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COMMUN. IN PARTIAL DIFFERENTIAL EQUATIONS, 17(7&8), 1213-1251 (1992) 

EXISTENCE AND SIZE ESTIMATES FOR THE 
GREEN'S FUNCTIONS OF DIFFERENTIAL 

OPERATORS CONSTRUCTED FROM 
DEGENERATE VECTOR FIELDS 

Guozhen Lu 

Department of Mathematics, 253-37 

California Institute of Technology 

Pasadena, CA 91125 

1 Introduction 

Let R c R~ (d > 3) be a bounded, open and connected domain and 

XI ,  X, be C" vector fields satisfying Hijrmander's condition on a neigh- 

bourhood of n, i.e., there is a positive integer s such that all the commu- 

tators of XI , .  . .,X, up to order e span the tangent space of Rd at every 

point of R (see [HI, [RS] or [NSW]). 

There has been much important work for the existence and estimates of 

the fundamental solutions for subelliptic operators formed by vector fields. 

Copyright O 1992 by Marcel Dekker, Inc. 
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In [Fo] Folland obtained the fundamental solutions for the homogeneous o p  

erators on the nilpotent groups. Since the Rothschild-Stein lifting theorem 

for vector fields was proved in [RS], the fundamental solutions for differential 

operators formed by the general vector fields satisfying Hormander's condi- 

tion have been studied in [NSW] and [Sa]. In particular, Sfinchez-Calle [Saj, 

and Nagel, Stein and Wainger [NSW], Fefferman and Sanchez-Calle [FeS] 

proved the estimates for the Green kernel for sums of squares of vector fields 

and certain subelliptic operators. Later on, Jerison and Sknchez-Calle [JS], 

and Kusuoka and Strook IKS] obtained the size estimates for the heat kernel 

for certain classes of subelliptic differential operators. We refer the inter- 

ested reader to the above papers and references therein. The results cited 

above were in principle for differential operators with smooth and "ellip- 

tic" coefficients for the leading terms. Thus it seems interesting to study 

the differential operators formed by vector fields with nonsmooth and even 

unbounded coefficients. 

The purpose of this article is to deal with the existence and bounds 

estimate for Green's function of the degenerate differential operators 

where Xi* denotes the adjoint of Xi and the coefficient matrix A = (a i j )  

satisfies 

(1.1) c-'w(x)IEI~ r< A<,( >I cw(x)lr12,r E R ~ .  

Here, < ., . > denotes the dot product in Rm and w is a nonnegative func- 

tion which will be specified later. The representation of the solutions to L is 

proved. We also show a Rellich compact embedding lemma in the weighted 

Sobolev space for the vector fields which is of special interest. We also re- 

mark out that when the coefficient matrix satisfies even stronger degeneracy 
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GREEN'S FUNCTIONS OF DIFFERENTIAL OPERATORS 

assumption, say, 

where wl, w2 satisfy certain conditions such that the Poincare-Sobolev in- 

equality holds (see [Ll]), then we can also obtain the existence and bounds 

estimate for the fundamental solutions for the operator L by mimicing the 

proof of the present work. We do not intend to do so here. 

Precisely speaking, we shall show that a Green function for the oper- 

ator L exists and will also derive the local interior estimation for its size. 

By "Green's function for R with pole y" we mean a function G(x, y) = 

Gy(x),x, y E 0, which solves LGY = 6, in the weak sense, i.e., 

where Lipo(R) denotes the class of Lipschitz continuous functions supported 

in R and X f = (Xl f ,  X, f). Moreover, GY vanishes on the boundary dR 

in the sense that it is the limit, in appropriate norm, of functions supported 

in 52. We shall also obtain the representation of the solution u to 

Lu = f in R, with u = 0 on aR, 

in terms of a potential off  which has G as its kernel. 

Before we state our main theorems in this paper, we like to introduce 

some notations and definitions. Throughout this paper we will always as- 

sume that w € A2(R, @), for the metric Q defined by vector fields XI ,  -.., Xm 

(see [Ll]) i.e., 

(& /B w) (& /B w-l) < c fm all metric balls B c R, 

For an example of A2 weight on the Heisenberg group, we refer the reader 

to [Ll]. We will denote cB the ball with the same center as B and c times 
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as large. We will also denote B(x, r ) ,  BI(x, r) or B,(x) the metric balls 

defined in [NSW] with center x and radius r. For the definitions of these 

metric balls, we refer the reader to [NSW]. We will work on different metric 

balls whenever necessary. As we proved in [Ll], w E A2 implies that for any 

balls B= Bh(x) C R, 

for some q > 2. We shall also denote o = and so = s, then o > 1,l < 
so < 2. 

For 1 5 p < oo, we use the notation 

Y = { f : Ilf l l  LL = (/, if (x)l~w(x)dx) lip < 001 

and we write LP for w = 1. 

We shall also adopt the notation X = Xt,, for the Banach space which 

is the closure of Lipo(0 )  with respect to the norm 

where lX f 1 = ( z z 1  I X ;  f For 1 < s < cm, define sf by l / s  + l / s f  = 1. 

Since we only consider the local interior estimates for Green's function, 

we will derive the existence and estimates of Green's function for a small ball 

B inside Sl when the pole lies in the middle half of B. The important point 

here is that all the constants below will be independent of balls B inside 0, 

but only dependent on the domain R, the geometry of the metric defined 

by the vector fields, the degeneracy constant for the matrix A = (ai i )  and 

the A2 constant for the weight w. 

We now are ready to state the main result in this paper. 

