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ABSTRACT.

The main purpose of this paper is to develop a unified approach of multi-parameter Hardy space
theory using the discrete Littlewood-Paley-Stein analysis in the setting of implicit multi-parameter
structure. It is motivated by the goal to establish and develop the Hardy space theory for the flag
singular integral operators studied by Muller-Ricci-Stein [MRS] and Nagel-Ricci-Stein [NRS]. This
approach enables us to avoid the use of transference method of Coifman-Weiss [CW] as often used
in the LP theory for p > 1 and establish the Hardy spaces Hg, and its dual spaces associated with
the flag singular integral operators for all 0 < p < 1. We also prove the boundedness of flag singular
integral operators on BMOp and HY%., and from H%, to LP for all 0 < p < 1 without using the
deep atomic decomposition. As a result, it bypasses the use of Journe’s type covering lemma in this
implicit multi-parameter structure. The method used here provides alternate approaches of those
developed by Chang-R. Fefferman [CF1-3], Chang [Ch], R. Fefferman [F], Journe [J1-2], Pipher [P] in
their important work in pure product setting. A Calderén-Zygmund decomposition and interpolation
theorem are also proved for the implicit multi-parameter Hardy spaces.
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1. Introduction and statement of results

The multi-parameter structures play a significant role in Fourier analysis. On the one hand,
the classical Calderén-Zygmund theory can be regarded as centering around the Hardy-Littlewood
maximal operator and certain singular integrals which commute with the usual dilations on R",
given by § -z = (dx1,...,0z,) for § > 0. On the other hand, if we consider the multi-parameter
dilations on R"™, given by § -z = (6121, ..., 0pxy ), where 6 = (41, ...,9,) € R? = (R4)", then these
n-parameter dilations are naturally associated with the strong maximal function ([JMZ]), given
by

TER

1
(11) ML(f)(e) = sup }[ 1 )ldy,

where the supremum is taken over the family of all rectangles with sides parallel to the axes.

This multi-parameter pure product theory has been developed by many authors over the
past thirty years or so. For Calderén-Zygmund theory in this setting, one considers operators
of the form T'f = K x f, where K is homogeneous, that is, 61...0,K(d - ) = K(x), or, more
generally, K (x) satisfies the certain differential inequalities and cancellation conditions such that
01...0,K (0 - z) also satisfy the same bounds. This type of operators has been the subject of
extensive investigations in the literature, see for instances the fundamental works of Gundy-Stein
([GS]), R. Fefferman and Stein [FS1], R. Fefferman ([F]), Chang and R. Fefferman ([CF1], [CF2],
[CF3]), Journe ([J1], [J2]), Pipher [P], etc.

It is well-known that there is a basic obstacle to the pure product Hardy space theory and pure
product BMO space. Indeed, the role of cubes in the classical atomic decomposition of HP(R™)
was replaced by arbitrary open sets of finite measures in the product H?(R™ x R™). Suggested
by a counterexample constructed by L. Carleson [Car|, the very deep product BMO(R™ x R™)
and Hardy space HP(R™ x R™) theory was developed by Chang and R. Fefferman ([Ch],[CF3]).
Because of the complicated nature of atoms in product space, a certain geometric lemma, namely
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Journe’s covering lemma([J1], [J2] and [P]), played an important role in the study of the bound-
edness of product singular integrals on HP?(R™ x R™) and BMO(R™ x R™).

While great progress has been made in the case of pure product structure for both L” and
HP theory, multi-parameter analysis has only been developed in recent years for the L? theory
when the underlying multi -parameter structure is not explicit, but implicit, such as the flag
multi-parameter structure studied in [MRS] and [NRS]. The main goal of this paper is to develop
a theory of Hardy space in this setting. One of the main ideas of our program is to develop
a discrete version of Calderén reproducing formula associated with the given multiparameter
structure, and thus prove a Plancherel-Polya type inequality in this setting. This discrete scheme
of Littlewood-Paley-Stein analysis is particularly useful in dealing with the Hardy spaces HP for
0<p<LI.

We now recall two instances of implicit multiparameter structures which are of interest to us
in this paper. We begin with reviewing one of these cases first. In the work of Muller-Ricci-Stein
[MRS], by considering an implicit multi-parameter structure on Heisenberg(-type) groups, the
Marcinkiewicz multipliers on the Heisenberg groups yield a new class of flag singular integrals.
To be more precise, let m(L,iT) be the Marcinkiewicz multiplier operator, where L is the sub-
Laplacian, T is the central element of the Lie algebra on the Heisenberg group H", and m satisfies
the Marcinkiewicz conditions. It was proved in [MRS] that the kernel of m(L,iT") satisfies the
standard one-parameter Calderén-Zygmund type estimates associated with automorphic dilations
in the region where || < |2|?, and the multi-parameter product kernel in the region where |t| > |z|?
on the space C" x R. The proof of the LP,1 < p < oo, boundedness of m(L,T) given in [MRS]
requires lifting the operator to a larger group, H™ x R. This lifts K, the kernel of m(L,iT) on

H™, to a product kernel K on H" x R. The lifted kernel K is constructed so that it projects to

Kby
K(z,t) = / K(z,t—u,u)du

taken in the sense of distributions.

The operator T corresponding to product kernel K can be dealt with in terms of tensor
products of operators, and one can obtain their LP,1 < p < oo, boundedness by the known pure
product theory. Finally, the LP,1 < p < 0o, boundedness of operator with kernel K follows from
transference method of Coifman and Weiss ([CW]), using the projection 7 : H” x R — H" by

w((z,t),u) = (z,t + u).

Another example of implicit multi-parameter structure is the flag singular integrals on R™ x R™
studied by Nagel-Ricci-Stein [NRS]. The simplest form of flag singular integral kernel K (z,y) on
R™ x R™ is defined through a projection of a product kernel K(z,y,z) defined on R"*™ x R™
given by

(1.2) K(z,y) = /IN((m,y—z,z)dz.

A more general definition of flag singular kernel was introduced in [NRS], see more details of
definitions and applications of flag singular integrals there. We will also briefly recall them later
in the introduction. Note that convolution with a flag singular kernel is a special case of product
singular kernel. As a consequence, the LP,1 < p < oo, boundedness of flag singular integral follows
directly from the product theory on R™ x R™. We note the regularity satisfied by flag singular
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kernels is better than that of the product singular kernels. More precisely, the singularity of the
standard pure product kernel on R™ x R™, is sets {(x,0)}U{(0, y)} while the singularity of K(z,y),
the flag singular kernel on R™ x R™ defined by (1.2), is a flag set given by {(0,0)} € {(0,y)}. For

example, Ki(z,y) = iy is a product kernel on R? and K(z,y) = is a flag kernel on R?.

x z(z+1iy)

The work of [NRS] suggests that a satisfactory Hardy space theory should be developed and
boundedness of flag singular integrals on such spaces should be established. Thus some natural
questions arise. From now on, we will use the subscript ” F” to express function spaces or functions
associated with the multi-parameter flag structure without further explanation.

Question 1: What is the analogous estimate when p = 1?7 Namely, do we have a satisfactory
flag Hardy space Hj(R™ x R™) theory associated with the flag singular integral operators? More
generally, can we develop the flag Hardy space H%(R™ x R™) theory for all 0 < p <1 such that
the flag singular integral operators are bounded on such spaces?

Question 2: Do we have a boundedness result on a certain type of BMOp(R™ x R™) space
for flag singular integral operators considered in [NRS]? Namely, does an endpoint estimate of
the result by Nagel-Ricci-Stein hold when p = co?

Question 3: What is the duality theory of so defined flag Hardy space? More precisely, do
we have an analogue of BMO and Lipchitz type function spaces which are dual spaces of the flag
Hardy spaces.

Question 4: Is there a Calderén-Zygmund decomposition in terms of functions in flag Hardy
spaces HL.(R™ x R™)? Furthermore, is there a satisfactory theory of interpolation on such spaces?

Question 5: What is the difference and relationship between the Hardy space HP(R™ x R™)
in the pure product setting and Hx(R"™ x R™) in flag multiparameter setting?

The original goal of our work is to address these questions. As in the LP theory for p > 1
considered in [MRS], one is naturally tempted to establish the Hardy space theory under the
implicit multi-parameter structure associated with the flag singular kernel by lifting method to
the pure product setting together with the transference method in [CW]. However, this direct
lifting method is not adaptable directly to the case of p < 1 because the transference method is
not known to be valid when p < 1. This suggests that a different approach in dealing with the
Hardy H7.(R"™ x R™) space associated with this implicit multi-parameter structure is necessary.
This motivated our work in this paper. In fact, we will develop a unified approach to study multi-
parameter Hardy space theory. Our approach will be carried out in the order of the following
steps.

(1) We first establish the theory of Littlewood-Paley-Stein square function gr associated with
the implicit multi-parameter structure and the LP estimates of gr (1 < p < 00). We then develop
a discrete Calderén reproducing formula and a Plancherel-Polya type inequality in a test function
space associated to this structure. As in the classical case of pure product setting, these LP
estimates can be used to provide a new proof of Nagel-Ricci-Stein’s LP(1 < p < 0o) boundedenss
of flag singular integral operators.

(2) We next develop the theory of Hardy spaces H% associated to the multi-parameter flag
structures and the boundedness of flag singular integrals on these spaces; We then establish the
boundedness of flag singular integrals from H. to LP. We refer to the reader the work of product
multi-parameter Hardy space theory by Chang-R. Fefferman [CF1-3], R. Fefferman [F1-3], Journe
[J1-2] and Pipher [P].
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(3) We then establish the duality theory of the flag Hardy space H% and introduce the dual
space CMOY., in particular, the duality of Hj and the space BMOp. We then establish the
boundedness of flag singular integrals on BM Op. It is worthwhile to point out that in the classical
one-parameter or pure product case, BMO(R"™) or BMO(R"™ x R™) is related to the Carleson
measure. The space CMOY, for all 0 < p < 1, as the dual space of HY. introduced in this paper,
is then defined by a generalized Carleson measure.

(4) We further establish a Calderén-Zygmund decomposition lemma for any H%.(R™ x R™)
function (0 < p < c0) in terms of functions in HE' (R™ x R™) and HP?(R™ x R™) with 0 <
p1 < p < p2 < co. Then an interpolation theorem is established between HE'(R™ x R™) and
HP(R™ x R™) for any 0 < po < p; < oo (it is noted that HL(R™ x R™) = LP(R™*™) for
1 <p< o).

In the present paper, we will use the above approach to study the Hardy space theory associ-
ated with the implicit multi-parameter structures induced by the flag singular integrals. We now
describe our approach and results in more details.

We first introduce the continuous version of the Littlewood-Paley-Stein square function gp.
Inspired by the idea of lifting method of proving the LP(R™ x R™) boundedness given in [MRS],
we will use a lifting method to construct a test function defined on R™ x R™, given by the
non-standard convolution %o on the second variable only:

(1.3) e y) = D 1 9 (@,y) = / B0 (z,y — 2@ (2)dz,
Rm

where (1) € S(R"™™),4(2) € S(R™), and satisfy
> D Ve, 2 ) =1
J

for all (¢1,&) € R™ x R™{(0,0)}, and
Y PP =1
k
for all n € R"™\{0}, and the moment conditions
/ Py (z, y)dedy = /z'yw(z)(z)dz =0

Rn+m R™

for all multi-indices «, 3, and . We remark here that it is this subtle convolution %5 which provides
a rich theory for the implicit multi-parameter analysis.

For f € LP,1 < p < 00, gr(f), the Littlewood-Paley-Stein square function of f, is defined by

N[

(1.4) gr(H)@,y) = D> bk * fla,y))
ik

where functions

Vil y) = 0 %o 0 (2,y),
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1/}3(1) (x’y) = 2(n+m)j¢(1)(2]x’ zjy) and ¢](€2) (Z) — 2mk¢(2) (2kz)

We remark here that the terminology ”implicit multi-parameter structure” is clear from the
fact that the dilation ; ;(z,y) is not induced from ¢ (x,y) explicitly.

By taking the Fourier transform, it is easy to see the following continuous version of the
Calderén reproducing formula holds on L?(R"™™),

(1.5) F@y) =Y wjw* e fz,y).
ik

Note that if one considers the summation on the right hand side of (1.5) as an operator then, by
the construction of function ), it is a flag singular integral and has the implicit multi-parameter
structure as mentioned before. Using iteration and the vector-valued Littlewood-Paley-Stein
estimate together with the Calderén reproducing formula on L? allows us to obtain the LP,1 <
p < 00, estimates of gp.

Theorem 1.1:. Let1 < p < co. Then there exist constants Cy and Cy depending on p such that
for
Cillfllp < llgr(Hllp < Coll fllp-

In order to state our results for flag singular integrals, we need to recall some definitions given
in [NRS]. Following closely from [NRS], we begin with the definitions of a class of distributions
on an Euclidean space RYV. A k — normalized bump function on a space RY is a C*—function
supported on the unit ball with C* —norm bounded by 1. As pointed out in [NRS], the definitions
given below are independent of the choices of k, and thus we will simply refer to "normalized
bump function” without specifying k.

