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Abstract. Recently, inthe article [LW], the authors use the notion of polynomials in metric spaces
(S, p, w) of homogeneous type (in the sense of Coifman-Weiss) to prove a relationship between
high order Poinca inequalities and representation formulas involving fractional integrals of high
order, assuming only that is a doubling measure and that geodesics exist. Motivated by this and

by recent work in [H], [FHK], [KS] and [FLW] about first order Sobolev spaces in metric spaces,

we define Sobolev spaces of high order in such metric spates, ). We prove that several
definitions are equivalent if functions of polynomial type exist. In the case of stratified groups,
where polynomials do exist, we show that our spaces are equivalent to the Sobolev spaces defined
by Folland and Stein in [FS]. Our results also give some alternate definitions of Sobolev spaces
in the classical Euclidean case.

Mathematics Subject Classification (19945E35, 41A10, 22E25

1. Introduction

Let 2 c R" be an open set and be a positive integer. The classical Sobolev
spaceW™?(£2) is defined to be the collection of functiorfse L?(£2) whose
distributional derivative&* f are inL?(£2) for all integersk with 1 < k < m.
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This space is equipped with the norm

k
£ llwmry =1 f v+ Y IV fllLre)-

1<k<m

Some of the most interesting generalizations of the classical Sobolev spaces are
the Folland—Stein spaces associated with the left-invariant vector Kelds- ,

X, over a stratified groufs. Let 2 C G be an open set. The spad&™?(s2)

is defined to be the set of functiorfse L?(£2) with distributional derivatives

X“f e LP(£2) for eachla| < m, whereX® = X;*--- Xf[", 1<i <1

1 < j <, thea]s are nonnegative integers, ajed = a1 + - - - + o;. Here, we

say that the distributional derivativ&® f exists and equals a locally integrable
functiong, in £2 if for every ¢ € C5°(£2),

/ fX3 - Xl dx = (=1 f gath dx.
2 2
The norm onW™?(§£2) is defined to be

W llwmry = 1f v+ Y 11X Flliee)-

1<|a|=m

In [LW], the authors studied the relationship betwdénto L* Poincag in-
equalities (i.e., (2.1) wheq = 1) and integral representation formulas involving
polynomials and high order vector field derivatives. Motivated by this and by in-
teresting recent work in [H] and [FHK] on Sobolev spaces of first order in metric
spaces, we study notions of high order Sobolev spaces in metric spaces, including
as special examples the Folland—Stein spaces on stratified groups. Our results
extend some of the notions in [H], [FHK] and [FLW] to high order Sobolev
spaces.

The plan of the paper is as follows. In Sect. 2, we list the required properties of
polynomials in metric spacés, p, di) and recall some results proved in [LW]
which will be needed. Section 3 contains the statements and proofs of the equiva-
lence of several definitions of Sobolev classes on metric sgaces d ) under
the assumption that is merely doubling. In Sect. 4, we prove that on stratified
groups the Sobolev classes defined in Sect. 3 are equivalent to the Folland—Stein
spaces.

2. Polynomials in metric spaces

Let (S, p, ) be a metric space with a metric and a doubling measurne,
namely, for allx, y, z € S, p satisfies

px,y) < px,2)+p(z, ),
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and the measure satisfies the condition
w(B(x,2r)) < A,u(B(x,r)), xeS, r>0,

foran absolute constant,, where by definitioB(x, r) = {y € S : p(x, y) <r},

andu (B(x, r)) denotes thee-measure oB(x, r). Such a metric space is usually
called as a metric space of homogeneous type in the sense of Coifman and Weiss.
As usual, we refer t@(x, r) as the ball with center and radius-, and, ifB is a

ball, we writexp for its centery (B) for its radius ana B for the ball of radius

cr(B) having the same center & We always assume th&és, p) is locally
compact andk is doubling.

We now define what we will mean by polynomial functions®nThe prop-
erties that we list here are similar to those used in [LW].

