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Abstract. Recently, in the article [LW], the authors use the notion of polynomials inmetric spaces
(S, ρ, µ) of homogeneous type (in the sense of Coifman-Weiss) to prove a relationship between
high order Poincar´e inequalities and representation formulas involving fractional integrals of high
order, assuming only thatµ is a doubling measure and that geodesics exist. Motivated by this and
by recent work in [H], [FHK], [KS] and [FLW] about first order Sobolev spaces in metric spaces,
we define Sobolev spaces of high order in such metric spaces(S, ρ, µ). We prove that several
definitions are equivalent if functions of polynomial type exist. In the case of stratified groups,
where polynomials do exist, we show that our spaces are equivalent to the Sobolev spaces defined
by Folland and Stein in [FS]. Our results also give some alternate definitions of Sobolev spaces
in the classical Euclidean case.

Mathematics Subject Classification (1991):46E35, 41A10, 22E25

1. Introduction

LetΩ ⊂ RN be an open set andm be a positive integer. The classical Sobolev
spaceWm,p(Ω) is defined to be the collection of functionsf ∈ Lp(Ω) whose
distributional derivatives∇kf are inLp(Ω) for all integersk with 1 ≤ k ≤ m.
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This space is equipped with the norm

||f ||Wm,p(Ω) = ||f ||Lp(Ω) +
∑

1≤k≤m
||∇kf ||Lp(Ω).

Some of the most interesting generalizations of the classical Sobolev spaces are
the Folland–Stein spaces associated with the left-invariant vector fieldsX1, · · · ,
Xl over a stratified groupG. LetΩ ⊂ G be an open set. The spaceWm,p(Ω)

is defined to be the set of functionsf ∈ Lp(Ω) with distributional derivatives
Xαf ∈ Lp(Ω) for each|α| ≤ m, whereXα = X

α1
i1

· · ·Xαlil , 1 ≤ ij ≤ l,
1 ≤ j ≤ l, theα′

is are nonnegative integers, and|α| = α1 + · · · + αl. Here, we
say that the distributional derivativeXαf exists and equals a locally integrable
functiongα in Ω if for everyφ ∈ C∞

0 (Ω),∫
Ω

fX
αl
il

· · ·Xα1i1 φ dx = (−1)|α|
∫
Ω

gαφ dx.

The norm onWm,p(Ω) is defined to be

||f ||Wm,p(Ω) = ||f ||Lp(Ω) +
∑

1≤|α|≤m
||Xαf ||Lp(Ω).

In [LW], the authors studied the relationship betweenL1 to L1 Poincaré in-
equalities (i.e., (2.1) whenq = 1) and integral representation formulas involving
polynomials and high order vector field derivatives. Motivated by this and by in-
teresting recent work in [H] and [FHK] on Sobolev spaces of first order in metric
spaces,we study notions of high order Sobolev spaces inmetric spaces, including
as special examples the Folland–Stein spaces on stratified groups. Our results
extend some of the notions in [H], [FHK] and [FLW] to high order Sobolev
spaces.

The plan of the paper is as follows. In Sect.2, we list the required properties of
polynomials in metric spaces(S, ρ, dµ) and recall some results proved in [LW]
whichwill be needed. Section 3 contains the statements and proofs of the equiva-
lence of several definitions of Sobolev classes onmetric spaces(S, ρ, dµ) under
the assumption thatµ is merely doubling. In Sect.4, we prove that on stratified
groups the Sobolev classes defined in Sect.3 are equivalent to the Folland–Stein
spaces.

2. Polynomials in metric spaces

Let (S, ρ, µ) be a metric space with a metricρ and a doubling measureµ,
namely, for allx, y, z ∈ S, ρ satisfies

ρ(x, y) ≤ ρ(x, z)+ ρ(z, y),
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and the measureµ satisfies the condition

µ(B(x,2r)) ≤ Aµµ(B(x, r)), x ∈ S, r > 0,

for anabsoluteconstantAµ,wherebydefinitionB(x, r) = {y ∈ S : ρ(x, y)<r},
andµ(B(x, r)) denotes theµ-measure ofB(x, r). Such ametric space is usually
called as ametric space of homogeneous type in the sense of Coifman andWeiss.
As usual, we refer toB(x, r) as the ball with centerx and radiusr, and, ifB is a
ball, we writexB for its center,r(B) for its radius andcB for the ball of radius
cr(B) having the same center asB. We always assume that(S, ρ) is locally
compact andµ is doubling.

We now define what we will mean by polynomial functions onS. The prop-
erties that we list here are similar to those used in [LW].

Let (S, ρ, µ) be a metric space of homogeneous type, and letΩ be an open
set inS. Our results rely on the existence of a linear class of functionsP(x)

(called polynomial functions) which satisfy both
(P1) For every metric ballD ⊂ Ω,

ess supx∈D|P(x)| ≤ C1(µ)

µ(D)

∫
D

|P(y)|dµ(y),

where the essential supremum is taken with respect toµ;
(P2) IfD is anymetric ball inΩ andE is a subball ofDwithµ(E) > γµ(D),

γ > 0, then
‖ P ‖

L∞
µ (E)

≥ C2(γ, µ) ‖ P ‖
L∞
µ (B)

.