For the sake of simplicity of presentations, we will restrict our considerations to the case
RN = R"*™ x R™. We will rephrase Definition 2.1.1 in [NRS] of product kernel in this case as
follows:

Definition 1.2:. A product kernel on R" T x R™ is a distribution K on R"T™T™ which coincides
with a C* function away from the coordinate subspaces (0,0, z) and (z,y,0), where (0,0) € R*T™
and (xz,y) € R™™ and satisfies

(1) (Differential Inequalities) For any multi-indices o = (a1, -+ , ), B = (B1, -+ ,PBm) and
Tm = (717 e 7’7m)

020, 01K (2, y, 2)| < Capq(l2] + [y]) 71100 7=l
for all (x,y,z) € R™ x R™ x R™ with |x| + |y| # 0 and |z| # 0.
(2) (Cancellation Condition)

| [ 0200 K (2,y,2)¢1(82)dz| < Cap(|z] + |y|) "~ lol=18]
Rm
for all multi-indices «, B and every normalized bump function ¢1 on R™ and every d > 0;

| 0)K(z,y, z)p2(dx, dy)dzdy| < nyzy—m—lvl
R™
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for every multi-index v and every normalized bump function ¢o on R"™™ and every § > 0; and

| K(z,y,2)¢3(012, 01y, 622)dxdydz| < C

Rn+7n+'m

for every mormalized bump function ¢z on R" ™™™ and every §; > 0 and 3 > 0.

Definition 1.3:. A flag kernel on R™ x R™ is a distribution on R™™™ which coincides with a
C*> function away from the coordinate subspace {(0,y)} C R"™™, where 0 € R™ and y € R™ and
satisfies

(1) (Differential Inequalities) For any multi-indices o = (o, -+ ), 8= (01, ,Bm)
050, K (2,y)| < Caplz| "1 (Ja] + [y))~™ 17!

for all (x,y) € R™ x R™ with |z| # 0.

(2) (Cancellation Condition)
| K@y (y)dy| < Clola| 771
for every multi-index o and every normalized bump function ¢1 on R™ and every § > 0;

| /R K (z, y) s (62)d| < C, ly| ™19

or every multi-index B and every normalized bump function ¢o on R™ and every § > 0; and
Y Y )

| K(x,y)p3(01x, doy)dxdy| < C

Rn+7n

for every normalized bump function ¢z on R"™™ and every d; > 0 and 55 > 0.

By a result in [MRS], we may assume first that a flag kernel K lies in L' (R"*™). Thus, there
exists a product kernel K* on R"*™ x R™ such that

K(z,y) = | K'a,y— 2z z2)dz
Rm

Conversely, if a product kernel K* lies in L' (R"*™ x R™), then K (z,y) defined as above is a flag
kernel on R™ x R™. As pointed out in [MRS], we may always assume that K(z,y), a flag kernel,
is integrable on R™ x R™ by using a smooth truncation argument.

As a consequence of Theorem 1.1, we give a new proof of the LP,1 < p < oo, boundedness
of flag singular integrals due to Nagel, Ricci and Stein in [NRS]. More precisely, let T'(f)(z,y) =
K x f(z,y) be a flag singular integral on R™ x R™. Then K is a projection of a product kernel
K% on R"™ x R™.
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Theorem 1.4:. Suppose that T is a flag singular integral defined on R™ x R™ with the flag
kernel K(x,y) = [ K*(x,y — z,2)dz, where the product kernel K* satisfies the conditions of
Rm

Definition 1.2 above. Then T is bounded on LP for 1 < p < co. Moreover, there exists a constant
C depending on p such that for f € LP,1 < p < o0,

IT(H)llp < ClAlp-

In order to use the Littlewood-Paley-Stein square function gy to define the Hardy space, one
needs to extend the Littlewood-Paley-Stein square function to be defined on a suitable distribution
space. For this purpose, we first introduce the product test function space on R*™™ x R™.

Definition 1.5:. A Schwartz test function f(x,y,z) defined on R™ x R™ x R™ is said to be a
product test function on R"™™ x R™ if

(1.6) /f(x,y,z)xo‘yﬁdxdy = /f(x,y,z)z”dz =0

for all multi-indices «, B,y of nonnegative integers.

If f is a product test function on R™™ x R™ we denote f € Soo(R"™™ X R™) and the norm
of f s defined by the norm of Schwartz test function.

We now define the test function space Sp on R™ x R™ associated with the flag structure.

Definition 1.6:. A function f(x,y) defined on R™ X R™ is said to be a test function in Sp(R™ x
R™) if there exists a function f* € Soo(R"™™ x R™) such that

(L.7) fay) = [ fila,y -z 2)dz
/

If f € Sp(R™ x R™), then the norm of f is defined by

| fllsp(rrxrm) = inf{||fﬂ||soo(Rn+m><Rm) . for all representations of f in (1.7)}.
We denote by (Sg)’ the dual space of Sp.

We would like to point out that the implicit multi-parameter structure is involved in Sg. Since
the functions 1; , constructed above belong to Sp(R™ x R™), so the Littlewood-Paley-Stein square
function gz can be defined for all distributions in (Sg)’. Formally, we can define the flag Hardy
space as follows.

Definition 1.7:. Let 0 <p <1. HL(R" x R™) ={f € (Sr) : gr(f) € LP(R™ x R™)}.
If f € HL.(R™ x R™), the norm of f is defined by
(1.8) 1 [z = g () llp-

A natural question arises whether this definition is independent of the choice of functions v; j.
Moreover, to study the HE.-boundedness of flag singular integrals and establish the duality result
of H%., this formal definition is not sufficiently good. We need to discretize the norm of H%. In
order to obtain such a discrete HY norm we will prove the Plancherel-Polya-type inequalities.
The main tool to provide such inequalities is the Calderén reproducing formula (1.5). To be more
specific, we will prove that the formula (1.5) still holds on test function space Sp(R™ x R™) and
its dual space (Sg)’ (see Theorem 3.6 below). Furthermore, using an approximation procedure
and the almost orthogonality argument, we prove the following discrete Calderén reproducing
formula.
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Theorem 1.8:. Suppose that 1 are the same as in (1.4). Then
(1.9) f(x,y) = Z Z Z Z 1TV (2, y, 2,y ) % (21, 90)
i ok J I

where Jj7k(x,y,x[,yj) € Sp(R" x R™),I C R™,J C R™, are dyadic cubes with side-length
(1) =277"N and £(J) = 27N + 273N for q fized large integer N, 1,y are any fived points
in I,J, respectively, and the series in (1.9) converges in the norm of Sp(R"™ x R™) and in the
dual space (Sp)'.

The discrete Calderén reproducing formula (1.9) provides the following Plancherel-Polya-type
inequalities. We use the notation A =~ B to denote that two quantities A and B are comparable
independent of other substantial quantities involved in the context.

Theorem 1.9:. Suppose V), (1) € S(R"t™), 4P ¢ € S(R™) and

wﬁw%=/¢ﬁW%y—@W”@Ma

R m
¢@ww=/¢mmw—zw@@m2

and Yk, ;i satisfy the conditions in (1.4). Then for f € (Sg) and 0 < p < o0,

122030 s g+ fluv)Par@ha )},
j & 7 T uecl,ve

(1.10) SIS0 D 0 dnf ik x f (o) xar(@)xs ()},
i k J 1

where ;i (x,y) and ¢; i (z,y) are defined as in (1.4), I C R™,J C R™, are dyadic cubes with
side-length £(I) = 279=N and 0(J) = 27F=N 1-279=N for a fived large integer N, x1 and x; are
indicator functions of I and J, respectively.

The Plancherel-Polya-type inequalities in Theorem 1.9 give the discrete Littlewood-Paley-
Stein square function

(1.11) g (N@y) =D D D > i+ flar v Pxa(e)xs (v)
ik g1

where I, J,x7, and y; are the same as in Theorem 1.8 and Theorem 1.9.

From this it is easy to see that the Hardy space H% in (1.8) is well defined and the H% norm
of f is equivalent to the LP norm of g%. By use of the Plancherel-Polya-type inequalities, we will
prove the boundedness of flag singular integrals on H..
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Theorem 1.10:. Suppose that T is a flag singular integral with the kernel K(x,y) satisfying the
same conditions as in Theorem 1.4. Then T is bounded on HY., for 0 < p < 1. Namely, for all
0 < p <1 there exists a constant C, such that

TPz < Cpll fll e

To obtain the H}. — LP boundedness of flag singular integrals, we prove the following general
result:

Theorem 1.11. Let 0 < p < 1. If T is a linear operator which is bounded on L?*(R™™™) and
HY(R™ x R™), then T can be extended to a bounded operator from Ho%(R™ x R™) to LP(R™™).

From the proof, we can see that this general result holds in a very broad setting, which
includes the classical one-parameter and product Hardy spaces and the Hardy spaces on spaces
of homogeneous type.

In particular, for flag singular integral we can deduce from this general result the following

Corollary 1.12:. Let T be a flag singular integral as in Theorem 1.4. Then T is bounded from
HE(R™ x R™) to LP(R™™) for 0 <p < 1.

To study the duality of HY., we introduce the space CMO¥..

Definition 1.13:. Let ¢ be the same as in (1.4). We say that f € CMOY. if f € (Sp)’ and it
has the finite norm || fllcaron, defined by

2

Z/ Z |¢Jk*f(37 y)‘ x1(x)xs(y)dxdy

(1.12) —
o €27 1,J:I1xJCQ

for all open sets 2 in R™ x R™ with finite measures, and I C R™,J C R™, are dyadic cubes
with side-length £(I) = 277 and £(J) = 27% 4+ 277 respectively.

Note that the Carleson measure condition is used and the implicit multi-parameter structure
is involved in CM O, space. When p = 1, as usual, we denote by BMOp the space CMO%.. To
see the space CMOY, is well defined, one needs to show the definition of CMOY, is independent
of the choice of the functions ;. This can be proved, again as in the Hardy space Hp, by the
following Plancherel-Polya-type inequality.

Theorem 1.14:. Suppose 1, ¢ satisfy the same conditions as in Theorem 1.9. Then for f €

(SF)/v )
Y. > swp [k fw )Py &
9 |Q‘ ! J k IxJCcuElveJd
%
. . 2
(1.13) sup ZZ Z uelll,lfeJ‘(bJ’k*f(u’v)’ 1]]J]

z]
Q |Q| ik IXJCQ
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where I C R™,J C R™, are dyadic cubes with side-length ((I) = 279~V and £(J) = 27F=N
273N for a fized large integer N respectively, and Q0 are all open sets in R™ x R™ with finite
measures.

To show that space CMOY. is the dual space of Hf., we also need to introduce the sequence
spaces.

Definition 1.15:. Let sP be the collection of all sequences s = {s;xj} such that

2

Isllor = {[4 DD lsrxa PHITHI xr(2)xs () < o0,

7,k I,J
Lr

where the sum runs over all dyadic cubes I C R",J C R™ with side-length £(I) = 277~ and
0(J) = 27k=N 4 279=N for q fived large integer N, and X, and xj are indicator functions of I
and J respectively.

Let cP be the collection of all sequences s = {syxj} such that

1
(1.14) HsHCp:sgp > Y sl p <o

2_q
Wk Gk I,J:IxJCQ
where ) are all open sets in R™ x R™ with finite measures and the sum runs over all dyadic cubes
I C R*,J C R™, with side-length I(I) = 277N and I(J) = 27*N + 279N for a fized large
integer N.

We would like to point out again that certain dyadic rectangles used in sP and cP reflect
the implicit multi-parameter structure. Moreover, the Carleson measure condition is used in the
definition of cP. Next, we obtain the following duality theorem.

Theorem 1.16:. Let 0 < p < 1. Then we have (sP)* = cP. More precisely, the map which maps

s={sixs} to < s,t >= > srxytrxy defines a continuous linear functional on sP with operator
IxJ

norm |[t||(spy« = ||t||cr, and moreover, every £ € (sP)* is of this form for somet € cP.

When p = 1, this theorem in the one-parameter setting on R"™ was proved in [FJ]. The
proof given in [FJ] depends on estimates of certain distribution functions, which seems to be
difficult to apply to the multi-parameter case. For all 0 < p < 1 we give a simple and more
constructive proof of Theorem 1.16, which uses the stopping time argument for sequence spaces.
Theorem 1.16 together with the discrete Calderon reproducing formula and the Plancherel-Polya-
type inequalities yields the duality of HF.

Theorem 1.17:. Let 0 < p < 1. Then (Hp)* = CMO?Y%.. More precisely, if g € CMOY., the map
Uy given by Ly(f) =< f,g >, defined initially for f € Sp, extends to a continuous linear functional
on Hy. with |[{4]| = [|g|lcaror - Conversely, for every £ € (HE)* there exists some g € CMOY, so
that £ = £,. In particular, (H})* = BMOF.

As a consequence of the duality of HL and the Hi-boundedness of flag singular integrals, we
obtain the BM Op-boundedness of flag singular integrals. Furthermore, we will see that L>° C
BMOpg and, hence, the L>°® — BMOpr boundedness of flag singular integrals is also obtained.
These provide the endpoint results of those in [MRS] and [NRS]. These can be summarized as
follows:
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Theorem 1.18:. Suppose that T is a flag singular integral as in Theorem 1.4. Then T is bounded
on BMOp. Moreover, there exists a constant C' such that

I T(F)lsmor < CllfllBMor-

Next we prove the Calderén-Zygmund decomposition and interpolation theorems on the flag
Hardy spaces. We note that HL.(R™ x R™) = LP(R™™) for 1 < p < 0.