Let (S, p, n) be a metric space of homogeneous type, ant2lée an open
set inS. Our results rely on the existence of a linear class of functibs)
(called polynomial functions) which satisfy both

(P1) For every metric balb c £2,

Ca(w)
w(D)
where the essential supremum is taken with respegt to

(P2) If D is any metric ball irnf2 andE is a subball oD with w(E) > y u(D),
y > 0, then

esssup.p|P(x)| <

/ PO)IR(Y),
D

1P 1l = Cora ) | P e -

In stratified groups, including ordinary Euclidean space, (P1) and (P2) are
known to hold for polynomials (see [FS] arid below for the definition of
polynomials in stratified groups), with constagtg i), C2(y, u) which depend
additionally only on the degree of the polynomial. See [LPR] and the comments
at the end of this paper for examples of functions which satisfy (P1) and (P2) in
more general situations.

In our case, the role of degree is replaced by an exponent which measures the
order of smoothness of a given locally integrable functfom one of several
ways, such as in assuming that the following Poirastimate holds fof and
a positive integek: there exisiy > 1 and a functiorg such that for every ball
B c £2 and some functio®, (B, f),

1 f 1 o\
_ — Pi(B, du < Cr(B _ d ,
M(B)/Bv (B, f)|dp < Cr(B) (M(B)/B|g| u)

with C independent oB. Typically, (2.1) may be thought of as a way to express
the fact thatP, (B, f) is an approximation tg’. In (2.1), g andg are allowed

to depend ory but not onB. The functionP,(B, f) may also depend og, g
and i, and we sometimes writ&. (B, f) = P«(B, f, g, g, ). The important

(2.1)
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assumption for us will be that (P1) and (P2) hold for a linear class that contains
Py(B, f)forall B C §2,with constant€; (1), C>(y, u) depending additionally
only onk. Note that if (2.1) holds for one value gf then it also holds for all
larger values by dider’s inequality.

When (2.1) holds for a giverf, we will say thatf satisfies anL¢ to L*
Poinca¥g inequality of ordek for every ballB C £2. For a stratified group, every
smooth functionf satisfies (2.1) witly = 1 andg = | X* f| for several choices
of polynomials of degreke— 1 by the results in [L1], [L2] (see also the discussion
in [LW]), and in this case, the polynomials satisfy (P1) and (P2) as we already
noted.

Instead of (2.1), we will sometimes consider alternate notions of smoothness
of f which involve functionsP; (B, f), butin any case, we always require (P1)
and (P2) to hold for a linear class that contaif$B, f) for all B C 2, with
constants depending only énu, y. When we consider Sobolev spaces of order
m, the functions will be assumed to satisfy such conditions for every infeger
withl <k <m.

Another basic assumption that we make throughout this paper is that the
following geodesic (or segment) property holdsSin

(S)(S, p) hasthesegment property.e., for each pair of points, y € S, there
exists a continuous curye= y (t) connectingc andy suchthap (y (¢), y (s)) =
|t — s| forallt,s.

Itis easy to see that, if the segment property holds, then for ever lyath
centerx; the following is true: ifc € B, there is a continuous curye= y,, (1),
0<t <1, inBwith y(0) = xp, y(1) = x andp(xp, 2) = p(xp,y) + p(», 2)
forally,ze ywithy =y(s),z=y(¢),0<s <t <1.

We also note that the fact that the cugve= y,, , liesinBif x € Bis a
corollary of the assumed additivity @falongy. To see this, we chooge= x
in the additivity statement above, obtaining that for any y,

r(B) > p(xp,x) = p(xp,y) + p(y,x) = p(xp, y),

and therefore € B.
A special case of a result in [LW] that will be useful is given in the next
theorem.

Theorem A. Let (S, p, 1) be a metric space of homogeneous type in which the
segment property (S) holds. lidbe a positive integeBg be a fixed ball ang” be

a function for which the Poincarinequality (2.1) holds with = 1 for each ball

B C Bpand with polynomialg (B, f) which belong to a linear class satisfying
(P1) and (P2) with constants depending onlykow, . Then foru-a.e.x € By,

| f(x) = Px(Bo, f)(x)]

p(x, y)* r(Bo)*
c d C
: Bo |g(y)|u(B(x, p(x, ) )+ w(Bo)

/ lgIdu(y),
Bo
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whereC depends only op and the constants in (2.1), (P1) and (P2). In partic-
ular, C is independent of and Bo.

We will also use a special chain of balls constructed in [LW]. In factBlgt
be a ball in which the segment property (S) holds. Then, givenBy, there is
a sequenceéB; };~1 of subballs ofB, satisfying

(1) B; C Bpandp(Bj,x) — 0asj — oo.

(2) r(Bj) ~ 27/r(By), so thatr(B;) — 0 asj — co.