Theorem 1.3 Suppose that w 6 A2(0, p) ,  and A is a symmetric mat& 

which satisfies (1.1). Let E cc R and let B = BR(xO) be a ball with 
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GREEN'S FUNCTIONS OF DIFFERENTIAL OPERATORS 1217 

xo E E and B C R. Then for almost every y E i B ,  there is a nonnegative 

function G(x, y), x E B, which satisfies 

(i) G E X i, fo r t  < a and s < so, and the size of the norms are uniform in 

y; that is, 

ess sup [/g G(x, y)'w(z)dx + IXG(X, y)~'w(~)dx] < m 
~ E ) B  

There are two Hilbert spaces Ho and H associated with the operator L. The 

definitions and properties are discussed in [Ll]. For completeness, we will 

introduce them briefly in section (2). We recall that Ho consists of elements 

of H which vanish at dB in an appropriate sense, and that the inner product 

ao(u, 4) on Ho satisfies 

if u, 4 E Lipo(B). Moreover, ao(u, 4) can be defined for u, 4 E H, and there 

are associated functions Q, 4 E L;(B) (even L ~ ( B ) )  such that Xi?, ~d E 
L;(B) and 

S(U, 4) = 1 < AXQ,XJ > . 
B 

An argument based on the Lax-Milgram theorem shows that if f l w  E 
L?)'(B) and the assumption of Theorem A holds, then we can solve the 

problem 

(1.4) L u =  f in B,with u = O o n b B ,  
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in the sense that there exixts u E Ho with 

L L will refer to u as the Lax-Milgram solution of (1.4). 

Likewise, if F is a vector with (F(/w E L ~ ( B ) ,  it is possible to solve 

(1-5) Lu = X*F in  B, with u = 0 on d B ,  

in the sense that there exists u E Ho with 

where X * F  = CgJX,'i, F = (F l , .  . ., F,). We shall refer to u as the 

Lax-Milgram solution to (1.5). 

The following is the represention theorem of solutions to  operator L in 

terms of G. 

Theorem 1.6 Let w E A:! and assume (1.1) holds. If f / w  E L;(B) for 

some t < a and u is the Lax-Milgram solution to (1.4), then 

1 
y = J G ,  y for a.e. y E -B. 

B 2 

Furthermore, i f  5 E L ~ ( B )  for some s < 5 and u is the Lax-Milgram 

solution of (2.5)) then 

The proofs of theorems (1.3) and (1.6) need the mean-value and Harnack 

inequalities and also the following Sobolev inequality 

for B = B ( x , r )  or B = B ~ ( x , r ) , x  E E cc R,r 5 TO,  with cindependent 

off ,  B. The number q is the same as in (1.2). 
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GREEN'S FUNCTIONS OF DIFFERENTIAL OPERATORS 1219 

This paper is the continuation of our previous work [Ll]. In [Ll], we 

proved the Poincar6 and Sobolev inequalities with two weights wl, wz sat- 

isfying certain condition. A uniform Harnack's inequality and mean value 

inequalities are also derived in [Ll] for the following two types of differential 

operators: 

The proof of Theorem (1.3) and Theorem (1.6) relies on adapting the meth- 

ods of finding out first the approximate Green's function developed in [CW] 

to our case. In [CW], the existence and size estimates for green's function 

a are proved for the operator L = x,";=l f ( ~ ~ ~ ( x ) ~ )  in the case of unequal 

weights. The proof of the same problem in the setting of equal weights was 

given in [FJK] (for uniformly elliptic case, see [GW] and [LSW]). Thus, our 

result here extends the one in [FJK] in the sense by letting Xi = &, m = d. 

As an application of this paper, we have shown in [L2] the Harnack inequal- 

ity for a class of strongly degenerate Schrbdinger's operators formed by the 

general vector fields satisfying Hbrrnander's condition: 

for the potential V in the so-called Kato-Stummel class. We also like to 

point out that the Relich compact embedding lemma (2.6) for vector 

fields is of independent importance. 

2 Weak maximum principle, and Rellich's 

embedding lemma for vector fields 

Throughout this section, we assume that R' is a subdomain of R and so 

small that the Sobolev inequality holds on a ball Bo containing 0'. The 
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results obtained in this section will apply to any small ball inside Q. The 

constants appearing in all the inequalities below will be independent of the 

particular ball but only dependent on w, the vector fields, and 0. 

As in [Ll], let 

where ~ i p ( p )  as usual denotes the class of Lipschitz continuous functions 

on the closure of R'. Then by the degeneracy condition (1.1), 

It  is easy to see that ao(u,q5) is an inner product on Lipo(Q1) by the as- 

sumption that XI,.  . ., X, satisfies Hormander's condition (see the proof in 

[Ll]) Hence ao(u, u) is a norm on Lipo(Q1). We note that 

and also note that 

I < Ax, y > I I< Ax,x >'I2< Ay, y >'I2 

since A is symmetric. 

We define Ho = Ho(flf) to be the completion of Li;po(R1) with respect 

to the norm ao(u, u). Thus an element of Ho is an equivalence class of the 

Cauchy sequences {uk) , uh E Lipo(Q1). 

If u, 4 E HO with u = {uk) and 4 = {(bk), uk, mk E Lzpo(R1), it is easy to  

check that ao(uk, &) converges, and we define 

Thus we see that llullo = ao(u, u)'I2 is a norm on Ho. 
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GREEN'S FUNCTIONS OF DIFFERENTIAL OPERATORS 1221 

As noted in [Ll], we can associate to each u E Ho a unique pair (C, XO) 

so that if u = {uk), then uk + 6 in L% (even in L:) and Xuk -+ XO 

in Lt .  This is because the fact that Sobolev inequality holds on a ball 

Bo containing 0'. We can also argue as in [CW] and show that Xii is the 

distributional "gradient" of L, that is, 

where X'4 = (Xi4, - a ,  XG4). 

