variable:

U(t) = u(q · δt(h2))

Rewriting the previous inequality in terms of U(t), we get

U(
1
2
) >

U(0) + U(1)
2

contradicting the CC-convexity property.
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To prove the converse note that we assume that u is continuous by using the
fact that h-convex functions are v-convex and therefore Lipschitz continuous. See
Proposition 4.2 below. Suppose there exist p, q ∈ Ω such that the segment Ω∩p·H0
and the function u restricted to the segment [p, q] is not convex. Then, there exists
points p′, q′ ∈ [p, q] such that

u(p′) + u(q′)
2

< u(
p′ + q′

2
)

in contradiction with h-convexity at the point (p′ + q′)/2 
�
Both definitions of convexity are compatible with the Carnot group structure:

they are left-invariant and dilation-invariant. Note also that the supremum of a
family of h-convex functions and the uniform limit of a sequence of h-convex
functions are h-convex. An important property of h-convex functions is that they
are always (locally) uniform limits of smooth h-convex functions. This follows
easily by using using left group convolution with a mollifier (see proof of Theorem
4.2 below.)

A typical example of h-convex function which is not group convex is given by
the function

u(x, y, z) = (x2 + y2) − εz2

which is h-convex in a neighborhood of zero as it is clear from the subelliptic
Taylor’s formula ([FS], Chapter 1).

Lemma 4.2. Let u be h-convex in Ω then u is v-convex in Ω.

Proof. Let φ be a test function touching u from above at the point p0 ∈ Ω. This
means u(p0) = φ(p0) and u(p) ≤ φ(p) for p in a neighborhood of p0.

Suppose that (D2
hφ)∗(p0) is not positive definite. Let write the Taylor expan-

sions as in [B] and [M]:

φ(p0 · z) = φ(p0) + 〈Dhφ(p0), z〉 +
1
2
〈(D2

hφ)∗(p0)z, z〉 + o
(|z|2)

and

φ(p0 · z−1) = φ(p0) − 〈Dhφ(p0), z〉 +
1
2
〈(D2

hφ)∗(p0)z, z〉 + o
(|z|2) .

Adding these two equations and using the fact the φ touches u from above at p0 we
get

u(p0 · z) + u(p0 · z−1)
2

≤ u(p0) +
1
2
〈(D2

hφ)∗(p0)z, z〉 + o
(|z|2) .

For some z near zero this implies

u(p0 · z) + u(p0 · z−1)
2

< u(p0)

contradicting the h-convexity of u. 
�
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Lemma 4.3. If u ∈ C2(Ω), then u satisfies the following horizontal Taylor’s for-
mula with integral reminder:

u(p · z) = u(p) + 〈Dhu(p), z〉 +
∫ 1

0
〈(D2

hu)∗(p · δt(z))z, z〉(1 − t) dt

where z ∈ H0.

Proof. Let γ(t) be the horizontal curve connecting p and p · z such that γ(0) = p
and γ(1) = p · z. Then

u(p · z) − u(p) =
∫ 1

0

d

dt
γ(t)dt

=
∫ 1

0
< Dhu(γ(t)), γ′(t) > dt

In particular, if we take γ(t) = p · δtz, then γ′(t) = z. Therefore,

u(p · z) − u(p) =
∫ 1

0
< Dhu(p · δtz), z > dt.

By using integration by parts, the right-hand side of the above inequality is equal
to

−
∫ 1

0
< Dhu(p · δtz), z > d(1 − t)

= − < Dhu(p · δtz), z > (1 − t)
∣∣1
0 +

∫ 1

0
< (D2

hu)∗(p · δtz)z, z > (1 − t)dt

= < Dhu(p), z > +
∫ 1

0
< (D2

hu)∗(p · δtz)z, z > (1 − t)dt 
�
Proposition 4.1. If u ∈ C2(Ω) and u is v-convex in Ω, then u is h-convex in Ω.

Proof. By using u as a test function in the definition of v-convexity it follows that
(D2

hu(p))∗ ≥ 0 in Ω. Suppose now that u fails to be h-convex at a point p. For
some z ∈ H0 we then have

u(p · z) + u(p · z−1)
2

< u(p).

Without loss of generality we may assume that p = 0 ∈ Ω. By the horizontal Taylor
expansion with integral reminder

u(z) = u(0) + 〈Dhu(0), z〉 +
∫ 1

0
〈(D2

hu)∗(δt(z))z, z〉(1 − t) dt

and

u(z−1) = u(0) − 〈Dhu(0), z〉 +
∫ 1

0
〈(D2

hu)∗(δt(z−1))z, z〉(1 − t) dt.
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Adding these two formulas we obtain

∫ 1

0
〈(D2

hu)∗(δt(z−1)) + (D2
hu)∗(δt(z))z, z〉(1 − t) dt < 0.

Since the integrand is positive we have arrived to a contradiction. 
�

Next, we consider the existence of second derivatives. In the Euclidean case,
the classical Alexandrov’s Theorem asserts that convex functions are a. e. pointwise
twice differentiable. One way to prove this (see Chapter 6 in [EG]) is to see that
convex functions have second distributional derivatives which are measures and to
use some differentiation theorems in conjunction with Corollaries 2.1 and 2.2.

