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On a relative Alexandrov-Fenchel inequality
for convex bodies in Euclidean spaces
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Abstract. In this note we prove a localized form of Alexandrov-Fenchel inequality for convex
bodies, i.e. we prove a class of isoperimetric inequalities in a ball involving Federer curvature
measures.
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1 Introduction

In the Euclidean space IR” the (global) isoperimetric inequality states that, for any
bounded open set E = R” with (say) Lipschitz boundary 0E, we have

. 1
n ETr < —
nwy

#"V(OE),

where |E| is the Lebesgue measure of E, #"~! is the (n — 1)-dimensional Hausdorff
measure, and w, is the Lebesgue measure of the unit ball in IR”. Notice that the
constant (nw,i/ ")~ appearing in (1) is sharp. We remark here that the isoperimetric
inequality (1.1) with the best constant is equivalent to the L' to L"/(*~1) Sobolev in-
equality for compactly supported functions in R” with the same best constant (see [6],
[4], [9]). We also refer the reader to [2] and [12] for proofs of such equivalence.

On the other hand, the relative isoperimetric inequality provides a much richer
information: if E is as above and U = U(xy,r) is any open Euclidean ball in R” of
radius r > 0 centred at the point xy, then

2)  min{|En U|,|JU\E}" V" < ¢, #" (U n 0E),
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for a suitable dimensional constant ¢, > 0. Inequality (2) is stronger than inequality
(1) in the sense that (2) is a localized version of (1) and implies (1) with (na),l,/ "t
replaced by ¢, by taking the ball U sufficiently large. Moreover, the inequality (2) is
equivalent to the Poincaré inequality on balls for functions not necessarily compactly
supported (see also [2] and [12]), whereas inequality (1) is basically equivalent to So-
bolev inequality for compactly supported functions as we pointed out earlier. At this
point, it might be somehow surprising to see that we can derive (2) from (1), since (2)
contains more geometric information than (1). Nevertheless, we shall see that this is
possible since we know the sharp constant (nco,l/ ")~"in (1). Thus, the geometry of the
Euclidean space, which provides the information we need to prove (2), is somehow
hidden in this constant.

Let us make our previous argument more precise, by deriving (2) from (1). Indeed,
the following result is a simpler version of the more general theorem proved in this
paper. The argument given here is of independent interest. We thus state this theorem
separately.

Theorem 1. The global isoperimetric inequality (1) implies (2). Namely, let E = R" be a
bounded open set with Lipschitz boundary OE, and let U be a ball. Then the following
relative isoperimetric inequality holds.

21+1/n

min{|U\E|" V" |[U~AE" V" < — =
noy (217 — 1)

AN U nOE).

Proof of Theorem I. The proof is divided into several steps.

Step 1.1. Let E be a Lipschitz domain in R”, and let U = U(xy,r) be an Euclidean
ball. Since 0(U NE) = (0UNE) v (0E n U), we have

|UNE|
r

(3) A" NWOUNE) <n +#"Y(U N OE).

Indeed, by Divergence Theorem we get

n|UmE\:J <xxo,)C
oU(xo,r)nE

where v is the outward normal to 0E. Then (3) follows since |x — xo| < rin U N JE.

— X0

> dxm + J (x = x0,v>dA" 1,
UNJE

Step 1.2. Let E and U be as above. Then

wlUnE] 24" (U OE)
o, < .

1/n
r nco,,/

4 |U~E"D

Indeed, from the global isoperimetric inequality (1) it follows that
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iy 1
() WwaE" s —
nwnp

(#"NOU NE) + #" (U N OE)).

Inserting then (3) in (5) we get (4).
Step 1.3. Let E and U be as above, and let 0 < A < 1. Assume |U n E| < 2|U|. Then

T > (1 - YU nE/Ym

Note that (6) is equivalent to

1

ll/n|UﬁE‘_l/” = T
w,'r

which follows directly from |U n E| < A|U| and the fact that |U| = w,r".

Step 1.4. Let E and U be as above. Then the following relative isoperimetric inequality
holds.

