
ON A PRIORI C1,α AND W2,p ESTIMATES
FOR A PARABOLIC MONGE-AMPÈRE

EQUATION IN THE GAUSS CURVATURE FLOWS

By QINGBO HUANG and GUOZHEN LU

Abstract. This paper establishes Hölder estimates of Du and Lp estimates of D2u for solutions u to
the parabolic Monge-Ampère equation −Aut + ( det D2u)1/n = f .

1. Introduction. In this paper, we consider the following parabolic Monge-
Ampère equation

− A(x)ut + ( det D2u)1/n = f (x, t), in Q = Ω× (0, T](1.1)

where u = u(x, t) is convex in x for every 0 < t ≤ T , D2u denotes the Hessian of
u with respect to x, and Ω is a bounded convex domain in Rn.

Equation (1.1) arises in connection with geometric evolution problems in-
volving powers of Gauss curvature which have drawn a great deal of attention
and undergone a rapid development. For instance, see [Fir], [Tso1], [Cho], [An
1,2], [Ham], [C-E-I], and [Ur]. Let X0(s), s ∈ Sn be a smooth strictly convex
closed surface in Rn+1, and consider the Gauss curvature flow

{
∂X
∂t (s, t) = −sgn(β)Kβ(s, t)ν(s, t)
X(s, 0) = X0(s),

(1.2)

where β �= 0, sgn(β) is the sign function of β, K the Gauss curvature, and ν is
the unit outward normal at X(s, t).

If the strictly convex surface X is parametrized by the inverse of the Gauss
map, then the support function H(ν, t) of X can be written as

H(ν, t) = X(ν, t) · ν = sup
x∈X

x · ν,

where the unit outward normal at X(ν, t) is ν. As in [Tso1] and [Cho], (1.2) is
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equivalent to the equation

∂H
∂t

(ν, t) = −sgn(β)Kβ .(1.3)

From (1.3), u(x, t) = H(x,−1, t), x ∈ Rn satisfies

− ut( det D2u)β = sgn(β)(1 + |x|2)[1−β(n+2)]/2.(1.4)

When β = −1
n

, (1.4) leads to (1.1) with f = 0.

When β = 1, (1.4) becomes the following equation

− ut det D2u = f (x, t).(1.5)

Equation (1.5) is nonlinear both in ut and D2u and is parabolic if u(x, t) is strictly
decreasing in t and convex in x. This operator plays an essential role in the
parabolic version of the Alexandrov-Bakelman-Pucci maximum principle proved
in [Kry], [Tso2], which is an indispensable tool for fully nonlinear parabolic
equations. Tso [Tso1] also used (1.5) to study the Gauss flow (1.2) with β = 1
and established the existence and some asymptotic estimates. Firey’s conjecture
about limiting shape of convex surfaces under the Gauss flow (1.2) with β = 1
was proved in [An2]. Recently, analytic aspect of (1.5) has been also studied.
The Schauder C2,α estimates were established in [W-W1] and W2,p estimates
were proved in [G-H3]. A Calabi type result about entire solutions for (1.5) was
obtained in [G-H1].

Equation (1.1) with A(x) = 1 has recently been investigated by some authors.
It was first introduced in [Kry]. Ivochikina and Ladyzhenskaya [I-L] considered
the initial-boundary value problem. They proved the existence of classical solu-
tions if given data satisfy certain smoothness and compatibility assumptions. In
the case of less smooth given data, the Bernstein technique is not enough for
obtaining C2,α estimates. In that case, [W-W2] adapted a nonlinear perturbation
that Caffarelli had used for the elliptic Monge-Ampère equation to study (1.1)
with A(x) = 1 and established the Caffarelli-Schauder type estimates if f (x, t) is
Lipschitz together with other assumptions.

It is our purpose in this paper to establish Hölder estimates of Du and Lp

estimates of D2u for solutions u to (1.1), when f (x, t) is merely continuous but
not necessarily Lipschitz continuous and ft satisfies some one-sided boundedness
condition and integrability condition as well with other assumptions. For the
elliptic Monge-Ampère equation, the estimates of these types were established in
[Caf1].

It seems that (1.5) is more nonlinear in appearance than (1.1). However,
(1.5) has an advantage that it is the Jacobian of the associated normal mapping
N defined by N (x, t) = (Du(x, t), xDu(x, t) − u(x, t)). The lack of being as a
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Jacobian operator for (1.1) gives rise to new difficulty. In deriving estimates
about eccentricity of sections which can lead to C1,α estimates, since (1.1) has
not the same affine invariance as (1.5) when rescaling, we have to deal with a
family of equations with different coefficients and need to carefully control the
bounds of these coefficients. We will use the Calderón-Zygmund decomposition
in terms of sections to establish W2,p estimates. One ingredient of the proof is the
estimate of density of good sets where the Hessians of solutions are controlled.
The existent approach heavily relies on the structure of Jacobian operators and
is not suitable for (1.1). To overcome the difficulty, we use the concavity of the
operator in (1.1) and one-sided W2,δ estimates (0 < δ < 1), together with the
property of (1.1) that if the Hessian of a solution is bounded from above then it
is also bounded from below. This approach can also be applied to (1.5) and the
elliptic Monge-Ampère equation.

Although the notion of viscosity solutions to (1.1) can be introduced (see [W-
W2]), for simplicity, we will work with smooth solutions which are convex in x
throughout this paper. But the estimates obtained are independent of smoothness
and depend only on the structure constants.

Now we state the main results of the paper.

THEOREM A. Let u = u(x, t) be convex in x and a solution to (1.1) in the cylinder
Q = Ω× (0, T] with u = φ on ∂pQ = ∂Ω× (0, T] ∪Ω× {0}. Assume that:

(A1) A ∈ C(Ω) and 0 < λ ≤ A(x) ≤ Λ in Ω;
(A2) f ∈ C(Q), ft ∈ Ln+1(Q);
(A3) φ ∈ C2,1(Q) is convex in x, Bd0 ⊂ Ω ⊂ Bd convex, ∂Ω ∈ C1,α with

α > 1− 2
n ; and

(A4) there exist ν > 0, a ≥ 0 such that f +
t ≤ a in Q and

inf

{
inf

∂Ω×(0,T]
φt, inf

Ω×{0}

( det D2φ)
1
n − f (x, 0)

A(x)

}
+ inf

Q

f
A
− 1

2
ad2 ≥ ν.

Then:
(i) ‖ut‖L∞(Q) ≤ M1 and A(x)ut + f (x, t) ≥ λν > 0 in Q, where M1 depends only

on structure constants above.
(ii) For any 0 < β < 1, ε > 0, Ω′ ⊂⊂ Ω

[Dxu]Cβ,β/2(Ω′×[ε,T]) ≤ M2,

where M2 depends only on β, ε, dist(Ω′, ∂Ω), and structure constants in
(A1)–(A4).

(iii) For any 1 ≤ p <∞, ε > 0, Ω′ ⊂⊂ Ω

‖D2
xu‖Lp(Ω′×[ε,T]) ≤ M3,
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where M3 depends only on p, ε, dist(Ω′, ∂Ω), and structure constants in
(A1)–(A4).

Remark B. All conclusions of Theorem A still hold, if assumption (A4) in
Theorem A is replaced by the following assumption:

(A4)∗: there exist ν > 0, a∗ ≥ 0 such that ‖f +
t ‖Ln+1(Q) ≤ a∗ and

inf

{
inf

∂Ω×(0,T]
φt, inf

Ω×{0}

( det D2φ)
1
n − f (x, 0)

A(x)

}
+ inf

Q

f
A
− C∗na∗

(
dn

λ

) 1
n+1

≥ ν,

where C∗n = n
(

2n

σn(n + 1)n

)1/(n+1)

and σn is the surface area of unit sphere in Rn.