The Hilbert space H = H(R1) is also introduced in [Ll] . H = H(R1) is 

defined as the completion of Lip@) with respect to the inner product 

Several facts about H are given in [Ll]. In particular, Ho can be viewed as 

the subspace of H, that is, the inclusion map from Ho to H is continuous 

by the Sobolev inequality. Furthermore, if u E H, u = {uk), uk E Lip@), 

then uk converges to 6 in L: (thus in L:) and Xuk converges in L% to a 

vector XO. It is also easy to see that if 4 E H, 4 = { 4 k ) ,  then the limits 

a(u, 4) = lima(uk, &) and ao(u, 4) = limao(uk, &) exists and the following 

holds 

a(., 4)  = 9 ( u 1  4) + /nf ~ k ,  

and a(u, 4) is an inner product on H. 

Now we state the following 

Lemma 2.1 Let u, 4 E H and let Xii and XJ be the associated ('gradient" 

to u and 4, respectively. If u = {uk) and 4 = {&), then 

In particular, 

a0(u, 4) = 1, < AXL. XJ > 
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In our case, the proof is almost the same. 

We recall u E H is nonnegative, or u 2 0, in R' if u can be represented 

by a sequence {uk), uk E ~ i ~ ( p ) ,  UI, > 0 in 9'. It is easy to see that if 

u 2 0, then ii 2 0 a.e. in R'. We now give the definitions for solutions, 

supersolutions and subsolutions. An element u € H is called a solution of 

Lu=O if ao(u, 4)  = 0 for a11 4 E Ho; u is called a subsolution if ao(u, 4) < 0, 

for all 4 E Lipo(Rr), 4 2 0; u is called a supersolution if -u is a subsolution. 

We also review two results proved in [Ll]. First, if u is a solution in H(2B), 

then the following mean value inequ'ality holds 

Furthermore, if u 2 0, then we have the following Harnack inequality 

(2.3) ess sup ii 5 c ess inf 6. 
B B 

The next three lemmas will be essential throughout this paper. 

Lemma 2.4 (Weak Maximum Principle) Let u be a supersolution in 

H(R') to Lu=O. Let u = {uk),uk f ~ i ~ ( p ) ,  and assume uk 2 0 in some 

neighbourhood of OR' (depending on k). Then ii 2 0 a.e. in 0'. 

Proof: Let ul, = - min{uk, 0). Note that ul, E Lipo(R1) since uk 2 0 near 

dR'. It is easy to see that Ilu; 11 Ho is bounded since llukll is bounded. Thus 

we can select a subsequence u;, converging weakly in Ho to some 9 E Ho. 

Since u is a supersoiution, 

lim ao(ukj , u;, ) = lim ao(u, u;) = a0(u, 9) 2 0 



D
ow

nl
oa

de
d 

B
y:

 [W
ay

ne
 S

ta
te

 U
ni

ve
rs

ity
] A

t: 
19

:3
0 

2 
A

ug
us

t 2
00

7 

GREEN'S FUNCTIONS OF DIFFERENTIAL OPERATORS 

Thus 

lim < AXukj ,  Xu,,. >> 0, 1 
which implies 

lim J < AXUG,XU& >j O. 

Therefore, we have that (IXuij(lL% -+ 0, By  extending u6  to the ball Bo 

containing R' and applying Sobolev's inequality, we see IIukj ( I L Z ,  -' 0. But 

we have UG + (C)- in L: since ub -, C in L:. Thus (O)- = 0 a.e. in R' 

and we are done. 

Lemma 2.5 Let B1, B2 and B3 be balls with a common center and radii 

rl , T P ,  r3, respectively, and satisfying rl < r2 < r3. If 4 E H(B3) and 8 5 1 

a.e. in  B3\B1, then given L > 1, there exists q5k E ~i~(z )  such that q5k -t 4 
in H(B2) and q5k 5 L in some neighbourhood of dB2. Moreover, if u is a 

solution in H(B2),u = {uk) ,  and if uk < 4k near dB2 for these &, then 

ii 5 L a.e. in  B2. 

The proof of lemma (2.5) is similar to the proof of lemma (2.7) in [CW]. In 

fact, the proof given in [CW] not only works for three balls BI ,  B2 and B3 

but also for any three proper subdomains R1 c R2 C R3. 

Next we prove a version of Rellich's imbedding lemma adapted to our 

situation. 

Lemma 2.6 (Rellich) Let w E A2. Let { f j )  be a sequence offunctions 

supported in R having the property that 

Then for any compact subset K C R, there exists a subsequence { f k j )  such 

that { f k j )  converges in L$(K)  for any 2 5 q* < q, where q is the exponent 

in the Sobolev inequality (1.7) 
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Proof:  As in [RS], we lift Xi to 2i for i = 1,. . ., rn and define f(() = f (r), 

G(<) = 4 5 )  for .$ = ( ~ , t )  E 6 = 0 x T, where T is a unit ball in R~ for 

some d > 0 (see (RS] for details about the lifting of vector fields). We also 

denote K = K x T. Since x ~ S  = Xi f ,  we have 

Now we drop all the tildes for simplicity. We pick q5 E CF(G), supp{#) c 

{IA r 
JG 4 = I, 0 --< 4 --< 1, where G is the graded nilpotent Lie group as in [RS]. 