(3) If y € Bj, thenp(y, x) ~ r(B;).

(4) B; N Bj_1 contains a ball; with r(S;) ~ r(B;) ~ r(Bj_1).
(5) If £ < j, thenB; C cB.

(6) {B,} has bounded overlaps, i.Qj x5 (y) < cforally.

The constants of equivalence in properties (2), (3), (4) and the constants
(5) and (6) are independent of j, £ and By, but the chaif{ B;} depends on.

A similar chain without the property that all the balls are subballBgpivas
constructed earlier in [FW].

3. High order Sobolev spaces on a metric space

The main goal of this section is to show the equivalence of several definitions
of high order Sobolev classes on a dom&irin a metric spaceS, o0, n) with a
doubling measurg. We will use f,. f(x)du(x) to denote—— (E) e [, f()du(x),
and||f||Lp(E) to denote the.? norm of f on E with respect tqu. We now list

two definitions of Sobolev classes.

Definition 3.1. Given a positive integem and1l < p < oo, we define the
Sobolev classi™?(§2) to be the set of functiong € L?(£2) so that for each
k=1 ---,m, there exisyy, with 1 < g, < p, functionsg,(x) with0 < g, €
L7 (£2), and polynomialsP, (B, f) with

1/qk
(3.1) ][B | f(x) = Pu(B, f)(x)|dp(x) < r(B)* < ][B g/fk(x)du(x))

for every ballB ¢ £2. The polynomialsP,(B, f) are assumed to belong to
a linear class which satisfies (P1) and (P2) with constants depending only on
k,y,u. If f e A™P(£2), we define

m

flamr2y = 1 fllzr) + :?f} E llgkllLr(2)s
k
k=1

where the infimum is taken over all sequences such that (3.1) holds fiar
k=1 ....m
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It is easy to see that™ 7 (£2) is a linear space; moreovey, ||4m.,e) IS a
norm if all g, = 1.

Definition 3.2. Given a positive integet: and1 < p < oo, we define the
Sobolev clasB™:?(£2) to be the set of functiong € L?(£2) so that for each
k=1, ---,mthere exist function® < g, € L?(£2) and polynomials?,(B, f)
such that

(3.2 | f (x) = Pu(B, f)(x)] < r(B) gk(x)

for u—a.e.x € B for every metric ballB C 2. The polynomials, (B, f) are
assumed to belong to a linear class which satisfies (P1) and (P2) with constants
depending only od, y, u. If f € B™?(£2), let

m

1 fllgmr2y =l fllLr2) + I{Qf} E [lgkllLr(2)-
k
k=1

The classB™?(£2) is a Banach space with nor. || gn.».

RemarkWe could replace the right-hand side of inequality (3.2) by

/ p(x, ) gr(y)
B W(B(x, p(x,y)))

for u—a.e.x € B. It can be shown that the resulting space is equivalent to those
given in Definitions 3.1 and 3.2; see the comments at the end of Sect. 3.
We denote the Hardy-Litlewood maximal function of a functjohy M (f):

1

M = _ d .
() = sup /B O i)

du(y) + r(B)* ]{3 G

To show that definitions 3.1 and 3.2 are equivalent, we will use the following
fact.

Theorem 1.Letl < ¢ < oo, m be a positive integeBy C $2 be a fixed ball, and
suppose that the segment property (S) hold$foiet f be a locally integrable
function in$2 for which there exist a functiob < g € L?(£2) and polynomials
P, (B, f) such that the Poincarinequality

1/q
][ () = Pu(B, 1)) dit(x) < cr(B)" ( ][ Ig(X)quu(x))
B B

holds for every balB C 2. The polynomial®,,(B, f) are assumed to belong
to a linear class which satisfies (P1) and (P2) with constants depending only on
m, y, k. Then foru—a.e.x € By,
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| f (x) — Pu(Bo, f)(x)] < Cr(Bo)"M(g?)(x)"*
with C independent of.

