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COMMUN. IN PARTIAL DIFFERENTIAL EQUATIONS, 2 1 (1&2), 235-254 ( 1  996) 

A NOTE ON A POINCARE TYPE INEQUALITY 
FOR SOLUTIONS TO SUBELLIPTIC EQUATIONS 

Guozhen Lul 

Department of Mathematics and Statistics 

Wright State University 

Dayton, Ohio 45435 

Abstract 

We prove Poincari. type inequalities for solutions to certain classes of quasi- 

linear subelliptic equations, including the well-known p-Sublaplacian. A no- 

table feature in these inequalities is to replace the usual f ~ .  the average of f 

over a metric ball B, by f ( x o )  for xo E B. Result of this kind was considered 

earlier by Ziemer [18] in the classic case. We mention that our endpoint result, 

even in the classic case, is not obtainable through the compactness argument. 

1 Introduction 

In Rn, given vector fields Xi = &, i = 1 , 2 , .  . ., n, then for any Euclidean ball 

B = B ( x ,  r )  c Rn and any 1 5 p < cc we have the Poincarg-Sobolev type 

'AMS Subject Classification (1991): Primary 35J15, Secondary 46E35 

Keywords and phrases: (Weighted) Poincard inequality, vector fields, Hormander's condi- 

tion, subelliptic equat,ions, p-Sublaplacian, cham and extension domains. The author is 
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inequalities as stated below provided that 1 5 

where (El stands for the Lebesgue measure for any measurable set E c R", 

and fB is the average of the function f over the ball B. We refer the reader 

to the book of W. Ziemer [I91 for a fairly thorough study of classic PoincarC 

type inequlities. Weighted inequalities also hold when the Lebesgue measure is 

replaced by certain pairs of two different weight functions satisfying a balanced 

condition (see for example, Chanillo-Wheeden [3] and the references therein). 

The above inequality is also known to be true when the vector fields {X,}zn=, 

are of Hormander type (see [ 5 ] ,  [8], [lo],  111). In section 2 of this note, we 

consider solutions f to a certain class of quasilinear subelliptic differential 

equations and prove such a type of Poincark inequality with f~ replaced by 

f (xo) at any distinguished interior point xo when the vector fields {X,);, are 

degenerate and satisfy Hormander's condition. We will also establish inequali- 

ties on certain extension domains with respect to the vector fields and remark 

that such an inequality also holds on domains satisfying a certain chain condi- 

tion. Weighted Poincark inequalities of such type for solutions to degenerate 

subelliptic equations will be derived in Section 3. 

Let R be a bounded, open and pathconnected domain in R", and let X I , .  . 
., X, be a collection of C" real vector fields defined in a neighbourhood of 

the closure of 0. For a multi-index a = (zl, . . ., ik), denote by X, the 

commutator [X,, , [X,, , . . ., [X ,,-,, X,,]] . .a,] of length k = JaJ .  Throughout this 

paper we assume that the vector fields satisfy Hormander's condition: there 

exists some positive integer s such that {X,}l,Is, span the tangent space of Rd 

at  each point of R.  There is a metric associated with these vector fields and the 

Lebesgue measure is doubling with respect to the metric balls (see [14]). We 

also define Q = jm, where m, is the number of linearly independent free 

commutators of length j .  This number Q is called the homogeneous dimension. 
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We now define the Sobolev space W1'p(R) to be the completion of Lipschitz 

(or smooth) functions under the norm 

where 1 X f 1 expresses (Czl 1 X, f 12)3. 
We also define W;"(R) as the completion of Lipschitz functions with com- 

pact support (or functions in the class Cr(R)) under the above norm I /  . 
Ilw1 P(Q). 