For < E K and t small enough, we define 

where I&) = t-Q4(~5~-1 y) and is the dilation on G, and Q is the homo- 

geneous dimension of G ( see [RS] ). Then, if let f  (e) = f j ( e )  and denote 

e(5, q) = I@(<, dl, by (2.7) we have, 

where C is independent of f,  t. 

Let a = (il,. . .,ik), define XQ = [Xi,, [. . a ,  [Xi ,-,, Xi,], . . -11 and denote 

by la1 = k the length of X,. We note (see [J]) 

where IFLI < ct, supp FL C {(<, 7) : e(<, 7 )  I ct), and 4ia = Di& for some 

differential operators Die as defined in [J]. Then by (2.7) again, 
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GREEN'S FUNCTIONS OF DIFFERENTIAL OPERATORS 

with C independent of f  and t. Therefore 

( X ,  f ' ( < ) I  5 ~ t - ~ + ' - l ~ l ,  

Replace f (0 by h(()  = g, where g([) = B(<, 0). and B((, 4 9 )  is defined 

by 

((6;' o 00 -I )  * t-Qdq = B(<, 6ty)dy 

and note that 

9 E C w ( B ( t , c t )  x { I Y (  < l ) ) , a n d g =  1 o n  B(<,ct) x (191 < 1) 

(see [J] also). Since 

Ih(0l S clf (01 and IXih(<)l I 4 l X i f  I +  I f  0 ,  

the previous computation shows that 

Ih(()l 5 ct-Q and  IX,ht([)( < ~t-~+'-l"l 

Note now, 
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But we note that 

where F* is the Hardy-Littlewood Maximal function with respect to the 

pseudo-metric defined by ~ ( 5 , q ) .  Since w E A*, by a theorem in [Ca], 

with C independent o f f ,  t. By the above, 3C independent of j and t such 

that 

If we note {Xa) la lL  spans the tangent space of Rn, then 

So by Ascoli's theorem, we can obtain a subsequence {hk) convergent in 

L i ( 6 ) .  Integration with respect to the variables t shows that the same 

subsequence { fjk ) converges in Lt(R).  

Now let q > 2 be the exponent in the Sobolev inequality. For 2 < q* < q, 

there exists some 0 < c < 1 such that $ = 5 + y. Thus 
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GREEN'S FUNCTIONS OF DIFFERENTIAL OPERATORS 

Now, 

[ I f , ,  - f j r l ( ~ ~  + O  a s j ,  1 - rn  

By Sobolev's inequality and the hypothesis in our lemma, we have 

Thus in (2.8) above the first term on the right in the inequality goes to zero 

while the second term on the right is uniformly bounded. This establishes 

the convergence of f j ,  in LC. 

Q.E.D. 

By adapting the above proof to the case w = 1 and also use the Sobolev 

inequality without weights proved in [Ll], we will get the following 

Lemma 2.9 Given 1 c p < Q.  Let { f , )  be a sequence of functions sup- 

ported in R having the property that 

Then for any compact subset K c 0, there exists a subsequence { f k j )  such 

that { f k j )  converges in Lq'(K) for any q* < q, where q = $$ is the ex- 

ponent in the Sobolev inequality proved in [Ll] and Q is the homogeneous 

dimension of G. 

We record lemma (2.9) here just for the future reference and there is no 

value to the present article . 

Corollary 2.10 Lemma (2.6) holds as stated i f  we replace the hypothesis 

that {fj) have support i n  St by the alternate hypothesis that 3 f j k  supported 

in R such that f j k  -+ f j  and X fj, -r X f j  i n  Lz as k -+ m. 

The proof of the corollary is easy. We only need to  apply the previous 

lemma to the sequence f?, where for a given j, we select kj such that the 

Lt(St) norm of both f j  - f p  and X f ,  - x fp go to 0. 
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3 Estimates for the approximate Green func- 

tion GP 

In this section, we are going to define the approximate Green function for 

the operator L. 

Given y E R', where 0' defined as before. Fix BJy) = B ( y , p )  = {x E R' : 

Q(X, y) < c R, p small enough, where Q is the metric on 0. Define 

We claim that 1 is a continuous linear functional on Ho. In fact, 

For a ball BR, containing R', we get for 4 supported in Sl', 

Thus the claim follows. 

We know 

ao(u, 4) = 1 < A X u , X I  > 

is bounded and a coercive bilinear form on Ho. By the Resz representation 

theorem, there exists GP = GP*Y E Ho such that l ( 4 )  = J < AXGP,Xd >, 

GI' is called the approximate Green function for L. Now we shall study GP. 

Lemma 3.1 GP 2 0 as an element of Ho, i e . ,  3 Gg E Lipo(n1) such that 

G$ _> 0 and G$ -t GP in Ho ( Consequently, GP will be nonnegative as a 

function ). 
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GREEN'S FUNCTIONS OF DIFFERENTIAL OPERATORS 1229 

Proof: Pick Gi E Lipo(R1), 3 Gg -i GP in HQ. Now we show that for some 

subsequence {(Gk I ) ,  IGkj ( t Gp in Ho. Since (Gij 1 2 0 for each kj and lies 

in Lipo(R1), we will be done. Note that 

X(lGt1) = XG; sgn Gt; if Gi # 0 

and 

X(lGg1) = 0 if G; = 0 

holds almost everywhere. Now, 

Since IIGgIIHo -f IIGPIIHo, {IGgI) is bounded in HQ for all k. Thus 3 IGgJ -t 

h in HQ weakly. Since for any 4 E Ho, 

is a bounded linear functional on HQ, we have 

Note 

1 
= lim - 1 

G;, w 5 lim - 
4 B P )  BP 

J IG;,IW 
4 B P )  BP 

Thus ao(GP, h) > 0. Following the same proof in [CW], we have 

and thus IGtjI - GP in Ho. 
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jFrom now on, when we write GP = {Gi), we always mean G{ 2 0. We 

shall assume R' = BR(xO). We outline the suceeding steps as follows. 