In stratified groups, including ordinary Euclidean space, (P1) and (P2) are
known to hold for polynomials (see [FS] and§4 below for the definition of
polynomials in stratified groups), with constantsC1(µ), C2(γ, µ)which depend
additionally only on the degree of the polynomial. See [LPR] and the comments
at the end of this paper for examples of functions which satisfy (P1) and (P2) in
more general situations.

In our case, the role of degree is replaced by an exponent which measures the
order of smoothness of a given locally integrable functionf in one of several
ways, such as in assuming that the following Poincar´e estimate holds forf and
a positive integerk: there existq ≥ 1 and a functiong such that for every ball
B ⊂ Ω and some functionPk(B, f ),

(2.1)
1

µ(B)

∫
B

|f − Pk(B, f )| dµ ≤ Cr(B)k
(

1

µ(B)

∫
B

|g|qdµ
)1/q

,

with C independent ofB. Typically, (2.1) may be thought of as a way to express
the fact thatPk(B, f ) is an approximation tof . In (2.1),g andq are allowed
to depend onf but not onB. The functionPk(B, f ) may also depend ong, q
andµ, and we sometimes writePk(B, f ) = Pk(B, f, g, q, µ). The important
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assumption for us will be that (P1) and (P2) hold for a linear class that contains
Pk(B, f ) for allB ⊂ Ω, with constantsC1(µ), C2(γ, µ) depending additionally
only onk. Note that if (2.1) holds for one value ofq, then it also holds for all
larger values by H¨older’s inequality.

When (2.1) holds for a givenf , we will say thatf satisfies anLq to L1

Poincaré inequality of orderk for every ballB ⊂ Ω. For a stratified group, every
smooth functionf satisfies (2.1) withq = 1 andg = |Xkf | for several choices
of polynomials of degreek−1 by the results in [L1], [L2] (see also the discussion
in [LW]), and in this case, the polynomials satisfy (P1) and (P2) as we already
noted.

Instead of (2.1), we will sometimes consider alternate notions of smoothness
of f which involve functionsPk(B, f ), but in any case, we always require (P1)
and (P2) to hold for a linear class that containsPk(B, f ) for all B ⊂ Ω, with
constants depending only onk, µ, γ .When we consider Sobolev spaces of order
m, the functions will be assumed to satisfy such conditions for every integerk

with 1≤ k ≤ m.
Another basic assumption that we make throughout this paper is that the

following geodesic (or segment) property holds inS:
(S)(S, ρ)has thesegment property, i.e., for eachpair of pointsx, y ∈ S, there

exists a continuous curveγ = γ (t) connectingx andy such thatρ(γ (t), γ (s)) =
|t − s| for all t, s.

It is easy to see that, if the segment property holds, then for every ballB with
centerxB the following is true: ifx ∈ B, there is a continuous curveγ = γxB,x(t),
0 ≤ t ≤ 1, inB with γ (0) = xB , γ (1) = x andρ(xB, z) = ρ(xB, y)+ ρ(y, z)
for all y, z ∈ γ with y = γ (s), z = γ (t), 0≤ s ≤ t ≤ 1.

We also note that the fact that the curveγ = γxB,x lies inB if x ∈ B is a
corollary of the assumed additivity ofρ alongγ . To see this, we choosez = x

in the additivity statement above, obtaining that for anyy ∈ γ ,
r(B) > ρ(xB, x) = ρ(xB, y)+ ρ(y, x) ≥ ρ(xB, y),

and thereforey ∈ B.
A special case of a result in [LW] that will be useful is given in the next

theorem.

Theorem A. Let (S, ρ, µ) be a metric space of homogeneous type in which the
segment property (S) holds. Letk be a positive integer,B0 be a fixed ball andf be
a function for which the Poincar´e inequality (2.1) holds withq = 1 for each ball
B ⊂ B0 and with polynomialsPk(B, f )which belong to a linear class satisfying
(P1) and (P2) with constants depending only onk, γ, µ. Then forµ-a.e.x ∈ B0,

|f (x)− Pk(B0, f )(x)|

≤ C
∫
B0

|g(y)| ρ(x, y)k

µ(B(x, ρ(x, y)))
dµ(y)+ C r(B0)

k

µ(B0)

∫
B0

|g(y)| dµ(y),
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whereC depends only onµ and the constants in (2.1), (P1) and (P2). In partic-
ular, C is independent ofx andB0.

We will also use a special chain of balls constructed in [LW]. In fact, letB0

be a ball in which the segment property (S) holds. Then, givenx ∈ B0, there is
a sequence{Bj }j≥1 of subballs ofB0 satisfying

(1) Bj ⊂ B0 andρ(Bj , x)→ 0 asj → ∞.
(2) r(Bj ) ≈ 2−j r(B0), so thatr(Bj )→ 0 asj → ∞.
(3) If y ∈ Bj , thenρ(y, x) ≈ r(Bj ).
(4) Bj ∩ Bj−1 contains a ballSj with r(Sj ) ≈ r(Bj ) ≈ r(Bj−1).
(5) If * < j , thenBj ⊂ cB*.
(6) {Bj } has bounded overlaps, i.e.,∑j χBj (y) ≤ c for all y.
The constants of equivalence in properties (2), (3), (4) and the constantsc in

(5) and (6) are independent ofx, j, * andB0, but the chain{Bj } depends onx.
A similar chain without the property that all the balls are subballs ofB0 was

constructed earlier in [FW].