Remark C. If we assume that A ∈ Cα0 and f ∈ Cα0,α0/2 in addition to
assumptions (A1) to (A3) and either (A4) or (A4)∗, then the eccentricity of
sections can be shown to be uniformly bounded and C2+α0,1+

α0
2 estimates can be

established. See Theorem 3.2.

The organization of the paper is as follows. In §2, the bounds of time deriva-
tive of solutions are discussed. In §3, estimates on the eccentricity of sections
and Hölder estimates of Du and D2u are given. Finally, §4 contains the proof of
Lp estimates of D2u.

2. Bounds for time derivatives. The purpose of this section is to establish
bounds for time derivatives of solutions to (1.1). Noting that if u is a solution
to (1.1) then ut satisfies the linearized equation, we will use the Alexandrov-
Bakelman-Pucci maximum principle and an auxilliary function to show that ut is
bounded and A(x)ut + f (x, t) is strictly positive.

Let us define the linearized operator Lu of (1.1) by

Luv = −A(x)vt +
1
n

( det D2u)1/ntr((D2u)−1D2v).

Given a smooth function v, the parabolic Alexandrov-Bakelman-Pucci maximum
principle yields

max
Q

v ≤ max
∂pQ

v + Cn(diamΩ)
n

n+1


∫ ∫

Γv

|vt det (D2v)| dxdt




1
n+1

,

where

Γv = {(x, t) ∈ Q: vt ≥ 0 and D2v ≤ 0} and Cn = [n(n + 1)/σn]
1

n+1 .
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Obviously, on the contact set Γv

vt · det (D2(− v)) =
1

A(x)
A(x)vt · det

[
( det D2u)

1
n (D2u)−1(− D2v)

]

≤ 1
nA(x)

[
nA(x)vt + tr(( det D2u)

1
n · (D2u)−1(− D2v))

n + 1

]n+1

.

It follows that

max
Q

v ≤ max
∂pQ

v + C


∫ ∫

Γv

(− Luv)+(n+1) dxdt




1
n+1

,(2.1)

where C = n[(n + 1)nσnλ]−1/(n+1)(diamΩ)n/(n+1).
Let u be a solution to (1.1). By differentiating (1.1), we obtain

Lu(ut) = ft.

It is clear that ut = φt on ∂Ω× (0, T] and

A(x)ut = ( det D2φ)1/n − f (x, 0) on Ω× {t = 0}.

Thus, applying (2.1) to ut yields

max
Q

ut ≤ max
∂pQ

ut + C
[ ∫ ∫

Γut

(− ft)
+(n+1)dxdt

] 1
n+1

(2.2)

≤ max{ max
∂Ω×(0,T]

φt, max
Ω×{0}

( det D2φ)
1
n − f (x, 0)

A(x)
} + C‖f−t ‖Ln+1(Q),

which gives an upper bound for ut.
Now we show that ut + f is strictly positive and hence ut is also bounded

from below.
In the case that assumption (A4) holds, by observing that

1
n

( det D2u)
1
n · tr((D2u)−1) ≥ 1,

we obtain that w = ut − 1
2 a|x− x0|2 satisfies

Lu(w) ≤ ft − a ≤ 0 in Q.
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Without loss of generality, one may assume Ω ⊂ Bd(x0) in assumption (A3). By
the maximum principle

inf
Q

ut ≥ inf
Q

w = inf
∂pQ

w ≥ inf
∂pQ

ut −
1
2

ad2.

Therefore by assumption (A4)

A(x)ut + f (x, t) ≥ A(x)

[
inf
∂pQ

ut −
1
2

ad2 + inf
Q

f
A

]
(2.3)

≥ A(x)

[
inf

{
inf

∂Ω×(0,T]
φt, inf

Ω×{0}

( det D2φ)
1
n − f (x, 0)

A(x)

}

+ inf
Q

f
A
− 1

2
ad2
]
≥ λν.

If assumption (A4)∗ holds, by applying (2.1) to −ut, we obtain

A(x)ut + f (x, t) ≥ A(x)

[
inf
∂pQ

ut − C‖f +
t ‖Ln+1(Q) + inf

Q

f
A

]
(2.4)

≥ A(x)

[
inf
∂pQ

ut + inf
Q

f
A
− C∗na∗

(
dn

λ

) 1
n+1

]

≥ λν.

By (2.2), (2.3), and (2.4), we get the following result.

THEOREM 2.1. Let u be the solution of (1.1) in Q with u = φ on ∂pQ. Suppose
that assumptions (A1) to (A3) and either (A4) or (A4)∗ hold. Then ut ∈ L∞(Q) and
A(x)ut + f (x, t) ≥ λν > 0 in Q.

We make some remarks about assumption (A4). When φ satisfies

−A(x)φt + ( det D2φ)
1
n = f on Ω× {t = 0},

assumption (A4) is reduced to

inf
∂pQ

φt + inf
Q

f
A
− 1

2
ad2 ≥ ν.

In the case of the homogeneous equation (i.e., f = 0), if φ is strictly convex
in x and strictly increasing in t, then (A4) holds.
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3. Eccentricity of sections and Hölder estimates for Du. In this section,
we will use a perturbation argument to investigate the eccentricity of sections
and derive Hölder estimates for the gradient and Hessian of solutions to (1.1).

Let u(x, t) be a solution of (1.1) with initial-boundary value φ. By Theorem
2.1, ut ∈ L∞(Q) and A(x)ut + f (x, t) ≥ λν. Clearly, v(x, t) = u(x, t) − Mt has
the same regularity as u(x, t), and is strictly decreasing in t and convex in x for
large M. Without loss of generality (Otherwise replace u(x, t) by v(x, t)), we can
assume from now onwards that u(x, t) satisfies

0 < m1 ≤ −ut ≤ m2,(3.1)

and

0 < λ1 ≤ −ut det D2u ≤ λ2, in Q.(3.2)

For z0 = (x0, t0) ∈ Q, recall the section Qh(z0) = Qh(u, z0) is defined by

Qh(z0) = {(x, t) ∈ Q: u(x, t) ≤ 
z0 (x) + h and t ≤ t0},

where 
z0 (x) = u(x0, t0) + Du(x0, t0)(x − x0), and the elliptic section Sh(u; x0|t0) =
Sh(x0|t0) is defined by

Sh(x0|t0) = {x ∈ Ω: u(x, t0) ≤ 
z0 (x) + h}.

The parabolic boundary ∂pQh(z0) of Qh(z0) is given by

∂pQh(z0) = {(x, t) ∈ Q: u(x, t) = 
z0 (x) + h and t ≤ t0}.

Let us recall some facts about sections. It follows from (3.1) that there exists c1,
c2 > 0 such that for 0 < θ < 1

Sθh(x0|t0)× (t0 − c1(1− θ)h, t0] ⊂ Qh(z0) ⊂ Sh(x0|t0)× (t0 − c2h, t0].

By [G-H3, Theorem 6.3], for (x0, t0) ∈ Ω′ × (ε0, T] with Ω′ ⊂⊂ Ω, there exists
h0 such that

Qh(z0) ⊂⊂ Q for h ≤ h0,

and by [G-H2, Theorem 2.3], diam(Qh(z0))→ 0 as h→ 0.
Since A and f are continuous, f ≥ λ(ν+m1), ut is bounded and diam Qh(x0, t0)

−→ 0, for ε > 0, there exists h0 > 0 such that

(1− ε)f (x0, t0) ≤ −A(x0)ut + ( det D2u)1/n ≤ (1 + ε)f (x0, t0), in Qh0 (x0, t0).(3.3)
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We now normalize (or rescale) u and Qh0 . From Fritz John’s Lemma, there
exists an ellipsoid E such that

γ0E ⊂ Sh0 (x0|t0) ⊂ E.