Let R be an open and bounded domain in Rn. We say S1 is a W1,p- 

extension domain associated with the vector fields if there is a domain 

R' c R" containing and an operator T : W1,P(R) -. w,"~((R') such that 

T f (x)  = f (x) a.e. in R and IITf llw~,~pl) < Cll f l l w ~ , P ( n )  with C independent 

of f .  
The following Poincari inequality for Hormander vector fields has been 

established in ([Ill, [13]): 

Theorem If E cc R, and 1 < p < m, then there exist constants q(p) > p. 

ro > 0, C > 0, such that for all 1 5 q 5 q(p) and for any metric ball 

B = B ( z ,  r )  c R. x E E ,  and any f E Cm(B), the following inequality holds: 

provided 0 < r < ro, where C, ro depend only on E and R, and fB may be 

taken to  be & JB f. Here q(p) can be taken to be 6 when 1 < p < Q and 

any number less than m when p = Q. Iff has compact support, then one can 

replace fB by 0. 

We mention that for p = 1 and q = &, the inequality has been established 

in [5] together with an application to a relative isoperimetric inequality. We 

also like to mention that the Poincare type inequality for the Grushin operator 

has been obtained in [4]. 
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In this note, we will establish similar inequalities for functions defined on 

reasonably nice sets R with fa replaced by the value of f at any distinguished 

point in 0. We also require that the functions f are the solutions to certain 

classes of quasilinear subelliptic equations. 

This note is self-contained. The only things we need here are certain prop- 

erties of the solutions. We have established in [13] certain Harnack inequalities 

for weak solutions, subsolutions, and supersolutions of quasilinear second order 

subelliptic partial differential equations of the form 

under certain structural assumptions on the equation (1.1). 

We now let x = (xl ,  ..., xn), q = (vl, ..., vm) denote vectors in Rn and Rm re- 

spectively and Xu = (X'lu,.. . ,  X,,u). A(,r, u, v )  = ( A ~ ( x , u ,  v ) , . . . ,  A,(x,u, v))  

and B ( x ,  U ,  1)) are, respectively, vector and scalar measurable functions defined 

on !2 x R x  Rm, where R is a domain in Rn on which the vector fields are defined. 

The structure of the equation (1.1) throughout this paper will be assumed 

to satisfy the following: For all M < oo and for all (x, u, q)  E R x ( - M ,  h l )  x 

R" , 

where p > 1, ao, bo are constants, ai(x),  bi(x) are nonnegative measurable func- 

tions; p, ao, bo, a,(x), bi(x) may possibly depend on iCI. Such equations in Eu- 

clidean spaces have been studied in [9], [15], [16] and [17]-[19]. 

We will assume p > 1 and allow ai(x), bi(x) to be in certain subspaces of 

Lj,,(0), where t = max(p, Q)  (see [13]). More precisely, let ~ ( p )  be a smooth 

function defined for p > 0 and such that ~ ( p )  -+ 0 as p -+ 0. We then define 
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where 

We assume the functions a,(x), b,(x) in the structure condition (1.2) are in 

such spaces with certain t(p). More precisely, we will assume when p < Q that 

ai(x), b3(x) E L Q , ~ - ( n )  for some a > 0, i = 2,4; j = 1,2 ,3  

and 

ai(s)  E L ~ ( o ) ,  ?: = 1,3,  

and we in this case set B = B 3 p ( ~ O )  and 

When p = Q, we also assume a l (x) ,  a3(x) E LQ,~O(fl) and set for B = B3p(xO) 

If p > Q we assume that all a;, bj are in Lp(R) and set 

Remark: If we only assume ~ ( p )  > 0 satisfies a certain Dini condition, i.e., 

J,' ?dp < co, then the proofs of all the Theorems proved in [I31 still hold 

with minimal modifications. 

The main theorems of this note are the following: 
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Theorem 0.7 Let 1 < p < Q and 1 < q < 8. Assume that a3(x)  = 

ad(x)  = b3(x)  = 0 in  (1.2). Suppose that R is a W1lP-extension domazn and let 

u E W1?P(Q) be a weak solution of (1 .1 ) .  Then for any point s o  E R there is a 

constant C depending on so, the structure condition (1.2), p,q, I I ~ l l ~ , n ,  and R 

such that 

IIu - 4xo) l lq ,n  I C l I X ~ l l ~ , n  

Since we do not know so far if a metric ball is an extension domain with 

respect to the vector fields, the following theorem becomes interesting and 

nontrivial. Moreover, Theorem (1.8) below holds for the endpoint q = &. 