2l+l/n

() min{O\EE 0 g Ay < 2
nwy/" (21 — 1)

#" (U nOE).

Without loss of generality, we may assume that |U n E| < 1|U|. Namely, we take
4 =1. Then by Step 1.3

i 1 |UnE .
® (UaEe o LUNEL S g g
Q)n/n r

where « = 1 — 271/, Then, combining this with Step 1.2, the proof of Step 1.4 will be
achieved. O

In the present paper we want to apply the same idea in order to localize a class of
(generalized) isoperimetric inequalities for convex sets that are known in the litera-
ture as isoperimetric inequalities for quermassintegrals (see, e.g., [10] and [1]). In their
simplest form, these inequalities state that suitable powers of the volume of a smooth
compact convex set £ can be bounded (up to a dimensional constant) by the integral
over 0E of the elementary symmetric functions of the principal curvatures of the
boundary itself. This result can be extended to nonsmooth convex sets (yielding
Alexandrov-Fenchel’s inequalities) by means of the so called curvature measures in-
troduced by Federer [3]. We refer to [1], [8] and [7] for an exhaustive introduction to
the subject.

For the convenience of comparing our main result with the known classical theo-
rem, we now recall briefly the Alexandrov-Fenchel inequality. For more detailed in-
formation, we refer the reader to Section 2.
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From now on, we denote by U = U(x, r) the Euclidean open balls in IR”, whereas
B = B(x,r) will denote a closed ball.

If E is a convex body (i.e. a non-empty compact convex set), we denote by
®,,(E,-),m=0,...,n, Federer’s curvature measures associated with E using Steiner’s
formula (see Definition 2.1 in Section 2 for details). The Alexandrov-Fenchel iso-
perimetric inequality for convex bodies (see, e.g. [1], Chapter IV, 20.2, formula (20))
states: let 0 <m </ < n and E be a convex body, then

0 o (E,R") \"! _ _ Ou(ER")
( ) <®](B(O,1),IR”)> N (Dm(B(Ovl)len)'

Equivalently, if we let V;(E) (i =0,...,n) be the cross sectional measures (see [1]),
then the Alexandrov-Fenchel inequality also states that

() vt

Wy Wy

As we pointed out earlier, the goal of this paper is to localize inequality (9), roughly
speaking by estimating the Lebesgue measure |U n E| of the intersection of a ball U
with a convex body E in terms of the curvature of JE in U, namely ®,,(E, U), and
of a “singular” term. Indeed the form of the localized Alexandrov-Fenchel type iso-
perimetric inequality for m < n — 1 (see Theorem II) cannot involve only the curva-
ture of the boundary in a ball. Geometrically speaking, this is basically because the
boundary can be locally flat so that all curvatures vanish even if the volume of the set
in the ball is positive. This phenomenon clearly does not occur for the standard rel-
ative isoperimetric inequality (2). This is due to the fact that the (n — 1)-dimensional
Hausdorff measure of a portion of plane in a ball is enough to control the volume
bounded by the plane itself in the ball. Thus, our local isoperimetric inequalities for
curvature measures require new supplementary terms. These new terms involve suit-
able measures of the intersection of the boundary of the set with the boundary of the
ball (i.e. 0E n dU). They depend basically on the angle between the two surfaces at
the intersection points. From the technical point of view, this depends on the fol-
lowing fact. Suppose for the sake of simplicity that we are dealing only with smooth
sets. Then unlike in the case of the (n — 1)-dimensional Hausdorff measure, the cur-
vature measures of the boundary of the intersection is not the sum of the corre-
sponding measures of two smooth pieces. Instead, a new term appears in the sum.
Such a term is concentrated on the ‘ridge’ given by the intersection. For an explicit
form of it, see Corollary 2.1.