Theorem 1.19. (Calderén-Zygmund decomposition for flag Hardy spaces) Let 0 < py < 1,ps <
p < p1 < oo and let @ > 0 be given and f € Hp(R" x R™). Then we may write f = g+ b
where g € HY (R™ x R™) with p < p1 < 00 and b € HY?(R™ X R™) with 0 < py < p such that
9] ’I’;?l < Capl_prH%g and ||b| %222 < C’ap2_p|\f||%§, where C' is an absolute constant.
Theorem 1.20. (Interpolation theorem on flag Hardy spaces) Let 0 < py < p1 < oo and T be
a linear operator which is bounded from HY? to LP?> and bounded from HY' to LP', then T is
bounded from HY. to LP for all po < p < py. Similarly, if T is bounded on HY and HY', then T
is bounded on HY, for all py < p < p;.

We point out that the Calderén-Zygmund decomposition in pure product domains was estab-
lished for all LP functions (1 < p < 2) into H! and L? functions by using atomic decomposition
on H' space (see for more precise statement in Section 6).

We end the introduction of this paper with the following remarks. First of all, our approach
in this paper will enable us to revisit the pure product multi-parameter theory using the corre-
sponding discrete Littlewood-Paley-Stein theory. This will provide alternative proofs of some of
the known results of Chang-R. Fefferman, R. Fefferman, Journe, Pipher and establish some new
results in the pure product setting. We will clarify all these in the future. Second, as we can
see from the definition of flag kernels, the regularity satisfied by flag singular kernels is better
than that of the product singular kernels. It is thus natural to conjecture that the Hardy space
associated with flag singular integrals should be larger than the classical pure product Hardy
space. This is indeed the case. In fact, if we define the flag kernel on R™ x R™ by

K(z,y) = /ff(ﬂf—z, z,y)dz,
Rn

where K (z,z,y) is a pure product kernel on R™ x R"*™ and let H}. be the flag Hardy space
associated with this structure, thus we have shown in a forthcoming paper that H?(R"™ x R™) =
HE(R™ x R™) N HE(R™ x R™). Results in [MRS] and [NRS] together with those in this paper
demonstrate that the implicit multi-parameter structure, the geometric property of sets of singu-
larities and regularities of singular kernels and multipliers are closely related. Third, the authors
have carried out in [HL] the discrete Littlewood-Paley-Stein analysis and Hardy space theory in
the multi-parameter structure induced by the Zygmund dilation and proved the endpoint esti-
mates such as boundedness of singular integral operators considered by Ricci-Stein [RS] on H},
(0 <p<1)and BMOg, the Hardy and BMO spaces associated with the Zygmund dilation, e.g.,

on R3, given by 6(z,y,2) = (612, 02y, 01022), 61,02 > 0, where the LP (1 < p < 0o) boundedness
has been established (see [RS] and [FP]).

This paper is organized as follows. In Section 2, we establish the LP estimates for the multi-
parameter Littlewood-Paley-Stein g— function for 1 < p < oo and prove Theorems 1.1 and 1.4.
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In Section 3 we first introduce the test function spaces associated with the multi-parameter flag
structure and show the Calderén reproducing formula in (1.5) still holds on test function space
Sr(R™ x R™) and its dual space (Sg)’, and then prove the almost orthogonality estimates and
establish the discrete Calderén reproducing formula on the test function spaces, i.e., Theorem 1.8.
Some crucial strong maximal function estimates are given (e.g. Lemma 3.7) and together with
the discrete Calderén reproducing formula we derive the Plancherel-Polya-type inequalities,i.e.,
Theorem 1.9. Section 4 deals with numerous properties of Hardy space H}. and a general result
of bounding the L? norm of the function by its H}. norm (see Theorem 4.3), and then prove the
HY, boundedness of flag singular integrals for all 0 < p < 1, i.e., Theorem 1.10. The boundedness
from H% to L? for all 0 < p < 1 for the flag singular integral operators, i.e., Theorem 1.11, is thus
a consequence of Theorem 1.10 and Theorem 4.3. The duality of the Hardy space H} is then
established in Section 5. The boundedness of flag singular integral operators on BM Of space is
also proved in Section 5. Thus the proofs of Theorem 1.14, 1.16, 1.17 and 1.18 will be all given in
the Section 5. In Section 6, we prove a Calderén-Zygmund decomposition in flag multi-parameter
setting and then derive an interpolation theorem.

Acknowledgement. The authors wish to express their sincere thanks to Professor E. M.
Stein for his encouragement over the past ten years to carry out the program of developing the
Hardy space theory in the implicit multi-parameter structure and his suggestions during the
course of this work. We also like to thank Professor J. Pipher for her interest in this work and
her encouragement to us.

2. LP estimates for Littlewood-Paley-Stein square function: Proofs of Theorems 1.1
and 1.4

The main purpose of this section is to show that the LP (p > 1) norm of f is equivalent to
the LP norm of gr(f), and thus use this to provide a new proof of the LP boundedness of flag
singular integral operators given in [MRS]. Our proof here is quite different from those in [MRS]
in the sense that we do not need to apply the lifting procedure used in [MRS] directly. We first
prove the LP estimate of the Littlewood-Paley-Stein square function gp.

Proof of Theorem 1.1: The proof is similar to that in the pure product case given in [FS]
and follows from iteration and standard vector-valued Littlewood-Paley-Stein inequalities. To see

this, define F': R*"*™ — H = (% by F(z,y) = {wj(-l) * f(z,y)} with the norm
1Pl = 1321 S ()P}
J

When z is fixed, set
T @, y) = {3 2 Fla, ) @)%
k

It is then easy to see that g(F)(z,y) = gr(f)(x,y). If z is fixed, by the vector-valued Littlewood-
Paley-Stein inequality,

/ﬁwv@w@sc/WH&@.

R™ Rm™

However, || F|%, = {3 |¢§-1) x f(x,y)|?}*, so integrating with respect to z together with the
J
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standard Littlewood-Paley-Stein inequality yields

| [ o) :cydydxw//{m“ F(@, )2 3 dydz < C| £,

Rn Rm Rn Rm
which shows that ||gr(f)|l, < C||fllp-

The proof of the estimate ||f||, < C||gr(f)||p is routine and it follows from the Calderon
reproducing formula (1.5) on L2(R"*™), for all f € L2NLP, g € L> N L*" and }lj + ]% =1, and
the inequality ||gr(f)||, < C||f||p, which was just proved. This completes the proof of Theorem
1.1. Q.E.D.

Remark 2.1: Let () € S(R"*™) be supported in the unit ball in R"*™ and ¢ € S(R™) be
supported in the unit ball of R™ and satisfy

/o |@ﬁ1\) (t&1, t52)|4@ =

for all (£1,&2) € R™ x R™\{(0,0)}, and
JARTEICIR
0

for all n € R™\{0}. We define ¢ (z, v, 2) = 1 (z,y—2)¢?)(2). Set ¢§1)(IE, y) = t=nmap(D (2, 4
and zp§2)(z) =s5""(Z) and
Yrs(@,y) = ; i @,y — 2P (2)d

Repeating the same proof as that of Theorem 1.1, we can get for 1 < p < oo

(2.1) T / / o * F ) S SV, < U Al
and
(2.2) 1l ~ I / / [ s * F ) S SN,

The LP boundedness of flag singular integrals is then a consequence of Theorem 1.1 and
Remark 2.1. We give a detailed proof of this below.

Proof of Theorem 1.4: We may first assume that K is integrable function and shall prove the
LP.1 < p < o0, boundedness of T is independent of the L! norm of K. The conclusion for general
K then follows by the argument used in [MRS]. For all f € LP,1 < p < o0, by (2.2)

|2dt ds

(2.3) I7(f ||pson{//|¢ts*wts*m Fa P Ly,
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Now we claim the following estimate: for f € LP,1 < p < oo,

(2'4) ’wt,s*K*f(x7y)‘ SCMS(f)(x7y>7

where C' is a constant which is independent of the L' norm of K and M(f) is the maximal
function of f defined in the first section.

Assuming (2.4) for the moment, we obtain from (2.3)

th ds

(2.5) ITH, < CI / / W N ) T Y, < O

where the last inequality follows from the Fefferman-Stein vector-valued maximal function and
Remark 2.1.

We now prove the claim (2.4). Note that ¢ ; x K(z,y) fzpt . * Kf(z,y — 2,2)dz, where
1/1578(90, y, z) is given in Remark 2.1 and K (z,y) = [ K*(x,y—z, 2)dz, where K (z,y, z) is a product
kernel satisfying the conditions of definition 2.1.1 in [NRS] (or Definition 1.2 in our paper). The
estimate in (2.4) will follow by integrating with respect to z variable from the following estimate:

t S

2.6 Y x Ki(z,y,2)|<C ,
20 R (B Ea ) e FE P

where the constant C is independent of the L' norm of K. The estimate (2.6) follows from that
in the pure product setting R"*™ x R™ given by R. Fefferman and Stein [FS]. Q.E.D.

3. Test function spaces, almost orthogonality estimates and discrete Calderén repro-
ducing formula: Proofs of Theorems 1.8 and 1.9

In this section, we develop the discrete Calderon reproducing formula and the Plancherel-
Polya-type inequalities on test function spaces. These are crucial tools in establishing the theory
of Hardy spaces associated with the flag type multi-parameter dilation structure. The key ideas
to provide the discrete Calderén reproducing formula and the Plancherel-Polya-type inequalities
are the continuous version of the Calderén reproducing formula on test function spaces and the
almost orthogonality estimates.

To be more precise, we say that a function a(x,y) for (z,y) € R™ x R™ belongs to the class
S®(R™ x R") if a(x,y) is smooth and satisfies the differential inequalities

(3.1) 020 a(z,y)| < An.ap(l+ ]z —y) ™"

and the cancellation conditions
(32) /a(:r,y)x“dflf = /a(w,y)yﬁdy =0

for all positive integers N and multi-indices «, 3 of nonnegative integers.

The following almost orthogonality estimate is the simplest one and its proof can be adapted
to the more complicated orthogonal estimates in subsequent steps.
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Lemma 3.1. If ¢ and ¢ are in the class S (R™ x R™), then for any given positive integers L
and M, there ezists a constant C = C(L, M) depending only on L, M and the constants AN a3
in (3.1) such that for all t,s >0

f)M (t\/S)L

t
(5.3 | [t 2ouemizl < O A DM o s,
R

where Pi(x,2) =t "YP(§,7) and ¢s(2,y) = s7"P(%), and t A s = min(t,s),tV s = max(t,s).

Proof: We only consider the case M = L =1 and t > s. Then

Ve(w,2)¢s(2,y)dz

R’Iﬂ

:/m [wt(.%,Z) - ¢t(ﬂf7y)] ¢s(z7y)dz

:/ +/ =T +1T
ryl<(Hz—y) Iyl 3 (EHa—y)

We use the smoothness condition for vy and size condition for ¢, to estimate term I. To estimate
term I, we use the size condition for both ; and ¢s.

For the case M > 1 and L > 1, we only need to use the Taylor expansion of ¢;(z,-) at y and
use the moment condition of ¥;. We shall not give the details. Q.E.D.

Similarly, if 1#(z, y, z,u, v, w) for (z,y, 2), (u,v,w) € R x R™ x R™ is a smooth function and
satisfies the differential inequalities

|8§1851 o 83285283}2@&'1(96, Y, 2, U, U, W)|

(3'4) S AN,M70‘1,O¢27617B27’71772(1 + |x - U| + |y - /U|)7N(]' + |Z - w|)7M

and the cancellation conditions

[ v ey dedy = [z 0w

(3.5) = /wﬁ(:z:,y,z,u,v,w)ua%ﬁ?dudv = /wﬁ(ac,y,z,u,v,w)wwdw =0,

and for fixed zg € R™, 50 € R™, ¢*(x,y, 2, T0, o) € Seo(R"T™ x R™) and satisfies

‘8§1651821¢ﬁ($,y, Z,.fl?o,yo)’

for all positive integers N, M and multi-indices aq, a9, 81, 82,71, Y2 of nonnegative integers. Then
we have the following almost orthogonality estimate:
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Lemma 3.2. For any given positive integers L1, Lo and Ky, Ko, there erists a constant C' =
C(Ly, Ly, K1, K3) depending only on Ly, Lo, K1, Ko and the constants in (3.4) and (3.6) such
that for all positive t,s,t’, s’ we have

‘ ?ﬁf,s(% Y, 2, U, v, w)¢§/,s’ ("LL, v, W, Xo, yO)dUdvdw’
Rn+m+m
(3.7)
K K
<ot A Eyp(E p Ly LV ALY
vt s s’ (V4T —x0| + |y — yo|)(PTMHEL) (s Vs + |2])(mtE2)

where wg’s(x,y,z,u,v,w) =TT (L Y 2w v WY g g

f __3i—n—m _—m f
IR 9 =t Ty Ty T s -
b7 s(T,Y, 2, T0, Yo) s ¢(tts : t)

The proofs of the almost orthogonality estimate in (3.7) is similar to that in (3.3). We will
only provide a brief proof.

Proof of Lemma 3.2: We only consider the case L1 = Lo = K1 = Ko = 1,¢t >t and s < 5.