Furthermore, by the theory of the elliptic Monge-Ampère equation, E can be
chosen such that E is centered at (x0, t0) and γ0E ⊂ Sθ0h0 (x0|t0) for some 0 <
θ0 < 1. Let T be the invertible affine transformation satisfying TE = B1 and
Tx0 = 0, where B1 is the unit ball in Rn centered at the origin. Define the
transformation T by

(y, s) = T (x, t) =
(

Tx,
t − t0
Kh0

)

and set

u∗(y, s) =
1
C

[
(u− 
z0 )(T −1(y, s))− h0

]

=
1
C

[
u(T−1y, t0 + Kh0s)− 
z0 (T−1y)− h0

]
,

where z0 = (x0, t0) and 
z0 (x) is the supporting affine function or hyperplane to
u(·, t0) at x = x0. From (3.3), one obtains

(1− ε)f (x0, t0) ≤ −CA(x0)
Kh0

u∗s +
C( det D2u∗)1/n

| det T−1|2/n
≤ (1 + ε)f (x0, t0) in Q∗h0

,(3.4)

where Q∗h0
= T Qh0 (x0, t0).

Choose C = | det T−1|2/n. By (3.1), (3.2), and det D2u∗ = det D2u, it follows
that

λ1/m2 ≤ det D2u∗ ≤ λ2/m1, in TSh0 (x0|t0).

By the theory of the elliptic Monge-Ampère equation

hn
0 ≈ |Sh0 (x0|t0)|2 ≈ |E|2 ≈ | det T−1|2.

Here and throughout the paper, we use the symbol a ≈ b to denote that the
quantity a/b is bounded by two positive universal constants from above and
below. Thus, C/h0 ≈ 1. We now choose K = C/h0 ≈ 1 and get

Bγ0 × (− c3, 0] ⊂ Q∗h0
= T Qh0 (x0, t0) ⊂ B1 × (− c4, 0].(3.5)

Note that Q∗h0
is not a cylindrical domain but a bowl-shaped domain defined by

u∗. Let ∂pQ∗h0
= T ∂pQh0 (x0, t0). From the above argument, we conclude that u∗
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satisfies

(1− ε)f (x0, t0) ≤ −A(x0)u∗s + ( det D2u∗)1/n ≤ (1 + ε)f (x0, t0) in Q∗h0
,(3.6)

u∗ = 0, on ∂pQ∗h0
, 0 < m1 ≤ −u∗s ≤ m2.

Let P be the standard paraboloid defined by

P = {(x, t): t ≤ 0 and 1
2 |x|

2 − t ≤ 1},(3.7)

and denote the parabolic µ-dilation of set S by µS = {(µx,µ2t): (x, t) ∈ S}.
To study the regularity of u is reduced to investigate the properties of u∗.

Now we prove the following lemma for the normalized solution u∗. To simplify
the notation, we still use u instead of u∗.

LEMMA 3.1. Let u be a strictly parabolically convex function in Q and satisfy

(1− ε)f (z0) ≤ −A(x0)ut + ( det D2u)1/n ≤ (1 + ε)f (z0) in Q,(3.8)

u = 0 on ∂pQ,

m1 ≤ −ut ≤ m2 in Q,(3.9)

A(x0)ut + f (z0) ≥ λν/2 in Q,(3.10)

where Q = {(x, t): u < 0 and t ≤ 0} is a bowl-shaped domain and ∂pQ =
{(x, t): u = 0 and t ≤ 0} is the parabolic boundary of Q.

Assume that u(0, 0) = minQ u and that

Bγ0 × (− c3, 0] ⊂ Q ⊂ B1 × (− c4, 0].(3.11)

Then there exists a linear transformation T : (x, t) −→ (Tx, a t) such that

m1/2 ≤ a ≤ 2m2(3.12)

C−1 ≤ ‖Tx‖ ≤ C, for ‖x‖ = 1(3.13)

−aA(x0) + f (z0) = ( det T)2/n ≥ λν/4(3.14)

and for small µ > 0 with ε ≤ µ2

[1− C(
√
ε/µ +

√
µ)]P ⊂ √µ−1T Qµ(u, (0, 0))(3.15)

⊂ [1 + C(
√
ε/µ +

√
µ)]P ,

where
√
µ−1T (x, t) = (

√
µ−1Tx,µ−1a t).
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Proof. Let w(x, t), convex in x, be the smooth solution to the equation

− A(x0)wt + ( det D2w)1/n = f (z0) in Q(3.16)

with the boundary value w = 0 on ∂pQ. For the existence of w, see [W-W2].
We first establish some estimates for w. Similar to [I-L, Lemma 2.2], one can

easily show that the comparison principle holds for (3.8). Therefore, we obtain

(1 + ε)w ≤ u ≤ (1− ε)w in Q.

Since u = w = 0 on ∂pQ, it implies that

(1 + ε)wt ≤ ut ≤ (1− ε)wt on ∂pQ.

For small ε > 0, on ∂pQ we obtain

1
2 m1 ≤

−ut

1 + ε
≤ −wt ≤

−ut

1− ε ≤ 2m2,

A(x0)wt + f (z0) ≥ A(x0)ut

1− ε + f (z0) ≥ 1
4
λν.

On the other hand, both wt and A(x0)wt + f (z0) satisfy the linearized equation

−A(x0)vt +
1
n

( det D2w)1/ntr((D2w)−1D2v) = 0.

By the maximum principle again

m1/2 ≤ −wt ≤ 2m2 in Q,

( det D2w)1/n = A(x0)wt + f (z0) ≥ 1
4λν in Q.

Together with the estimate of Pogorelov type for (3.16) in [W-W2], interior C2,1

estimate for w follows, and hence by the theory of fully nonlinear equations, one
obtains estimates for higher order derivatives of w.

Now compare Qµ(u, (0, 0)) with Qµ(w, (0, 0)) for small µ > 0. We use C to
denote universal constants.

Recall u(0, 0) = minQ u ≈ const and let minQ w = w(x1, 0). Since |u−w| ≤ Cε,
|w(x1, 0)−w(0, 0)| ≤ Cε and 0 ∈ SCε(w; x1|0) ⊂ BC

√
ε(x1). Then |x1| ≤ C

√
ε and

|Dw(0, 0)| = |Dw(x1, 0)− Dw(0, 0)| ≤ C|x1| ≤ C
√
ε.
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We note that

w(x, t)− w(0, 0)− Dw(0, 0)x = u(x, t)− u(0, 0) + [O(ε)− Dw(0, 0)x].

Therefore, if ε ≤ µ2 and µ is small, we obtain

Qµ−C
√
ε
√
µ(w, (0, 0)) ⊂ Qµ(u, (0, 0)) ⊂ Qµ+C

√
ε
√
µ(w, (0, 0)).(3.17)

We now claim that for δ << µ (i.e., δ/µ is small)

∂pQµ+δ(w, (0, 0)) ⊂ NCδ/
√
µ

(
∂pQµ(w, (0, 0))

)
,(3.18)

where Nδ is the δ-neighborhood with respect to the distance

dµ
(
(x, t), (y, s)

)
= |x− y| +√µ−1|t − s|.

To prove (3.18), let (x, t) ∈ ∂pQµ+δ(w, (0, 0)) and distinguish two cases to
discuss. Without loss of generality, one can assume that Dw(0, 0) = 0. In the first
case that x ∈ Sµ(w; 0|0), there exists t < t1 < 0 such that (x, t1) ∈ ∂pQµ(w, (0, 0)).
Then w(x, t)−w(x, t1) = δ and |t1−t| = Cδ. In the second case that x �∈ Sµ(w; 0|0),
w(x, t)−w(x, 0) ≤ δ and |t| ≤ Cδ. Let x2 be the intersecting point of ∂Sµ(w; 0|0)
and the segment between 0 and x. Because Sµ(w; 0|0) ≈ BC

√
µ(0), one obtains

δ ≥ |w(x, 0)− w(x2, 0)| = |Dw| · |x− x2| ≈ c
√
µ|x− x2|.