We now are ready to state the main result of this paper. Let ®,,(EnB,-) =
O (EnB,-)+®;(EnB,-) be the Lebesgue decomposition of ®,,(En B,-) with

m

respect to #"~1_3(E n B). Then we have

Theorem II. Let E C R" be a convex body, let U = U(x,r) be an open Euclidean
ball centred at a point x € OFE, and set B= B(x,r) = U. Then, if m=0,....,n— 1, we
have
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(10)  |En U™ < a(m,n){®,,(E, U) + @' (EnB,0En0U)},

where
1 n\!
= (1 - 271+m/n -1_m/n—1 e )
a(m,m) = L

We point out that the constant o(m, n) is not sharp in general (consider for instance
the case m = n — 1), but the result is sharp, in the sense that, if m < n — 1, we cannot
get rid of the term @, (E N B,0E n dU): see Remark 2.5.

The main idea of proving Theorem II is inspired by that used in the proof of The-
orem I. However, to adapt this idea to show a relative Alexandrov-Fenchel inequal-
ity, extra care must be taken to estimate ®,,(E n B,d(E n U)). It turns out that this
is considerably more difficult when m < n — 1.

If we replace the assumption x € 0E by the more familiar assumption |E n B| <
% |B|, it follows from our proof that a third term appears in the right-hand side of the
relative isoperimetric inequality. Such a term takes the form of a dimensional con-
stant times the negative part of

e J (= 30, v5(3)> dA" ().
UNJE

Clearly, if m = n — 1, this term can be absorbed by the term ®,,(E, U).
More precisely, we have:

Theorem III. Let E C IR" be a convex body, let U = U(x,r) be an open Euclidean ball
such that

1
EnU| < 5|Ul,

and set B= B(x,r) = U. Then, if m =0,...,n— 1, we have

|E A U™ < a(m, n){®y(E, U) + ®}

m

(EnB,0EndU)}

—y(m,n)r™" J Cy = x0,ve(¥)ydAa"(y),
UNJE

where

-1
a(m,n) = (1 — ZHm/”)IcuZ’/"lwn_m( " )
m

and

m/n—1
C()n/

y(m,n) = n(l _ 271+m/n) :
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2 Proof of the Main Result

To prove Theorem 2, a fair amount of preparation is necessary. We fix preliminarily
a few notations: in the sequel, if £ = R¥, we denote both by |E| and #*(E) the
k-dimensional Lebesgue measure of E. We begin with the following

Definition 2.1 (Federer, [3], Theorem 5.6). Let £ C R” be a convex body. Then there
exist n + 1 Radon measures @y (E,-), ..., D,(E,-) such that, if § is any Borel set, then
the following generalized Steiner formula holds:

{xeR":0p(x) <rép(x)ep} = ér"ﬂ'wn—i@i(lzyﬁ)v

where

i) 0g(x) denotes the Euclidean distance from x to E;

ii) &g(x) is the unique point of E nearest to x;

iii) oy is the j-dimensional Hausdorff measure of the unit ball in R/.

We notice that, since E is a convex body, following Federer’s definition,
reach(E) = co. In addition, ®y(E,),..., D, (E,-) are concentrated on JF, i.e. for
any Borel set

(11) O,(E,p) =D;(E,fnIE), j=0,...,n—1
and
©,(E, f) = |E 0 f|
([3], Remark 5.8).
Later on, the following remark will be used.
Remark 2.1. Let D and V" be convex bodies. Then
(12)  @,(DnV,Int(V)ndoD) = ®,,(D,Int(V)), m=0,...,n—1.
Indeed, by (11),

(13)
D, DNV, Int(V)ndD) =D, (D V,Int(V)nd(V N D)) =0,(Dn V,Int(V))

Then (12) follows from Lemma 6.6 in [3].

Remark 2.2. Since

{x e R :05(x) < r,(x) € B} = {x e R" : 0 < 3p(x) < 1, Ep(x) € B} + [E A f,
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we can write alternatively

n—1

HxeR":0 <dp(x) <rép(x)ep} = X " w, ®i(E,p).
i=0
This shows that
q)i(E7ﬁ):O'iCj(E,ﬁ)7 iZO,...,n—l,
where o; = (nwn,i)fl(’;), and hence C;(E,f) is the different normalization of the
same curvature measure used in [8] (see Section 4.2, and, e.g., formula (4.2.8)). This

remark enables us to use alternatively identities taken from [8§].