Recently, Ambrosio and Magnani ([AM]) have proved a weak Aleksandrov-
type differentiability theorem for functions on Carnot Groups whose horizontal
distributional derivatives up to order 2 are measures. The space of such functions
is denoted by BV 2

h . Namely, the statement of the theorem is:

Theorem 4.1. Let u be a BV 2
h (Ω). For a. e. p ∈ Ω there exists a polynomial P[p]

with degree less or equal than 2, such that

lim
r→0+

1
r2 −
∫

B(p,r)
|u(q) − P[x](q)| dq = 0.

However, for h-convex functions u we can only prove that the symmetrized second
order horizontal derivatives XiXj+XjXi

2 u are measures. We do not know if the non-
symmetric part X3u is always a Radon measure, and thus, we cannot yet answer
the question whether always an h-convex function u is in the space BV 2

h .

Theorem 4.2. If u is a h-convex function in an open set Ω ⊂ H, then XiXj+XjXi

2 u
is a Radon measure for i, j = 1, 2.

The proof is an adaption of the Euclidean proof based on the Riesz representation
Theorem.

Proof. Let φ ∈ C∞
0 such that supp(φ) ⊂ B(0, 2) and φ = 1 on B(0, 1). Define

φε(p) = ε−4φ(δ 1
ε
p) for any p ∈ H. Consider the mollification uε = φε ∗ u of u

defined by the group convolution

φε ∗ u(q) =
∫

H
u(y−1 · q)φε(y)dy

where q ∈ Ωε = {q ∈ Ω : dist(q, ∂Ω) > 2ε}. Then uε is a smooth h-convex
function in Ωε, since for a horizontal w ∈ H0 such that the segment [pw−1, pw] ⊂
Ωε we have

uε(pw) + uε(pw−1) − 2uε(p)

=
∫

H

[
u(y−1pw) + u(y−1pw−1) − 2u(y−1p)

]
φε(y) dy
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and the integrand is nonnegative. Since uε is smooth, we conclude (D2
h)uε(p) ≥ 0

for p ∈ Ωε. Given any constant vector ξ = (ξ1, ξ2) define a linear functional on
the space of functions Ψ ∈ C∞

0 (Ωε) by

Lε(Ψ) =
2∑

i,j=1

∫
Ωε

uε(p)(XiXj)Ψ(p)ξiξj dp.

We can write this functional in the form

Lε(Ψ) =
2∑

i,j=1

∫
Ωε

uε(p)
(

XiXj + XjXi

2

)
Ψ(p)ξiξj dp.

Integration by parts shows that

Lε(Ψ) =
∑
i,j=2

∫
Ωε

Ψ(p)
(

XiXj + XjXi

2

)
uε(p)ξiξj dp.

In view of the fact that uε is smooth and h-convex

2∑
i,j=1

(
XiXj + XjXi

2

)
uε(p)ξiξj ≥ 0

for all p ∈ Ωε and ξ = (ξ1, ξ2) ∈ R
2. Therefore, we conclude that Lε is a positive

functional Lε(Ψ) ≥ 0 for Ψ ≥ 0. This is the key step where the symmetrization of
the horizontal second derivatives is essential.

We now define

L(Ψ) =
2∑

i,j=1

∫
Ω

u(p)
(

XiXj + XjXi

2

)
Ψ(p)ξiξj dp

for Ψ ∈ C∞
0 (Ω). Then, since uε → u locally uniformly in Ω we have

L(Ψ) = lim
ε→0

Lε(Ψ) ≥ 0.

Hence, by the Riesz’s representation Theorem, we find a measure dµξ in Ω such
that

L(Ψ) =
∫

Ω

Ψdµξ.

Choose ξ = e1 = (1, 0) or ξ = e2 = (0, 1). We can write∫
Ω

u(p)X2
i Ψ(p) dp =

∫
Ω

Ψ dµii.

Next, we choose ξ = e1+e2√
2

to conclude the existence of a measure dµij such that

∫
Ω

u(p)

(
XiXj + XjXi + X2

i + X2
j

2

)
Ψ(p) dp =

∫
Ω

Ψ dµij .
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Therefore, we can write∫
Ω

u(p)
(

XiXj + XjXi

2

)
Ψ(p) dp =

∫
Ω

Ψ
(
dµij − dµii − dµjj

)
.

Thus, we have shown that in the sense of distributions

XiXj + XjXi

2
u = dµij − dµii − dµjj .


�
Remark 2. The classes of h-convex, CC-convex and v-convex functions can also
be studied in general Carnot groups. Lemmas 4.1, 4.2, 4.3, and Proposition 4.1
hold with the same proofs. Similarly, the given proof Theorem 4.2 can be easily
generalized. However, our results on Sect. 3 depend on the comparison principle
for ∞-subharmonic and ∞-superharmonc functions which, at the moment, it has
only being verified in the Heisenberg group ([B].)

Remark 3. Most of the results of this paper have been presented by the authors in
several invited talks: B. Stroffolini, Bressanone (July 2000), Paris (October 2000),
Trento (June 2001), Edinburgh (July 2001), Pisa and Padova (February 2002), J.
Manfredi, Pacific Institute of Mathematics at Vancouver (July 2001), University of
Bern (December 2001) and University of Maryland (May 2002) and G. Lu, AMS
Meeting inAnnArbor (March 2002) and Cornell University (April 2002). We would
like to thank the organizers of these meetings/seminars for their invitations.
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[Ca] Cabré, X.: Personal communication
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