(i) Obtain an estimate for w({x E B R ( X ~ )  : GP(x) > t ) )  for large t ,  which 

is independent of p, y. 

(ii) Use (i) to estimate the size of Lp,(S2') norm for GP for 1 < p < u. 

(iii) Use (ii) and the mean value inequality for nonnegative solutions to 

estimate ess  sup^ GP for B away from y. 

(iv) Estimate XGP 

We start with (i). Define, 

Thus 9 k  E Lipo(B) and 

Now we claim that (/qkl(O is bounded in k. We first compute 

It is easy to see that llQkllo is bounded in k for fixed t > 0. Therefore, 

3 \Irk + 9 E Ho weakly, thus 

and 

iim ao(Qk,, GP) = lim ao(Bkj, Gi,) = ~ ( 8 ,  GP). 
k,-+w k j - r a ,  

We thus obtain 

AXGEj XGf, 
lim <-- >= ao(Q, GP) 
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GREEN'S FUNCTIONS OF DIFFERENTIAL OPERATORS 

and 

By the definition of GP, 

Thus, 

(3.2) 

Define 4k, = logog+ + . We easily verify 
( O : )  

XGgj 
h, E Lipo(B) and X4kj = - Gi, X'"p 

By Sobolev's inequality (1.7) applied to (3.3), we see for a > 1, 

lim sup 1mkj lZUw 5 c - 
kj -a, (w$))a $ 4 ~ ) .  

Inserting the definition of 4 k  above we get, 

lim k j + ~  sup j B 1 lob+ (7) r aw  5 [XIa 
w(B) tu 

Restricting the integeration to {Ggj > 2t) we thus have, 

R~ @w(B) 
( 1 0 ~ 2 ) ~ ~ l i m  sup w ({z E B : Ggj(x) > 2t)) 5 e (-) ?a 

kj-m w(B) 

where c is independent of p, y and B, t. If we replace t by t/2, 

R2 
lim sup w({x E B : G;,(X) > t)) < c (-)a i w ( ~ )  

k , 4 m  w(B) 

We note that Gg - 6 in L:, this follows that G$, -, @' in L:. Picking a 

further subsequence (called G$, again ) such that G$, + & a.e., then 
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w < / lim inf X l , ,  ,,, w < Iim inf w 5 c ( l ) " l w ( ~ )  
& J  w(B) t" 

Hence 

(3.4) w({x E B : GP(X) > t)) < c - -w(B),t > 0. 
(w:;)) " t'. 

We now use this distribution function estimate to get control IIZ"IILPw(B) for 

p < 0. 

Consider now the case B = B,(y) c R. We argue assuming r < ro for 

some ro. Let GP = Gp9~9~. We restrict x so that r/2 < p(x, y) < 3/4r, and 

p < r/4. Note that Br14(x) C B\Bp if r/2 < p(x, y) < 3r/4. Furthermore, 

GP is a solution in B\Bp since V# E Lipo(B\Bp), 4 = 0 on Bp, and hence, 

Recall GP 2 0, thus by the mean value inequality (2.2), and because GP is 

a solution in B\Bp, 

for 0 < p < oo. By applying (3.4), we can estimate as follows: 

Thus 
r2  

w(B), if 0 < p < a. 
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GREEN'S FUNCTIONS OF DIFFERENTIAL OPERATORS 1233 

Thus by (3.5) and (3.6) we have b ( x )  < C& for r / 2  < e (x , y )  < 3r/4, 

which is equivalent to 

To sum up we have shown, 

r2 r2 
(3.7) sup G P ( X )  < C- = 

4 B r )  w(B(y1 @(x! Y ) ) )  
for P < r /4 ,  

B 3 4 4  \&/2 

where C is independent of p, y, r. 

What we really want to show is that 

rL 
ess sup @ ( x )  5 C-, p < 7-14 

~ r \ 4 / 2  wOV 
Now consider B* = B4r/3 and let (GP)* be the corresponding approximate 

Green function for B*, then by (3.7), we have 

r2 
ess sup (&)* 5 C- 

Br\B2,/3 4 B r )  
If we knew that GP 5 (GP)* in B,, then we would be done. So we need 

to show if GP, (GP)* are the approximate Green functions for two domains 

R c R* repectively, then GP _< (GP)* a.e. in R. We note that (GP)* - GP is 

a solution in R since for g5 E Lipo(Q), 

We also note that (GP)* - GP E H ( R )  and is represented by a sequence 

(G;)' - G$ and obviously (G$)* - G$ 2 0 in a neighbourhood of aSl (de- 

pending on k), then by the weak maximum principle (Gp)* - Gp 2 0 a.e. in 

R. Thus we have proved (3.8). 
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Lemma 3.9 Let B = BR(xo ) ,  y E iB, let GP be the approximate Green 

function for the ball B with pole y. If x E BR12(y),  0 < p < y, then 

where C is independent of R ,  $0, y, p, x. 

The proof just follows the lines of the proof of lemma (3.5) in [CW]. 

Corollary 3.11 For a.e. y E ~ B , B  = BR(xO) ,  where R is small enough, 

there exists c independent of p, but dependent on y, R ,  w such that if p < 
9, then 

@ ( x )  > ~ m i n { ~ ( x ,  y)2-Q, e ( x ,  y)-Z} 

where a = q/2 for q as given in (1.2) and (1.7), 0 < cr = a(y) < Q is 

dependent on y, and Q is the homogeneous dimension as i n  the proof of 

lemma (2.6). 