Remark 2.3. Since {x € R" : (9, g)(x) <7} = B(0, R +r), then

n n ..
|{X€ R” :5B(O,R)(x) < V}| = wnZ(l_>}’n_lRl,
i=0

so that

o, (n\ _;
®;(B(0,R),R") = R'.
mo.R. R = 2 ()
Remark 2.4. If we denote by D the closed unit ball in R", we have {xeIR":
op(x) <r}=E+rD, so that, by Steiner’s decomposition as in [1], Chapter IV,
19.3.6, we obtain the identities

1
®(E,R") = — <’:>V,-(E), i=0,....n,

where Vy(E),..., V,(E) are the so-called cross-sectional measures defined for in-
stance in [1], Chapter 1V, 19.3.1. In particular

Wp .
14 Vi(E) = ———=~®,(E,R"), i=0,...,n
( ) ( ) (I)[(D,IR”) ( ) l n
The following result (see e.g. [8], (4.2.19), and [5], Theorem 3.2 and following

Remark 3.3) provides an integral representation of ®;(E,-) when OF is sufficiently
regular.

Proposition 2.1. Suppose OE is a C*> manifold. Then, if 0 <i <n— 1 and S is a Borel
set, we have

(15)  ®(E.B) =0 J"E ﬁH,H-,I(E,x) A" (x),
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where #" " is the (n — 1)-dimensional Hausdorff measure, and, if 1 < j <n — 1,
n—1\"
(16)  Hi(E,x) = ; Si(ki(E,x),...,kn1(E, x))

is the j-th normalized elementary symmetric function of the principal curvatures
ki,...,kn_1 of OE, in x € OE i.e.

Si(ki((E,x),...,kn1(E,x)) = > ki (E,x)---ki(E,x).

I<ij<--<ij<n-1
Moreover, we set Hy = 1. Notice that, by elementary computations, we can write also

1

(17)  @(E,f) ~ = Do

J Sp_ic1(ki(E,X), ... k1 (E,x))dA#A" " (x).
JENf

The previous result has been improved by Hug in [5]. Indeed, it is possible to gen-
eralize the notion of principal curvatures for sets of positive reach, as it is done by
Zidhle in [11], in such a way that when the set is smooth then generalized and classical
notions coincide. By Lebesgue decomposition theorem, if K is a convex body, then
for every i =0,...,n — 1 there exist two measures, the absolutely continuous part
(with respect to #"~'_0K) and the singular part, denoted respectively by ®*(K, -)
and ®7(K, ), such that

(Di(Kv ) = (Dia(K’ ) + (I)IS(K7 ')7

O}K,-) <« #" 0K, ®}(K,-) L ®F(K,-). Thus Hug, [5] Theorem 3.2, proved that
the absolute continuous part of ®,,(K,-) can be written in the form

(K, B) :Uz’J H,_i-1(K,x) da"!
0Knp

for every Borel set f of R", where H,_;_1(K,x) is defined as in (16), the principal
curvatures k;(K,-),i = 1,...,n — 1, being replaced by suitable generalized curvatures.
The singular part @} (K, -) of ®;(K,-) is represented for any Borel set f§ by

O(K, f) = o Jmm 2 COH, i1 (K, (x, 1) dA™ (x, ),

where we refer to [5] for the definition of H,_;_ (K, (x,u)), and 4"%(K).

Moreover Hug proved Remark 3.3 in [5] that @} (K, f) is concentrated on the set
of normal boundary points of K, denoted by .#(K). We refer to [8], Section 2.5,
for the notion of normal point; here we restrict ourselves to stress the fact that
A"V (OK\.4(K)) =0, and that .#(K) coincides with the set of points where the
local representing function of dK is twice differentiable.
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It is well known that, if u, v are Lipschitz continuous functions, u =v on E,
then Vu = Vv a.e. on E. The following lemma is in a sense the second-order coun-
terpart for convex bodies of this result. We provide a full proof since we do not know
whether it is stated explicitly in the literature.

Lemma 2.1. Let E be a convex body and B = B(xy,R) a closed ball of radius R.
Then

®*(E N B,0E N 0B) = ®(B,0E0B), i=1,...,n.