Proof of Theorem 1lLet x € Bo. We will use the chain of subballs;} of By

from [LW] mentioned earlier. The chain dependsxanNe may assume that

is a Lebesgue point of botly — P,,(Bo, f)| and|g|? with respect tqu since
almost every point of an integrable function is a Lebesgue point of the function.
Then by properties (1), (2) and (3) of the chain,

| f(x) = Pu(Bo, f)(x)] =I,|i_[T;O ][3 | f () = Pu(Bo, £)(W)|du(y)

<limsup | L f(y) = Pu(B;, /YW du(y)

j—o0 B;j

+ limsup4 | Pu(B;, £)(3) — Pu(Bo, /)M dp(y)

j—o00 B;

=N+ I,

wherel; andI, are defined by the last equality.
We will first show thatl; = 0 for every Lebesgue point of |g|?. By the
Poinca¥g inequality,

1/q
Iy < c limsupr(B)" ( ][ Ig(y)lqdu(y))
B;

j—o0
=0-1g)| =0

by properties (1), (2) and (3) of the chain.
Thus we only need to estimalg We have

I <|ImSUDZ ][ | P (Besa, f)(¥) = Pu(Be, () dp(y)

j—00
j—1
<limsup " [|Pu(Besa. £) = Pu(Be. Pl s
J700 =0
j—1

<lim supZHP (Bet1, f) = Pu(Be, e, by (5)

<C Z I[P (Bet1, ) = Pu(Be, Pl by (4) and (P2)
£=0

1
sczmnp (Best, £) = Pu(Be, Py, by (P1)
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<)’ BB ) = fI ()
=0 ¢
FCY [ 1PuBia HO) = FOIIdu(y) by (@)
=0 Y Be+1

<C) r(B)" (
£=0

<C Y r(B)"M(|gl)(x)" by (3)

£=0

1/q
Ig(y)lqdu(y))

By

=C Y 27"r(Bo)"M(lg1)(x)"* by (2)
£=0

<Cr(Bo)"M(|g|)(x)".

This completes the proof of Theorem 1.
We now prove the main theorem in this section.

Theorem 2. Suppose that the segment property (S) holds in a metric space
(S, p, u) with a doubling measurg, and let$2 be a domain inS. Then the
Sobolev classe4™ 7 (§2), andB™?(£2) are equivalent in the sense that they are
the same as sets of functions and, for any funcfion these classes,

| f1lamp2)y 2 || fllgmr(2)

with constants of equivalence which are independerit. of

Proofof Theorem d.et f € A™P(£2). Givene > 0, there are functions @ g, €
L?($£2), polynomialsP, (B, f) and exponentg,, 1 < g, < p(k=1,--- ,m),

such that
1/qx
][ \f = Pu(B, Pldu < r(B) (][ |gk|4kdu>
B B

for every ballB C 2, and such that

m
1 f v + Y lgkller) < [1f1lamri) + €.
k=1

By Theorem 1, foreach ¥ k < m andu—a.e.x € B,

| f(x) — Pu(B, f)(x)] < Cr(B)*M(|g|™)(x)"4.
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The functionsC M (|g|%)Y/% are inL?(£2) sincep > g; and the maximal func-
tion is bounded or.?/% (£2). Thus, by definition 3.2f € B™?(£2) and

m
1
£ 1amey <IflLr) + C Y IIM gkl ™) Y% Lo
k=1
m

<l fllLr2y +C Z l1gkllLr2) = CULfllamr(2) +€).
k=1

Lettinge — 0, we obtain

f1lgmr2)y < Cllfllamr(s2y.

Suppose next that € B™7(£2). Givene > 0, there are functions 8 g, €
L7 (£2) and polynomialsP, (B, f) (k =1, --- , m) such that

|f(x) = Pe(B, /(0] < r(B) gu(x)

foru—a.ex € B C £ and

m
£ ller@ + Y lgkller) < |Lf1lsmr) + €.
k=1

It follows by integrating oveB that the Poincarinequality

]{glf(X) — Pu(B, f)(0)ldp(x) < r(B) ]é |8k (x)|d e (x)

holds for every suclB. By definition 3.1, applied with, = 1, we conclude that
f e A™P(£2) and

m

1 amr2y < N flleee) + Z l8kllLr2y < I fllBmri2) + €.
k=1

Thus|| f|lamr2) < || fllsn.rs2), and we have proved that definitions 3.1 and 3.2
are equivalent.

