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Abstract. In this note we prove a localized form of Alexandrov-Fenchel inequality for convex
bodies, i.e. we prove a class of isoperimetric inequalities in a ball involving Federer curvature
measures.
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1 Introduction

In the Euclidean space Rn the (global) isoperimetric inequality states that, for any
bounded open set EHRn with (say) Lipschitz boundary qE, we have

jEjðn�1Þ=n
a

1

no
1=n
n

Hn�1ðqEÞ;ð1Þ

where jEj is the Lebesgue measure of E, Hn�1 is the ðn� 1Þ-dimensional Hausdor¤
measure, and on is the Lebesgue measure of the unit ball in Rn. Notice that the
constant ðno1=n

n Þ�1 appearing in (1) is sharp. We remark here that the isoperimetric
inequality (1.1) with the best constant is equivalent to the L1 to Ln=ðn�1Þ Sobolev in-
equality for compactly supported functions in Rn with the same best constant (see [6],
[4], [9]). We also refer the reader to [2] and [12] for proofs of such equivalence.

On the other hand, the relative isoperimetric inequality provides a much richer
information: if E is as above and U ¼ Uðx0; rÞ is any open Euclidean ball in Rn of
radius r > 0 centred at the point x0, then

minfjEXU j; jUnEjgðn�1Þ=n
a cnH

n�1ðU X qEÞ;ð2Þ
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for a suitable dimensional constant cn > 0. Inequality (2) is stronger than inequality

(1) in the sense that (2) is a localized version of (1) and implies (1) with ðno1=n
n Þ�1

replaced by cn by taking the ball U su‰ciently large. Moreover, the inequality (2) is
equivalent to the Poincaré inequality on balls for functions not necessarily compactly
supported (see also [2] and [12]), whereas inequality (1) is basically equivalent to So-
bolev inequality for compactly supported functions as we pointed out earlier. At this
point, it might be somehow surprising to see that we can derive (2) from (1), since (2)
contains more geometric information than (1). Nevertheless, we shall see that this is
possible since we know the sharp constant ðno1=n

n Þ�1 in (1). Thus, the geometry of the
Euclidean space, which provides the information we need to prove (2), is somehow
hidden in this constant.

Let us make our previous argument more precise, by deriving (2) from (1). Indeed,
the following result is a simpler version of the more general theorem proved in this
paper. The argument given here is of independent interest. We thus state this theorem
separately.

Theorem I. The global isoperimetric inequality (1) implies (2). Namely, let EHRn be a

bounded open set with Lipschitz boundary qE, and let U be a ball. Then the following

relative isoperimetric inequality holds.

minfjUnEjðn�1Þ=n; jU XEjðn�1Þ=nga 21þ1=n

no
1=n
n ð21=n � 1Þ

Hn�1ðU X qEÞ:

Proof of Theorem I. The proof is divided into several steps.

Step 1.1. Let E be a Lipschitz domain in Rn, and let U ¼ Uðx0; rÞ be an Euclidean

ball. Since qðU XEÞ ¼ ðqU XEÞW ðqEXUÞ, we have

Hn�1ðqU XEÞa n
jU XEj

r
þHn�1ðU X qEÞ:ð3Þ

Indeed, by Divergence Theorem we get

njU XEj ¼
ð
qUðx0; rÞXE

x� x0;
x� x0

r

� �
dHn�1 þ

ð
UXqE

hx� x0; ni dH
n�1;

where n is the outward normal to qE. Then (3) follows since jx� x0ja r in U X qE.

Step 1.2. Let E and U be as above. Then

jU XEjðn�1Þ=n � o�1=n
n

jU XEj
r

a
2Hn�1ðU X qEÞ

no
1=n
n

:ð4Þ

Indeed, from the global isoperimetric inequality (1) it follows that
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jU XEjðn�1Þ=n
a

1

no
1=n
n

ðHn�1ðqU XEÞ þHn�1ðU X qEÞÞ:ð5Þ

Inserting then (3) in (5) we get (4).

Step 1.3. Let E and U be as above, and let 0 < l < 1. Assume jU XEja ljU j. Then

jU XEjðn�1Þ=n � 1

o
1=n
n

jU XEj
r

b ð1 � l1=nÞjU XEjðn�1Þ=n:ð6Þ

Note that (6) is equivalent to

l1=njU XEj�1=n
b

1

o
1=n
n r

;

which follows directly from jU XEja ljU j and the fact that jU j ¼ onr
n.