3. High order Sobolev spaces on a metric space

The main goal of this section is to show the equivalence of several definitions
of high order Sobolev classes on a domainΩ in a metric space(S, ρ, µ) with a
doubling measureµ. We will use

∫
E
f (x)dµ(x) to denote 1

µ(E)

∫
E
f (x)dµ(x),

and||f ||Lpµ(E) to denote theLp norm off onE with respect toµ. We now list
two definitions of Sobolev classes.

Definition 3.1. Given a positive integerm and 1 < p < ∞, we define the
Sobolev classAm,p(Ω) to be the set of functionsf ∈ Lp(Ω) so that for each
k = 1, · · · ,m, there existqk with 1 ≤ qk < p, functionsgk(x) with 0 ≤ gk ∈
Lp(Ω), and polynomialsPk(B, f ) with

(3.1)
∫
B

|f (x)− Pk(B, f )(x)|dµ(x) ≤ r(B)k
( ∫

B

g
qk
k (x)dµ(x)

)1/qk

for every ballB ⊂ Ω. The polynomialsPk(B, f ) are assumed to belong to
a linear class which satisfies (P1) and (P2) with constants depending only on
k, γ, µ. If f ∈ Am,p(Ω), we define

||f ||Am,p(Ω) = ||f ||Lp(Ω) + inf{gk}

m∑
k=1

||gk||Lp(Ω),

where the infimum is taken over all sequences such that (3.1) holds forf for
k = 1, . . . , m.
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It is easy to see thatAm,p(Ω) is a linear space; moreover,|| · ||Am,p(Ω) is a
norm if all qk = 1.

Definition 3.2. Given a positive integerm and 1 < p < ∞, we define the
Sobolev classBm,p(Ω) to be the set of functionsf ∈ Lp(Ω) so that for each
k = 1, · · · ,m there exist functions0 ≤ gk ∈ Lp(Ω) and polynomialsPk(B, f )
such that

(3.2) |f (x)− Pk(B, f )(x)| ≤ r(B)kgk(x)
for µ−a.e.x ∈ B for every metric ballB ⊂ Ω. The polynomialsPk(B, f ) are
assumed to belong to a linear class which satisfies (P1) and (P2) with constants
depending only onk, γ, µ. If f ∈ Bm,p(Ω), let

||f ||Bm,p(Ω) = ||f ||Lp(Ω) + inf{gk}

m∑
k=1

||gk||Lp(Ω).

The classBm,p(Ω) is a Banach space with norm|| · ||Bm,p .
Remark.We could replace the right-hand side of inequality (3.2) by∫

B

ρ(x, y)kgk(y)

µ(B(x, ρ(x, y)))
dµ(y)+ r(B)k

∫
B

gk(y)dµ(y)

for µ−a.e.x ∈ B. It can be shown that the resulting space is equivalent to those
given in Definitions 3.1 and 3.2; see the comments at the end of Sect.3.

We denote the Hardy–Litlewoodmaximal function of a functionf byM(f ):

M(f )(x) = sup
B:x∈B

1

µ(B)

∫
B

|f (y)| dµ(y).

To show that definitions 3.1 and 3.2 are equivalent, we will use the following
fact.

Theorem 1.Let1≤ q <∞,m be a positive integer,B0 ⊂ Ω be a fixed ball, and
suppose that the segment property (S) holds forB0. Letf be a locally integrable
function inΩ for which there exist a function0 ≤ g ∈ Lq(Ω) and polynomials
Pm(B, f ) such that the Poincar´e inequality∫

B

|f (x)− Pm(B, f )(x)| dµ(x) ≤ cr(B)m
( ∫

B

|g(x)|qdµ(x)
)1/q

holds for every ballB ⊂ Ω. The polynomialsPm(B, f ) are assumed to belong
to a linear class which satisfies (P1) and (P2) with constants depending only on
m, γ,µ. Then forµ−a.e.x ∈ B0,
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|f (x)− Pm(B0, f )(x)| ≤ Cr(B0)
mM(gq)(x)1/q

withC independent ofx.

Proof of Theorem 1.Let x ∈ B0. We will use the chain of subballs{Bj } of B0

from [LW] mentioned earlier. The chain depends onx. We may assume thatx
is a Lebesgue point of both|f − Pm(B0, f )| and |g|q with respect toµ since
almost every point of an integrable function is a Lebesgue point of the function.
Then by properties (1), (2) and (3) of the chain,

|f (x)− Pm(B0, f )(x)| = lim
j→∞

∫
Bj

|f (y)− Pm(B0, f )(y)| dµ(y)

≤ lim sup
j→∞

∫
Bj

|f (y)− Pm(Bj , f )(y)| dµ(y)

+ lim sup
j→∞

∫
Bj

|Pm(Bj , f )(y)− Pm(B0, f )(y)| dµ(y)
=I1 + I2,

whereI1 andI2 are defined by the last equality.
We will first show thatI1 = 0 for every Lebesgue pointx of |g|q . By the

Poincaré inequality,

I1 ≤ c lim sup
j→∞

r(Bj )
m

( ∫
Bj

|g(y)|qdµ(y)
)1/q

= 0 · |g(x)| = 0

by properties (1), (2) and (3) of the chain.
Thus we only need to estimateI2. We have