It yields that |x2 − x| ≤ Cδ/
√
µ. Thus, we complete the proof of (3.18).

From (3.17) and (3.18), ∂pQµ(u; (0, 0)) is in C
√
ε-neighborhood of

∂pQµ(w, (0, 0)). We next compare Qµ(w; (0, 0)) with the paraboloids.
Let Pw be the paraboloid associated with w given by

Pw = {(x, t): t ≤ 0 and 1
2 Dijw(0, 0)xixj + wt(0, 0)t ≤ 1}

and recall the parabolic dilation
√
µPw = {(√µx,µt): (x, t) ∈ Pw}. We now claim

that

∂pQµ(w, (0, 0)) ⊂ NCµ
(
∂p
√
µPw

)
(3.19)

where Nδ is the δ-neighborhood with respect to the distance dµ.
To prove (3.19), it is equivalent to show

∂pQµ(w, (0, 0)) ⊂ (1 + C
√
µ)
√
µPw − (1− C

√
µ)
√
µPw.
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If (x, t) ∈ ∂p
(
(1 + C

√
µ)
√
µPw

)
, then by the Taylor formula

w(x, t)− (w(0, 0) + Dw(0, 0)x) =
1
2

Dijw(0, 0)xixj + wt(0, 0)t(3.20)

+ O(|D3w||x|3 + |Dwt||x||t| + |wtt|t2)

≥
[
(1 + C

√
µ)
√
µ
]2 − K(|x|3 + |x||t| + t2),

where K is a universal constant depending on the bounds of D3
xw, Dwt and wtt.

For (x, t) ∈ ∂p
(
(1 + C

√
µ)
√
µPw

)
, we have that |x| ≤ K

√
µ and |t| ≤ Kµ. If

µ� 1 and C � K, then

w(x, t)− (w(0, 0) + Dw(0, 0)x) ≥ (1 + 2C
√
µ)µ− K(µ3/2 + µ2) > µ.

It can be shown similarly that (1−C
√
µ)
√
µPw is contained inside Qµ(w, (0, 0)).

Thus we complete the proof of (3.19).
By (3.17), (3.18), and (3.19), we get

∂pQµ(u, (0, 0)) ⊂ NC(µ+
√
ε)
(
∂p
√
µPw

)
.(3.21)

Now find the affine transformation T . Since D2w is positively definite, we
can write D2w(0, 0) = Tt · T , where T is the composition of rotation and dilation.
Set a = −wt(0, 0) and

(y, s) = T (x, t) = (Tx, a t).

It is easy to verify that (3.12)–(3.14) hold. (3.15) follows from (3.21). The proof
of Lemma 3.1 is completed.

If the shape of Q is close to that of the standard paraboloid P , then one can
get better estimates for T and Qµ(u, (0, 0)). For our purpose, we state the result
in the following fashion.

LEMMA 3.2. Let u be a strictly parabolically convex function in Q satisfying

(1− ε)f (z0) ≤ −aA(x0)ut + B( det D2u)1/n ≤ (1 + ε)f (z0) in Q,(3.22)

u = 0 on ∂pQ,

m1 ≤ −aut ≤ m2 in Q,(3.23)

aA(x0)ut + f (z0) ≥ λν/2 in Q.(3.24)
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Assume that u(0, 0) = minQ u and that

(1− σ)P ⊂ Q ⊂ (1 + σ)P(3.25)

m1/2 ≤ a ≤ 2m2(3.26)

−aA(x0) + f (z0) = B ≥ λν/4.(3.27)

Then there exists a linear transformation T : (x, t) −→ (Tx, a∗t) such that

|a∗ − 1| ≤ Cσ(3.28)

1− Cσ ≤ ‖Tx‖ ≤ 1 + Cσ, for ‖x‖ = 1(3.29)

m1/2 ≤ aa∗ ≤ 2m2(3.30)

−aA(x0)a∗ + f (z0) = B( det T)2/n ≥ λν/4(3.31)

and for small µ,σ > 0 with ε ≤ µ2

[1− C(
√
ε/µ + σ

√
µ)]P ⊂ √µ−1T Qµ(u, (0, 0))(3.32)

⊂ [1 + C(
√
ε/µ + σ

√
µ)]P .

Proof. Let w be convex in x and satisfy

− aA(x0)wt + B( det D2w)1/n = f (z0), in Q(3.33)

and w = 0 on ∂pQ. As in the proof of Lemma 3.1, by the comparison principle

(1 + ε)w ≤ u ≤ (1− ε)w, in Q.

Similar to the proof of Lemma 3.1, one can obtain the estimates

m1/2 ≤ −awt ≤ 2m2, in Q(3.34)

aA(x0)wt + f (z0) ≥ λν/4, in Q.

From these estimates and the Pogorelov estimate, interior estimates for higher
order derivatives of w follows.

Let P = 1
2 |x|2− t− 1. By (3.27), it is easy to check that the functions P± 3σ

are also solutions to (3.33). (3.25) implies that P− 3σ ≤ 0 ≤ P + 3σ on ∂pQ. By
the comparison principle

−3σ ≤ w−
(

1
2
|x|2 − t − 1

)
≤ 3σ in Q.
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Since both w and P satisfy (3.33), v = w−P satisfies the following linear equation
of uniformly parabolic type

−aA(x0)vt + Btr(D(x, t)D2v) = 0,

where D(x, t) =
∫ 1

0
1
n det (θD2w + (1− θ)I)1/n(θD2w + (1− θ)I)−1 dθ, and I is the

n× n unit matrix. By interior Schauder estimates

‖w− P‖C2,1
loc
≤ C‖w− P‖L∞ ≤ Cσ.

In particular, |D2w(0, 0) − I| ≤ Cσ and |wt(0, 0) + 1| ≤ Cσ. It is also easy to
verify that the functions (w− P)t and D(w− P) satisfy the linearized equation

−aA(x0)vt + B
1
n

det (D2w)1/ntr((D2w)−1D2v) = 0.

Again by interior Schauder estimates

‖(w− P)tt‖L∞loc
+ ‖D(w− P)t‖L∞loc

+ ‖D3(w− P)‖L∞loc

≤ C‖(w− P)t‖L∞loc
+ C‖D(w− P)‖L∞loc

≤ Cσ.

Therefore

‖wtt‖L∞loc
+ ‖Dwt‖L∞loc

+ ‖D3w‖L∞loc
≤ Cσ.

By (3.20) and noting that in current case K can be chosen as Cσ, we have

∂pQµ(w, (0, 0)) ⊂ NCσµ
(
∂p
√
µPw

)
,

where Nδ denotes δ-neighborhood with respect to the distance dµ((x, t), (y, s)) =
|x− y| +√µ−1|t − s| and

Pw =
{

(x, t): t ≤ 0 and
1
2

Dijw(0, 0)xixj + wt(0, 0)t ≤ 1
}

.

Similar to (3.21), we obtain

∂pQµ(u, (0, 0)) ⊂ NC(σµ+
√
ε)
(
∂p
√
µPw

)
.(3.35)

Let D2w(0, 0) = TtT and a∗ = −wt(0, 0). Define the linear transformation
T by T (x, t) = (Tx, a∗t). Obviously, (3.28) holds and (3.29) follows from the
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following estimate

(1− Cσ)|y|2 ≤ yt · D2w(0, 0) · y = ‖Ty‖2 ≤ (1 + Cσ)|y|2.