Proof: First of all we note by the result in [NSW] that there exists ro > 0 

such that for any x E R, there is a multiple I = (il,. . .,id) such that 

for some c > 1 independent of x and 6 < ro. If we select ro even smaller, the 

Sobolev inequality will be valid on such balls (see [L l ] ) .  Thus, for a = d ( I )  

(see [NSW] or [ L l ]  for the definition of d ( I ) ) ,  we know that 

c independent of p, x, y, R. 

Performing the integration since a > d > 3, we get 
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GREEN'S FUNCTIONS OF DIFFERENTIAL OPERATORS 1235 

We now use the symbol Mw for the Hardy-Littlewood function with respect 

to the weight w. Since w E A2, by a theorem of Calder6n (see [Ca]), then 

Thus by noting that ta = JBt(y)l, we have 

< 1 
- 1 . wdx < Mw(;xBR)(y) 1 < m a.e. 

Thus 

@(x) 5 C(R1 Y)& Y ) ~ - ~ .  

For w E A2 and t < R, we also have (by (1.2)) 

which implies 

Inserting this to (3.10)) we get 

Thus the proof of the corollary is complete. 

4 Estimates for X G ~  

The purpose of this section is to derive an estimate for ( ( x @ ' ( [ ~ ( B )  which 

is uniform in p for s < so. We will prove the following 
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Lemma 4.1 Let B = B R ( x ~ ) ,  GP be the approximate Green function for 

the B with pole y. Then there is a number so with 1 < so < 2 such that 

Sg J X G P ~ ~ W  is bounded uniformly in  p for each s < so and a.e. y E $B. 

The bounds depend on s, y, B, w. 

Before we prove this lemma, we need the following lemmas. Lemma (4.2) 

below is a Cacciopolli type of lemma. 

Lemma 4.2 (Cacciopolli) Let B and GP be as above and let B, = Br(y ,  r )  

for r 5 R/2. For y E i B  and p < cr with c < 112 

Proof: By the existence of a cut off function relative to balls BI (see [Ll]), 

we can pick q such that q E 1 outside B,, q = 0 in BrI2 and 1x71 5 $. 
Thus q5k = Giq2 E Lipo(B). We can easily see that { $ J ~ }  is bounded for all 

k in Ho. Then 3 +r, + 4 E Ho weakly, and thus 

Since 4kj = 0 on Bp for p < cr for some small enough c independent of y 

(notice Bp(y) c Br(y, r/2) when p < cr for small c), thus 

Dropping the subscripts, 

= / < AXGP, XGP > $ + 1 < AXGP, 2q(Xq)Gp > . 

Thus, 
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GREEN'S FUNCIlONS OF DIFFERENTIAL OPERATORS 

So we have 

Thus 

Letting kj -, oo, and noticing that bkj -r 0, 

with C independent of y, r, p. 

Lemma 4.3 Let B, r, and bp be as above, y E ;B, B = Bll(xO), then 

given any small cl > 0, there are c2,c3 independent of y, r, p such that if 

P < W ( X , Y ) ,  we have 

where r < R/2  . 

The proof of lemma (4.3) is just a modification of that of lemma (3.9). 

By lemma (4.3), we also have, 

Corollary 4.4 Let B, r, y, a, and GP be as before, then for any q > 0 

small, 3 c;! > 0 such that for p < c2e(x, y), 

(i) ess sup &(x) < c minie(%, y)2-a, @(x, y)-S) 
clr<e(z,y)Sr 

(ii) J < AX&,XGP >< ~ r - i ,  c = C(B, y, w). 
B\Bl(~7r) 

Proof: The proof of (i) is just a modification of that of corollary (3.11). To 

show (ii), we note that there is cl small enough which is independent of y, 
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r such that Bclr(y)  c BI(y ,  r /2) .  For this cl, choose c2 as in (i). Then we 

get, 

C C 
5 - J  ( G P ) ~ W  < min {@(r, y)2-a, ~ ( x ,  y)-+j2 w(B,) 

r2 Br(y,r)\B(v,cl r )  T 

Since w  E A2, we have for a.e. y, 

Thus the expression above is a t  most T - $ c ( ~ ,  B ,  w) ,  which for a.e. y is 

finite, for the fixed r. 

We are now ready to  prove lemma (4.1). 

Proof of lemma (4.1): For B  = BR(xO),  t > 0 ,  

w ( { x  E B  : I x G ~ ~  > t } )  5 w ( { x  E B\Bl(y, r )  : ( ~ 6 ~ 1  > t } )  + w ( B ~ ( y , r ) )  

For T < R/2, we may use corollary (4.4) (ii) to  get, 

Thus for a.e. y  E ;B, 3 c  = c , ~ , ,  such that 

w ( { x  E B  : 1x61 > t } )  < c  ( t -2~-S  + w(B.)) ,T < R / 2  

But w(B,) 5 cra, thus 

W ( { X  E B  : JXGPJ > t ) )  5  c ( ~ - ~ T - $  + ra ) ,  T < R / 2  

Choose r  = t-*, which is 5 R / 2  if t > (~ /2 ) -* .  Using the choice 

of r in the inequality above we get 

20 
w ( { x  E B  : 1x6~1 > t ) )  5  ct-* = ct-"O, SO = - 

u + l  
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GREEN'S FUNCTIONS OF DIFFERENTIAL OPERATORS 

Furthermore we also have the trivial estimate, 

w ( { x  E B : 1x6~1 > t ) )  5 w(B) ,Vt  > 0. 