I2 ≤ lim sup
j→∞

j−1∑
*=0

∫
Bj

|Pm(B*+1, f )(y)− Pm(B*, f )(y)| dµ(y)

≤ lim sup
j→∞

j−1∑
*=0

||Pm(B*+1, f )− Pm(B*, f )||L∞
µ (Bj )

≤ lim sup
j→∞

j−1∑
*=0

||Pm(B*+1, f )− Pm(B*, f )||L∞
µ (cB*)

by (5)

≤C
∞∑
*=0

||Pm(B*+1, f )− Pm(B*, f )||L∞
µ (S*)

by (4) and (P2)

≤C
∞∑
*=0

1

µ(S*)
||Pm(B*+1, f )− Pm(B*, f )||L1µ(S*) by (P1)
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≤C
∞∑
*=0

∫
B*

|Pm(B*, f )(y)− f (y)| dµ(y)

+ C
∞∑
*=0

∫
B*+1

|Pm(B*+1, f )(y)− f (y)| dµ(y) by (4)

≤C
∞∑
*=0

r(B*)
m

( ∫
B*

|g(y)|qdµ(y)
)1/q

≤C
∞∑
*=0

r(B*)
mM(|g|q)(x)1/q by (3)

=C
∞∑
*=0

2−*mr(B0)
mM(|g|q)(x)1/q by (2)

≤Cr(B0)
mM(|g|q)(x)1/q .

This completes the proof of Theorem 1.
We now prove the main theorem in this section.

Theorem 2. Suppose that the segment property (S) holds in a metric space
(S, ρ, µ) with a doubling measureµ, and letΩ be a domain inS. Then the
Sobolev classesAm,p(Ω), andBm,p(Ω) are equivalent in the sense that they are
the same as sets of functions and, for any functionf in these classes,

||f ||Am,p(Ω) ≈ ||f ||Bm,p(Ω)
with constants of equivalence which are independent off .

Proof of Theorem 2.Letf ∈ Am,p(Ω).Givenε > 0, there are functions 0≤ gk ∈
Lp(Ω), polynomialsPk(B, f ) and exponentsqk, 1 ≤ qk < p (k = 1, · · · ,m),
such that ∫

B

|f − Pk(B, f )|dµ ≤ r(B)k
( ∫

B

|gk|qkdµ
)1/qk

for every ballB ⊂ Ω, and such that

||f ||Lp(Ω) +
m∑
k=1

||gk||Lp(Ω) < ||f ||Am,p(Ω) + ε.

By Theorem 1, for each 1≤ k ≤ m andµ−a.e.x ∈ B,

|f (x)− Pk(B, f )(x)| ≤ Cr(B)kM(|g|qk )(x)1/qk .
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The functionsCM(|g|qk )1/qk are inLp(Ω) sincep > qk and the maximal func-
tion is bounded onLp/qk (Ω). Thus, by definition 3.2,f ∈ Bm,p(Ω) and

||f ||Bm,p(Ω) ≤||f ||Lp(Ω) + C
m∑
k=1

||M(|gk|qk )1/qk ||Lp(Ω)

≤||f ||Lp(Ω) + C
m∑
k=1

||gk||Lp(Ω) ≤ C(||f ||Am,p(Ω) + ε).

Letting ε → 0, we obtain

||f ||Bm,p(Ω) ≤ C||f ||Am,p(Ω).
Suppose next thatf ∈ Bm,p(Ω). Givenε > 0, there are functions 0≤ gk ∈

Lp(Ω) and polynomialsPk(B, f ) (k = 1, · · · ,m) such that
|f (x)− Pk(B, f )(x)| ≤ r(B)kgk(x)

for µ−a.e.x ∈ B ⊂ Ω and

||f ||Lp(Ω) +
m∑
k=1

||gk||Lp(Ω) < ||f ||Bm,p(Ω) + ε.

It follows by integrating overB that the Poincar´e inequality∫
B

|f (x)− Pk(B, f )(x)|dµ(x) ≤ r(B)k
∫
B

|gk(x)|dµ(x)

holds for every suchB. By definition 3.1, applied withqk = 1, we conclude that
f ∈ Am,p(Ω) and

||f ||Am,p(Ω) ≤ ||f ||Lp(Ω) +
m∑
k=1

||gk||Lp(Ω) ≤ ||f ||Bm,p(Ω) + ε.

Thus||f ||Am,p(Ω) ≤ ||f ||Bm,p(Ω), and we have proved that definitions 3.1 and 3.2
are equivalent.

In passing, let us briefly justify the remark we made after Definition 3.2. A
simple argument based on dividing the domain of integration into annuli gives∫

B

ρ(x, y)kgk(y)

µ(B(x, ρ(x, y)))
dµ(y) ≤ Cr(B)kM(gk)(x), x ∈ B,

and it then follows that the condition in the remark implies the one in Definition
3.2. Conversely, the condition in Definition 3.2 leads immediately by integration
to anL1 to L1 Poincaré estimate, and then Theorem A implies the condition
given in the remark.
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4. Classical and Folland–Stein Sobolev spaces are special examples

Let G be a finite-dimensional, stratified, nilpotent Lie algebra. Assume that

G = ⊕s
i=1Vi ,

with [Vi, Vj ] ⊂ Vi+j for i+j ≤ s and[Vi, Vj ] = 0 for i+j > s. LetX1, . . . , Xl
be a basis forV1 and suppose thatX1, . . . , Xl generateG as a Lie algebra. Then
for 2 ≤ j ≤ s, we can choose a basis{Xij }, 1 ≤ i ≤ kj , for Vj consisting of
commutators of lengthj .We setXi1 = Xi, i = 1, . . . , l andk1 = l, and we call
Xi1 a commutator of length 1.