In passing, let us briefly justify the remark we made after Definition 3.2. A
simple argument based on dividing the domain of integration into annuli gives

f p(x, ) gr(y)
s W(B(x, p(x,y)))

and it then follows that the condition in the remark implies the one in Definition
3.2. Conversely, the condition in Definition 3.2 leads immediately by integration
to anL! to L! Poincag estimate, and then Theorem A implies the condition

given in the remark.

du(y) < Cr(BY*M(g)(x), x € B,
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4. Classical and Folland—Stein Sobolev spaces are special examples

Let G be a finite-dimensional, stratified, nilpotent Lie algebra. Assume that
g = EBi:lvl ,

with[V;, V;]1 C Vigfori+j <sand[V;, V;] =0fori+j > s.LetXy,..., X;
be a basis fol/; and suppose th&, ..., X; generate; as a Lie algebra. Then
for 2 < j < s, we can choose a badi¥;;}, 1 < i < k;, for V; consisting of
commutators of length. We setX;; = X;, i = 1,...,1 andk; = [, and we call
X;1 a commutator of length 1.

If G isthe simply connected Lie group associated Witthen the exponential

mapping is a global diffeomorphism froghto G. Thus, for eacly € G, there
isx=(x;;) eRY,1<i<kj,1<j<s, N= Zj.:lkj, such that

g=exp)_xijXi)) -
A homogeneous norm functign | on G is defined by
|g| — (Z |xij|2s!/j)l/2S! ,

andQ = } ;_; jk; is said to be thtiomogeneous dimensionG. The dilation
8, onG is defined by

8r(g) = eXp(Zr"’x,-jX,-j) if g = eXFXZ)Cin,’j).

The convolution operation o is defined by
fxh(x) = [G fy ™Hh(y)dy = /@ FOhG0dy,

wherey 1 is the inverse of andxy~! denotes group multiplication afby y—2.
It is known that for any left invariant vector field on G,

X(f %h) = f % (Xh).

We now recall the definition of the class of polynomialg®given by Folland
and Steinin [FS]. LeX, ---, X; in V1 be the generators of the Lie algelgrzand
let X1, - - -, X;, - - -, Xy be a basis off. We denotel/(X;) = d; to be the length
of X; as a commutator, and we arrange the order so thatdl < - - - < dy.
Thenitiseasytoseethdf = 1forj =1,---[. Let&, - &y be the dual
basis forG*, and lety; = & o exp *. Eachy; is a real-valued function o8, and
n, ..., ny gives a system of global coordinates@nA function P onG is said
to be a polynomial otz if P o exp is a polynomial oi§/. Every polynomial on
G can be written uniquely as

Px)=Y am'), n'=nt-n), a€R,
1
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where all but finitely many of the coefficients vanish. Clearly;’ is homoge-
neous of degred(l) = Y.\'; ijd;, i.e.,n’ (8,x) = r'Dn;(x). It P =Y ary’,
then we define the homogeneous degree (or orddétlobe maxd (/) : a; # 0}.

We also adopt the following multi-index notation for higher order derivatives.

If I = (i1, ---,in) € N¥, we set
X =xox2.. x.

By the Poincae=Birkhoff-Witt theorem (cf. Bourbaki [B], 1.2.7), the differential
operatorsX’ form a basis for the algebra of left-invariant differential operators
in G. Furthermore, we set

| =iy +ix+---+in, d()=dii1+dip+---+dyin.

Thus,|I| is the order of the differential operatai’, andd (/) is its degree of
homogenity;d(I) is called the homogeneous degree (orderxéf From the
Poincag—Birkhoff—Witt theorem, it follows in particular that any differential
operatorX* = X;*--- X;* with 1 < i; <l for1l < j <k (for anyk anda) can
be expressed as a linear combination of operators of the speciakfbabove
withd(I) = |a| = a1 + - - - + . Thus, instead of considering such differential
operatorsx®, we will often consider only operators of the special faxrhwith

d(I) = |a|. We will also use the notation

Xmf=( > xRt

I:d(I)=m

for any positive intege.

Let m be a positive integer, . p < oo, and 2 be an open set iff.
The Folland—Stein Sobolev spa®@™”(£2) associated with the vector fields
Xi1,---, X, is defined to consist of all functiong € L?”(£2) with distributional
derivativesX’ f € L?(£2) for everyX' defined above witd (/) < m. Here, we
say that the distributional derivativé’ f exists and equals a locally integrable
functiong; if for every ¢ € C3°(£2),

[ rxioar =0 [ ggar.
2 2
wW™Pr(£2) is equipped with the norm

I fllwmrey = 1f vy + > Xl

1<d()=m

This definition is equivalent to the one given in the introduction because of our
earlier remarks about the PoineaBirkhoff—Witt theorem.