Evidently (3.34) implies (3.30) and (3.31), and it is easy to show that (3.32) holds
from (3.35). So Lemma 3.2 is proved.

We apply Lemma 3.1 and Lemma 3.2 to get estimates about eccentricity of
sections.

LEMMA 3.3. Suppose that the assumptions in Lemma 3.1 hold and further
assume that there is a sequence {εk}∞k=0 with 0 < εk+1 ≤ εk and ε0 = ε ≤ µ2 such
that for k ≥ 1

(1− εk)f (z0) ≤ −A(x0)ut + ( det D2u)1/n ≤ (1 + εk)f (z0) in Qµk (u, (0, 0)).

Then there exist linear transformations Tk: (x, t) −→ (Tkx, akt) with ak > 0 satis-
fying

C−1 ≤ ‖T1x‖ ≤ C, for ‖x‖ = 1

|ak − 1| ≤ Cδk−1, for k ≥ 2

1− Cδk−1 ≤ ‖Tkx‖ ≤ 1 + Cδk−1, for k ≥ 2, ‖x‖ = 1

m1/2 ≤ a1 · · · ak ≤ 2m2, for k ≥ 1

−A(x0)a1 · · · ak + f (z0) = det (T1 · · ·Tk)2/n ≥ λν/4

(1− δk)P ⊂ µ−k/2Tk · · · T1Qµk (u, (0, 0)) ⊂ (1 + δk)P ,

where δ0 = 1 and δk = C(
√
εk−1/µ + δk−1

√
µ) for k ≥ 1.

Proof. By Lemma 3.1, there exists T1(x, t) = (T1x, a1t) such that

C−1 ≤ ‖T1x‖ ≤ C, for ‖x‖ = 1

m1/2 ≤ a1 ≤ 2m2

−A(x0)a1 + f (z0) = ( det T1)2/n ≥ λν/4

(1− δ1)P ⊂ µ−1/2T1Qµ(u, (0, 0)) ⊂ (1 + δ1)P .

Let

u1(x, t) = µ−1[u(
√
µT−1

1 x,µt/a1)− ( min
Q

u + µ)
]
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and

Q1 =
√
µ−1T1Qµ(u, (0, 0)).

Simple computations give

(1− ε1)f (z0) ≤ −A(x0)a1(u1)t + ( det T1)2/n( det D2u1)1/n ≤ (1 + ε1)f (z0) in Q1.

It is easy to verify that the assumptions in Lemma 3.2 hold, and one can apply
Lemma 3.2 to u1 in Q1. Hence, there exists a linear transformation T2(x, t) =
(T2x, a2t) such that

|a2 − 1| ≤ Cδ1

1− Cδ1 ≤ ‖T2x‖ ≤ 1 + Cδ1, for ‖x‖ = 1

m1/2 ≤ a1a2 ≤ 2m2

−A(x0)a1a2 + f (z0) = det (T1T2)2/n ≥ λν/4

(1− δ2)P ⊂ √µ−1T2Qµ(u1, (0, 0)) = µ−1T2T1Qµ2 (u, (0, 0)) ⊂ (1 + δ2)P .

We now use the induction to proceed. Assume that the conclusions in the lemma
are valid for the case k. As above, consider the normalized solution and domain
by

uk(x, t) = µ−k[u(µk/2(Tk · · ·T1)−1x,µkt/(a1 · · · ak))− ( min
Q

u + µk)
]

and Qk = µ−k/2Tk · · · T1Qµk (u, (0, 0)). One can easily check that uk satisfies

(1−εk)f (z0) ≤ −A(x0)a1 · · · ak(uk)t+( det T1 · · ·Tk)2/n( det D2uk)1/n ≤ (1+εk)f (z0),

in Qk. The induction hypotheses imply that the assumptions in Lemma 3.2 are
valid. By applying Lemma 3.2 to uk in Qk, there exists a linear transfromation
Tk+1(x, t) = (Tk+1x, ak+1t) such that

|ak+1 − 1| ≤ Cδk

1− Cδk ≤ ‖Tk+1x‖ ≤ 1 + Cδk, for ‖x‖ = 1

m1/2 ≤ a1 · · · akak+1 ≤ 2m2

−A(x0)a1 · · · ak+1 + f (z0) = det (T1 · · ·Tk+1)2/n ≥ λν/4

(1− δk+1)P ⊂ √µ−1Tk+1Qµ(uk, (0, 0))

= µ−(k+1)/2Tk+1 · · · T1Qµk+1(u, (0, 0)) ⊂ (1 + δk+1)P .
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The proof of Lemma 3.3 is done.

We now give C1,α estimates.

THEOREM 3.1. Let u be a strictly parabolically convex function in Q and satisfy

(1− ε)f (z0) ≤ −A(x0)ut + ( det D2u)1/n ≤ (1 + ε)f (z0) in Q,

u = 0 on ∂pQ,

m1 ≤ −ut ≤ m2 in Q,

A(x0)ut + f (z0) ≥ λν/2 in Q,

where Q = {(x, t): u < 0 and t ≤ 0} is a bowl-shaped domain.
Assume that u(0, 0) = minQ u and that Bγ0 × (− c3, 0] ⊂ Q ⊂ B1 × (− c4, 0].

Then for small µ > 0 and ε ≤ µ2:
(i) there exists δ ≤ C

√
µ such that for k ≥ 0

B
C1

( √
µ

1+Cδ

)k × (− C1µ
k, 0] ⊂ Qµk (u, (0, 0)) ⊂ B

C2

( √
µ

1−Cδ

)k × (− C2µ
k, 0].

(ii) 0 ≤ u(x, 0) − u(0, 0) ≤ C|x|1+β for (x, 0) ∈ Q, and u is C1,β at (0,0) with
respect to x, where β = 1−2τ

1+2τ and τ = − ln (1+Cδ)
lnµ .

Proof. By Lemma 3.3 with all εk = ε, there exist linear transformations Tk

given by Tk(x, t) = (Tkx, akt) such that

C−1 ≤ ‖T1x‖ ≤ C, for ‖x‖ = 1

1− Cδ ≤ ‖Tkx‖ ≤ 1 + Cδ, for k ≥ 2, ‖x‖ = 1

m1/2 ≤ a1 · · · ak ≤ 2m2

(1− δ)µk/2T −1
1 · · · T −1

k P ⊂ Qµk (u, (0, 0)) ⊂ (1 + δ)µk/2T −1
1 · · · T −1

k P ,

where δ ≤ C(
√
ε/µ +

√
µ) ≤ 2C

√
µ. By the estimates of ak and Tk, it is easy to

obtain conclusion (i).
To prove (ii), let x ∈ Sµk (u; 0|0)\Sµk+1(u; 0|0), i.e., µk+1 ≤ u(x, 0)− u(0, 0) ≤

µk. From (i)

C1

( √
µ

1 + Cδ

)k+1

≤ |x| ≤ C2

( √
µ

1− Cδ

)k

.
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Obviously 1 + Cδ = µ−τ and µ( 1
2 +τ )(k+1) ≤ C−1

1 |x|. Therefore

|u(x, 0)− u(0, 0)| ≤ Cµ−1|x| 2
1+2τ = C|x|1+β .

So the proof of Theorem 3.1 is completed.

Proof of Theorem A(ii). As we did in the beginning of this section, we can
assume that (3.1) holds and A(x)ut + f (x, t) ≥ λν. For z0 = (x0, t0) ∈ Ω′ × [ε0, T],
let E be the Fritz John’s ellipsoid of Sh0 (x0|t0) and T be the affine transformation
such that TE = B1 and Tx0 = 0. Set

(y, s) = T (x, t) =
(

Tx,
t − t0
Kh0

)
,

u∗(y, s) = | det T|2/n
[
(u− 
z0 )(T −1(y, s))− h0

]
,

where 
z0 (x) is the supporting affine function of u(·, t0) at x = x0. Let h0 be small.
If K = | det T|−2/nh−1

0 , then u∗ satisfies (3.6) and A(x0)u∗s + f (z0) ≥ λν/2, in
T Qh0 (x0, t0). By applying Theorem 3.1 to u∗, we have

|u∗(y, 0)− u∗(0, 0)| ≤ C|y|1+β , for (y, 0) ∈ T Qh0 (x0, t0).