Step 1.4. Let E and U be as above. Then the following relative isoperimetric inequality

holds.

minfjUnEjðn�1Þ=n; jU XEjðn�1Þ=nga 21þ1=n

no
1=n
n ð21=n � 1Þ

Hn�1ðU X qEÞ:ð7Þ

Without loss of generality, we may assume that jU XEja 1
2 jU j. Namely, we take

l ¼ 1
2 . Then by Step 1.3

jU XEjðn�1Þ=n � 1

o
1=n
n

jU XEj
r

b ajU XEjðn�1Þ=nð8Þ

where a ¼ 1 � 2�1=n. Then, combining this with Step 1.2, the proof of Step 1.4 will be
achieved. r

In the present paper we want to apply the same idea in order to localize a class of
(generalized) isoperimetric inequalities for convex sets that are known in the litera-
ture as isoperimetric inequalities for quermassintegrals (see, e.g., [10] and [1]). In their
simplest form, these inequalities state that suitable powers of the volume of a smooth
compact convex set E can be bounded (up to a dimensional constant) by the integral
over qE of the elementary symmetric functions of the principal curvatures of the
boundary itself. This result can be extended to nonsmooth convex sets (yielding
Alexandrov-Fenchel’s inequalities) by means of the so called curvature measures in-
troduced by Federer [3]. We refer to [1], [8] and [7] for an exhaustive introduction to
the subject.

For the convenience of comparing our main result with the known classical theo-
rem, we now recall briefly the Alexandrov-Fenchel inequality. For more detailed in-
formation, we refer the reader to Section 2.
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From now on, we denote by U ¼ Uðx; rÞ the Euclidean open balls in Rn, whereas
B ¼ Bðx; rÞ will denote a closed ball.

If E is a convex body (i.e. a non-empty compact convex set), we denote by
FmðE; �Þ, m ¼ 0; . . . ; n, Federer’s curvature measures associated with E using Steiner’s
formula (see Definition 2.1 in Section 2 for details). The Alexandrov-Fenchel iso-
perimetric inequality for convex bodies (see, e.g. [1], Chapter IV, 20.2, formula (20))
states: let 0ama la n and E be a convex body, then

FlðE;RnÞ
FlðBð0; 1Þ;RnÞ

� �m=l

a
FmðE;RnÞ

FmðBð0; 1Þ;RnÞ :ð9Þ

Equivalently, if we let ViðEÞ ði ¼ 0; . . . ; nÞ be the cross sectional measures (see [1]),
then the Alexandrov-Fenchel inequality also states that

VlðEÞ
on

� �m=l

a
VmðEÞ
on

:

As we pointed out earlier, the goal of this paper is to localize inequality (9), roughly
speaking by estimating the Lebesgue measure jU XEj of the intersection of a ball U
with a convex body E in terms of the curvature of qE in U , namely FmðE;UÞ, and
of a ‘‘singular’’ term. Indeed the form of the localized Alexandrov-Fenchel type iso-
perimetric inequality for m < n� 1 (see Theorem II) cannot involve only the curva-
ture of the boundary in a ball. Geometrically speaking, this is basically because the
boundary can be locally flat so that all curvatures vanish even if the volume of the set
in the ball is positive. This phenomenon clearly does not occur for the standard rel-
ative isoperimetric inequality (2). This is due to the fact that the ðn� 1Þ-dimensional
Hausdor¤ measure of a portion of plane in a ball is enough to control the volume
bounded by the plane itself in the ball. Thus, our local isoperimetric inequalities for
curvature measures require new supplementary terms. These new terms involve suit-
able measures of the intersection of the boundary of the set with the boundary of the
ball (i.e. qEX qU). They depend basically on the angle between the two surfaces at
the intersection points. From the technical point of view, this depends on the fol-
lowing fact. Suppose for the sake of simplicity that we are dealing only with smooth
sets. Then unlike in the case of the ðn� 1Þ-dimensional Hausdor¤ measure, the cur-
vature measures of the boundary of the intersection is not the sum of the corre-
sponding measures of two smooth pieces. Instead, a new term appears in the sum.
Such a term is concentrated on the ‘ridge’ given by the intersection. For an explicit
form of it, see Corollary 2.1.