If G is the simply connected Lie group associatedwithG, then the exponential
mapping is a global diffeomorphism fromG to G. Thus, for eachg ∈ G, there
is x = (xij ) ∈ RN , 1≤ i ≤ kj , 1≤ j ≤ s, N = ∑s

j=1 kj , such that

g = exp(
∑

xijXij ) .

A homogeneous norm function| · | onG is defined by

|g| = (
∑

|xij |2s!/j )1/2s! ,
andQ = ∑s

j=1 jkj is said to be thehomogeneous dimensionof G. The dilation
δr onG is defined by

δr(g) = exp(
∑

rjxijXij ) if g = exp(
∑

xijXij ).

The convolution operation onG is defined by

f � h(x) =
∫

G

f (xy−1)h(y)dy =
∫

G

f (y)h(y−1x)dy,

wherey−1 is the inverse ofy andxy−1 denotes groupmultiplication ofx byy−1.
It is known that for any left invariant vector fieldX onG,

X(f � h) = f � (Xh).

Wenow recall the definition of the class of polynomials onGgiven byFolland
and Stein in [FS]. LetX1, · · ·, Xl in V1 be the generators of the Lie algebraG, and
letX1, · · ·, Xl, · · ·, XN be a basis ofG. We denoted(Xj) = dj to be the length
of Xj as a commutator, and we arrange the order so that 1≤ d1 ≤ · · · ≤ dN .
Then it is easy to see thatdj = 1 for j = 1, · · ·, l. Let ξ1, · · ·, ξN be the dual
basis forG∗, and letηi = ξi ◦ exp−1. Eachηi is a real-valued function onG, and
η1, . . . , ηN gives a system of global coordinates onG. A functionP onG is said
to be a polynomial onG if P ◦ exp is a polynomial onG. Every polynomial on
G can be written uniquely as

P(x) =
∑
I

aIη
I (x), ηI = ηi11 · · · ηiNN , aI ∈ R,
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where all but finitely many of the coefficientsaI vanish. ClearlyηI is homoge-
neous of degreed(I ) = ∑N

j=1 ij dj , i.e.,η
I (δrx) = rd(I)ηi(x). If P = ∑

I aIη
I ,

thenwedefine thehomogeneousdegree (or order) ofP to bemax{d(I ) : aI �= 0}.
We also adopt the followingmulti-index notation for higher order derivatives.

If I = (i1, · · · , iN) ∈ NN , we set

XI = Xi11 ·Xi22 · · ·XiNN .
By the Poincar´e–Birkhoff–Witt theorem (cf. Bourbaki [B], I.2.7), the differential
operatorsXI form a basis for the algebra of left-invariant differential operators
in G. Furthermore, we set

|I | = i1 + i2 + · · · + iN , d(I ) = d1i1 + d2i2 + · · · + dNiN .
Thus,|I | is the order of the differential operatorXI , andd(I ) is its degree of
homogenity;d(I ) is called the homogeneous degree (order) ofXI . From the
Poincaré–Birkhoff–Witt theorem, it follows in particular that any differential
operatorXα = Xα1i1 · · ·Xαkik with 1≤ ij ≤ l for 1≤ j ≤ k (for anyk andα) can
be expressed as a linear combination of operators of the special formXI above
with d(I ) = |α| = α1 + · · · + αk. Thus, instead of considering such differential
operatorsXα, we will often consider only operators of the special formXI with
d(I ) = |α|. We will also use the notation

|Xmf | = ( ∑
I :d(I )=m

|XIf |2)1/2
for any positive integerm.

Let m be a positive integer, 1< p < ∞, andΩ be an open set inG.
The Folland–Stein Sobolev spaceWm,p(Ω) associated with the vector fields
X1, · · · , Xl is defined to consist of all functionsf ∈ Lp(Ω) with distributional
derivativesXIf ∈ Lp(Ω) for everyXI defined above withd(I ) ≤ m. Here, we
say that the distributional derivativeXIf exists and equals a locally integrable
functiongI if for everyφ ∈ C∞

0 (Ω),∫
Ω

fXIφ dx = (−1)d(I)
∫
Ω

gIφdx.

Wm,p(Ω) is equipped with the norm

||f ||Wm,p(Ω) = ||f ||Lp(Ω) +
∑

1≤d(I )≤m
||XIf ||Lp(Ω).

This definition is equivalent to the one given in the introduction because of our
earlier remarks about the Poincar´e–Birkhoff–Witt theorem.