Note that β can be made arbitrarily close to 1 as µ goes to 0. Since hn
0 ≈ |E|2 ≈

| det T−1|2, one obtains that C1(h0) ≤ ‖T‖ ≤ C2(h0). Therefore

|u(x, t0)− 
z0 (x)| ≤ C|x− x0|1+β , for (x, t0) ∈ Qh0 (x0, t0).

It follows that Du is Cβ with respect to x and |Du(x1, t)−Du(x2, t)| ≤ C|x1−x2|β ,
for (x1, t), (x2, t) ∈ Ω′×[ε0, T]. Since u(x, t) is Lipschitz in (x, t), by [L-S-U, p.78]
we get

|Du(x1, t1)− Du(x2, t2)| ≤ C
(
|x1 − x2| + |t1 − t2|

1
2

)β
.

This completes the proof of Hölder estimates for Du.

THEOREM 3.2. Let u(x, t) be convex in x and the solution to (1.1) in Q = Ω×(0, T]
with u = φ on ∂pQ. Suppose that (A1)–(A3), and either (A4) or (A4)∗ hold. Assume

that A ∈ Cα0 (Ω) and f ∈ Cα0,
α0
2 (Q). Then:

(i) For ε̄ > 0, Ω′ ⊂⊂ Ω, there exist C3, C4, h0 such that for (x0, t0) ∈ Ω′×(ε̄, T],
0 < h ≤ h0

BC3
√

h(x0)× (t0 − C3h, t0] ⊂ Qh(x0, t0) ⊂ BC4
√

h(x0)× (t0 − C4h, t0].

(ii) u ∈ C
2+α0,1+

α0
2

loc (Q).
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Proof. The proof of Theorem 3.2 is similar to that for C1,β estimates. Since
A ∈ Cα0 (Ω) and f ∈ Cα0,α0/2(Q), when applying Lemma 3.3, we can find a
sequence of εk which geometrically decays to zero, and therefore we can sharpen
the estimates established under the assumption that A and f are only continuous.

As before, we can assume that (3.1) holds and A(x)ut + f (x, t) ≥ λν. Let
z0 = (x0, t0) ∈ Ω′ × (ε̄, T], and let ellipsoid E, transformations T and T , and u∗

be as in the proof of Theorem A(ii).
It is easy to verify that u∗(y, s) satisfies

− A∗(y)u∗s + ( det D2u∗)1/n = f ∗(y, s) in Q∗ = T Qh0 (x0, t0),(3.36)

where A∗(y) = A(T−1y) and f ∗(y, s) = f (T−1y, t0 + Kh0s). Moreover, simple cal-
culations yield

[A∗]Cα0 (Q
∗

) ≤ ‖T−1‖α0 [A]Cα0 (Qh0
(z0)),

[ f ∗]
Cα0,

α0
2 (Q

∗
)
≤
(
‖T−1‖α0 + (Kh0)

α0
2

)
[ f ]

Cα0,
α0
2 (Qh0

(z0))
.

Note that ‖T−1‖ −→ 0, as h0 −→ 0, by Theorem 3.1 or [G-H3, Lemma 4.5].
Given small τ0 > 0, we can choose h0 such that

[A∗]Cα0 (Q
∗

) ≤ τ0, [ f ∗]Cα0,α0/2(Q
∗

) ≤ τ0.

Let g∗(y, s) = f ∗(y, s) − f ∗(0, 0) + (A∗(y) − A∗(0))u∗t . Noting that f ∗(0, 0) = f (z0)
and A∗(0) = A(x0), from (3.36) we have

−A(x0)u∗s + ( det D2u∗)1/n = f (z0) + g∗(y, s) in Q∗.

Obviously, |g∗(y, s)| ≤ Cτ0 in Q∗. Set ε0 = Cτ0. If τ0 is small enough, then by
Theorem 3.1, Qµk (u∗, (0, 0)) ⊂ B

C2

( √
µ

1−Cδ

)k × (−C2µ
k, 0]. It is easy to check that

|g∗(y, s)| ≤ Cτ0θ
k, in Qµk (u∗, (0, 0)),

where θ = (
√
µ/(1 − Cδ))α0 . Let εk = Cτ0θ

k. By Lemma 3.3, there exist linear
transformations Tk: (x, t) −→ (Tkx, akt) with ak > 0 satisfying

C−1 ≤ ‖T1x‖ ≤ C, for ‖x‖ = 1

1− Cδk−1 ≤ ‖Tkx‖ ≤ 1 + Cδk−1, for k ≥ 2, ‖x‖ = 1

m1/2 ≤ a1 · · · ak ≤ 2m2, for k ≥ 1

(1− δk)µk/2T −1
1 · · · T −1

k P ⊂ Qµk (u∗, (0, 0)) ⊂ (1 + δk)µk/2T −1
1 · · · T −1

k P ,

where δ0 = 1 and δk = C(
√
εk−1/µ + δk−1

√
µ) for k ≥ 1.
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Obviously, δ1 = C(
√
ε0/µ +

√
µ) ≤

√
θδ0 if µ and τ0 are small. If δk ≤√

θδk−1, then δk+1 ≤ C(
√
θεk−1/µ +

√
θδk−1

√
µ) =

√
θδk. By induction, δk+1 ≤√

θδk and δk ≤
√
θ k for k ≥ 0. This implies that

∏∞
k=1 (1+Cδk) and

∏∞
k=1 (1−Cδk)

both converge. We then obtain that

B
C−1
√
µk × (− C−1µk, 0] ⊂ Qµk (u∗, (0, 0)) ⊂ B

C
√
µk × (− Cµk, 0].

Since Qh0µk (u, (x0, t0)) = T −1Qµk/K(u∗, (0, 0)) with K = | det T|−2/nh−1
0 ≈ 1,

conclusion (i) of Theorem 3.2 follows.
To prove (ii), let (x0, t0) ∈ Ω′ × (ε̄, T] and (x, t) ∈ Qh0 (x0, t0). Then there

exists h ≤ h0 such that (x, t) ∈ ∂pQh(x0, t0), i.e., u(x, t)− 
z0 (x) = h, where 
z0 (x)
is the supporting affine function of u(·, t0) at x = x0. By (i) we have

0 ≤ u(x, t)− 
z0 (x) ≤ C(|x− x0|2 + |t − t0|).

This implies that D2u is bounded from above. Since A(x)ut + f (x, t) ≥ λν, and
by (1.1), det D2u ≥ (λν)n, D2u is bounded away from zero. Thus, equation (1.1)
becomes a uniformly parabolic fully nonlinear equation. By [Wan2], we conclude

that u ∈ C
2+α0,1+

α0
2

loc .

4. Lp estimates of D2u. Our goal in this section is to establish Lp estimates
for the Hessian of solutions to (1.1). Since the structure of (1.1) is different from
that of equation (1.5) and the elliptic Monge-Ampère equation which can be
viewed as Jacobian equations, the difficulty is to estimate the density of good
sets where the Hessian is bounded. We use one-sided W2,δ estimates together
with properties of equation (1.1) to tackle it.

As in the beginning of §3, assume that (3.1), (3.2) hold, and A(x)ut + f (x, t) ≥
λν > 0. We first give the estimate of the density of good sets for the normalized
problem.