Thus

| @bgjs(x, Yy 2, Uy U, w)¢2,’3,(u, v, W, Lo, Yo )dudvdw|

R"xXR™xXR™

=] / A - Bdudvduw|

R"xRM™xR™

where
A= wtﬁ,s<x7 Y, z,u,v, w) - ¢f,s($: Y, =z, %o, Yo, U))

and

B = ¢§/,5’(u7v7w7$07y0) - ¢§,75,(U7U, 2,20, yO)

In the above, we have used the cancelation properties

/ ¢§/,5/(U, v, W, g, Yo )uvP dudv = 0, / wfys(:c,y, z,u,v,w)w? =0
R7L><R’VYL Rm

for all multi-indices «, 3 and 7.

Next,

| / A - B dudvdw
R™xXR™xR™

A - B dudvdw

/Iu—on—Iv—onSé(t+|w—wo|+|y—yo|), lw—z|< 3 (s'+]2])

_|_/ A - B dudvdw
lu—zo|+|v—yo|< 5 (t+|z—0l+|y—yol), lw—2|>5(s'+]|2])

+/ A B dudvdw
=0 +v—yo|2 § (¢l —zo|+ly—yol), lw—z|<} (' +2])

—i—/ A - B dudvdw
lu—zo|+|v—yo|> % (t+|z—z0|+|y—yol), lw—2|>5(s'+]|z])

=I+1I+1IT+1V
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For term I, we use the smoothness conditions on wgs and qﬁf,’s,; For term I, we use the smooth-
ness conditions on 7/’5,5 and size conditions on ¢§,7S,; For term I11, we use the size conditions on
wf’s and smoothness conditions on ¢§’,s’; For term IV, use the size conditions on both wf,s and
qﬁﬁ,’s,. We shall not provide the details here. Q.E.D.

The crucial feature, however, is that the almost orthogonality estimate still holds for functions
in Sp(R™ x R™). To see this, we first derive the relationship of convolutions on R™ x R™ and
R™™™ x R™. We will use this relationship frequently in this paper.

Lemma 3.3. Let 1), ¢ € Sp(R™ x R™), and ¢*, ¢* € Soo(R™™ x R™) such that

’g[)(fl?,y) - R ¢ﬁ(x7y_zvz)dza ¢(I,y) - R gbﬁ(ac,y—z,z)dz.

Then
(6 % 6)(w,y) = / (6% 5 ) (2, — 2 2)d=.
Rm

Lemma 3.3 can be proved very easily. Using this lemma and the almost orthogonality estimates
on R"™™ x R™, we can get the following

Lemma 3.4. For any given positive integers Ly, Lo and Ky, Ko, there exists a constant C' =
C(Ly, Ly, Ky, K3) depending only on Ly, Lo, K1, Ko such that if t Vit < sV s, then

|Wt,s * Qs (7, Y)]
SC’(t/\t—/ s s (t vtk (sVs')K2

S ATy

vt e s (EVH + |2))nFED (5 Vs 1 |y[)m+E2)’

and if t Vit > sV s, then

|1/}t,s * qbt’,s’ (x7 y)|

<C(t /\t’)Ll(s /\S/)L2 (tvi)E (t Vi)
- Yt s’ s (EV T + [z]) (KD (vt + Jy])(mtE2)

Proof of Lemma 3.4: We first remark that we will prove this lemma with K, Ky, L1, Lo
replaced by K1, K}, L}, L,. Thus, we are given any fixed K|, K5, L}, L.

Note that
Qbt,s * ¢t’,s’(x7 y) = / ¢f,s * ¢2/78/(I‘, Yy—z Z)d'z’
Rm

where 1, ¢% € Soo (R"™™ x R™), and

wf,s * qﬁ%,’s,(:p, y,2) = / zpf’s(x — U,y — U, 2 — w)qﬁg,’s,(u, v, w)dudvdw,
R’VYL XR?’VLXR"L
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Then by the estimate in (3.7), for any given positive integers L1, Lo and Kj, K5, there exists a
constant C' = C(Lq, Lo, K1, K2) depending only on Lj, Lo, K1, K5 such that

|¢t,s * ¢t’,s’ (xa y)|
(3.8)

dz.

! S s "NK1 sV s K>
<C(5 A Sy )LQ/( s by

— — N\ —
ot s s tV Y+ |z + |y — z]) (Tt (5 8" + |2])(mtK2)

R™

Case 1: If t vt/ < sV s and |y| > sV s, write

/ (tV )k (sV s)K2

(VT Jal + [y — )R (37 4 [

Rm

:/ +/ =T +1II
|z|<3|yl, or |z|>2]y| 3 lyl<|z|<2[y|

It is easy to see that

(tvt)k
(VU + [z] + [y])mFmTE)
(t v t)EK (t v ) K
(tV 4 [a])mTED -y R
(tvt)EK (sV &)t
TV + [a)ED (s Vs 4 [yl)m R

|I| <C

where we have taken K7 = K] + K/ and used the fact that t V' < sV s and |y| > sV s'.

Next, we estimate

L (v 1) .
SEVE TR | GV fal + fy - 2o

Rm
(s s')K2 (tvt)k
(s Vs + DR (£ H + [a )
(s Vv s)Ke (t vt

(s Vs + [y))mHED  (t vt + [2])mHED
where we have used Ky > K and K = K| + K4 > KJ.

Case 2: If t Vt' < sV s and |y| < sV s, then

/ (tve)k (s Vv s)ke
(

dz
tV 4 x| + |y — z|)(ntm KD (s s 4 |2]) (mtEz)

Rm

1 / (t vk
< dz
“(svs)m | (VY + x|+ |y — z])ntmtKy)

R™
(sVv )k (tvi)k
(s Vs + |y|)mHEe (v + |zf)(nHK)
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Case 3: We now consider the case t Vt' > sV s and |y| <tV . Then

/ (tv i)k (s s')Kz

d
(EV U+ [2] + [y — 2D (5 o + |2])(mtEKa) @

Rm
(tvt)k
(tv ) (t V1)K

TV |)OHED v+ [z] + [y R
by noticing that K1 = K{ + KJ.

Case 4: If we assume t V' > sV s" and |y| > tVt/, then we divide the integral into two parts
I and I as in the case t V' < sV s’. Thus we have

(tvi)k
(t V' + x|+ [y|)(ntm+ED)
(tvt)K (t v 1)Kz
(¢t + [2) KD (v ¢ [y])On K

1] <

where we have taken K7 = K| + K.

To estimate 11, we have

1) <o VO™ (svs)"e
STV )R (s Vs [yl
(tvt) (tVvt)Ke

SUEVE DR v )0
Q.E.D.

Roughly speaking, v s * ¢y ¢ (x,y) satisfies the one-parameter almost orthogonality when
tVt > sVs and the product multi-parameter almost orthogonality when t V¢’ < sV s’. More
precisely, we have the following

Corollary 3.5. Given any positive integers Ly, Lo, K1 and Ko, there exists a constant C' =
C(Ly, Ly, Ky, K3) > 0 such that

(i) If t > s we obtain the one-parameter almost orthogonality

t t', s s tfa i
NG AZ)™

. s AT < m
(3:8) [Wrs x dvw (@ y)l < ClG A )G A S (t + |2) KD (¢ + |y[)(mTEe)

and, if t < s the product multi-parameter almost orthogonality is given by

t t, s s t st
Aoy A Sy

39 s ’.8’ ) S C m ’
( ) |¢t, *th, (Z’ '!/)| (t/ n s S (t+ |x‘)(n+K1) (3_|_ |y|)(m+K2)

(i) Similarly, if t' > ¢,

t t/ L s 5/ L t/Kl 2(;/I(2
3.10 s g, <O(= N ) (= A )2 :
( ) W}t, * ¢t s (a’: y)’ — (t/ t ) (S/ s ) (t/ + ‘x’)(n-‘t‘Kl) (t/ —+ ’y’)(m+K2)
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and if t' < &,

t t, L S SI L t/Kl SIK2
3.11 s ’ S/ , < C J— — 1(__ /\ — 2 )
( ) ‘¢t, *¢t7 (.fl? y)’ = (t/ t) (S/ S) (t/—l—’.’L'D(n""Kl) (S/+|y|)(m+K2)

Corollary 3.5 is actually what we will use frequently in the subsequent parts of the paper. The
proof of Corollary 3.5 is a case by case study and can be checked with patience. We shall omit
the details of the proof here. All these estimates will be used to prove the following continuous
version of the Calderén reproducing formula on test function space Sp(R"™ x R™) and its dual
space (Sg)’.

Theorem 3.6. Suppose that ;1 are the same as in (1.4). Then

J k

where the series converges in the norm of Sp and in dual space (Sg)’.

Proof: Suppose f € Sp and f(z,y) = [ f*(z,y — 2, 2)dz, where f* € Soo(R"™™ x R™). Then,
Rm

by the classical Calderén reproducing formula as mentioned in the first section, for all f* € L2,

(3.13) Wz,y, 2 ZZw s x f (2., 2),

where o (2,1, 2) = 05" (2, 9)u;” (2)
We claim that the above series in (3.13) converges in S, (R"™™ x R™). This claim yields

If(zy) - S Wik ki f@,y)lse

—N<GSN —M<k<M

:” /[fﬁ(m7y_zaz)_ Z Z r‘vbg,k*¢§,k*fﬁ(x7y_zvz)]dz|lsl~“

—N<GSN —M<k<M

R
S“fn((l?,y,Z)— Z Z @bg’k*wg’k*fﬁ(xayaz)HSm

~N<j<N —M<k<M
where the last term above goes to zero as N and M tend to infinity by the above claim.
To show the claim, it suffices to prove that all the following three summations
8 i f i i i
PO TELL Y D DD DR TS AN DI D TR I
l71>N |k|<M ljI<N |k|>M l71>N |k|>M

tend to zero in Soo(R™™™ x R™) as N and M tend to infinity. Since all proofs are similar for
each of the summations, we only prove the assertion for the first summation which we denote by
fjﬂv’ v - Note that

fNM T,Y, 2 Z Z / wg}k*wgyk(x—u,y—v,z—w)fﬁ(u,v,w)dudvdw

91> N [KI<Mpn o fim x gm
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where 1f x 1) (x —u, y—v, 2 —w) satisfies the conditions (3.4) and (3.5), and f*(u, v, w) satisfies the
conditions (3.6) with xo = yo = 0. The almost orthogonality estimate in (3.7) with t = 277 s =
27k ¢ =5’ =1 and xg = yo = 0, implies

| / ¢§, *¢jk(m—u y — v,z —w)ff(u, v, w)dudvdw|
R™x R™ X R™

(277 v1)f (27F v 1)Kz
(279 V 1+ |z] + |y|)(ntmtE) (2-k v 1 4 |2])(m+K2)

§02—|j\L12—\k|L2

This, by taking L1 > K; and Lo > K>, gives us

lim sup (L Ja o [y (L )RR (2, 2)] = 0.
N M —oo rER" yeR'rn zeER™ ’

Since 83858;(]”}1\,7]\4)(%%,2) = (020097 f*)n,m(x,y, 2) and applying the above estimate to
8;‘85 07 f* which also satisfies the conditions in (3.6) with 29 = yo = 0, we obtain

lim sup (L4 || + [y 5 (1 4 |2)) ™ 2070, 02 ) v (2, y, 2)] = 0,
N,M—00 zcRn yc R™,z€R™

which shows the claim.

The convergence in dual space follows from the duality argument. The proof of Theorem 3.6
is complete. Q.E.D.

Using Theorem 3.6, we prove the discrete Calderén reproducing formula.

Proof of Theorem 1.8: We first discretize (3.12) as follows. For f € Sp, by (3.12) and using
an idea similar to that of decomposition of the identity operator due to Coifman, we can rewrite

(2,9) ZZ//%, —u,y —w) (Y * f) (u, w)dudw

gk LJ Y

1y =33 / / bl — uyy — w)dudw | (54 * ) (1, 37) + R() (@ p).
J T

gk I,J

We shall show that R is bounded on S with the small norm when I and J are dyadic cubes
in R™ and R™ with side length 277~ and 27%*=N +277=N for a large given integer N, and z1, v
are any fixed points in I, J, respectively.

To do this, assuming f(z,y) f f¥(z,y — 2, 2)dz, where ff € Soo(R™™ x R™). When

k < j, we write
(g * f) (w,w) = (e * f) (21, 9)
:/Rm (Tﬁ]ﬁk *fﬁ) (u,v,w—v)dv—/Rm <¢?k *fﬁ> (21,0, 45 — v)dv

:/[wgk(u—u’,v—v’,w—v—w/)—¢§k(x1—u’,v—v'7yj—v—w’) A ' w')du dv’ dw' dv
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where the last integral above is over R x R™ x R™ x R™.

When k > j, we write
sk * f) (w,w) = (s % f) (21, 95)
:/Rm (l/igk * fﬁ> (u, w —v,v)dv — /Rm (%‘k * fﬁ) (z1,9; — v,0)dv

:/[@bgk(u—u’,w—v—v’,v—w’)—¢§k(a71—u',yj—v—v',v—w’) v w')du dv’ dw' dv

We now set

R(f)a.1)
=S5 [ [ nte = = ) (W ) ) — G ) 1,0

gk LJ % g

:////Rﬁ(:x?y - Zaz7ulgvl7wl)fﬁ(’u,/"U/’w/)du/dv/dw/dz

- / R 2,y — 2 2)dz,
Rm

where R¥(z,y, z,u’,v',w’) is the kernel of R and

(x,y — z,2z,u/,v,w)

R(
—ZZ///w( (= wy 2~ w))

k<j I,J
(€ e (2) (0 0y _ (1) P AV ANA ) o
X |5 (u—u'sv =) (w — v —w') = (wr — o v =0 )T (ys — w' —v) | dudwdv

+zzzz///w wy -z -0 2)

7 k>3 J I
X [w§1)(u—u w—v—1) _¢§' )(371 —u,y; —v—1') ;(f)(v—w')dudwdv.