Theorem 0.8 Let I < p < Q and 1 I q 5 E. Assume that a 3 ( x )  = a 4 ( x )  = 

b3(2) = 0 in (1.2). Suppose that E C 0 zs any metric ball. Let u E W 1 i P ( R )  be 

a weak solution of (1.1). Then there is a constant C d~pending on the structure 

condztion (1.2), p, q ,  IIullq,~>, and R such that for any point xo E i E  

where p(E) is the radius of E .  

The following remarks are in order: 

Remark 1: In theorem (1.8), we assume xo E iE, where i E  stands for the 

ball with the same center as E but with half the radius of E. However, is 

not essential and can be replaced by any number less than 1. 

Remark 2: The main feature of Theorem (1.8)  is that the integral on the 

right side is over the ball E. It is easy to see that one can replace the Lq 

norm on the left hand side by the LCo norm when we replace the domain of 

the integration on the right side by a E  for any cu > 1. However, the constant 

C = C(cu) there will blow up as cu goes to 1 (see Lemma (2.1)). Theorem (1.8) 

says that cu can be taken to be 1 if q 5 $$ with bounded constant C in the 
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inequality. We also note that Theorem (1.8) actually holds for all subsolutions 

too since the proof only involves the mean value property. 

Remark 3: The proof of Theorem (1.7) adapts a well-known compactness 

argument (see for example Ziemer's book [19] and also [18]) while the proof 

of Theorem (1.8) needs a covering lemma argument. We need the Rellich- 

Kondrachov compact embedding theorem in the subelliptic context derived in 

[12] to prove Theorem (1.7). The above theorems also hold for all Q < p < m 

and for any 1 < q < m. We shall not state the results. 

Remark 4: The dependence of the constant C in the Poincare inequality on 

the structure condition (1.2) in Theorems (1.7) and (1.8) above, and also in 

Theorem (1.9) below, is as follows: C depends on Xp which is only dependent 

on the appropriate norms of coefficients of the differential equations (see (1.4)'  

(1.5) and (1.6) ), and C is uniformly bounded in p; note that X is defined as 

in (1.4)' (1.5) and (1.6). 

We also state the following theorem when the domain satisfies a certain 

chain condition (see the definition in Section 2). The proof will be similar to 

that of the case over the metric ball. 

Theorem 0.9 Let 1 < p < Q and 1 < q _< &. Suppose that R is a chain 

domain and let u E WIJ'(R) be a weak solution of (1.1) below. Then there is 

a constant C depending on the structure condition (I.!?), p,q, I I ~ l l ~ , n ,  and R 

such that for any point xo E Bo, where Bo is the central ball in the dejinition 

of chain domain (see Section 21, 

We now define the notion of solutions, subsolutions and supersolutions of 

the equations (1.1). A function u(x) is said to be a weak solution of (1.1) in 

R if u(x) E w,:: and 

{xm - A(x, u. Xu) - mB(x, u. Xu)} dx = 0 
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for all bounded 4(z) E w ~ ' ~ ( R ) .  

A function u(x) is said to be a weak subsolution (or supersolution) of (1.1) 

in R if u(x) E ~ 2 '  and 

for all bounded $(z) >_ O,$(z) E wi 'y f l ) .  

We note here that if the above expressions hold for all $(x) 2 0, $(x) E 

(?,'(!I) and a,(x), b,(z) E L:,(R), u(o) E Lzc ,  then a standard argument of 

approximation will show that it still holds for a11 4(x) given in the definition. 

We need the following two theorems which have been proved in [13]: 

Mean value inequality Suppose that u(x) is a weak subsolution of (1.1) 

in a metric ball BSp c R with I u J  < M in B3p Then for any 1 < a < 3, 

for any y > p- I ,  where C = C (p, Q, ao, bo M, Xp), and m(p) and X are numbers 

defined as in (1.4), (1.5) and (1.6) (m(p) = 0 when a3(x) = a4(x) = b3(x) = 0). 