LEMMA 4.1. Let u be a strictly parabolically convex function in Q and satisfy

(1− ε)f (z0) ≤ −A(x0)ut + ( det D2u)1/n ≤ (1 + ε)f (z0) in Q,(4.1)

u = 0 on ∂pQ,

m1 ≤ −ut ≤ m2 in Q,(4.2)

A(x0)ut + f (z0) ≥ λν/2 in Q,(4.3)

where Q = {(x, t): u < 0 and t ≤ 0} is a bowl-shaped domain and satisfies

Bγ0 × (− c3, 0] ⊂ Q ⊂ B1 × (− c4, 0].
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For 0 < α < 1, let Qα = {(x, t) ∈ Q: u(x, t) < (1 − α) minQ u}. Then there exist
0 < δ0 < 1 and σ > 0 such that

|Qα\Aσ| ≤ εδ0 |Qα|,(4.4)

where

Aσ(u) = Aσ = {(x0, t0) ∈ Q: u = Pσ at (x0, t0) and u ≥ Pσ in Q ∩ {t ≤ t0}}

and Pσ = σ(|x− x0|2 − (t − t0)) + 
(x) and 
(x) is an affine function.

Proof. Let w, convex in x, be the solution to

− A(x0)wt + ( det D2w)1/n = f (z0), in Q,(4.5)

with w = 0 on ∂pQ. By the comparison principle

(1 + ε)w ≤ u ≤ (1− ε)w, in Q.

By (4.2), |minQ u| ≈ const, and hence ‖u− w‖L∞(Q) ≤ Cε. By the concavity of
the functional F(M) = ( det M)1/n, one obtains

[− A(x0)ut + ( det D2u)1/n]− [− A(x0)wt + ( det D2w)1/n]

≤ −A(x0)(u− w)t +
1
n

( det D2w)1/n · tr((D2w)−1D2(u− w)).

From (4.1), (4.5), the function v = u− w satisfies

−A(x0)vt +
1
n

( det D2w)1/n · tr((D2w)−1D2v) ≥ −εf (z0), in Q.

By the interior C∞ estimates for (4.5), w is smooth in Q and the above linear
operator is uniformly parabolic in Qα with 0 < α < 1. By one-sided W2,δ

estimates in [Wan1], there exists 0 < δ0 < 1 such that

|Qα\{(x0, t0) ∈ Qα: v = PM0 at (x0, t0) and v ≤ PM0 in Q ∩ {t ≤ t0}}|
≤ C(‖v‖L∞(Q) + |εf (z0)|)δ0M−δ0

0 ≤ Cεδ0M−δ0
0

≤ εδ0 |Qα|, if M0 is large,

where PM0 (x, t) = M0(|x − x0|2 − (t − t0)) + 
(x) and 
(x) is an affine function.
Since w ∈ C2 can be touched from above by some quadratic polynomial, there
exists M1 > 0 such that

|Qα\{(x0, t0) ∈ Qα: u = PM1 at (x0, t0) and u ≤ PM1 in Q∩{t ≤ t0}}| ≤ εδ0 |Qα|.
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To finish the proof of Lemma 4.1, we need to show that if u can be touched
from above by PM1 at (x0, t0) ∈ Qα, then u can be touched from below by some
Pσ at (x0, t0).

Since u ≤ PM1 in Q ∩ {t ≤ t0} and u = PM1 at (x0, t0), we have

u(x, t0) ≤ M1|x− x0|2 + 
z0 (x), for (x, t0) ∈ Q,(4.6)

where 
z0 (x) = u(x0, t0) + Du(x0, t0)(x− x0). By [G-H3, Lemma 6.1], for 0 < α ≤
α0 < 1, there exists ηα > 0 such that Qh(x0, t0) ⊂ Qα0+1

2
, for h ≤ ηα. From (4.6)

B√
h

M1

(x0) ⊂ Sh(x0|t0).(4.7)

By (4.1)–(4.3), u(x, t0) satisfies that C−1 ≤ det D2u ≤ C. As in the beginning of
§3, the theory of the elliptic Monge-Ampère equation yields

|Sh(x0|t0)| ≈ h
n
2 , for h ≤ ηα.

Together with (4.7), it implies that diam(Sh(x0|t0)) ≤ C
√

Mn−1
1 h and

Sh(x0|t0) ⊂ B
C
√

Mn−1
1 h

(x0), for h ≤ ηα.

It follows that

u(x, t0) ≥ C

Mn−1
1

|x− x0|2 + 
z0 (x), if x ∈ Sηα(x0|t0).

By choosing σ ≤ min{ C
Mn−1

1
, ηα

diam(Q)2 }, we have

u(x, t0) ≥ σ|x− x0|2 + 
z0 (x), if (x, t0) ∈ Q.

It is easy to check that if σ ≤ m1, then u ≥ Pσ in Q ∩ {t ≤ t0} and u = Pσ at
(x0, t0), where Pσ = σ(|x − x0|2 − (t − t0)) + 
z0 (x). Thus, (x0, t0) ∈ Aσ and the
proof of Lemma 4.1 is completed.

Recall that ηα0 is the constant in [G-H3, Lemma 6.1] such that Qh(z0) ⊂ Qα0+1
2

for z0 ∈ Qα0 and h ≤ ηα0 . The following is a rescaled result of Lemma 4.1.

LEMMA 4.2. Suppose that the assumptions in Lemma 4.1 hold. Then there exists
a constant C0 > 0 such that for z0 = (x0, t0) ∈ Qα0 and (C0λ)−1 ≤ h ≤ 1

2ηα0

|Qh(z0) \ Aλ−1 | ≤ εδ0 |Qh(z0)|,

where δ0 is the constant in Lemma 4.1.
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Proof. The proof is similar to that of Proposition 6.1 in [G-H3]. Let h ≤ ηα0 .
As in the beginning of §3, let T be an affine transformation such that Bγ0 ⊂
TSh(x0|t0) ⊂ B1. Set

(y, s) = T (x, t) =
(

Tx,
t − t0

Kh

)
,

u∗(y, s) = | det T|2/n [(u− 
z0 )(T −1(y, s))− h
]

.

If K = | det T|−2/nh−1, then u∗s = ut and det D2
yu∗ = det D2

xu. We have

(1− ε)f (z0) ≤ −A(x0)u∗s + ( det D2u∗)1/n ≤ (1 + ε)f (z0), in T Qh(z0) = Q∗,

u∗ = 0, on ∂pQ∗.

Applying Lemma 4.1 to u∗ in Q∗ with α = 1
2 , we obtain

|Q∗1/2 \ Aσ(u∗)| ≤ εδ0 |Q∗1/2|,(4.8)

where Q∗1/2 = {(y, s) ∈ Q∗: u∗ < 1
2 minQ∗ u∗} = T (Qh/2(z0)).

Now we show that there exists a constant C0 > 0 such that

T −1(Q∗1/2 ∩ Aσ(u∗)) ⊂ Qh/2(z0) ∩ AC0h(u).(4.9)

Let z∗1 = (y1, s1) ∈ Q∗1/2 ∩ Aσ(u∗) and z1 = (x1, t1) = T −1z∗1 ∈ Qh/2(z0). Then

u∗(y, s1)− 
∗(y) ≥ σ|y− y1|2, for (y, s1) ∈ Q∗,

where 
∗ is the supporting affine function of u∗(·, s1) at y = y1. It follows that

u(x, t1)− 
z1 (x) ≥ σKh|Tx− Tx1|2, for (x, t1) ∈ Qh(z0).

Since T Qh(z0) = Q∗, T is a dilation and |Tx− Tx1|2 ≥ C|x− x1|2. We obtain

u(x, t1)− 
z1 (x) ≥ C0h|x− x1|2, for (x, t1) ∈ Qh(z0).