Before we state the main theorems of this section, we need to recall some other
results that will be needed. It is known that any polynomial®satisfies (P1)
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(see [FS]) and also (P2) (see [L2]) whens Lebesgue measure, with constants
which depend only o and the homogeneous degree of the polynomial. Now,
if 2 CG,letf e wm™r(2)and letP, be the class of polynomials d& of
homogeneous degree strictly less thatt is shown in [L2], and earlier in [N] for
the Heisenberg group, that given any ballc 2, there existsP,, (B, f) € Py
such that

(4.1) / X'(f — P,(B, f))dx =0
B

if d(I) < m. Clearly, by iteration of the case = 1, this polynomialP,,(B, f)
satisfies the Poincarihequality of ordem for Lebesgue measure, i.e.,

(4.2) I1f = Pu(B, Ollirs.ax = CrB)"[IX" fllirp.ax-

In fact, a sharp.? to LY Poinca¥g inequality with optimal exponents holds for
l<p< Qandg = Q”—_Qp (see [L2]). Itis also shown in [L2] that, for every ball
B C £2, there is a linear projection operator

(B, : WP(2) — P,
satisfyingrn,, (B, P) = P forall P € P,, and both

C
3) SUPIn (B, )(x)] < — / £ O)ldy
XEB |B| B
and
(4.4) X700 (B, Pllras.an < CQ, OINX fllLas.an

forall 1 < ¢ < oo. It is easy to see that the polynomiatg (B, f) satisfy
(4.2) by using the fact that polynomials satisfying (4.1) do (see, e.g., Lemma
2.8 in [LW]). Polynomials satisfying (4.1), or (4.3) and (4.4), have applications
to proving extension theorems on high order Sobolev spaces on the Heisenberg
group (see [N]) and stratified groups (see [L2], [L3]) and Sobolev interpolation
inequalities of any order (see [L1], [L2]).

The main theorem of this section concerns the equivalen®&of(£2) and
the spacesa\” 7 (£2) and B™-?(£2) defined earlier. We always choodg = dx
in the rest of the paper.

Theorem 3.Letm be a positive integer antl < p < oco. The Folland—Stein
spaceW™?(£2) on astratified grouds is equivalent to the corresponding classes
in definitions (3.1)—(3.2), whep is taken to be Lebesgue measure in those
definitions. Moreover,

[ 1lwmr 2 ALf [lamr 2 (1f 1| gmr

with constants of equivalence which are independerit. of
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To show this, we only need to show tH&t™ 7 (£2) is equivalent taA™7($2)
since the equivalence af":”(£2) and B™”(§2) was shown in Sect. 3.

Lemma 4.Let P be a polynomial of order less th&mandl < ¢ < oo. LetI be
any multi-index. Then

||XIP||L4(B) < CI’(B)_d(I)HPHLq(B) forallballs Be G

whereC depends only o®, g, k.

This lemma is essentially proved in [FS] (see [L2] for a proof of the result
stated in the above form).

We begin the proof of Theorem 3 by showing that (when= dx) A™?($2)
C WmP(£2).

Theorem 5.Letm be a positive integefl < p < oo, and f € A™P(§2). For
eachk =1, --- , m, consider function® < g; € L?(£2), polynomialsP; (B, f)
and1l < g < p such that for every balb c 2,

1/qx
(4.5 ][ | f(x) — Pu«(B, f)(x)ldx < Cr(B)" ( ][ g,i’kdx> .
B B
Thenf e W™2(2) and|| fllwmr2) < I fllr@) + C Y l18kllLr@)-

Proof of Theorem 5The proof adapts ideas of Calder[Ca] and relies on the
group structure ofs. See also [H] for a similar adaption of Calders ideas.
Later, we will give a second proof which works in caQeis the entire space
and which involves polynomials for high order Sobolev functions. A similar
argument forn = 1 has been used in [FHK] to prove the equivalence of several
definitions of Sobolev spaces of first order in metric spaces.