A Harnack inequality for n~nnegat~ive solutions was proved in [13] and one 

application of it is the Holder continuity of the weak solutions of (1.1). 

Holder continuity Suppose that u(x) is a weak solution of (1.1) in R 

which is also locally bounded (assuming IuI < M). Then u(x) is Holder con- 

tinuous in Q and if B,, c R then 

for all Bp c Bpo and some /'3 > 0, and C = C ( p ,  Q, UO, boM). 

1 Proof of Theorems (1.7) and (1.8) 

We first prove Theorem (1.7) by adapting the compactness argument together 

with the mean-value inequality and Holder's continuity of the solutions (see 
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Ziemer [18]-[19]). The proof of Theorem (1.8) will differ from this and uses a 

covering lemma argument (and then keeps the endpoint result q = &). We 

mention some related results in this line, see for example, [I], [2], [4], [7], [8], 

[ l l ] ,  etc. 

Proof of Theorem (1.7): Let q < 8. Suppose the theorem is false. Then 

for any positive integer j there is a weak solution u, such that 

If we set q ( x )  = u j ( x )  - u,(xo), then ~ ( x )  = ~ ( x )  is a weak solution of an 

equation of the form (1.1): 

Thus the equation above for % j  has the same structure as those satisfied by 

uj except the coefficients can depend on the constant uj(x0) which is bounded 

by I I ~ j l l ~ , ~  by the mean value inequality (1.10) because m(p) = 0 under the 

assumption that as (x )  = a 4 ( x )  = b3(x) = 0. For simplicity we drop the 

"bar" from A, B, u ( x )  and simply write A, B, u ( x ) .  Therefore, we may assume 

uj(xo)  = 0 by replacing uj(x0) by uj - uj(x0). We may also assume that 

IIu3 lla,n = 1 by replacing uj by 
" Thus we have -. 

with I ( ~ j l ( , , ~  = 1. Since we have assumed that R is an extension domain, then 

we can extend each uj to be defined on some 0' containing with 

Since llXu,llp,n + I I u ~ ~ I , , ~  is bounded, llX~,ll,,nr + lJu,l(,,n~ is also bounded 

by a constant, i.e., uj have bounded Sobolev norm in W1>P(R'). Then we can 
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pick a subsequence (still called u j )  such that u j  converges weakly t,o some 

u E WIJ'(R'). 

Therefore by the Rellich-Kondrachov compactness theorem for vector fields 

proved by the author in [13] one can get, since C R', 

We note ( ( X ~ , l l , , ~  -+ 0 as j -, co and IIujllq,n = 1 by assumption. There- 

fore we get I I u I I ~ , ~  = 1 and IIXu((,,n = 0. 

Since each u, is Holder continuous on any compact subset of fl by (1.11), 

we then conclude that {u,} are uniformly bounded. By Ascoli's theorem, there 

is a subsequence of u, converging to u uniformly on each compact subset of 

R. Therefore, u ( x o )  = 0. But ((Xull,,n = 0 so u = constant a.e, and then 

u(x)  = 0 for all x E R since u(x0) = 0, which is a contradiction to 1 1 ~ l l ~ , ~  = 1. 

Q.E.D. 

Before we prove Theorem (1.8), we need the following lemma: 

Lemma 1.1 Let K be any compact subset of R. Assume a 3 ( x )  = a4(x) = 

b 3 ( x )  = 0. Let I 5 p < co. Suppose that B = B ( x , r )  c R wzth x E Ii c R 

is any metrzc ball. Let u E W1gp(R) be a weak solutlon of (1.1).  Let ct be a 

constant uizth (Y > 1 .  Then there is a constant C dependzng on a ,  the structure 

condztzon (1.2), p, q and IIuIlq,fi, and SZ such that for any poznt xo E B and for 

all 15 q 5 oo, 

where p(B) is radius of B and CYB stands for the ball concentric with B but 

wzth radius a p ( B ) .  