Using the change of variables from z to z +v — w in the term of k¥ < j, and z to z — v in the term
of k > j, we can rewrite

Rﬁxy,zuv w')

_zz///w (o = u,y — o) (2 + v - w)

k<j I,J
x[;[;(.)(u—u’v—v) (2)(w—w’—v)—¢(-1)($1—ulav YD (ys — w —U)] dudwdv
EELES ] [ [ ne e

7 k>3 J

x [wj(l)(u—u w—v—1) _wj(' )(551 —u',y; —v—1) ;(f)(v—w/)dudwdv

:ZAjk +ZBjk.

kE<j k>j
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We claim that R* is bounded in S, (R"™ x R™).

To see this, write
Ajk:ZZ///@DJ(l)(:U—u,y—v) ,EQ)(z-i-v—w)
J 1 7T
X[?/)J(-l)(u — v =) — 1/)](1)(961 — v — )P (w — v’ — v)dudwdv
+ZZ///¢§1)(x—u,y—v) (5 40 —w)
J I 7T

)i (wr = w0 = o)l (w — w' = v) = 9 (g — v’ — v)]dudwdy
:Aﬁ)(x,y,z,u',v’,w') + Agi)(x’y’Z’u/’,U » W )

It is not difficult to check that [, w,(f) (z4+v—w) ,(f)(w — w’ — v)dw satisfies all the conditions
as @/J,(f)(z — w') does with the comparable constants of Sp(R™ X R™) norm and that

S [ w = o e = o) = 0 e - o)dudo
J 1 7T

satisfies all conditions as zpj(.l) (x—u',y—2") but with the constants of Sp(R"™ x R") norm replaced

by C2~N. This follows from the smoothness condition on v,bj(.l) (say the mean-value theorem) and
the fact that u,x; € I and [(I) =27V,

If we write

Agk(x y, z,u v w')

—ZZ///w< (& =y — ) (= o0 — o) — 9D ez — o0 — )]
x{ w,iz)(z—l—v—w) 122)(w—w'—v)dw dudv
Rm

then the function Aﬁ) (z,y,z,u', v, w") satisfies all conditions as

1 2
o =y =) (2~ )
does but with the Sp(R™ x R™) norm constant replaced by C27%.

By the proof of Theorem 3.6, we conclude that
/Aﬁ)(x, y, z,u v w') fF (0w du do’ dw'

is a test function in S, (R™™ x R™) and its test function norm is bounded by C2~%.

Similarly,

Z/%”(zﬂ—w)[ 2w =’ —v) =9 (g —w' = v)ldw
I
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satisfies all conditions as w,(f)(z — w') but with the constant replaced by C2~%, which follows

from the smoothness condition on 1/1,22) and the fact w,y; € J and I(J) = 27VN=7 4 2=N=k and
k<j.

We also note that

ZZ///wg('l)(x_u73/—v)¢§l)($1—u',v—vl)dudv
J 1 7T

satisfies the same conditions as 1/)](-1)(:5 —u/,y —v') does with comparable Sgp(R"™ x R™) norm
constant. Thus, we conclude that

/Aﬁ)(a:,y,z,u',v',w')fﬁ(u’,v’,w')du’dv'dw'
is a test function in S, (R™T™ x R™) and its test function norm is bounded by €2~ . Therefore,
/Ajk(x,y,z,u',v',w')fﬁ(u’,v’,w’)du'dv’dw’

is a test function in So, (R™™™ x R™) and its test function norm is bounded by C27%.

Similarly, we can conclude that
/Bjk(m,y,z,u’w’,w’)fﬁ(u',v',w')du’dv’dw’
is also a test function in So (R™™ x R™) and its test function norm is bounded by C27%.
This shows that R¥(f#)(z,y, 2) € Sec(R"™™ x R™) and

||Rﬁ(fﬂ)Hsoo(R”+mem) < CQ_NHfﬁHsm(meme)v

which implies that R(f) € Sp(R" x R™) and

(3.15) IR(F)l|sw(rrxrmy < C27N|| fllsp(rrx rm)-

By (3.14) together with the boundedness of R on Sz with the norm at most C2~V if N is
chosen large enough, then we obtain

) =X XSS SR [ [ st — e = o)dudo| @) (wix 1) or.0)
ik J I [i=0 %9

Set

ZRi//ij,k(-—u,-—v)dudv (x,y) = |I|]J|sz,k(x,y,x[,yj),
=0 7T

It remains to show %,k(% y,x1,yy) € Sp. This, however, follows easily from (3.15).
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Q.E.D
We next establish a relationship between test function in f* € Soo(R™™™ x R™) and test
function f(z,y) = [ f*(x,y—z,2)dz under the actions of R*, R and the implicit multi-parameter
Rm
dilations.

To be more precise, we define

Finlny) = / Py — 2, 2)dz,

Rm
where
(f5)je(,y, 2) = 20 FmIomk fh(27 5, 27y, 2% 2).
Note that

RE((f#)j0) (.9, 2)

///Rji z,y, 2,0, v w) () e (a0 w')du! du’ duw’
:2(”+m)j2mk///Rﬁ(a:,y,z,u’,v/,w’)fﬂ(qu',2jv',2kw')du'dv'dw'
:///Rﬁ(x,y,z,Q_ju',2_jv',2_kw’)fﬁ(u’,v’7w’)du’dv’dw'

and

RE2 77,270y, 272, 2794/, 2770 27 Fw') = 200 FMI9MERE (1w, 2 W v w).

Thus we have
Rﬁ((fﬁ)j,k)(x7 Y, Z) = (Rﬁ(fﬁ))jk(x7 Y, Z)
This implies

R(fie)(@,y) = [ RY(fje)(@,y — 2 2)dz

R™

:/m(nﬁ(fﬁ))jk(x, y — z,2)dz = (R(f))jr(z,y)

It is worthwhile to point out that

rlvbj, ('CE Yy, xr, yJ /QZJJk; x,y — Zuz7x17yJ>dzu

where

wg,k(x7yaz7xlaybf) = (wn)j7k($,y,z,l’j,yj), @Dﬁ(%ya%ﬂ?byj) S Soo<Rn+m X Rm)

and satisfies the condition in (3.6) with xg = 21, y0 = yJ-
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Remark 3.1: If we begin with discretizing (3.12) by
D= YN S Svisle iy [ [ W) (wo)dudo + R,
i ok J I 7

and repeating the similar proof, then the discrete Calderon reproducing formula can also be given
by the following form

:ZZZZ’IH‘]WM(CU_$I7y—yJ)@Zj,k(f)(93I,yJ),
i ok J 1

where ]I\\J\@ijk(f)(xj, vr) = > [ [¥ik*(R)(f)(u,v)dudv. We leave the details of these proofs
1=0J I
to the reader.

Before we prove the Plancherel-Polya-type inequality, we first prove the following lemma.
Lemma 3.7. Let I,I', J,J' be dyadic cubes in R™ and R™ respectively such that {(I) = 277=N,

0J)=273"N 4 97k=N_p(")y = 279"N gnd £(J") = 279N 4+ 27N Thus for any u € I and
v € J we have

3D

) +K 1
ey iy (277 +lu—zp )" 27 + o —yrl)

<C Z 9—li=i'|K  o—|k—k'|K {Ms (Zzwj,’kl *f(a:I/,yJ/)|XJ/Xp> } (u,v)

k/gj/ J/ I/

2= (I5=3" [+ k=K DK o=G"+K)K ||| 1|

i Pir e x [, ys)]

and

2—(\j—j/|+|]€—k/|)K2—2j’K|I/HJ/|

2.2

-/ +K Y
k> 1, J’ 2 J +|U—x]/|)n (2 J +|U_yjl|)

<C Z 9~ li=i'|[Ko—Ik=K|K {M <ZZ’¢]",I~:’ *f(xllvy‘]’)b(f’xaf’) } (u,v)

k/>j/ J/ I/

e P x [ ys)]

where M is the Hardy-Littlewood mazimal function on R"™™, M is the strong mazimal function
on R™ X R™ as defined in (1.1), and max{

Proof: We set

n+K’m—|—K}<Ir

Ag— (I oIy = 27N lv—2rl
0o=1 (I INTI0 <1}

By = J’:E J/ — 2—jl—N 2—]6/—N |,U_le| <1
0 { ( ) + ’ f(J/) = }

and for £ > 1,1 <1

Ap= {1 (1) = 27N o=t = 2rl oy
l { E( ) ) < e([,) = }
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By={J () =277 "N p 27K =N ginl —'“&j{f' <27},
Then
2~ HEOK 1] 1)
27+ Ju—zp )" 2% + o —yp)
< Z 9~ tntK)g—i(m+K) Z |pjr i * [z, y0)]

0,i>0 I'€A,,J €B;

i P * [,y

3=

< Z 9—(n+K)g—i(m+K) Z (|pjr ke * flzrys))"

0,i>0 I'€A,,J €B;

3=

< Z 2—€(n—|—K)2—i(m+K) / |I/|—1|J/|—1 Z |¢j’,k’ « f($p7yjl)|rxple
R™"x R™

0,i>0 I'€A,,J'E€B;
—_ _n —q _m
< Z gt K=)g=ilmtK==2) Ay, Z \bjr ke * f(xr,yr)"xr x| (u,v)
0,i>0 I'eA,, T/ €B;

<C | Mo | D s = f@r,ys)"xexa | (w,v)
I.J

The last inequality follows from the assumption that » > == and r > " which can be done
by choosing K large enough.

Similarly, we can prove the second inequality of the lemma. Q.E.D.
We now are ready to give the
Proof of Theorem 1.9: By Theorem 1.8, f € Sp can be represented by
Fay) =Y > > NNy w @y xr,yr) (b * f) (@ y).

j/ kl J/ I/

We write

(¢j,k * f) (u7 U)

:ZZZZ |I/||J/| (ka * gj',k"('a '7xI’7yJ’)> (U, U) (¢j’,k' * f) (l'[/,yjl).

j/ k/ Jl I/

By the almost orthogonality estimates in (3.10) and (3.11), for any given positive integer K,
we have if j' > K/,

Wik * Gy (-, ) (w,0)]

—i'K WK
(3.15) <0 li=3'1K g=lk=FK|K . 277 2

@7+ u—wp)" K 27K 4o =y K
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and if j/ < k', we have

Wi % Gjr e (-, ) (u, 0)]

—i'K ok
(3.16) <0 li=3'1K g=lk=F|K . 277 9~

277" +|u—ap)tE (270 + v — yp ) tE

Using Lemma 3.7, for any u,xp € I,v,y € J,

’ﬁyk’kf(u7v”
<C YYD ol g RRIE Py
k/gj/ I/ J/
2—le 2—k:/K

BT+ lu—an ) E @ o= gk ke S

+C Y 0NN ol T R |y
k/>j/ J/ I/
2—j/K 2—j/K
Q7 +u—zp )"t 2 + o -y

<C Z 27l K g Ik=RTIK {MS<ZZ ‘ij’,k’ * f(xI’ayJ’)|XJ’XI’)T} (u,v)

k/gj/ J/ I/

R Pjr ke * f(x1,900)]

+C Z 9= li=3" 1K o= |k—k'|K {M (ZZ|¢j’,k’ *f(%/;?ﬁ/)\XI’XJ/) } (u,v)

k/>j/ J/ I/

where M is the Hardy-Littlewood maximal function on R™*™, M, is the strong maximal function
on R" x R™, and max{, 7%, -7} <7 <p.

Applying the Holder’s inequality and summing over j, k, I, J yields

uel,ve

222D, suw Jijk*f(u,v)IQXIxJ
P

N[

RN

<0y {Ms(ZZ|¢j',k' *f(ffluyJ')|XI'XJ’)T}
o

j/ J/ I/

Since z;s and yj are arbitrary points in I’ and J’, respectively, we have

SIS swp [ s £ o)y
7 k J I

uel,ved

P> {MS@ZHE}PEEMW*f(u,wrxﬁw} ,

j/ k./ J/ I/
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and hence, by the Fefferman-Stein vector-valued maximal function inequality [FS] with r < p, we
get

S SUPJWJ',k*f(U,U)lQXIXJ I
k J I

j uel,ve

SCID 2D D0 int loywe = fwo)Pxrxr ol
j/ k/ J/ I/

This ends the proof of Theorem 1.9. Q.E.D.

4. Discrete Littlewood-Paley-Stein square function, boundedness of flag singular
integrals on Hardy spaces H%., from H% to LP: Proofs of Theorems 1.10 and 1.11

The main purpose of this section is to establish the Hardy space theory associated with the
flag multi-parameter structure using the results we have proved in Section 3. As a consequence
of Theorem 1.9, it is easy to see that the Hardy space H% is independent of the choice of the
functions . Moreover, we have the following characterization of H%. using the discrete norm.

Proposition 4.1. Let 0 < p < 1. Then we have

2

(4.1) 1A e = 19D 3 i+ flaen v Pxr@)xa ) ¢
i k J I

where j, k., X1, X7, %1,y are same as in Theorem 1.9.