Proof. To avoid cumbersome notations, we assume that B is centred at the origin.
Arguing locally, without loss of generality, we may assume that both 0E and oU
are graphs of Lipschitz functions, so that the normals ng and np exist and co-
incide #" '-a.e. on dE n0B. Thus, there exists a Borel set My < 6E n B with
#" 1 ((OE n dB)\ M) = 0 such that we have ng(x) = ng(x) = x/R for x € M. Put

Po:={Ax:A=1,xe My}

Clearly f, is a Borel set. We denote now by (E N B), := {x:Jdg~p(x) <&} the &
enlargement of £ n B. We have

18) e B, o= (14 3) @ENB ) = (14 5) Mo

Indeed, if x € 6(E n B), N f, then we can write x = Ay, with 1 > 1 and n € M. If we
prove that A =1+ %, then it follows that x € (14 £)(0(E n B) N fBy), since My =
0(E n B). Now, by convexity, and keeping into account that ng(n) = ng(y), we get
n = E¢g~p(An), and hence & = |x — &g p(X)| = |x — Eenp(An)| = |An — 5| = (A —1)R
that yields the first inclusion. The same argument applies to prove the reverse inclu-
sion. Thus (18) is proved.

By [3], the boundary of (E n B), is of class ¢"'. By (18), if x € 0(E n B), N f,,
then ngnp) (x) = x/(R+¢). But now the normal n.p) is Lipschitz continuous
and hence the curvatures of (E n B), coincide #"~!-a.e. on f3, with those of the ball
(1 4+ £)B. Thus, keeping into account that (17) still holds for (E n B), (see [3], The-
orem 5.5), we get

Spict((R+¢)7",...,(R+e)™h
(n—iw,—;

O,((EnB),,p,) = A" (O(E 0 B), 0 fy)

R n_i_lSn,jfl(Ril,...,Ril) -1
= H"(O(EnB
(ry) e ((E B), 0 fo)

(R \'S_ i (RY.RTY [ R\
_<R+6) (n—iw,—; AT (Mo) = R+e¢ (B, Mo)-
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Take now s > 0; by generalized Steiner formula, we get

(19) HxeR":6np) (X) < 5,¢(Enn),(X) € By}l

n X n X R —i
S 0, (A B), ) = 3" () (B, My).
i=0 i=0 R+e¢

On the other hand, by [3], Corollary 4.9,
{xeR":6gnp) (X) < s} ={xeR":6pnp)(x) <s5+e}.

Moreover &g p) (¥) € By if and only if g p(x) € Mo.

Indeed, by [3], Corollary 4.9, for every x € R" {gp(¢(gnp), (X)) = Epnp(X), so that
we have but to prove that & 3(f,) = Mp.

On the other hand, z e f, if and only if z= 42, 1 > 1, Ze My C 0B. Then, the
assertion follows noticing that |Z— AZ] < |y — AZ| for every ye B, that yields
Cenp(2) = 2.

Replacing in (19) and using again Steiner formula, we get

n i n i R —i
Z(S—‘rb‘) 'co,,,iCDi(EmB, M()) = ES Opi| =—— q)[(B, M()).
=0 i=0 R+e¢

Letting ¢ — 0+ it follows from the identity of the two polynomials that

®:(E N B, My) = ®:(B, M), i=0,....n.
Now, by Remark 3.3 in [5],

®YENB,0E N 0B) = ®(E n B, My) = ©;(E n B, M)

= ®;(B, My) = ®;(B,0E n 0B),
since B is smooth. Thus the proof is completed. O
The following definition is standard (see, e.g., [8], Section 2.2).
Definition 2.2. Let K be a convex body. The normal cone of K at x € IR" is the set
(20)  Nor(K,x) = {& e R"\{0} : £ is an exterior normal vector
of a supporting hyperplane to K in x} u {0}.

The following result is proved in [8], Theorem 4.2.5, keeping in mind Remark 2.2.
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Proposition 2.2. If K is a convex body, and [ is a Borel set in R", then we have

@y (K,p) = (ncon)fljf”*l I_S"l( U Nor(K, x)),
xeKnf

where S"V is the unit sphere in R, and, as usual, A" L S"! denotes the restriction
of #" " 1o S"1.