Beforewestate themain theoremsof this section,weneed to recall someother
results that will be needed. It is known that any polynomial onG satisfies (P1)
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(see [FS]) and also (P2) (see [L2]) whenµ is Lebesgue measure, with constants
which depend only onγ and the homogeneous degree of the polynomial. Now,
if Ω ⊂ G, let f ∈ Wm,p(Ω) and letPm be the class of polynomials onG of
homogeneous degree strictly less thanm. It is shown in [L2], and earlier in [N] for
the Heisenberg group, that given any ballB ⊂ Ω, there existsPm(B, f ) ∈ Pm
such that

(4.1)
∫
B

XI (f − Pm(B, f ))dx = 0

if d(I ) < m. Clearly, by iteration of the casem = 1, this polynomialPm(B, f )
satisfies the Poincar´e inequality of orderm for Lebesgue measure, i.e.,

(4.2) ||f − Pm(B, f )||L1(B,dx) ≤ Cr(B)m||Xmf ||L1(B,dx).
In fact, a sharpLp to Lq Poincaré inequality with optimal exponents holds for
1≤ p < Q andq = pQ

Q−p (see [L2]). It is also shown in [L2] that, for every ball
B ⊂ Ω, there is a linear projection operator

πm(B, ·) : Wm,p(Ω)→ Pm
satisfyingπm(B, P ) = P for all P ∈ Pm and both

(4.3) sup
x∈B

|πm(B, f )(x)| ≤ C

|B|
∫
B

|f (y)|dy

and

(4.4) ||XIπm(B, f )||Lq(B,dx) ≤ C(Q, q)||Xd(I)f ||Lq(B,dx)
for all 1 ≤ q ≤ ∞. It is easy to see that the polynomialsπm(B, f ) satisfy
(4.2) by using the fact that polynomials satisfying (4.1) do (see, e.g., Lemma
2.8 in [LW]). Polynomials satisfying (4.1), or (4.3) and (4.4), have applications
to proving extension theorems on high order Sobolev spaces on the Heisenberg
group (see [N]) and stratified groups (see [L2], [L3]) and Sobolev interpolation
inequalities of any order (see [L1], [L2]).

The main theorem of this section concerns the equivalence ofWm,p(Ω) and
the spacesAm,p(Ω) andBm,p(Ω) defined earlier. We always choosedµ = dx

in the rest of the paper.

Theorem 3.Letm be a positive integer and1 < p < ∞. The Folland–Stein
spaceWm,p(Ω)on a stratified groupG is equivalent to the corresponding classes
in definitions (3.1)–(3.2), whenµ is taken to be Lebesgue measure in those
definitions. Moreover,

||f ||Wm,p ≈ ||f ||Am,p ≈ ||f ||Bm,p
with constants of equivalence which are independent off .
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To show this, we only need to show thatWm,p(Ω) is equivalent toAm,p(Ω)
since the equivalence ofAm,p(Ω) andBm,p(Ω) was shown in Sect.3.

Lemma 4.LetP be a polynomial of order less thank and1≤ q ≤ ∞. LetI be
any multi-index. Then

||XIP ||Lq(B) ≤ Cr(B)−d(I )||P ||Lq(B) for all balls B ∈ G

whereC depends only onQ, q, k.

This lemma is essentially proved in [FS] (see [L2] for a proof of the result
stated in the above form).

We begin the proof of Theorem 3 by showing that (whendµ = dx)Am,p(Ω)
⊂ Wm,p(Ω).

Theorem 5.Letm be a positive integer,1 ≤ p < ∞, andf ∈ Am,p(Ω). For
eachk = 1, · · · ,m, consider functions0 ≤ gk ∈ Lp(Ω), polynomialsPk(B, f )
and1≤ qk < p such that for every ballB ⊂ Ω,

(4.5)
∫
B

|f (x)− Pk(B, f )(x)|dx ≤ Cr(B)k
( ∫

B

g
qk
k dx

)1/qk

.

Thenf ∈ Wm,p(Ω) and||f ||Wm,p(Ω) ≤ ||f ||Lp(Ω) + C∑m
k=1 ||gk||Lp(Ω).

Proof of Theorem 5.The proof adapts ideas of Calder´on [Ca] and relies on the
group structure ofG. See also [H] for a similar adaption of Calder´on’s ideas.
Later, we will give a second proof which works in caseΩ is the entire space
and which involves polynomials for high order Sobolev functions. A similar
argument form = 1 has been used in [FHK] to prove the equivalence of several
definitions of Sobolev spaces of first order in metric spaces.

Let f ∈ Am,p(Ω), and let (4.5) hold fork = 1, · · · ,m and allB ⊂ Ω. To
show thatf ∈ Wm,p(Ω), we need to show that the distributional derivatives
XIf = X

i1
1 · · ·XiNN f of f in Ω lie in Lp(Ω) for all I with d(I ) ≤ m. By

using the Riesz representation theorem, it is enough to prove that there exists a
nonnegative functionh ∈ Lp(Ω) such that for anyφ ∈ C∞

0 (Ω),

|
∫
Ω

fX
iN
N · · ·Xi22Xi11 φ| dx ≤

∫
Ω

|φ|h dx.