Before we give the proof of the boundedness of flag singular integrals on H%., we show several
properties of HY.

Proposition 4.2. Sp(R"™ x R™) is dense in HF.

Proof: Suppose f € HL., and set W = {(j, k,I,J) : |j| < L, |k| < M,IxJ C B(0,r)}, where I, J
are dyadic cubes in R", R™ with side length 277N 2=k=N 4 9=i=N_regpectively, and B(0,7)
are balls in R"™™ centered at the origin with radius r. It is easy to see that

Z |I||J|Jj,k($7y7:€17yJ)wj,k'*f(xf7yj)

(J7k7I7J)€W

is a test function in Sp(R™ x R™) for any fixed L, M,r. To show the proposition, it suffices to
prove

Z |I||J|77f5j,k<m7yaxl7yJ)¢j,k}*f(mfuyJ)

(4.k,I,J)eWe

tends to zero in the Hf norm as L, M,r tend to infinity. This follows from (4.1) and a similar
proof as in the proof of Theorem 1.9. In fact, repeating the same proof as in theorem 1.9 yields

I > U@y, ) ie = F@nyn) | e

(4.k,1,J)eWe
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<CI Y Wy Fnyn)Pxaxa el

G,k I, J)eEWe
where the last term tends to zero as L, M, r tend to infinity whenever f € H%. Q.E.D.

As a consequence of Proposition 4.2, L?(R™™) is dense in H%(R™ x R™). Furthermore, we
have

Theorem 4.3. If f € L>(R"™™) N HL(R" x R™),0 < p <1, then f € LP(R™™™) and there is a
constant C, > 0 which is independent of the L*> norm of f such that

(4.3) 1fllp < Clifllmz.-

To show theorem 4.3, we need a discrete Calderén reproducing formula on L?(R"**™). To be
more precise, take ¢(t) € C§°(R™™) with

/ gb(l)(x,y)xo‘yﬁdwdy =0, for all o, § satisfying 0 < |a| < My, 0 < |3| < My,
R7l+m

where My is a large positive integer which will be determined later, and

> 160276, 2796)12 = 1, for all (61,6) € R™™\{(0,0)},
J
and take ¢(2) e Cg°(R™) with
/ 6@ (2)27dz = 0 for all 0 < || < My,

and 32, [0 (27%&,)2 =1 for all & € R™\{0}.

Furthermore, we may assume that ¢(!) and ¢(?) are radial functions and supported in the unit
balls of R*™™ and R™ respectively. Set again

ontan) = [ o @y =0 (ax

By taking the Fourier transform, it is easy to see the following continuous version of Calderén
reproducing formula on L?: for f € L?(R"™™),

i ok
For our purpose, we need the discrete version of the above reproducing formula.

Theorem 4.4. There exist functions &ij and an operator Tjgl such that

flay) =Y 33" 11115k (2 — 21,y — y) b * (Tn ' (£)) (21, 9.0)
ik J 1
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where functions @k(a: —x1,y—1yy) satisfy the conditions in (3.6) with oy, 31,71, N, M depending
on My, xo = x1 and yo = y;. Moreover, Ty is bounded on L?>(R™™™) and HL(R™ x R™), and
the series converges in L?(R"T™).

Remark 4.1: The difference between Theorem 4.4 and Theorem 1.8 are that our ggjk, in

Theorem 4.4 has compact support. The price we pay here is that Zéjk only satisfies the moment
condition of finite order, unlike that in Theorem 1.8 where the moment condition of infinite order
is satisfied. Moreover, the formula in Theorem 4.4 only holds on L?(R"™™) while the formula in
Theorem 1.18 holds in test function space S and its dual space (Sg)’.

Proof of Theorem 4.4: Following the proof of Theorem 1.8, we have
@1 Jan) =SS SN[ [ bl -y~ v)dude] (635 £) or.0) + RO,
ik J I g7

where I, .J, 7,k and R are the same as in Theorem 1.8.
We need the following
Lemma 4.5. Let 0 < p < 1. Then the operator R is bounded on L?*(R™™™) N HL(R™ x R™)

whenever My is chosen to be a large positive integer. Moreover, there exists a constant C' > 0
such that

IR(N)l2 < C27V||£ll2

and
RNz (roscrmy < C27 N flln (rexrm)-

Proof of Lemma 4.5: Following the proofs of Theorems 1.8 and 1.9 and using the discrete
Calderén reproducing formula for f € L2(R"*™), we have

lgr (R p

SIS DD D T @ik xRN Pxaxs ¢
i k J

I

Nf=

=11 22 > I (%k *R <¢j/,k’('7$1'a'ayJ') Sy ¥ f(xf”yJ’)>> Pxrxs
7.k, J, I 5" k" I I
p

where 7, k,%, x1, X7, %1,y are the same as in Theorem 1.9.

We claim:

(R (e Gz ) ) ()

- , 9= (NI K 9—(kAK' ) K
<C2 No~li=iIKo=lk=KIK / — dz
< (2—(]/\]’) T ’l‘ — ZIZ]/’ + ’y —h— yJ,>n+m+K (2—(k/\k/) + ’z’)m—i—K
Rm
where K < Mp, ma:z:(m_LK, #) < p, and My is chosen to be a lager integer later.
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Assuming the claim for the moment, repeating a similar proof in Lemma 3.7 and then Theorem
1.9, we obtain

|||gF(Rf)||p < CQ_NH{Z Z{Ms(z Z |¢j’,k’ * f(x[/, yJ’)|XJ’XI’)T}%}% ||p
P

j/ J/ I/

<C2 MDD DD yw x Flarya) Pxexa Y2l < C27N| Fllag (e ) -

j/ k:/ J/ ]/

It is clear that the above estimates still hold when p is replaced by 2. These imply the assertion
of Lemma 4.5.

We now prove the Claim. Again, by the proof of Theorem 1.8,
R <Jj/,k’ ('7 X1’y -y yJ’)) (.’13, y) = Rﬁ(m7 Yy—z,z, ula UI? w/){gjl’k’ ('7 L1’y -y yJ/)du’dv’dw’dz
Rm

where R (x, vy, z,u/,v",w') is similar to R¥ as given in the proof of Theorem 1.8 but, as we pointed
out in Remark 4.1, that the difference between R¥ here and R¥ given in the proof of Theorem 1.8 is
the moment conditions. However, the almost orthogonality estimate still holds if we only require
sufficiently high order of moment conditions. More precisely, if we replace the moment conditions
in (35) ”for all Oél,ﬁl,’yhag,ﬁg,’}/gn by ”for all |Oé1|7 |51|, |’}/1|, |042|, |52|, |’}/2| S M(J where MO is a
large integer, then the estimate in (3.7) still holds with L, Lo, K1, Ko depending on Mj. Thus,
the claim follows by applying the same proof as that of Theorem 1.8, and the proof of Lemma
4.5 is complete. Q. E. D.

We now return to the proof of Theorem 4.4.

Denote (T)~ ! = >"72, R, where

TN =) )1 / / k(@ — u,y — v)dudvd] (¢5k % f) (x1,9.).
ik J I %

Lemma 4.5 shows that if N is large enough, then both of T and (T)~! are bounded on
L*(R™™) N HL(R™ x R™). Hence, we can get the following reproducing formula

f(z,y) = ZZZ Z |I’|J’<gj,k(37 —Z1,Y = Ys)Pjk * (Tﬁl(f)) (xr,97)
ik J I

where ¢ (x — x7,y —yy) = ﬁ|—}| [ [oju(x —xr — (u—2z1),y — ys — (v —yy))dudv satisfies the
T T

estimate in (3.6) and the series converges in L*(R"t™).
This completes the proof of Theorem 4.4. Q.E.D.

As a consequence of Theorem 4.4, we obtain the following

Corollary 4.6. If f € L>(R"™™)N HL(R™ x R™) and 0 < p < 1, then

1z OSSN o+ (TR () (@ y0) Pxr(@)xs () D [l
i k J I
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where the constants are independent of the L? norm of f.

To see the proof of Corollary 4.6, note that if f € L?(R"™™), one can apply the Calderon
reproducing formulas in Theorem 1.8 and 4.4 and then repeat the same proof as in Theorem 1.9.
We leave the details to the reader. We now start the

Proof of Theorem 4.3: We define a square function by

9(f)(z,y) = {ZZ ZZ |bsk % (T () (1, y0) Pxr(x)xa ()}
Gk J 1

N|=

where ¢ are the same as in Theorem 4.4. By Corollary 4.6, for f € L*(R"*™) N HL.(R™ x R™)
we have,

g Lr mrtmy < ClSf g (rrxRm)

To complete the proof of Theorem 4.3, let f € L2(R"*™) N HL(R™ x R™). Set

Qi = {(z,y) € R" x R™: §(f)(x,y) > 2'}.
Denote

1 1
B ={(,k, I, J): |(IxJ)NQ| > §\I>< JI I x )N Q| < §\I>< J|},

where I,J are dyadic cubes in R", R™ with side length 277N 27F=N 4 2=/=N regpectively.
Since f € L2(R™*™), by the discrete Calderén reproducing formula in Theorem 4.4,

f@,y)
=3 330 dinle —ary — g G * (T (F)) (21,99)
i ok J I
:Z Z N[ ¢j.6(z — 21,y — yr) bk (Tx ' () (1, ),
where the series converges in L? norm, and hence it also converges almost everywhere.

We claim

I > k(@ — zry = y)din = (TN () (@r,ya)|b < C2719],
(]7k717J)€Bl
which together with the fact 0 < p <1 yields
A< I > MGl =2y = yn)din (TN () @ryn)lb

<Oy 270y

<CIEWDIE < ClAIL, .

To show the claim, note that ¢(*) and () are radial functions supported in unit balls. Hence,
if (4,k,1,J) € B; then ¢, (z — x1,y — ys) are supported in

—~

Q; = {(.’,E,y) : MS(XQi)(x>y) > r.o :
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Thus, by Holder’s inequality,

I > 1Mk —2ry — y) ik = (T () (@rya)|8

(]ak7IaJ)€Bz
<[~ Z T |6jk(x — 21,y — y)din * (TN () (@r,y0)5.
(]akaIaJ)eB’L

By the duality argument, for all g € L? with ||g|l2 < 1,

| < Z TN |Gs0(z — 21,y — y)bsn * (T (f)) (21,95), 9 > |
ok I, J)EB;

= ) TN\ 55 * g(ar, yr)in * (T () (xrys)|

(]7k7[7‘])661

vl
roj—

<C o b (TR @runl? ] S gk # glarys))

(JakaIaJ)eBz (]ak7IaJ)€Bl

Since

[N

Yo N * gler,ya)l

(]7k517‘])€61

D=

S 111 (3 (3 9) s @)

(jvkz-[vJ)EBz

IA

~ 2
(S [[ (3 () waoay) | <Clal
j7k n m
thus the claim now follows from the fact that |2;| < C|€;| and the following estimate:

C2¥ (0] > / () (@, y)dedy
@\le

> > i (TR'() (@ry)PIUT % J) N Q\Q4|
(j,k,I,J)GBi

1
>5 > Mgk (T3 () (erun)P.

(Jaka[aJ)GBz

where the fact that [(I x J) N Q\Qip1| > 21T x J| when (j,k,I,J) € B; is used in the last
inequality. This finishes the proof of Theorem 4.3. Q.E.D.

As a consequence of Theorem 4.3, we have the following

Corollary 4.7 Hi.(R" x R™) is a subspace of L!(R™ x R™).
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Proof: Given f € HL(R™ ™), by Proposition 4.2, there is a sequence {f,} such that f, €
L2(R™™) N HL(R™™) and f,, converges to f in the norm of Hi(R""™). By Theorem 4.3, f,
converges to g in L!(R™"*™) for some g € L'(R"™™). Therefore, f = g in (Sp)’. Q.E.D.

We now turn to the

Proof of Theorem 1.10: We assume that K is the kernel of T. Applying the discrete Calderén
reproducing formula in Theorem 4.4 implies that for f € L*(R"*™) N H%(R™ x R™),

OSSN g K Fla,y)Pxa(@)xs ()}l =
i k J I

OIS SIS S S S NN 16 % K 5 oo (- — w0, — yr) () X
7 k J I

j/ k/ J/ I/

_ 1
Ojr i * (T () @y y) Pxr(@)xs ()32 [lps
where the discrete Calderén reproducing formula in L?(R™™™) is used.

Note that ¢;; are dilations of bump functions, by estimates similar to the those in (2.5), one
can easily check that

@5k * K x ng’,k’(‘ —ap, —yy)(z,y)| < 21T K- lk—K|K

=N K 9— (kKK
/ ( dz,

90— (AG) T |{E — CL’]/| + |y — yJ,Dn—I—m—i—K : (2_(kAk/) + |Z|)m+K
Rm

where K depends on M given in Theorem 4.4 and M| is chosen to be large enough. Repeating
a similar proof in Theorem 1.9 together with Corollary 4.6, we obtain

ITF N < CILY D AMYS D 165w (T () oy Pxarx )} (@)} 2

j/ J/ I/
_ 1
<CII_ D D> N * (TN () (w1 ) Pxar ()xar (@)} 2|y < O | an
j/ k;/ J/ [/
where the last inequality follows from Corollary 4.6.