Again by [8], Theorem 4.5.5, the following identity holds.

Theorem 2.1. Le K be a convex body, and let f be a Borel set in R". If 0 < m < n, then

el OuKP =%, L( DK AT da 1)
= u;;fmna)nj s ( U Nor(Kn l'l,x)) du,_,,(IT),
’ A(n,n—m) xeKnIIng

where A(n,n — m) is the set of (n — m)-dimensional affine manifolds in R”, u,_,, is the
canonical measure on A(n,n — m) (see, e.g. [8] Section 4.5), and

Proof of Theorem II. Recall that the Alexandrov-Fenchel isoperimetric inequality for
convex bodies (see, e.g. [1], Chapter IV, 20.2, formula (20), keeping in mind (14)),
reads as follows: if F is a convex set, then for0 <m <[/ <n

o, (F, R\ @, (F,R")
(22) <<1>,(D71R")) = 9,(D,R)’

If we choose / = n and F = E n B, then
|En U™ = |F|™" < &""(®,,(D,R")) "' ®,,(E n B,R").
Setting S m/n=1 n

-1
mn — Wn Wn—m (m) > WC gEt

(23) |E('\ U|m/n < ﬂ

m,n

®,(ENB,R") =, ,®u(E nB,I(EU))
= B n{®m(E "B, EN0U) + ®,(EnB,JENU)}
=Pl Co(ENB,EnOU)+®, (ENnB,EndU) +®,(EnB,0EnU)}.

m

Notice that, recalling the result by Hug, see [5], we get
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(24) q):rl1(E N U7E N aU) = O-mJ (EnT)n(EnoD) anmfl(E @) B7 X) d%nil(x)
AENU)N(ENd

=0n J Hy o ((EN U, x)dA" ().
EndU

Now EndU = (0EnoU) v (Int(E) noU). If elnt(E) noU, then there exists
an open ball U = U(¢, p) < Int(E), and hence I(EnU)nU = dU N U, (since U N
(EnU)U(EndlU)=UnEndU=UndaU), so that

anmfl(E NU, ) = r—(n—m—l)

on Int(E) n 0U. On the other hand, the same identity holds H"~!-a.e. on dE N oU,
by Lemma 2.1, so that

(25) (D;1(EQB7EF\6U) = Om L )anmfl(Eﬂ U7 X) d%nil(x)
EnoU

1
= ( " )%"1(6U A E)y(tmm=h),
NWy—m \M

Thus, if we apply the divergence theorem in U n E to the function V(y) = y — xo,
we get (remember that (U N E) = (0U n E) U (0E n U) and that vg.p = vg #" -
ae. in OUNE=0UnO(BNE) and vgrp=vp #" 'ae in dENUcIEn
(BN E))

WU A E| = j = x0,vune () dA" ()
(UNE)

— LU E<y*xo,vU(y)>dy/n—1(y) +J <y—x0,vE(y)>dr}fn71(y)

UNJE

— A" OU AE) + j = xove(y)> dA" (3)
UnJE

nwnfm

()

by identity (25). Notice now that

r”_"’(D,";(Er\B,Er\(?U)—i-J <y—x0,vE(y)>de”_](y),
UNJE

(26) j =) A () 20

Indeed, <x¢p — y,ve(»)> <0 on JF, because xo — y € E — y, so that {xo — y,ve(y))



Relative Alexandrov-Fenchel inequalities 919

< hg_y(ve(y)), where hg_,(ve(p)) is the supporting function of E — y evaluated at
ve(y). Thus, combining the last inequalities we obtain

1
( " >|Ur\E|r"’_”.
Opem \ M

But, keeping in mind that the center of U lies on JF and hence that, by convexity,
[EnU| < ;|U|

(27) ®L(ENnB,EndU) <

m

1 1—m/n
|UﬁE‘ _ |UmE|m/n|UnE|17m/n < |UﬁE|m/n (5) |U|17m/n

< 2—1+m/n|UmE|m/n(wnrn)1—m/n — 2—l+m/nw’11—m/n|U mE|m/nrn—m’

so that
COlfm/n n

(28) ®X(EnB,EnoU) <2 ltmm®@ ( )|U AE|",
Opem \M

Replacing in (23) we obtain eventually
!