Remark: The proof provided below actually shows that (2.2) holds by replac- 

ing p on the right-hand side by any t > p - 1. 
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Proof: We note that in this case m(p) = 0. By the mean value inequality 

(1.10) of the solution u ,  we have for any xo E B and cu > 1, 

sup , u ( r )  - u ( x o )  4 C ( o )  ( ~ l ~  l u l t )  ' ,  for  a l l  i > y - 1 (1.3) 
xEB PI 

where C ( a )  is a constant and usually blows up as cu -+ 1. If we set ~ ( x )  = 

u ( x )  - U,B, where u , ~  = -!- JOB u ,  then u ( z )  is a weak solution of an equation 14 
of the form (1.1): 

where z ( x ,  n, g )  = A ( x , u  + U,B, 7 )  and B ( x ,  'ii, 7 )  = B ( x , E  + u , ~ ,  q ) .  

Thus the equation above for TT has the same structure as that satisfied by 

u except the coefficients can depend on the constant u , ~  which is bounded by 

I Iul i q l n  by the mean value inequality (1.10). For simplicity we again drop the 

"bar" from A, B, u j r )  and simply write A, B, u ( x ) .  

Thus we have for any t > p - 1  by replacing u  by u  - u , ~  in (2.3) ,  

The right-hand side of the above is bounded by the Poincare inequality by 

Therefore 

by taking t = p. The case for any 1 5 q < m then follows immediately. 

Q.E.D 

We give now a defintion of Chain domain: 

Defintion: A domain R C Rn is called a Chain domain if there exist constants 

M > 0, p 2 1 and a family 3 of disjoint metric balls B  such that 
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(i) = UBEF 2 8  

(iii) CBEFxlos(z)  5 M x n ( z )  for all z E X. 

(iii) There is a so-called "central ball" Bo E F such that each ball B E F can 

be connected to Bo by a finite chain of balls Bo,. . ., B I ; ( ~ )  = B in such a way 

that 2B,n  2B,+, + 0 and 48 ,  n 4B3+1 contains a metric ball D, whose volume 

is comparable to those of both B, and B,+l 

(iv) Moreover, B C p B, for all j = 0,1, . . ., k (B) .  

The explicit numbers 2 , 4  and 10 are not essential here and are chosen just 

for simplicity. 

Lemma 1.4 Let E = E ( t l r r l )  c JZ be a metric ball. Then E is a Boman 

chain domain. 

This lemma has been verified in [I l l .  

Let E be a metric ball in JZ c Rn. Let B E F ,  where F is the decomposition 

of E as in the definition. A Lipschitz curve .y connecting two points x , ~  E R 

is called admissible if 

with ELl a:(t) 5 1. Then 

~ ( z ,  y )  = inf{b : 3 a n  admissible curve y : [0, b] + R connecting z and y } .  

We now define ys as an admissible path from the center 178 of B to (the 

center of E) of length 5 r l .  Denote the subset of E defined by the image of 

yB by yB as well. This path may not be unique, but will be fixed throughout 

this paper. Denote F ( B )  = { A  E : 2 A n y ~  # 0). 

We will need two technical lemmas. 

Lemma 1.5 Given 1 2 p < m. Let {B,} be an arbitrary family of open 

metric balls in (R,e)  with pB, c R and {a, ) ,E~ be nonnegative numbers, 
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where p 2 1 is a constant. Then 

where C is independent of {a,) and {B,}. 

The proof is standard. We omit it here. 

Lemma 1.6 If p 1 1 ,  then for any metric balls I and B with I c B c S1 we 

have 

provided that 1 5 q 5 & and p ( B )  5 1-0 for some ro  > 0 .  

This lemma is proved in [lo].  It is lemma (6 .12)  in [lo]. 