Since L?(R™*™) is dense in HL(R" x R™), T can extend to a bounded operator on H7,(R™ x
R™). This ends the proof of Theorem 1.10.

Proof of Theorem 1.11 We note that H% N L? is dense in H%, so we only have to show this
for f € HY. N L% Thus Theorem 1.11 follows from Theorems 4.3 and 1.10 immediately. Q.E.D.

5. Duality of Hardy spaces H} and boundedness of flag singular integrals on BMOp
space: Proofs of Theorems 1.14, 1.16 and 1.18

This section deals with the duality theory of flag Hardy spaces Ho(R™x R™) for all 0 < p < 1.
We first prove Theorem 1.14, the Plancherel-Polya inequalities for C'MO%. space.

Proof of Theorem 1.14: The idea of the proof of this theorem is, as in the proof of Theorem 1.9,
again to use the discrete Calderén reproducing formula and the almost orthogonality estimate.
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For the reader’s convenience we choose to present the proof of Theorem 1.14 in the case when
n = m = 1. However, it will be clear from the proof that its extension to general n and m is
straightforward. Moreover, to simplify notation, we denote f; = fr when R=1xJ C R? and
[I| = 279N |J| = 27N 4+ 273N are dyadic intervals respectively. Here N is the same as in
Theorem 1.8. We also denote by dist(I,1’) the distance between intervals I and I,

Sp= sup |Ygr *f(u,v)ﬁ, Tr = inf |¢gr *f(u,v)|2.
uel,veJ uel,veJ

With these notations, we can rewrite the discrete Calderén reproducing formula in (1.9) by

flay) = > |Jor(@,y)br = f(x1,.),

R=IxJ

where the sum runs over all rectangles R = I x J.

Let R =1 x J,|I'| =279 =N |J/| =279"=N £ 2=k =N 4/ 5 |/ Applying the above discrete
Calder6n reproducing formula and the estimates in Corollary 3.5 yields for all (u,v) € R,

1 I J J’
U P

YR * f(u,0)]* < C > (\I’I m)L(m |

RI=I'"xJ"j >k
s PN
('] + Ju =z )OI + o = yr])

LN
+C (it A LD D
o GG T

1N 1N
(' + [u = 2 O (I + o =y l)

(1+K) |I/||J/||¢R’ * f(xf’7yJ’)|2

e 111 6 * Flar,yr)P

where K, L are any positive integers which can be chosen by L, K > % — 1( for general n,m, K
can be chosen by K > (nV m)(% — 1)), the constant C' depends only on K, L and functions v
and ¢, here x;, and y ;. are any fixed points in I’, J’, respectively.

Adding up all the terms with multiplying |I||J| over R C 2, we obtain

(5.1) S IISr<C Y T |r(R, R)P(R, R)Trr,
RCQ RCQ R/
where 1, LT
r(R,R) = (7 A )P A )
'l || \J'| |
and
PR, R) = !
) - dist(I,I’ dist(J,J’
(1+ %)H—K(l + %)H—K
if 5/ > k', and
, 1
P(R,R) =

dist(I,1’ dist(J,J’
(1+ LR N+E (1 Sbn Iy K
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if 5 < K.

To estimate the right-hand side in the above inequality (5.1), where we first consider R’ =
I'x J || =270 =N |J| =27 =N 4 97K =N i 5 ).

Define A .
O = | ) 32T x2°J) fori, £ >0.
IxJCQ2

Let B; ¢ be a collection of dyadic rectangles R’ so that for i,¢ > 1

Biy={R =T xJ,32I'x2"7)[)Q"* #0 and 32" '’ x 2°°17") ()" = 0},

and
Bog=A{R =T xJ 3(I'x 27') Q% # 0 and 3(I' x 2°717") (" = 0} for £ > 1,
and
Bio={R =1 xJ,32T xJ)( Q" #0 and 32" 'T' x J') (|20 = 0} for i > 1,
and
Boo={R: R =T xJ 3(I'x J')[ Q%" # 0}.
We write
S IR, RY)P(R, )T = Y > > |U|J'|r(R,R)P(R,R)Tr.
RCQ R’ i>0,6>0 R'"€B,; ¢ RCQ

To estimate the right-hand side of the above equality, we first consider the case when i = ¢ = 0.
Note that when R’ € By, 3R (1Q%° # 0. For each integer h > 1, let 7, = {R' =I' x J' €
Boo, |(31" x 3J" )N Q%] > (57)|31" x 3J'|}. Let Dy = Fy\Fn-1, and Q, = Upep, R’ Finally,
assume that the right-hand side in (1.12) is finite, that is, for any open set Q C R?,

S TR < ClOlP (5.2)
R=IxJCQ

Since By = Uh21 Dy, and for each R’ € By, P(R,R') <1, thus,

S S Ir(R, R)P(R, R ) T

R'€By.o RCQ

<Y Y > I (R, R) T
h>1

R'CQy;, RCQ
For each h > 1 and R’ C Q, we decompose {R : R C Q} into
Ago(R) ={RCQ: dist(I,I") < |I| Vv |I'], dist(J,J") < |J|V [J'] };

Aio(R)={RCQ: 2" 71| v |I'|) < dist(I, ") < 2V (|I| v |I']), dist(J, J") < |J| v |J']};
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Ao (R = {RCQ: dist(I,I') < |I| v |I'|, 27 (|J| v |J']) < dist(J, ") < 2°(|T| v [T}
A p(R)y={RCQ: 27| v |I'|) < dist(I,1') < 27 (1| v |I')),
2/ =L v | J')) < dist(J, J") < 2°(|T] Vv [T},
where 7/, ¢ > 1.

Now we split 53 5> 2 |I'||J'|r(R, R")P(R, R)Tx into
h>1R/'CQp RCQ

DI VEED DD JEED DD DD VRN DS [

h>1R'€Qn NREAgo(R') #>1REAy o(R') U'>1REA, y(R') i/ 0'>1REA, (R’

XT(R, R/)P(R, RI)TR/ =: Il + IQ - Ig =+ I4.

To estimate the term I, we only need to estimate >  r(R,R) since P(R,R') <1in
REA0,0(R/)
this case.

Note that R € Ag,o(R’) implies 3R(3R' # (). For such R, there are four cases:

Case 1: |I'| > |I|, |J'| < |J|; Case 2: |I'| < ||, |J'| > |J|; Case 3: |I'| > |I|, |J'| > |J]; Case
4 (I < (I, [T < [J].

In each case, we can show ) p, (R, R') < C2~ "L by using a simple geometric argument,
similar to that of Chang-R. Fefferman [CF3]. This, together with (5.1), implies that [; is bounded
by

Zz—hL|Qh|%—l < C’Zh —lg—h(L—2+1) |Qo o|p 1< C’|Q|*_1
h>1 h>1

since |Q| < Ch2"Q%0] and |Q%0] < CQ)|.

Thus it remains to estimate the term I4, since estimates of Iy and I3 can be derived using the
same techniques as in I; and I4. This term is more complicated to estimate than term I;.

For each #/,¢/ > 1, when R € Ay ¢ (R'), we have P(R, R') < 277 (1+K)9=t'(1+K) " Gimilar to
estimating term Iy, we only need to estimate the sum . o, (R, R'). Note that R € Ay ¢ (R')
implies that 3(2¢T x 2¢°.J) N 3(21'I" x 2¢'J") # (. We also split into four cases in estimating this
sum.

Case 1: |20T'| > [27'1|, |2¢ J'| < |2¢ J|. Then

21]

mw(?’f’ x 28I < 1327 T x 28 J') N 3(2°T x 2¢' )]

< 272" 3R N Q00| < ¢27 2" — T I3R/| < C’2h 13271 x 2°.0")).
Thus |27 I'| = 2/=1+712 ]| for some n > 0. For each fixed n, the number of such 2! I’s must be
< 2".5. As for |2 J| = 27(2¢ J'| for some m > 0, for each fixed m, 3-2¢JN3-2¢J # () implies

that the number of such 2¢ J' is less than 5. Thus

L
1
Y r(rRR)< > <W) om . 5% < 027

Recasel m,n>0
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Similarly, we can handle

Case 2: 20T < [2¢1|, |24 0] > |2¢ J|,
Case 3: 20T > [27'1|, |24 J'| > |2¢ J| and
Case 4: |20 1| < [271|, |2¢ J'| < |2¢ J|.

Combining the four cases, we have » 4 (R r(R,R') < C27"F, which, together with the
estimate of P(R, R’), implies that

I4 S CZ Z Z 2_hL2_i/(1+K)2_£/(1+K)|I/||J/|TR/.
h>140'>1 R'CQy,

Hence 1, is bounded by

D2 T S Y h T2 TN <l

h>1 h>1

since |Q| < Ch2"Q0%0| and |Q°°

< C9.
Combining Iy, I, I3 and 14, we have

1

> > ||IJr(R,R)P(R,R)Tp < Csup
e R'€Bo.o RCQ a

> T | Tr

Q[ R'CQ

Now we consider

>N Y I IN(R.R)P(R,R)Tg.
i4>1 R'€B; s RCQ
Note that for R’ € B; 4, 3(2'1" x 2°J") N Q5L £ (. Let
N4 7 A 1 7
Fpt={R € By, :32'T x 27 ) n QY| > 132 I' x 280},

il il il
Dy =F " \F,

6,0
o= | R
reD;*

and

. Since B; g = Jy,», Di*, we first estimate

S° SN IR, R)P(R, R T

il RC
ReD)* REQ

for some i, ¢, h > 1.

Note that for each R’ € DZ’E, 320 x 28y N QL= = ). So for any R C €2, we have
20(|1) v |[I'|) < dist(I,I') and 2°(]J| v |J']) < dist(J,J’). We decompose {R: R C Q} by

App(RY={RcCQ: 2"~ 2(|I| v |I'|) < dist(Z,I') <27 - 2°(|1| v |I']),
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2= l(|J| v |J]) < dist(J,J') < 2¢ - 24(|J| v [T},

where ¢/, ¢ > 1. Then we write

> Y IR R PR =Y Y > IR R)P(R R )T

R’G'D;‘l’e RCQ i 0 >1 R’E'DZ’Z ReA;r (R

Since P(R, R') < 27/(1+K)9—t(1+K)o—i'(1+K)9—t'(1+K) for R' € B;, and R € Ay o (R'), re-
peating the same proof with By o replaced by B; , and a necessary modification yields

ST IR R)P(R, R Ty < O iHK)g g0 1) gt (14K
R’eDif ReA; o (R)

25—121'(%—1)£§—12£(§—1)h%—12—h(L—%+1)

Sup — > || Ta.
R’CQ
Adding over all 4,¢,i’,¢',h > 1, we have
e > >0 D I Ir(R, R)P(R, R)Tg < 0sup — > || |Tw-
| | 14>1 R'€B;  RCQ R’CQ

Similar estimates hold for

> Y D IR, R)P(R, R) T

i>1 R'€B; 0 RCQ

and

S SR R)P(R, R T,

¢>1 R'€Bg,y RCQ

which, after adding over all ¢,/ > 0, shows Theorem 1.21. We leave the details to the reader.
Q.E.D.

As a consequence of Theorem 1.14, it is easy to see that the space CMOY, is well defined.
Particularly, we have

Corollary 5.1. We have

1

SN g flenyn) P

Hf”CMog ~ sup -
Q L QF T T % rxuca

where I,J are dyadic cubes in R™, R™ with length 2=7=N 273=N L 2=k=N_and x;,y; are any

fixed points in I, J, respectively.

Before we prove Theorem 1.16, we remark again that Theorem 1.16 with p = 1 in the one-
parameter setting was proved in [FJ] on R™ by use of the distribution inequalities. This method
is difficult to apply to multi-parameter case. We will give a simpler and more constructive proof
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which also gives a new proof of the result in [FJ]. Moreover, this constructive proof works also
for other multi-parameter cases.

Proof of Theorem 1.16: We first prove ¢? C (sP)*. Applying the proof in Theorem 4.4, set
2,y) =) s P HI 1 xar(2)x ()} 2
IxJ

and ‘
Q; ={(x,y) € R"" x R™ : s(x,y) > 2'}.

Denote

1 1
By ={(Ix J): [(Ix )Nl > 51T x T, % J) N Q] < 51T 1),

where I, J are dyadic cubes in R”, R™, with side length 277~ and 277~ 427%=N regpectively.
Suppose t = {t;x s} € c? and write

|ZSI><JEI><J||

IxJ
=Y > siatixl
1 (IxJ)eB;
<{Z{ Z |srxal?}2{ Z trws|2}5 )
i (IxJ)eB; (Ix.J)EB;
(5.2) <COltller > IUEL ST srnaP}E}e
i (Ix.J)EB;

since if I x J € B;, then
N 1.
IxJ Qi ={(z,y) : Ms(xa:)(z,y) > 5} €] < O],

and {t;xs} € c? yields

1_1
{7 It} <Ot |72

(IXJ)EBi

The same proof as in the claim of Theorem 4.4 implies

> sl < 0270y
(IXJ)GBi

Substituting the above term back to the last term in (5.2) gives ¢? C (sP)*.