By [G-H3, Lemma 6.1], there exists η > 0 such that Qη(u∗, z∗1) ⊂ Q∗. Obviously

QKηh(u, z1) = T −1Qη(u∗, z∗1) ⊂ T −1Q∗ = Qh(z0).

For (x, t1) �∈ Qh(z0)

u(x, t1)− 
z1 (x) ≥ Kηh ≥ C0h|x− x1|2.
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Therefore, z1 ∈ AC0h ⊂ Aλ−1 for C0h ≤ m1 and (4.9) is proved. Lemma 4.2
follows immediately from (4.8) and (4.9).

Let Dα
λ denote the set

Dα
λ = {(x0, t0) ∈ Qα: Sh(x0|t0) ⊂ Bλ

√
h(x0), for h ≤ ηα0}.

By Lemma 6.2 in [G-H3]

Dα
λ = Qα ∩ Aλ−2 , for λ ≥ C and 0 < α ≤ α0 < 1.

The following theorem gives rise to the power decay of distribution function
of the Hessian.

THEOREM 4.1. Suppose that the assumptions in Lemma 4.1 hold. For 0 < τ <
α ≤ α0 < 1, there exist constants M, p0, C1 such that

|Qτ \ Dτ
Mλ| ≤ 2εδ0/2|Qα \ Dα

λ |

for λ ≥ C1 and α− τ = (Mλ)−p0 .

Proof. The proof is similar to Proposition 6.2 in [G-H3]. It is easy to see that
the set O = Qτ\Dτ

Mλ is open and O = Qτ \ A(Mλ)−2 , for Mλ ≥ C and τ < α0.
Consequently

Qh(z0) ∩ O ⊂ Qh(z0) \ A(Mλ)−2 .

By Lemma 4.2, we obtain

|Qh(z0) ∩ O|
|Qh(z0)| ≤

|Qh(z0) \ A(Mλ)−2 |
|Qh(z0)| ≤ εδ0 ,(4.10)

for C−1
0 (Mλ)−2 ≤ h ≤ 1

2ηα0 and z0 ∈ Qα0 . Now recall the section Q∗h(x0, t0)
defined by (4.2) in [G-H3]. Let δ be a small positive number depending on m2.
Let (x0)h

min be the minimum point of u(x, th
0)− 
z0 (x), where th

0 = min{t0 + δh, 0}.
Set

Q∗h(z0) = Qh((x0)h
min, th

0).

Since O is open, we have

lim
h→0

|Q∗h(z0) ∩ O|
|Q∗h(z0)| = 1, for z0 ∈ O.
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On the other hand, since ((x0)h
min, th

0) ∈ Qα0+1
2

, from (4.10)

|Q∗h(x0, t0) ∩ O|
|Q∗h(x0, t0)| ≤ εδ0 ,

for C−1(Mλ)−2 ≤ h ≤ 1
2η(α0+1)/2. For z0 ∈ O we choose hz0 , the largest h ≤

C−1(Mλ)−2 such that

|Q∗h(z0) ∩ O|
|Q∗h(z0)| = 4εδ0 .

Applying the Calderón-Zygmund decomposition ([G-H3, Theorem 4.1]), we ob-
tain a family of sections {Q∗hk

(zk)}∞k=1, zk = (xk, tk) ∈ O with hk ≤ C−1(Mλ)−2

such that O ⊂ ∪∞k=1Q∗hk
(zk), |O| ≤ 2εδ0/2| ∪∞k=1 Q∗hk

(zk)|, and

|Q∗hk
(zk) ∩ O|
|Q∗hk

(zk)| = 4εδ0 .(4.11)

To finish the proof of Theorem 4.1, it suffices to show that

Q∗hk
(zk) ⊂ Qα \ Dα

λ .(4.12)

Since (xk, tk) ∈ Qτ , by Lemma 4.6 and Remark 4.1 in [G-H3], there exists p0 > 0
such that ((xk)hk

min, tk) ∈ Qm2δhk (xk, tk) ⊂ Qτ+ 1
2 (Mλ)−p0 . If τ ≤ α− (Mλ)−p0 , then

Q∗hk
(xk, tk) ⊂ Qτ+(Mλ)−p0 ⊂ Qα.

We now use an argument of contradicition to prove (4.12). Suppose there exists
z0 = (x0, t0) ∈ Q∗hk

(zk)∩Dα
λ . By the engulfing property at different times ([G-H3,

Lemma 4.2])

S2hk ((xk)hk
min|t

hk
k ) ⊂ Sθ2hk (x0|t0) ⊂ B

λ
√
θ2hk

(x0),

where thk
k = min{tk + δhk, 0}. Let T be an affine transformation such that Bγ0 ⊂

T(S2hk ((xk)hk
min|t

hk
k )) ⊂ B1. Set

(y, s) = T (x, t) =
(
Tx,

t − thk
k

K2hk

)
,

û(y, s) = | det T|2/n[(u− 

z
hk
k

)(T −1(y, s))− 2hk
]
,

where zhk
k = ((xk)hk

min, thk
k ). Choose K = | det T|−2/n(2hk)−1. Then û satisfies (4.1)–
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(4.3) in Q̂k = T (Q2hk (zhk
k )). Applying Lemma 4.1 to û in Q̂k, we obtain

|(Q̂k) 1
2
\ Aσ(û)| ≤ εδ0 |(Q̂k) 1

2
|,

where (Q̂k) 1
2

= T (Qhk (zhk
k )). We claim that for large M

T −1((Q̂k) 1
2
∩ Aσ(û)

)
⊂ Dα

Mλ.(4.13)

Let ẑ1 = (x̂1, t̂1) ∈ (Q̂k) 1
2
∩ Aσ(û) and z1 = T −1ẑ1 = (x1, t1) ∈ Qhk (zhk

k ). Since

Sh(û; x̂1 |̂t1) ⊂ B√
h/σ

(x̂1), we have for h ≤ C0

T−1(Sh(û; x̂1 |̂t1)) ⊂ T−1(B√
h/σ

(x̂1)).

Because T dilates by at least (Cλ
√

hk)−1 and T−1 contracts by at least Cλ
√

hk,
it follows that for h ≤ C0

S2Khkh(u; x1|t1) ⊂ T−1(B√
h/σ

(x̂1)) ⊂ B
Cλ
√

hk
√

h/σ
(x1).

Therefore, Sh(u; x1|t1) ⊂ BCλ
√

h(x1) for h ≤ C0hk.

If hk ≤ h ≤ ηα0 , then (x0, t0), (x1, t1) ∈ Qh((xk)hk
min, thk

k ). By the engulfing
property at different times

Sh(x1, t1) ⊂ Sθh(x0|t0) ⊂ Bλ
√
θh(x0).

Thus (x1, t1) ∈ Dα
Mλ for large M and (4.13) follows.

It is easy to see from (4.13) that

Q∗hk
(xk, tk) ∩ O ⊂ Q∗hk

(xk, tk) \ Dα
Mλ ⊂ T −1((Q̂k) 1

2
\ Aσ(û)).

It implies that

|Q∗hk
(xk, tk) ∩ O|
|Q∗hk

(xk, tk)| ≤
|(Q̂k) 1

2
\ Aσ(û)|

|(Q̂k) 1
2
|

≤ εδ0 ,

which contradicts (4.11). Thus, the proof of Theorem 4.1 is completed.

Proof of Theorem A(iii). The proof is similar to that in [G-H3]. We apply
Theorem 4.1 repeatedly to obtain the power decay of the distribution function of
D2u and hence Lp estimates of D2u in the interior of a normalized domain. Then
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use the covering argument to obtain interior Lp estimates of D2u in Q = Ω×(0, T].
For details, see the proofs of Theorem 6.1 and Theorem 2.1(B) in [G-H3].
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