Thus, 

5 Existence of the Green function G 

In this section, we are going to prove (ii) and (iv) of theorem (1.3). In 

section (4) we showed that 3so, 1 < so < 2, such that for a.e. y E $B, 

X G ~  E Lk uniformly in p for s < so. We also showed (see (3.4)), 

with c independent of p, y, and t. 

Consequently, 6 p  E LI uniformly in p and y for t < a. Since Gg is 

supported in B and Gg -+ GP in L z  and X G ~  -r X G ~  in L:, it follows 

that for a.e. y E $B, 6 p  E X i ,  uniformly in p for 1 < t < a, 1 < s < so, 

where we recall that X = X , ,  =closure of Lipo(B) with respect to 

We want to show that 3 G = GY E Xtld such that GY satisfies the properties 

stated in theorem (1.3). Since JIGPJlx,,, is bounded uniformly in p, 3 GPj -+ 

G = Gy in Xi,, weakly. By using a diagonal procedure, we may assume the 

same sequence GPJ works for all t < a, s < so. 

By definition, 
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The right side of the above equality goes to 4(y) as p + 0. We claim that 

the left side goes to J < AXGY, X 4  >. If so, then we get 

1 < AXGy, X 4  >= Q(y) for 4 E Lipo(B). 

To show the claim, fix 4 E Lipo(B). Let 

l(h) = J < AXh, XQ >, h E Xt,s 

then 

So I is a continuous linear functional on Xt,s. Since GPj -+ GY weakly in 

X,,,, the claim follows. Thus this shows (ii) of theorem (1.3). Since 11611,1 
is uniformly bounded in both y and p, it shows the uniformity in y of the 

Lt, norm of G by using Fatou's lemma. In section (6), we shall prove the 

uniformity in y for the norm of XG. 

Now we want to show GPj -+ GY pointwise a.e. for some subsequence. 

Let B, = Br(y), r < R/2. By lemma (4.2) and corollary (4.4), we have 

shown 

I I G P I l ~ ~ ( ~ \ ~ , )  + I I X ~ ~ I I L ~ ~ B \ B ~ ~  L Cr 

and GPj + G in Lt(B\Br). Since Gg supported in B, G{ -, &' in L t ,  and 

X& -+ XG in Li, by Rellich's lemma (2.6), it follows that 3 a subsequence 

GPj* convergent in Li(B\Br) (the subsequence depends on r). We now show 

the limit must be G by using the similar argument in [CW]. 

Given a bounded function 4, let 2(g) = Jg4w. Furthermore, 
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GREEN'S FUNCTIONS OF DIFFERENTIAL OPERATORS 

Thus 1 is a continuous linear functional on X. Thus 

Assume that G# is the limit in L~,(B\B,) of GPjk. Then for any bounded 

4 supported in B\Br, 

Thus, for 4 picked as above, 

and it follows G# = G a.e. in B\Br. 

Summarizing, we have shown now that G P j k  -+ G in L$(B\B,) for a 

subsequence {pjk) which depends on r, pj, -, 0. Hence there is a further 

subsequence, again denoted by { p j k )  such that GPjk -+ G pointwise a.e. in 

B\B,. Letting r -+ 0 through a sequence and using repeated subsequence 

and a diagonal process, we have a fixed p,, + 0 such that GPjk -+ G a.e. in 

B. 

We have proved in section (4) that 

t2 dt 
ess sup G P ( X )  _< c 

r/2Se(zlu)<_r 

For p c 9, taking limits pi, -+ 0, we obtain 

R 
ess sup 

t2 dt 

r/21e(z,y)Ir 

We have also shown that GPjk -+ G weakly in X, and strongly in Lt(B\B,) 

for any T > 0, and GPj* + G pointwise a.e.. 

We now prove, 

ess inf G(z, y )  > e l R  t2 dt 
./2<e(xs)<r w ( B t ( ~ ) )  t 
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where r < R/4 and c independent of B, y, r. 

Let GP be the approximate Green function for B,,(y) and 0 < c,, < 
cl < Q < c3 < c4 independent of y, r be chosen such that 

For the possibility of the above containment of different metric balls, we refer 

the reader to [NSW]. Then as shown in lemma (4.2) by taking a proper cut 

off function 

2 

ess sup ep) w(Bp) . 
BI ( Y ~ P ) \ B I  ( Y , c I ~ )  B = , ~ Y ) \ B = ~ ~ Y )  

Since GP is a nonnegative solution in B,,(y)\Bp if p < csr for some small 

cs independent of y and r, Harnack's inequality holds, that is 

ess inf C?P < AX&', X &  > 
Bc3r(~)\Bc,r(~) 

Now pick 4 with 4 E 1 on BI(Y,c~T), supp(4) C Bqr(y), 1x41 5 :,Bp C 

BI(y, c 2 r )  With this choice of 4, 

Thus, 
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GREEN'S FUNCTIONS OF DIFFERENTIAL OPERATORS 

where & = &:, is the approximate Green function for the ball B = B,,,(y) 

with pole y. By lemma (2 .5) ,  3 sequence G:,& 2 C&-J near Now 

near dB,, GF,, = 0. Thus near dB,, 

We also note that Gg4,-G; is a solution in B,, so by the maximum principle, 

Now assume for simplicity that B = BR(y),  if r < 2, then choose positive 

m such that TC? 5 R < TC?+'. In BQr, 

m-l 

4 2 G " ~  = G?,,+ b2+1 -G' . 
j=1 4 I 

Thus in B3r12\Br12 a.e. 