We now are ready to state the main result of this paper. Let FmðEXB; �Þ ¼
Fa

mðEXB; �Þ þFs
mðEXB; �Þ be the Lebesgue decomposition of FmðEXB; �Þ with

respect to Hn�1
KqðEXBÞ. Then we have

Theorem II. Let E � Rn be a convex body, let U ¼ Uðx; rÞ be an open Euclidean

ball centred at a point x A qE, and set B ¼ Bðx; rÞ ¼ U . Then, if m ¼ 0; . . . ; n� 1, we
have
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jEXU jm=n
a aðm; nÞfFmðE;UÞ þFs

mðEXB; qEX qUÞg;ð10Þ

where

aðm; nÞ ¼ ð1 � 2�1þm=nÞ�1om=n�1
n on�m

n

m

� ��1

:

We point out that the constant aðm; nÞ is not sharp in general (consider for instance
the case m ¼ n� 1), but the result is sharp, in the sense that, if m < n� 1, we cannot
get rid of the term Fs

mðEXB; qEX qUÞ: see Remark 2.5.
The main idea of proving Theorem II is inspired by that used in the proof of The-

orem I. However, to adapt this idea to show a relative Alexandrov-Fenchel inequal-
ity, extra care must be taken to estimate FmðEXB; qðEXUÞÞ. It turns out that this
is considerably more di‰cult when m < n� 1.

If we replace the assumption x A qE by the more familiar assumption jEXBja
1
2 jBj, it follows from our proof that a third term appears in the right-hand side of the
relative isoperimetric inequality. Such a term takes the form of a dimensional con-
stant times the negative part of

rm�n

ð
UXqE

hy� x0; nEðyÞi dHn�1ðyÞ:

Clearly, if m ¼ n� 1, this term can be absorbed by the term FmðE;UÞ.
More precisely, we have:

Theorem III. Let E � Rn be a convex body, let U ¼ Uðx; rÞ be an open Euclidean ball

such that

jEXU ja 1

2
jU j;

and set B ¼ Bðx; rÞ ¼ U . Then, if m ¼ 0; . . . ; n� 1, we have

jEXU jm=n
a aðm; nÞfFmðE;UÞ þFs

mðEXB; qEX qUÞg

� gðm; nÞrm�n

ð
UXqE

hy� x0; nEðyÞi dHn�1ðyÞ;

where

aðm; nÞ ¼ ð1 � 2�1þm=nÞ�1om=n�1
n on�m

n

m

� ��1

and

gðm; nÞ ¼ o
m=n�1
n

nð1 � 2�1þm=nÞ :
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2 Proof of the Main Result

To prove Theorem 2, a fair amount of preparation is necessary. We fix preliminarily
a few notations: in the sequel, if EHRk, we denote both by jEj and LkðEÞ the
k-dimensional Lebesgue measure of E. We begin with the following

Definition 2.1 (Federer, [3], Theorem 5.6). Let E � Rn be a convex body. Then there
exist nþ 1 Radon measures F0ðE; �Þ; . . . ;FnðE; �Þ such that, if b is any Borel set, then
the following generalized Steiner formula holds:

jfx A Rn : dEðxÞa r; xEðxÞ A bgj ¼
Pn
i¼0

rn�ion�iFiðE; bÞ;

where

i) dEðxÞ denotes the Euclidean distance from x to E;

ii) xEðxÞ is the unique point of E nearest to x;

iii) oj is the j-dimensional Hausdor¤ measure of the unit ball in R j .

We notice that, since E is a convex body, following Federer’s definition,
reachðEÞ ¼ y. In addition, F0ðE; �Þ; . . . ;Fn�1ðE; �Þ are concentrated on qE, i.e. for
any Borel set b

FjðE; bÞ ¼ FjðE; bX qEÞ; j ¼ 0; . . . ; n� 1ð11Þ

and

FnðE; bÞ ¼ jEX bj

([3], Remark 5.8).

Later on, the following remark will be used.

Remark 2.1. Let D and V be convex bodies. Then

FmðDXV ; IntðVÞX qDÞ ¼ FmðD; IntðVÞÞ; m ¼ 0; . . . ; n� 1:ð12Þ

Indeed, by (11),

ð13Þ
FmðDXV ; IntðVÞX qDÞ ¼ FmðDXV ; IntðVÞX qðV XDÞÞ ¼ FmðDXV ; IntðVÞÞ

Then (12) follows from Lemma 6.6 in [3].