The proof of the converse is simple and is similar to one given in [FJ] for p = 1 in the

one-parameter setting on R". If £ € (sP)*, then it is clear that £(s) = > s;x trxs for some
IxJ

t = {trxs}. Now fix an open set 2 C R™ x R™ and let S be the sequence space of all s = {s;x s}

such that I x J C €. Finally, let u be a measure on S so that the y—measure of the “point” I x J

is —5—. Then,
IQl

1
|Q|2—1 Z trs|?}? = tr<.llez(s,au)
P IxJCO
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= sup E Srxgtrxy|
sl <1 IQI"1
£2(8,dp) = IXJCQ

1
< ey sup lsixg—z— llse-
sl g2 s.q,0) <1 e
By Holder’s inequality,
1
Isrs—z—ls»
Yk
2 -1 z i
,_1{ > Isna P x T (2)x (y)) 2 dedy )} »
|Q| IXJCQ

/ S st % I (@) dody)

al2—1
|Q|p IxJCQ

=||s ||€2(S,d,u) <1,

which shows ||t[|cr < [[2]|(sp)«- Q.E.D.

In order to use Theorem 1.16 to show Theorem 1.17, we define a map S which takes f €
(Sr)" to the sequence of coefficients {s;x;} = {]I|%|J|%¢j7k « f(xr,y75)}, where I,J are cubes
in R", R™, with side length 277=% 273=N 4 2=k=N " and z;,y; are any fixed points in I, J,
respectively. For any sequence s = {31>< s}, we define the map T which takes s to T(s) =

ZZZZ 11|z]J|2 zpj k(z,Y)Srx.7, where % 1 are the same as in (1.9).

The following result together with Theorem 1.16 will show theorem 1.17.

Theorem 5.2:. The maps S : HY. — sP and CMO% — ¢P, and T : s» — H% and ¢ — CMOY,
are bounded, and T o S is the identity on HY. and CMOY..

Proof of Theorem 5.2: The boundedness of S on HY and CMOY, follows directly from the
Plancherel-Polya inequalities, Theorem 1.9 and Theorem 1.14. The boundedness of T  follows
from the same proofs in Theorem 1.9 and 1.14. To be precise, to see T is bounded from s? to
HY., let s = {srx}. Then, by Proposition 4.1,

1Tz < CI DD D Iy + T(s) (@, 9)Pxa (@) (1)} 2 -
gk J I

By adapting a similar the proof in Theorem 1.9, we have for some 0 < r < p

|50 % T(s) (@, y)xr () x s (v)
:|ZZZZ || 3y % o g (o) (@ )51 | 72T |72 (2) X ()
iR

J I

<0 3 27l KR IR AL (ST s 1] HT | g )3 (2, 9)xr(2) v (3)

k/gj/ J/ I/

Y ’ _ _ r 2
+ Y 27T IR RN N s pe e (11T g )3 ()X ()X (1)

k'>j' N
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Repeating the proof in Theorem 1.9 gives the boundedness of T" from s? to H%. The similar proof
given in the proof of Theorem 1.14 applies to the boundedness of T from ¢ to CMO%.. We leave
the details to the reader. The discrete Calderén reproducing formula, Theorem 1.8, and Theorem
1.14 show that T o S is the identity on HY. and CMO%..

We are now ready to give the

Proof of Theorem 1.17: If f € Sp and g € CMOY,, then the discrete Calderén reproducing
formula, Theorem 1.16 and Theorem 5.2 imply

gl =1 < f,9>1=

| R * f@nyn)br(9) @y < Cllf g llglleaon.
R=IxJ

Because Sp is dense in H7,, this shows that the map ¢, =< f, g >, defined initially for f € Sp
can be extended to a continuous linear functional on Hf. and |4y < Cllgllcaron -

Conversely, let £ € (H%)* and set ¢; = £ o T, where T is defined as in Theorem 5.2. Then,
by theorem 5.2, ¢; € (sP)*, so by Theorem 1.16, there exists t = {t;xs} such that ¢;(s) =

S sixgtrxg for all s = {srxs} and ||t =~ ||€1]| < C||4]] because T is bounded. Again, by
IxJ

Theorem 1.16, £ = o T oS = {1 0 S. Hence, with f € Sp and g = > t;xs¥r(r — x5,y — ys),
IxJ
where, without loss the generality, we may assume 1 is a radial function,

Uf)=a(S(f) =< S(f)t>=<fg>,
This proves ¢ = {4 and, by Theorem 1.16, ||g|lcaroz < Cllt|lce < C|[g]]. Q.E.D.

Proof of Theorem 1.18 As mentioned in section 4, since H is a subspace of L', by the
duality of HL and BMOp, and the boundedness of flag singular integrals on H}, one concludes
that L* is a subspace of BMOp, and flag singular integrals are bounded on BMOp and from
L°° to BMOpg. This shows Theorem 1.18. Q.E.D.

6. Calderén-Zygmund decomposition and interpolation on flag Hardy spaces H7.(R" x
R™): Proofs of Theorems 1.19 and 1.20

The main purpose of this section is to derive a Calderén-Zygmund decomposition using func-
tions in flag Hardy spaces. Furthermore, we will prove an interpolation theorem on H7.(R™ x R™).

We first recall that Chang and R. Fefferman established the following Calderén-Zygmund
decomposition on the pure product domains Ri X R%r ([CF2]).

Calderén-Zygmund Lemma: Let o > 0 be given and f € LP(R?), 1 < p < 2. Then
we may write f = g + b where g € L*(R?) and b € H'(R3 x R%) with [|g[|3 < o*7P||f|[5 and
|]b|]H1(Rgerz+) < Ca'~P||f|[5, where ¢ is an absolute constant.

We now prove the Calderén-Zygmund decomposition in the setting of flag Hardy spaces,
namely we give the
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Proof of Theorem 1.19 We first assume f € L*(R""™) N HL.(R™ x R™). Let a > 0 and
Q= {(z,y) € R" x R™ : S(f)(x,y) > a2}, where, as in Corollary 4.6,

S @y) =4 DD 1o (T () (1.9 Pxr(@)x (y)

g,k I,J

It has been shown in Corollary 4.6 that f € L?(R™*™) N Hp.(R™ x R™) then || f|| gz = [[S(f)ll,-

In the following we take R = I x J as all dyadic rectangles in R" x R™ with |I| = 277,
|J| =279=N 4 27%=N where j, k are integers and N is large enough.

Let
1
Ro = {R: I x J, such that |[RN Q| < §|R]}

and for ¢ > 1
1 1
Re= {R: I x J, such that [RNQp_q1| > 5|R| but |[RN Q| < §|R|}.

By the discrete Calderén reproducing formula in Theorem 4.4,

fle,y) = 111Gk (x — 1,y — y2)bie = (T (f)) (@1, 9.)

Gk I,J

=3 > Wbkl — wry — y)be * (Tx'(f)) (21,9.0)
>1IxJER,

+ > 11T\ (x — 21,y — ys) b * (T () (@1,97)
IXJER

=b(z,y) +g(z,y)

When p; > 1, using duality argument, it is easy to show

||9||p1§0||{ > 1 (Tn'() (95[>?JJ)|2XIXJ} [lp -

R=IxJ€eRo

Next, we estimate ||g|| gy when 0 < p; < 1. Clearly, the duality argument will not work here.

Nevertheless, we can estimate the HZ' norm directly by using the discrete Calderén reproducing
formula in Theorem 1.8. To this end, we note that

lgllzze <114 D0 D 1 Wi+ 9) (@rr, ) Pxe (@)xr (9) ¢ llzes

jl,k/ I/’J/

Since

(Wi % 9) (wryr) = Y ||| <¢j'k/ * cggk> (zr — a9 —ys) bk * (T () (@1, 9.)

IxJERo
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Repeating the same proof of Theorem 1.9, we have

1D > 1@y 9) (s ya) Pxr (@)X (y) o e

/ k/ I/ Jl

< { Z b * (T () (l“l,yJ)’ZXIXJ} ||y -

R=IxXJERo

This shows that for all 0 < p; < oo

N

IIQIIHgléC’H{ > |¢jk*(Tzvl(f))(wf,yJ)IZXIXJ} [lp -

R=IXJERy
Claim 1:

-

/ Spl(f)(x,y)dfvdyzCH{ > bk (TN'(S) (fvz,yj)\szxJ} I, -
S(f)(@.y)<a

R=IxJeERy

This claim implies
loll <€ [ 57 (1) . ) ddy
S(f)(zy)<a

<Car v / (), y)dwdy
S(f)(z,y)<La

<Capl p||f|| RnXRm)

To show Claim 1, we denote R =1 x J € Ry. We choose 0 < ¢ < p; and note that

/ 1 (f) (2, y)dady
S(f)(z,y)<a

P1
2

- /S(f)(x’y)sa Z Z b * (TN () (1, v0) X1 (2)xs () dzdy

gk I,J

/{Z’%k* N ))(ﬂfl,yJ)PXIXJ} dzdy

ReR

/Rn Rm{ Z |jx * (T )) (JUI’?JJ)PXRng(Z',y)} dxdy

ReRo

[SIIS)
2|3

™

>C { Z (MS (|¢Jk * (Tlgl(f» (xfayJ)|qXRﬁQg) (x,y)) } dxdy
R™"x R™ RER,

/Ranm{ Z |¢Jk* N )) (-@IayJ)FXR(:L',y)} dzdy

ReERo



DISCRETE LITTLEWOOD-PALEY-STEIN MULTI-PARAMETER ANALYSIS 47

where in the last inequality we have used the fact that [Q§ N (I x J)| > 3|I x J| for I x J € Ry,
and thus

xr(,y) <25 My(xrnag)® (2, y)

and in the second to the last inequality we have used the vector-valued Fefferman-Stein inequality
for strong maximal functions

1 1
| (Z(Ms(fk))’“) lp < CI (Zlka) [l
k=1 k=1

with the exponents r =2/¢ > 1 and p = p;/q > 1. Thus the claim follows.

We now recall 0, = {(z,y) € R® x R™ : M(xq,) > 5}

Claim 2: For py, <1,

1> I = 2y —yn)dsm * (TxH (D) @yl < CQa) (0],
IXJER,

Claim 2 implies

12, < 320y 0,

>1
<Y @lay|0, 4| < C / 72 (f) (s y)dady
=1 S(N)(@.y)>a

<car s [ (e pady < Com I
S(F)(zy)>a !

To show Claim 2, again we have

I Z ||| pjn(x — 21,y — ys)djn * (TN (f)) (xbyJ)H?;?

IXJER,
2y 2
<CHSD D D I (%"k' * ¢jk> (xr —xr, 950 — ys)om * (T (f)) (21,9.0) || v
ik 10 | IXJER,

SCH { Z |¢jk * (Tﬁl(f)) (xfayJ)|2XIXJ} ||P2

R=IXxJ€ER,

where we can use a similar argument in the proof of Theorem 1.19 to prove the last inequality.
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However,

p2

- /~ ZZ | O * (T§1(f)) ($I7yj)|2X1(I)XJ(y) dzxdy

N

:/Ranm DD 165w (TR @19 PX rxnnynap(@:9) ¢ dady

g,k I,J

v

P2

2

/ { Z |¢jk*(Tﬁl(f))(xlayJ)FX(IXJ)mQZ1\@)(%9)} dzdy

R"XR™ | 1x jeR,
P2

Z/R"me{ Z b * (T (f)) (WWJ)FXI(@XJ(?J)} dxdy

IXJER,

In the above string of inequalities, we have used the fact that for R € Ry, we have
1 1
RN Qpq] > §|R| and [RN Q| < §|R|

and consequently R C ﬁg_l. Therefore |[RN (ﬁg_l\ﬂm > %\R\ Thus the same argument applies
here to conclude the last inequality above. Finally, since L?(R™™™) is dense in HL(R" x R™),
Theorem 6.1 is proved. Q.E.D.

We are now ready to prove the interpolation theorem on Hardy spaces H% for all 0 < p < oo.
Proof of Theorem 1.20: Suppose that T is bounded from H?? to LP? and from HY' to LP!.
For any given A\ > 0 and f € H%., by the Calderén-Zygmund decomposition,

f(z,y) = g(z,y) + b(z,y)

with
19117 < CN P f |y and (Bl e < CXP 7P| f[[p -

P2
HF

Moreover, we have proved the estimates

g7, < C / S(f)P (2, y)dady
F S(f)(z,y)<a

and

B[ < C S(f)P2(x,y)dxdy

pzp
2
Ar S(f) () >a
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which implies that
ITFI1E =p / P {(z,9) : [T (2, )| > M} |da
0

< [ { s Toen) > 5 s |

< / ! / S(f)P* (2, y)dedyde + p / o / S(f)P* (2, y)dadyda
0 S(f)(zy)<a 0 S(f)(z,y)>a

<C|I11lt

oo

@ {(e.9): [T )] > 5 | ldo

Thus,
T fllp < Cllf e

for any ps < p < p1. Hence, T is bounded from H. to LP.

To prove the second assertion that T" is bounded on H. for p, < p < p1, for any given A > 0
and f € HY, by the Calderén-Zygmund decomposition again

{(@,9) : |9(TF)(,y)| > a}|
<{ @ l9To) @) > 51+ 1 { @y lo@) @yl > 5}

<Ca|[Tg|[Ph, + Co P || T2,
F F
<Ca P lg|[%ys + CaP? B2
<ca | S wvy)dady + Ca > S (@, y)dady
S(f)(zy)<a S(f)(z,y)>a

which, as above, shows that ||T'f|[g» < C||g(TF)||, < C||f||gz for any po <p <pi. Q.E.D.
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