Proof of theorem (1.8): We set here f ( x )  = u ( r )  as the solution to the 

differential equation (1.1). Fix the central ball Bo as in the lemma (2 .4 ) .  We 

also denote the center of the ball B as SB It is clear that we only need to 

show the theorem for xo = XB,. For any other zo E Bo the theorem follows 

by the mean value inequality and the Poincare inequality by considering the 

difference f ( x o )  - f (xB,) .  We then have 

= I + I I .  (1 .7 )  

We note by Lemma (2 .1 )  (taking cr = 2) ,  

for any given B E 3. Now fix temporarily B E .F and consider the chain 

F(B) = { A l , .  . ., ilk(B)) constructed in lemma (2.4). Thus 
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Since by the chain condition B C pAI for each A, E F ( B ) ,  we then have 
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Since xAE3 '.A(() 5 C, we have 

Therefore, by Lemma (1.9), 

In the  last inequality we used the fact q 2 p, 8A c E and C A E F ~ a ~ ( ( )  5 C ,  

and in the one next to  the last we used lemma ( 2 . 6 ) .  

For the term I in ( 2 . 7 ) ,  the estimate is the same by replacing 4A by 2A in 

the- estimate of I I .  Indeed, 

2 Remarks on Poincar6 type inequalities for 
solutions of degenerate subelliptic equations 

We now define the weighted Sobolev space Wd,J'(R)  to be the completion of all 

Lipschitz (or smooth) functions f under the norm 
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We also define W;$(R) as the completion of Lipschitz functions with compact 

support (or functions in the class C F ( R ) )  under the above norm I (  . I lw5~(n).  

Let 12 be an open and bounded domain in Rn. We say R is a W$p- 

extension domain if there is a domain R' c Rn containing a and an op- 

erator T : W;p(R) + W;$(R') such that T f ( z )  = f ( x )  a.e. in R and 

IlTf l lw; ,PcnO 5 Cll f llw2pcn) with C independent of f .  

Let Xf be the adjoint of Xi. We will consider the differential operators 

and 

where the coefficients aij are measurable. real-valued functions whose coeffi- 

cient matrix A = (a;,) is symmetric and satisfies 

whare < ., . > denotes the usual dot product, and w E A2(R) is a Muckenhoupt 

Az weight in the metric space (0, Q). 

We then have the following theorems: 

Theorem 2.2 Suppose th,at n is a WA12-extension dom,ain and let u E WAs2(n) 

be a weak solution of L.u = 0 (or Lu = 0). Let 1 5 q < $ S for some S > 0 

derived in Theorem 6' of [13]. Then for any point xo E n there is a constant 

C depending on the A2 constant of w, q, ((u((,,,,n, and R such that 

Theorem 2.3 Suppose that E C R zs any rnetrzc ball. Let u E W i $ 2 ( R )  be a 

weak solution of Lu = 0 (or &u = 0). Let 1 5 q < 6 + 6 for some 6 > 0 (spe 
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Theorem B in [13]). Then there is a constant C depending on the A2 constant 

of w ,  q,  II~11~,,,n, and R such that for any point x0 E i E  we haue 

Remark: The weighted L2 norm on the right-hand side of the above inequal- 

ities can be replaced by weighted LP norms for any p 1 1 with appropriately 

selected q provided u E WA,P(R) WA'2(R) because the mean value inequality 

for the subsolutions holds for any 0 < p < m (see Theorem (7.5) in [Ll]) .  

The proofs of the above two theorems will follow the pattern of those in 

Section 2 and adapt the weighted version of the Rellich-I<ondrachov compact 

embedding theorem (see [12]) and the mean-value inequality and Holder con- 

tinuity derived in [lo]. One also needs an adaptation of the covering lemma 

argument. We omit the details here. A theorem similar to Theorem (1.9) also 

holds but we shall not state it. 

Added in Proof: After this paper was submitted for publication, we learned 

that Ziemer's result for X, = 2 can be extended to the case p < 1 (see the 

work of S. Buckley and P. Koskela, Indiana Journal, 1994). The main result 

of our present paper for Hormander's vector fields has also been shown to hold 

for p < 1 in the forthcomi~lg joint work of us. 
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