Let usnowshow that for fixedI withd(I ) = k ≤ m, this estimateholdswithh(x)
taken to beCM(gqkk )

1/qk (x).We setY I = XiNN · · ·Xi11 . Fix anyΨ ∈ C∞
0 (B(0,1))

with
∫
Ψ = 1, and letΨε(x) = ε−QΨ (δε−1x). Note thatΨε is supported in the
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ballB(0, ε). If φ ∈ C∞
0 (Ω), then∫

G

f Y Iφ dx = lim
ε→0

∫
G

(f � Ψε) Y
Iφ dx

=(−1)d(I) lim
ε→0

∫
G

XI(f � Ψε) φ dx

=(−1)k lim
ε→0

∫
G

(f �XIΨε) φ dx.

Recall that

Pk(B(x, ε), f )�XIΨε(x) =
∫

G

Pk(B(x, ε), f )(xy
−1)XIΨε(y)dy

=(−1)k
∫

G

Y I [Pk(B(x, ε), f )(xy−1)]Ψε(y)dy.

Note that for any fixedx, Pk(B(x, ε), f )(xy−1) is a polynomial iny of degree
less thank (see [FS, p. 23]), so thatY I [Pk(B(x, ε), f )(xy−1)] = 0. Therefore,

Pk(B(x, ε), f )�XIΨε(x) = 0

and
(f �XIΨε)(x) = (f − Pk(B(x, ε), f ))�XIΨε(x).

Consequently, if 1≤ d(I ) = k ≤ m,

|(f �XIΨε)(x)| =|
∫

G

(f − Pk(B(x, ε), f ))(y)(XIΨε)(y−1x) dy|

≤C
∫
B(x,ε)

|f − Pk(B(x, ε), f )| · ε−Q−kdy.

Assuming as we may thatx ∈ Ω, and choosingε so small thatB(x, ε) ⊂ Ω, we
can estimate the last expression by using (4.5). Thus,

|(f �XIΨε)(x)| ≤ C
( ∫

B(x,ε)

|gk|qkdy
)1/qk

≤ CM(gqkk )(x)1/qk ,

and so

|
∫
f Y Iφ dx| ≤ C

∫
|φ |M(gqkk )1/qkdx.

This shows that if 1≤ d(I ) = k ≤ m, then for a.e.x ∈ Ω, the distributional
derivativeXIf satisfies

|XIf (x)| ≤ CM(gqkk )(x)1/qk .
Thus,

||XIf ||Lp(Ω) ≤ C||M(gqkk )1/qk ||Lp(Ω) ≤ C||gk||Lp(Ω).
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Hence,f ∈ Wm,p(Ω) and||f ||Wm,p(Ω) ≤ ||f ||Lp(Ω) +C∑m
k=1 ||gk||Lp(Ω). This

completes the proof of Theorem 5.
We now give a second proof of Theorem 5 in caseΩ is the entire spaceG.

This proof is less dependent on the group structure ofG.

Second Proof of Theorem 5 whenΩ = G. Given ε > 0, select a sequence of
ballsBi with r(Bi) = ε such that∪Bi = G and

∑
i χ2Bi (x) ≤ M for all x. It

is easy to see that if 2Bi ∩ 2Bj �= ∅, then 4Bi ∩ 4Bj contains a ballSij with
r(Sij ) ≈ ε. Here, the constants of equivalence as well asM can be chosen to be
independent ofε, i, j . (See, e.g., the construction of dyadic grids in [SW].)

Let ξi be aC∞ function supported in 2Bi such that 0≤ ξi(x) ≤ 1 for all x,
ξi(x) = 1 forx ∈ Bi , and|XIξi(x)| ≤ Cr(Bi)−d(I ) for all x and all multi-indices
I (see [FS]). Now let

φi = ξi/
∑
j

ξj .

Then{φi} is a smooth partition of unity associated with{Bi}, namely,∑
i

φi(x) = 1, suppφi ⊂ 2Bi, and |XIφi(x)| ≤ Cε−d(I )

for all x and all multi-indicesI .
Fix a functionf ∈ Am,p(G), and assume that the estimates (4.5) hold. For

k = 1, · · · ,m, define
fε,k(x) =

∑
i

φi(x)Pk(4Bi, f )(x), x ∈ G.

We claim that for any fixed indexI with d(I ) = k,
|XIfε,k(x)| ≤ CM(gqkk )(x)1/qk , x ∈ G.

To show this, fixx and choose a ballBi0 with x ∈ Bi0. Clearly, there are only a
finite number ofi such that 2Bi ∩2Bi0 �= ∅.We will use the notationJ +K = I
if I = (i1, · · · , iN), J = (j1, · · · , jN),K = (k1, · · · , kN) andih + jh = kh for
each 1≤ h ≤ N . Then
|XIfε,k(x)| =|XI

∑
i

(
Pk(4Bi, f )(x)− Pk(4Bi0, f )(x)

)
φi(x)|

=|
∑
i

∑
d(J )+d(K)=d(I )

XJ
(
Pk(4Bi, f )(x)− Pk(4Bi0, f )(x)

)
XKφi(x)|

≤ Cε−d(K) ∑
i:2Bi∩2Bi0 �=∅

∑
d(J )+d(K)=d(I )

|XJ (Pk(4Bi, f )(x)− Pk(4Bi0, f )(x)) |
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sincex ∈ Bi0 andφi has support in 2Bi . Recall that if 2Bi ∩2Bi0 �= ∅, then there
is a ballSii0 ⊂ 4Bi ∩ 4Bi0 with r(Sii0) ≈ ε. We have

|XJ (Pk(4Bi, f )(x)− Pk(4Bi0, f )(x)) |
≤||XJ (Pk(4Bi, f )− Pk(4Bi0, f )) ||L∞(4Bi0)