Remark 2.2. Since

jfx A Rn : dEðxÞa r; xEðxÞ A bgj ¼ jfx A Rn : 0 < dEðxÞa r; xEðxÞ A bgj þ jEX bj;
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we can write alternatively

jfx A Rn : 0 < dEðxÞa r; xEðxÞ A bgj ¼
Pn�1

i¼0

rn�ion�iFiðE; bÞ:

This shows that

FiðE; bÞ ¼ siCiðE; bÞ; i ¼ 0; . . . ; n� 1;

where si ¼ ðnon�iÞ�1 n
i

� �
, and hence CiðE; bÞ is the di¤erent normalization of the

same curvature measure used in [8] (see Section 4.2, and, e.g., formula (4.2.8)). This
remark enables us to use alternatively identities taken from [8].

Remark 2.3. Since fx A Rn : dBð0;RÞðxÞa rg ¼ Bð0;Rþ rÞ, then

jfx A Rn : dBð0;RÞðxÞa rgj ¼ on

Pn
i¼0

n

i

� �
rn�iRi;

so that

FiðBð0;RÞ;RnÞ ¼ on

on�i

n

i

� �
Ri:

Remark 2.4. If we denote by D the closed unit ball in Rn, we have fx A Rn :
dEðxÞa rg ¼ E þ rD, so that, by Steiner’s decomposition as in [1], Chapter IV,
19.3.6, we obtain the identities

FiðE;RnÞ ¼ 1

on�i

n

i

� �
ViðEÞ; i ¼ 0; . . . ; n;

where V0ðEÞ; . . . ;VnðEÞ are the so-called cross-sectional measures defined for in-
stance in [1], Chapter IV, 19.3.1. In particular

ViðEÞ ¼
on

FiðD;RnÞFiðE;RnÞ; i ¼ 0; . . . ; n:ð14Þ

The following result (see e.g. [8], (4.2.19), and [5], Theorem 3.2 and following
Remark 3.3) provides an integral representation of FiðE; �Þ when qE is su‰ciently
regular.

Proposition 2.1. Suppose qE is a C2 manifold. Then, if 0a ia n� 1 and b is a Borel

set, we have

FiðE; bÞ ¼ si

ð
qEXb

Hn�i�1ðE; xÞ dHn�1ðxÞ;ð15Þ

Relative Alexandrov-Fenchel inequalities 913



where Hn�1 is the ðn� 1Þ-dimensional Hausdor¤ measure, and, if 1a ja n� 1,

HjðE; xÞ ¼
n� 1

j

� ��1

Sjðk1ðE; xÞ; . . . ; kn�1ðE; xÞÞð16Þ

is the j-th normalized elementary symmetric function of the principal curvatures

k1; . . . ; kn�1 of qE, in x A qE i.e.

Sjðk1ðE; xÞ; . . . ; kn�1ðE; xÞÞ ¼
P

1ai1<���<ijan�1

ki1ðE; xÞ � � � kij ðE; xÞ:

Moreover, we set H0 1 1. Notice that, by elementary computations, we can write also

FiðE; bÞ ¼
1

ðn� iÞon�i

ð
qEXb

Sn�i�1ðk1ðE; xÞ; . . . ; kn�1ðE; xÞÞ dHn�1ðxÞ:ð17Þ

The previous result has been improved by Hug in [5]. Indeed, it is possible to gen-
eralize the notion of principal curvatures for sets of positive reach, as it is done by
Zähle in [11], in such a way that when the set is smooth then generalized and classical
notions coincide. By Lebesgue decomposition theorem, if K is a convex body, then
for every i ¼ 0; . . . ; n� 1 there exist two measures, the absolutely continuous part
(with respect to Hn�1

KqK) and the singular part, denoted respectively by Fa
i ðK ; �Þ

and Fs
i ðK ; �Þ, such that

FiðK ; �Þ ¼ Fa
i ðK ; �Þ þFs

i ðK ; �Þ;

Fa
i ðK ; �ÞfHn�1

KqK , Fa
i ðK ; �Þ ? Fs

i ðK; �Þ. Thus Hug, [5] Theorem 3.2, proved that
the absolute continuous part of FmðK ; �Þ can be written in the form

Fa
i ðK ; bÞ ¼ si

ð
qKXb

Hn�i�1ðK ; xÞ dHn�1

for every Borel set b of Rn, where Hn�i�1ðK ; xÞ is defined as in (16), the principal
curvatures kiðK ; �Þ, i ¼ 1; . . . ; n� 1; being replaced by suitable generalized curvatures.