29) |EnU""< w;”/"lwnm( ) {®w(ENB,0EN )
m

+ @ (ENBENIU)} 427U A E|™",
As a consequence we get
(1 =27 E A U™™ < B,y {®u(E A B,0E A U) + ®%(E 0 B,E N 0U)}
and in particular (since @, (E N B, -) is supported in 0(E N B)), we have
|E ~ U™ < o(m, n){®p(E A B,0E A U) + ®:,(E N B,E noU)}
= o(m,n){®(ENB,0ENU)+ D, (EnB,JEnJU)},

where

-1
a(m, I’l) — (1 _ 2—1+m/n>71ﬁm L= (1 _ 2—1+m/n)lwz1/n—lwnm( n >
’ m

Recalling now (12), the above inequality can be written as

|En U™ < a(m,n){®,(E, U) + ®S,(E N B,0E N 3U)}. O
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If m =n — 1, the singular term @, (E n B, 0E n 0B) vanishes, and we reobtain the
classical relative isoperimetric inequality, since ®; (EnB,-)=0.If m <n—1, an
explicit form of the singular term can be found in [5], Theorem 3.2. Moreover, since
@ (EnB,-) <®,(EnB,-), combining Theorem II with the characterization of
curvature measures given in Theorem 2.1 and (17) we obtain the following estimate.

Corollary 2.1. Let E C IR" be a compact convex set, and let U = U(x,r) be an open
Euclidean ball centred at a point x € OE. Then, if m=0,...,n— 1, we have

En U < a(m,n>{<bm<E, v)

o ey [ oS! ( U Nor(EnBn n,x)> dﬂnm(n)}.
A(n,n—m) X€OENIUNTI

Remark 2.5. We point out that in general we can not take out one of the two terms
at the right hand side of (10). Indeed, take first m = n — 1, so that, by [8], Theorem
4.2.5, ®, (EnB,-) is proportional to the #" '_0(E nB). Then ®, |(E N B,
0U nJE) =0, and hence the left hand side is bounded only by ®,_(E, U). On
the other hand, if we take for instance n > 3 and E is a smooth set such that its
boundary JF is a portion of a 2-dimensional plane near a fixed point x, then, by (17),
D, (E,U)=0form=0,...,n—2, when U = U(x,r), r sufficiently small. Thus, in
this case, the right hand side reduces to @;,(E n B, 0U N JE).

Remark 2.6. Take n > 2 and let U be any Euclidean ball centred on JE. Suppose
OF is a smooth manifold that is transversal to dU (i.e. suppose the outward normals
vy to 0U and vg to JF are linearly independent on dU n 0E), so that 0U N JF is
a smooth (n — 2)-dimensional manifold. Referring to Federer’s notations ([3]), if x €
0U n OF, then, by Theorem 4.12 in [3]

Nor(En U, x) = {Avg(x) + wvy(x), 4,1 > 0}.

Since dim Nor(E n U, x) =2, then, using again Federer’s notations (see Theorem
415 (3)in [3]) U N JE = (En U)<"72>, so that, by Remark 6.14 in [3], ®,,(E N B,
OU N OE) =0form =n,n—1,and ®, »(E N B,0U N JE) < #"*(0U n JE). Thus,
in the case n = 3, it follows from (10) and (17) that

a(2,3)

30)  |EAU*? <a(2,3)®(E,U) = S HOENT),
3

(1) |EnU|"? <a(1,3){®(E,U) + #'(0U n 0E)}
= a(1, 3){2172 FEqul(kl,kz)dﬂz + 40U n aE)},

and
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(32) 1 <a(0,3){®(E, U) + ®y(E ~U,0U N IE)}

1
_06(0,3){3603 j Sz(kl,kz)dc;fz
0ENU

+3w3}f2|_§2( U Nor(EnU,x))}.

xedUNJE
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