≤Cr(Bi0)−d(J )||Pk(4Bi, f )− Pk(4Bi0, f )||L∞(4Bi0) by Lemma 4

≤Cr(Bi0)−d(J )||Pk(4Bi, f )− Pk(4Bi0, f )||L∞(Sii0)

≤Cr(Bi0)−d(J )
∫
Sii0

|Pk(4Bi, f )(y)− Pk(4Bi0, f )(y)|dy

≤Cr(Bi0)−d(J )
∫
4Bi

|Pk(4Bi, f )(y)− f (y)|dy

+ Cr(Bi0)−d(J )
∫
4Bi0

|f (y)− Pk(4Bi0, f )(y)|dy

≤Cr(Bi0)−d(J )r(Bi)k
( ∫

4Bi

g
qk
k dy

)1/qk

+ Cr(Bi0)−d(J )r(Bi0)k
( ∫

4Bi0

g
qk
k dy

)1/qk

≤Cε−d(J )εkM(gqkk )(x)
1/qk .

Here we have used (4.5) to obtain the next-to-last inequality. Thus,

|XIfε,k(x)| ≤ CM(gqkk )(x)1/qk .
For a.e.x,

|f (x)− fε,k(x)| ≤
∑
i

|φi(x)| |f (x)− Pk(4Bi, f )(x)| ≤ CεkM(gqkk )(x)1/qk

by using the fact from Theorem 1 that (4.5) implies that for a.e.x ∈ 4Bi ,

|f (x)− Pk(4Bi, f )(x)| ≤ Cr(Bi)kM(gqkk )(x)1/qk ,
and the fact that only a finite number of the balls 2Bi containx. Thus,f (x) =
limε→0 fε,k(x) for a.e.x. Moreover, sincegk ∈ Lp(G) andM is a bounded
operator onLp/qk (G) (recall thatqk < p), fε,k also converges tof in Lp(G).
Therefore, for anyφ ∈ C∞

0 (G),∫
G

f (x)X
iN
N · · ·Xi11 φ(x)dx = lim

ε→0

∫
G

fε,k(x)X
iN
N · · ·Xi11 φ(x)dx.

Since|XIfε,k(x)| ≤ CM(gqkk )(x)1/qk for all x, we conclude that

|
∫

G

f (x)X
iN
N · · ·Xi11 φ(x)dx| ≤ C

∫
G

M(g
qk
k )(x)

1/qk |φ(x)|dx.
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Thus the distributional derivativeXIf (x) satisfies|XIf (x)| ≤ CM(gqkk )(x)1/qk ,
and the rest of the proof is as before.

Proof of Theorem 3.Supposef ∈ Am,p(Ω), and letδ be any positive number.
Then there exist functions 0≤ gk ∈ Lp(Ω), polynomialsPk(B, f ) onG, and
exponents 1≤ qk < p (k = 1, · · · ,m) such that∫

B

|f (x)− Pk(B, f )(x)|dx ≤ r(B)k
( ∫

B

g
qk
k dx

)1/qk

for every ballB ⊂ Ω, and||f ||Lp(Ω) +∑m
k=1 ||gk||Lp(Ω) < ||f ||Am,p(Ω) + δ. By

Theorem 5,f ∈ Wm,p(Ω) and

||f ||Wm,p(Ω) ≤ ||f ||Lp(Ω) + C
m∑
k=1

||gk||Lp(Ω).

By combining estimates and lettingδ → 0, we obtain

||f ||Wm,p(Ω) ≤ C||f ||Am,p(Ω) .
Now let f ∈ Wm,p(Ω). Then by the comments which precede Theorem 3,

for k = 1, · · · ,m, there are polynomials of degree less thank such that∫
B

|f (x)− Pk(B, f )(x)|dx ≤ Cr(B)k
∫
B

|Xkf |dx
for every ballB ⊂ Ω. Thus by definition (3.1),f ∈ Am,p(Ω) and

||f ||Am,p(Ω) ≤ C||f ||Wm,p(Ω).

Combining estimates givesAm,p(Ω) = Wm,p(Ω) and

||f ||Wm,p(Ω) ≈ ||f ||Am,p(Ω) .
This completes the proof of Theorem 3.

Final remarks.The referee pointed out to us the relevant work of Cheeger [Ch]
on differentiability of Lipschitz functions on metric spaces, written around the
same time as the current article. Based on the current paper, a number of other
papers have been written. For example, it has been shown in [LP] that theL1

norm can be replaced by theLq “norm” for 0 < q < 1 on the left-hand side of
(3.1) of Definition (3.1). It has been shown in [R] and [LRP] that the condition
µ(E) > γµ(D) in (P2) is equivalent tor(E) > γ1r(D) for someγ1 > 0
depending only onγ and the doubling constant ofµ, wherer(E) denotes the
radius ofE. In [LPR], we have shown the existence of polynomials in metric
spaces (e.g., positive powers of the distance function), defined notions of degrees
of polynomials and higher order gradients in metric spaces, and established
distribution theory inmetric spaces by using the high order Sobolev space theory
developed in the current paper.
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