Since w is a doubling weight, the expression on the right side above is 

Letting p -+ 0, 

ess inf G(x, y) 2 c 
R t2 dt 

Br\Br/z 

for T < 5. In case BR is not centered at  y, we note that y E i B  implies 

B 3 BR12(y) = B1 and thus we apply the estimate above to B', r < & to 

get, 

ess inf G(x, y )  >_ ess inf GBrn (x, y) 2 c 1 R t2 dt 

Br\B,/, BP\B,/2 w ( B , ( Y ) ) ~ '  
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6 Proof of the representation theorem and 

uniformity of the norms for G and XG 

Now we prove Theorem (1.6). The proof is standard (see also [CW]). Define 

( 4 )  = J 4 ,  d E HO, 
B 

then 

Thus 1 is a continuous linear functional on Ho. By Lax-Milgram's theorem, 

3! u E Ho such that 

~ o ( u , # )  = J f~ 
B 

i.e. 

Lu = f and I I u I I H o  5 cW,~llf/wllLee~r(B) 

Now selecting 4 = Gf' (with pole y), we get 

Letting p --, 0, 

Thus under the hypothesis of Theorem (1.6), 

g 4 /B fg is a continuous linear functional on Xt,+ 
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GREEN'S FUNCTIONS OF DIFFERENTIAL OPERATORS 1245 

for t < a .  Since G p j  -+ G(x, y) weakly in X for y E 4B a.e. for t < a, s < so, 

and hence, 

This proves the first part of theorem (1.6). 

The proof of the second part is similar. Indeed, 

thus there exists a unique u E H0 such that 

and also 

Chosing 4 = GP and observing that 

the result will follow as in the first part if s < so. 

Now we show 

IIGIIL~ + IlxGll~:. 2 c < 00 

uniformly in y E i B  for t < a, s < so, which will prove (i) of theorem (1.3). 

The uniformity of the first term follows from (3.4) and Fatou's lemma. But 

we now give another proof which applies to the uniformity for both llGll 
and IIXGII- 

Let u be the Lax-Milgram solution to Lu=f, u E Hot u = { u j } ,  Uj E 

Lipo(B). Let t < a and k = ( J ~  (~)~'w)'/~'. For B > 1, t < M < m, 

define 

HM(T) = 7'- kP, k -< T 5 M, 
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and 

HM(7)  = , O M ~ - ~ ( T  - M )  + M' - k P ,  T > M. 

Let Qj = uf + k. For fixed M, define 

'=, 
4 j ( ~ )  = G ( Q j ( z ) )  = J H L ( T ) ~ ~ T  

k 

It is easy to see that {&) E Lipo(B) and I l + j l l o  is bounded in j. Thus 3 a 

subsequence, denoted by r$j again, such that 4j 4 4 E Ho weakly. Thus 

/ 1 ~ ! 4 j [ ~ ~ ' ( Q j ) w  5 (71 < A X e j , X Q j  > G1(Qj 

1 
5 I f  14, + 141 5 / B  I f  l @ f G 1 ( ~ j )  + 161 . 

Thus, 
1 J txH,(Qj)l2w 6 J I ~ I  . I~h(*j)*jP + I6jI 

By Sobolev's inequality (1.7) ( noticing HM(Qj)  E Lipo(B) ) 

Note Qj  = uj + k + iit + k a.e. for a subsequence. Dropping subscripts 

and setting Q = iit + k,  we have 

(5.6.2) ( j g  I H M ( w I ~ ~ W ) '  6 C ( L  I H ; ( Q ) Q I ~ ' )  ' 
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GREEN'S FUNCTIONS OF DIFFERENTIAL OPERATORS 

Next we observe, 

where x(,,,, is the characteristic function. 

Inserting these inequalities into (5.6.2) and letting M -t m we get, 

Since ip 2 k and /3 2 1, 

Hence by Minkowski inequality we get by combining (5.6.3) and (5.6.4), 

Fort  < a, 

Since ii has compact support, by Sobolev's inequality (1.7), the expression 

on the right above is at  most, 

We now apply an iteration argument to the inequality above with the start- 

ing choice P = 1 to get Il\kllLoo(,, < ck. Thus IIG+(lLm(B) < ck. A similar 

argument also works for Q-. Applying 

and 
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we obtain 

IB G(x, y)lwdx _< C, with C independent of y. 

The argument for the uniformity in y of the size of the norm (IX,G(x, g)IIL; 

is similar. In this case, u is the Lax-Milgram solution to Lu = X * F ,  i.e., 

u E Ho and 

O ~ ( U , + / C F , X J >  ~ O T ~ E  HO. 

We assume now that s < so and E L ~ ( B ) .  Then by theorem (1.6), 

1 '  
B = ja < F(X),XG(X, y) > dz, for  ax. y E -B 

2 

Use the same test function #j as before except that now 

The analogue of (5.6.1) is 

Thus, for c > 0, 

Selecting r = 112 and using the fact that Qj  2 k, we get 

By Holder's inequality with exponent s1/2 and s'/(sl - 2), the expression 

on the right above is bounded by 
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GREEN'S FUNCTIONS OF DIFFERENTIAL OPERATORS 1249 

We now use Sobolev's inequality and let j -+ co and M -t rn as before to 

Thus. 

When P = 1 and s t / ( s ' - 2 )  < a, the expression on the right above is bounded 

by ck. Thus, an iteration argument applied to the inequality above starting 

with p = 1 shows for s < so, i.e., s ' / (s t  - 2') < a 

/g IXrG(x, y)lsw(x)dr 2 c independent of y. 
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