Let f € A™P(£2),and let (4.5) holdfok =1,--- ,mand allB C 2. To
show thatf € W™”(£2), we need to show that the distributional derivatives
X'f = X{--- Xy fof fin £ liein L7($2) for all 1 with d(I) < m. By
using the Riesz representation theorem, it is enough to prove that there exists a
nonnegative function € L?(£2) such that for any € C3°(£2),

|/ FXY - X2X | dx 5[ gk dx.
2 2

Letus now show that for fixedwith d (1) = k < m, this estimate holds with(x)
taken to beC M (g/)Y (x). We setr! = X} - - - X1 Fixany¥ € C$°(B(0, 1))
with [ ¥ = 1, and let¥, (x) = e~ 2W¥ (§.-1x). Note that¥, is supported in the
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ball B(0, €). If ¢ € C3°(£2), then
/ fYlpdx =lim / (f x W)Y pdx
G 6*)0 G
=(—1)4D lim / X'(f W) pdx
e—0 G

=(—1* Iim/(fs:eX’lI/e)qbdx.
e—0 G
Recall that

Pi(B(x,€), f) % X'W.(x) = /@, P(B(x, €), /)(xy HX W (y)dy

0" [ VRGO N Iy,
Note that for any fixed:, P, (B(x, €), f)(xy~1) is a polynomial iny of degree
less thark (see [FS, p. 23]), so that'[ P, (B(x, €), f)(xy~1)] = 0. Therefore,
Pu(B(x,€), f) % X' W (x) =0

and
(f % X'W)(x) = (f — Pu(B(x, €), f)) % X" W (x).

Consequently, if Ix d(I) = k < m,
I(f % X ") (x)] =|fg(f— Py(B(x, €), /X W)y~ x) dy|
sc/ |f — Pe(B(x.€), f)]- € 27*dy.
B(x,¢)

Assuming as we may thate 2, and choosing so small thaiB(x, €) C §2, we
can estimate the last expression by using (4.5). Thus,

1/qk
I(f % X'w)x) < C < ][ lgkwkdy) < CM(g{")(x)"%,
B

(x,€)
and so
| f FY'bdx| < C / 6 1M (g% dx.

This shows that if 1< d(I) = k < m, then for a.ex € £2, the distributional
derivativeX’ f satisfies

X' f(x)] < CM(g*)(x)Y.

Thus,
X" fllLry < CHIM (&P Y% roy < CllgkllLra)-
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Hence,f € W7 (£2) and|| fllwn.r) < I fllr2) + C D pey 118kl ILr(2)- This
completes the proof of Theorem 5.

We now give a second proof of Theorem 5 in cazés the entire spacé.
This proof is less dependent on the group structuré.of

Second Proof of Theorem 5 wheh = G. Givene > 0, select a sequence of

balls B; with r(B;) = € such thatuB; = G and}_; x25 (x) < M for all x. It

is easy to see that if2 N 2B; # @, then 48; N 4B; contains a ballS;; with

r(Si;) ~ €. Here, the constants of equivalence as welllasan be chosen to be

independent of, i, j. (See, e.g., the construction of dyadic grids in [SW].)
Let&; be aC* function supported in B; such that O< &;(x) < 1 for all x,

£(x) = 1forx € B;,and|X'&(x)| < Cr(B;)~4" for all x and all multi-indices

I (see [FS]). Now let
b=&/) &.
j

Then{¢;} is a smooth partition of unity associated wjth; }, namely,

Y i) =1, suppp; C 2B;, and|X'g;(x)| < Ce™D

for all x and all multi-indiced .
Fix a function f € A™?(G), and assume that the estimates (4.5) hold. For
k=1, ---,m,define

fex®) =) ¢i(x)Pi(4B;, f)(x), x€G.

We claim that for any fixed indek with d(I) = k,
X! fex ()] < CM (g 0)Y%, x €G.

To show this, fixx and choose a baB;, with x € B;,. Clearly, there are only a
finite number of such that B; N2B;, # ¢J. We will use the notatiod + K = I

if I =(,---,in), J =0, -5 jn) K = (ka, - -+, ky) andiy, + ji, = k;, for
each 1< h < N.Then

X! fer@) =IXT Y (Pu(@Bi, £)(x) — Pi(4Big, (1)) ¢i(x)]

=|Z Z X7 (P(4Bi, [)(x) = Pu(4Big, £)(x)) XK i (x))]

i d(J)+d(K)=d(I)