The singular part Fs
i ðK ; �Þ of FiðK ; �Þ is represented for any Borel set b by

Fs
i ðK ; bÞ ¼ si

ð
N sðKÞ

wbðxÞHn�i�1ðK ; ðx; uÞÞ dHn�1ðx; uÞ;

where we refer to [5] for the definition of Hn�i�1ðK ; ðx; uÞÞ, and NsðKÞ.
Moreover Hug proved Remark 3.3 in [5] that Fa

i ðK ; bÞ is concentrated on the set
of normal boundary points of K , denoted by MðKÞ. We refer to [8], Section 2.5,
for the notion of normal point; here we restrict ourselves to stress the fact that
Hn�1ðqKnMðKÞÞ ¼ 0, and that MðKÞ coincides with the set of points where the
local representing function of qK is twice di¤erentiable.

F. Ferrari, B. Franchi, G. Lu914



It is well known that, if u, v are Lipschitz continuous functions, u1 v on E,
then ‘u1‘v a.e. on E. The following lemma is in a sense the second-order coun-
terpart for convex bodies of this result. We provide a full proof since we do not know
whether it is stated explicitly in the literature.

Lemma 2.1. Let E be a convex body and B ¼ Bðx0;RÞ a closed ball of radius R.

Then

Fa
i ðEXB; qEX qBÞ ¼ FiðB; qEX qBÞ; i ¼ 1; . . . ; n:

Proof. To avoid cumbersome notations, we assume that B is centred at the origin.
Arguing locally, without loss of generality, we may assume that both qE and qU
are graphs of Lipschitz functions, so that the normals nE and nB exist and co-
incide Hn�1-a.e. on qEX qB. Thus, there exists a Borel set M0 H qEX qB with
Hn�1ððqEX qBÞnM0Þ ¼ 0 such that we have nEðxÞ ¼ nBðxÞ ¼ x=R for x A M0. Put

b0 :¼ flx : lb 1; x A M0g:

Clearly b0 is a Borel set. We denote now by ðEXBÞe :¼ fx : dEXBðxÞa eg the e-
enlargement of EXB. We have

qðEXBÞe X b0 ¼ 1 þ e

R

� �
ðqðEXBÞX b0Þ ¼ 1 þ e

R

� �
M0:ð18Þ

Indeed, if x A qðEXBÞe X b0 then we can write x ¼ lh, with lb 1 and h A M0. If we
prove that l ¼ 1 þ e

R
, then it follows that x A 1 þ e

R

� �
ðqðEXBÞX b0Þ, since M0 H

qðEXBÞ. Now, by convexity, and keeping into account that nEðhÞ ¼ nBðhÞ, we get
h ¼ xEXBðlhÞ, and hence e ¼ jx� xEXBðxÞj ¼ jx� xEXBðlhÞj ¼ jlh� hj ¼ ðl� 1ÞR
that yields the first inclusion. The same argument applies to prove the reverse inclu-
sion. Thus (18) is proved.

By [3], the boundary of ðEXBÞe is of class C1;1. By (18), if x A qðEXBÞe X b0,
then nðEXBÞeðxÞ ¼ x=ðRþ eÞ. But now the normal nðEXBÞe is Lipschitz continuous
and hence the curvatures of ðEXBÞe coincide Hn�1-a.e. on b0 with those of the ball
1 þ e

R

� �
B. Thus, keeping into account that (17) still holds for ðEXBÞe (see [3], The-

orem 5.5), we get

FiððEXBÞe; b0Þ ¼
Sn�i�1ððRþ eÞ�1; . . . ; ðRþ eÞ�1Þ

ðn� iÞon�i

Hn�1ðqðEXBÞe X b0Þ

¼ R

Rþ e

� �n�i�1
Sn�i�1ðR�1; . . . ;R�1Þ

ðn� iÞon�i

Hn�1ðqðEXBÞe X b0Þ

¼ R

Rþ e

� ��i
Sn�i�1ðR�1; . . . ;R�1Þ

ðn� iÞon�i

Hn�1ðM0Þ ¼
R

Rþ e

� ��i

FiðB;M0Þ:
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Take now s > 0; by generalized Steiner formula, we get