<ce?® 3 Y 1X(P@Bi, ))(x) = Pu(4Biy, /()]

i:2B;N2B,#V d(J)+d(K)=d(I)
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sincex € B;, and¢; has supportin B;. Recall that if B; N2B;, # ¢, then there
is a ballS;;, € 4B; N 4B;, with r(S;;,) ~ €. We have

X7 (P(4B;, )(x) — P(4Big, [)(x)) |
<|IX’ (Pc(4B;, ) — Pc(4Big, ) ||L=(s,)
<Cr(Big) "“||P.(4Bi, f) — Pi(4Big, )||r=w@s,,) by Lemma 4
<Cr(Bip)) || P (4Bi, f) — P(4Big, )15

<Cr(By) V) ][ \PeB1, F)(y) — Pu(@Big, 1)(3)ldy
Siig

<Cr(B;,)™ ") ][ [|P4Bi, Y0 = f()ldy

4B;

+ Cr(By) ) ][ 1f () — Pu(@By, £)(0dy

4B,'0
1/qx
gﬁ"dy)

1/qx
gZ"dy)

<Cr(Bip)~"r(B)* ( ][
4

Bi

+Cr(Bio)™"r(Byy)* ( ][

4B;,
<Ce Ve M (gl ()Y,
Here we have used (4.5) to obtain the next-to-last inequality. Thus,
X fer (X)) < CM(g*) (x) .
For a.eux,

£ = fer @] <) 1 (O] | f (x) — Pe(4B:, f)(x)] < Ce* M (g]")(x)"/

by using the fact from Theorem 1 that (4.5) implies that for a.e.4B;,
| () = Pc(4Bi, /)| < Cr(B) M (g{) ()",

and the fact that only a finite number of the balB; Zontainx. Thus, f(x) =
lim._o fex(x) for a.e.x. Moreover, sinceg;, € L?(G) and M is a bounded
operator onL?/%(G) (recall thatg; < p), f... also converges t¢ in L?(G).
Therefore, for any € C3°(G),

/ FEOXN . X (x)dx = IimO/ Fex )XW - X (x)dx.
G =0 Jg
Since| X! fex(x)| < CM (gi*)(x)Y4 for all x, we conclude that

| /G FEOXY - XEp()dx| < C /G M () ()Y )¢ (x)|dx.
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Thus the distributional derivativi’ f (x) satisfies X’ f (x)| < CM (gf*)(x)Y/4,
and the rest of the proof is as before.

Proof of Theorem 3Supposef € A™”(£2), and let§ be any positive number.
Then there exist functions & g, € L”(£2), polynomialsP, (B, f) onG, and
exponents X g, < p (k =1, ---,m) such that

1/qx
][ | f(x) — P(B, f)(x)ldx < r(B)* ( ][ gZ"dX)
B B

forevery ballB C 2, and|| fllLr@) + D peq ll&kllLr2) < I fllamro) + 8. By
Theorem 5,f € W™?(£2) and

m
£ llwmri2) < 1 llr@y +C D lgllLrie)-
k=1

By combining estimates and lettiig— 0, we obtain

| flwmre2y < Cl fllamry -

Now let f € W™?(£2). Then by the comments which precede Theorem 3,
fork =1, ---,m, there are polynomials of degree less thauch that

[ 17@) = P Dol < Crp)t [ 1x* i
B B
for every ballB C £2. Thus by definition (3.1)f € A™?(£2) and

f1lamr2) < Cllfllwmr(g)-
Combining estimates give$™?(£2) = W™?(£2) and

1 lwmpc2y = (| fllame) -
This completes the proof of Theorem 3.

Final remarks.The referee pointed out to us the relevant work of Cheeger [Ch]
on differentiability of Lipschitz functions on metric spaces, written around the
same time as the current article. Based on the current paper, a number of other
papers have been written. For example, it has been shown in [LP] th&t'the
norm can be replaced by thg “norm” for 0 < ¢ < 1 on the left-hand side of

(3.1) of Definition (3.1). It has been shown in [R] and [LRP] that the condition
w(E) > yu(D) in (P2) is equivalent to(E) > y1r(D) for somey; > 0
depending only ory and the doubling constant of, wherer(E) denotes the
radius of E. In [LPR], we have shown the existence of polynomials in metric
spaces (e.g., positive powers of the distance function), defined notions of degrees
of polynomials and higher order gradients in metric spaces, and established
distribution theory in metric spaces by using the high order Sobolev space theory
developed in the current paper.
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