ð19Þ jfx A Rn : dðEXBÞeðxÞa s; xðEXBÞeðxÞ A b0gj

¼
Pn
i¼0

sn�ion�iFiððEXBÞe; b0Þ ¼
Pn
i¼0

sn�ion�i

R

Rþ e

� ��i

FiðB;M0Þ:

On the other hand, by [3], Corollary 4.9,

fx A Rn : dðEXBÞeðxÞa sg ¼ fx A Rn : dðEXBÞðxÞa sþ eg:

Moreover xðEXBÞeðxÞ A b0 if and only if xEXBðxÞ A M0.

Indeed, by [3], Corollary 4.9, for every x A Rn xEXBðxðEXBÞeðxÞÞ ¼ xEXBðxÞ, so that
we have but to prove that xEXBðb0Þ ¼ M0.

On the other hand, z A b0 if and only if z ¼ lz, lb 1, z A M0 � qB. Then, the
assertion follows noticing that jz� lzja jy� lzj for every y A B, that yields
xEXBðzÞ ¼ z.

Replacing in (19) and using again Steiner formula, we get

Pn
i¼0

ðsþ eÞn�i
on�iFiðEXB;M0Þ ¼

Pn
i¼0

sn�ion�i

R

Rþ e

� ��i

FiðB;M0Þ:

Letting e ! 0þ it follows from the identity of the two polynomials that

FiðEXB;M0Þ ¼ FiðB;M0Þ; i ¼ 0; . . . ; n:

Now, by Remark 3.3 in [5],

Fa
i ðEXB; qEX qBÞ ¼ Fa

i ðEXB;M0Þ ¼ FiðEXB;M0Þ

¼ FiðB;M0Þ ¼ FiðB; qEX qBÞ;

since B is smooth. Thus the proof is completed. r

The following definition is standard (see, e.g., [8], Section 2.2).

Definition 2.2. Let K be a convex body. The normal cone of K at x A Rn is the set

ð20Þ NorðK ; xÞ ¼ fx A Rnnf0g : x is an exterior normal vector

of a supporting hyperplane to K in xgW f0g:

The following result is proved in [8], Theorem 4.2.5, keeping in mind Remark 2.2.
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Proposition 2.2. If K is a convex body, and b is a Borel set in Rn, then we have

F0ðK ; bÞ ¼ ðnonÞ�1Hn�1
KSn�1

� S
x AKXb

NorðK ; xÞ
�
;

where Sn�1 is the unit sphere in Rn, and, as usual, Hn�1
KSn�1 denotes the restriction

of Hn�1 to Sn�1.

Again by [8], Theorem 4.5.5, the following identity holds.

Theorem 2.1. Le K be a convex body, and let b be a Borel set in Rn. If 0am < n, then

ð21Þ FmðK ; bÞ ¼ a�1
n;n�m

ð
Aðn;n�mÞ

F0ðK XP; bXPÞ dmn�mðPÞ

¼ a�1
n;n�mnon

ð
Aðn;n�mÞ

Hn�1
KSn�1

� S
xAKXPXb

NorðK XP; xÞ
�
dmn�mðPÞ;

where Aðn; n�mÞ is the set of ðn�mÞ-dimensional a‰ne manifolds in Rn, mn�m is the

canonical measure on Aðn; n�mÞ (see, e.g. [8] Section 4.5), and

an;n�m :¼
G n�mþ1

2

� �
G mþ1

2

� �
G 1

2

� �
G nþ1

2

� � :

Proof of Theorem II. Recall that the Alexandrov-Fenchel isoperimetric inequality for
convex bodies (see, e.g. [1], Chapter IV, 20.2, formula (20), keeping in mind (14)),
reads as follows: if F is a convex set, then for 0am < la n

FlðF ;RnÞ
FlðD;RnÞ

� �m=l

a
FmðF ;RnÞ
FmðD;RnÞ :ð22Þ

If we choose l ¼ n and F ¼ EXB, then

jEXU jm=n ¼ jF jm=n
aom=n

n ðFmðD;RnÞÞ�1FmðEXB;RnÞ:

Setting bm;n ¼ o
m=n�1
n on�m

n
m

� ��1
, we get

ð23Þ jEXU jm=n
a bm;nFmðEXB;RnÞ ¼ bm;nFmðEXB; qðEXUÞÞ

¼ bm;nfFmðEXB;EX qUÞ þFmðEXB; qEXUÞg

¼ bm;nfFa
mðEXB;EX qUÞ þFs

mðEXB;EX qUÞ þFmðEXB; qEXUÞg:

Notice that, recalling the result by Hug, see [5], we get
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ð24Þ Fa
mðEXU ;EX qUÞ ¼ sm

ð
qðEXUÞXðEXqUÞ

Hn�m�1ðEXB; xÞ dHn�1ðxÞ

¼ sm

ð
EXqU

Hn�m�1ðEXU ; xÞ dHn�1ðxÞ:

Now EX qU ¼ ðqEX qUÞW ðIntðEÞX qUÞ. If x A IntðEÞX qU , then there exists
an open ball ~UU ¼ ~UUðx; rÞH IntðEÞ, and hence qðEXUÞX ~UU ¼ qU X ~UU , (since ~UU X
ððqEXUÞW ðEX qUÞÞ ¼ ~UU XEX qU ¼ ~UU X qU), so that

Hn�m�1ðEXU ; �Þ1 r�ðn�m�1Þ

on IntðEÞX qU . On the other hand, the same identity holds Hn�1-a.e. on qEX qU ;
by Lemma 2.1, so that

ð25Þ Fa
mðEXB;EX qUÞ ¼ sm

ð
ðEXqUÞ

Hn�m�1ðEXU ; xÞ dHn�1ðxÞ

¼ 1

non�m

n

m

� �
Hn�1ðqU XEÞr�ðn�m�1Þ:

Thus, if we apply the divergence theorem in U XE to the function VðyÞ ¼ y� x0,
we get (remember that qðU XEÞ ¼ ðqU XEÞW ðqEXUÞ and that nEXB ¼ nB Hn�1-
a.e. in qU XE ¼ qU X qðBXEÞ and nEXB ¼ nE Hn�1-a.e. in qEXU H qEX
qðBXEÞ)

njU XEj ¼
ð
qðUXEÞ

hy� x0; nUXEðyÞi dHn�1ðyÞ

¼
ð
qUXE

hy� x0; nUðyÞi dHn�1ðyÞ þ
ð
UXqE

hy� x0; nEðyÞi dHn�1ðyÞ

¼ rHn�1ðqU XEÞ þ
ð
UXqE

hy� x0; nEðyÞi dHn�1ðyÞ

¼ non�m

n
m

� � rn�mFa
mðEXB;EX qUÞ þ

ð
UXqE

hy� x0; nEðyÞi dHn�1ðyÞ;

by identity (25). Notice now that

ð
UXqE

hy� x0; nEðyÞi dHn�1ðyÞb 0:ð26Þ

Indeed, hx0 � y; nEðyÞia 0 on qE, because x0 � y A E � y, so that hx0 � y; nEðyÞi
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a hE�yðnEðyÞÞ, where hE�yðnEðyÞÞ is the supporting function of E � y evaluated at
nEðyÞ. Thus, combining the last inequalities we obtain

Fa
mðEXB;EX qUÞa 1

on�m

n

m

� �
jU XEjrm�n:ð27Þ

But, keeping in mind that the center of U lies on qE and hence that, by convexity,
jEXU ja 1

2 jU j,

jU XEj ¼ jU XEjm=njU XEj1�m=n
a jU XEjm=n 1

2

� �1�m=n

jU j1�m=n

a 2�1þm=njU XEjm=nðonr
nÞ1�m=n ¼ 2�1þm=no1�m=n

n jU XEjm=n
rn�m;

so that

Fa
mðEXB;EX qUÞa 2�1þm=n o

1�m=n
n

on�m

n

m

� �
jU XEjm=n:ð28Þ

Replacing in (23) we obtain eventually

ð29Þ jEXU jm=n
aom=n�1

n on�m

n

m

� ��1

fFmðEXB; qEXUÞ

þFs
mðEXB;EX qUÞg þ 2�1þm=njU XEjm=n:

As a consequence we get

ð1 � 2�1þm=nÞjEXU jm=n
a bm;nfFmðEXB; qEXUÞ þFs

mðEXB;EX qUÞg

and in particular (since Fs
mðEXB; �Þ is supported in qðEXBÞ), we have

jEXU jm=n
a aðm; nÞfFmðEXB; qEXUÞ þFs

mðEXB;EX qUÞg

¼ aðm; nÞfFmðEXB; qEXUÞ þFs
mðEXB; qEX qUÞg;

where

aðm; nÞ ¼ ð1 � 2�1þm=nÞ�1bm;n ¼ ð1 � 2�1þm=nÞ�1om=n�1
n on�m

n

m

� ��1

:

Recalling now (12), the above inequality can be written as

jEXU jm=n
a aðm; nÞfFmðE;UÞ þFs

mðEXB; qEX qUÞg: r

Relative Alexandrov-Fenchel inequalities 919



If m ¼ n� 1, the singular term Fs
mðEXB; qEX qBÞ vanishes, and we reobtain the

classical relative isoperimetric inequality, since Fs
n�1ðEXB; �Þ1 0. If m < n� 1, an

explicit form of the singular term can be found in [5], Theorem 3.2. Moreover, since
Fs

mðEXB; �ÞaFmðEXB; �Þ, combining Theorem II with the characterization of
curvature measures given in Theorem 2.1 and (17) we obtain the following estimate.

Corollary 2.1. Let E � Rn be a compact convex set, and let U ¼ Uðx; rÞ be an open

Euclidean ball centred at a point x A qE. Then, if m ¼ 0; . . . ; n� 1, we have

jEXU jm=n
a aðm; nÞ

�
FmðE;UÞ

þ a�1
n;n�mnon

Ð
Aðn;n�mÞ

Hn�1
KSn�1

� S
x A qEXqUXP

NorðEXBXP; xÞ
�
dmn�mðPÞ

�
:

Remark 2.5. We point out that in general we can not take out one of the two terms
at the right hand side of (10). Indeed, take first m ¼ n� 1, so that, by [8], Theorem
4.2.5, Fn�1ðEXB; �Þ is proportional to the Hn�1

KqðEXBÞ. Then Fn�1ðEXB;
qU X qEÞ ¼ 0, and hence the left hand side is bounded only by Fn�1ðE;UÞ. On
the other hand, if we take for instance nb 3 and E is a smooth set such that its
boundary qE is a portion of a 2-dimensional plane near a fixed point x, then, by (17),
FmðE;UÞ ¼ 0 for m ¼ 0; . . . ; n� 2, when U ¼ Uðx; rÞ, r su‰ciently small. Thus, in
this case, the right hand side reduces to Fs

mðEXB; qU X qEÞ.

Remark 2.6. Take nb 2 and let U be any Euclidean ball centred on qE. Suppose
qE is a smooth manifold that is transversal to qU (i.e. suppose the outward normals
nU to qU and nE to qE are linearly independent on qU X qE), so that qU X qE is
a smooth ðn� 2Þ-dimensional manifold. Referring to Federer’s notations ([3]), if x A
qU X qE, then, by Theorem 4.12 in [3]

NorðEXU ; xÞ ¼ flnEðxÞ þ mnUðxÞ; l; mb 0g:

Since dim NorðEXU ; xÞ ¼ 2, then, using again Federer’s notations (see Theorem
4.15 (3) in [3]) qU X qEH ðEXUÞðn�2Þ, so that, by Remark 6.14 in [3], FmðEXB;
qU X qEÞ ¼ 0 for m ¼ n; n� 1, and Fn�2ðEXB; qU X qEÞaHn�2ðqU X qEÞ. Thus,
in the case n ¼ 3, it follows from (10) and (17) that

jEXU j2=3
a að2; 3ÞF2ðE;UÞ ¼ að2; 3Þ

3o3
H2ðqEXUÞ;ð30Þ

ð31Þ jEXU j1=3
a að1; 3ÞfF1ðE;UÞ þH1ðqU X qEÞg

¼ að1; 3Þ
�

1

2o2

Ð
qEXU

S1ðk1; k2Þ dH2 þH1ðqU X qEÞ
�
;

and
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ð32Þ 1a að0; 3ÞfF0ðE;UÞ þF0ðEXU ; qU X qEÞg

¼ að0; 3Þ
�

1

3o3

Ð
qEXU

S2ðk1; k2Þ dH2

þ 3o3H
2
KS2

� S
x A qUXqE

NorðEXU ; xÞ
��

:
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