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Abstract. This paper considers the dual of anisotropic Sobolev spaces on any
stratified groups G. For 0 ≤ k < m and every linear bounded functional T on
anisotropic Sobolev space Wm−k,p(�) on � ⊂ G, we derive a projection operator
L from Wm,p(�) to the collection Pk+1 of polynomials of degree less than k + 1
such that T (XI (Lu)) = T (XIu) for all u ∈ Wm,p(�) and multi-index I with
d(I ) ≤ k. We then prove a general Poincaré inequality involving this operator L

and the linear functional T . As applications, we often choose a linear functional T

such that the associated L is zero and consequently we can prove Poincaré inequal-
ities of special interests. In particular, we obtain Poincaré inequalities for functions
vanishing on tiny sets of positive Bessel capacity on stratified groups. Finally, we
derive a Hedberg-Wolff type characterization of measures belonging to the dual of
the fractional anisotropic Sobolev spaces Wα,p(G).

Mathematics Subject Classification (1991): 46E35, 41A10, 22E25

1. Known results on higher order Poincaré inequalities

First order Poincaré inequalities associated with anisotropic vector fields have re-
ceived extensive attention in recent years. There is a very long list of references and
we shall not review them here. However, higher order Poincaré inequalities in such
a setting are only known on the stratified groups (see e.g., [L1], [L2]). This paper
will focus on the study of some fairly general higher order Poincaré inequalities
on stratified groups which improve those of [L1-2] substantially. In particular, we
obtain Poincaré inequalities for functions vanishing on sets of positive Lebesgue
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measure or positive Bessel capacity on stratified groups. The main machinery of
proving such Poincaré inequalities is to first establish a Poincaré type inequality
associated with any given bounded linear functional on the anisotropic Sobolev
spaces. More precisely, for 0 ≤ k < m and every linear bounded functional T on
Wm−k,p(�), we derive a projection operator L from Wm,p(�) to the collection
Pk+1 of polynomials of degree less than k +1 such that T (XI (Lu)) = T (XIu) for
all u ∈ Wm,p(�) and multi-index I with d(I ) ≤ k. We then prove a general Poin-
caré inequality involving this operator L and the linear functional T . By choosing
a linear functional T such that the associated L is zero, we can prove Poincaré
inequalities of special interests. Theorems proved in this paper even when m = 1
(e.g., in the first order anisotropic Sobolev spaces) yield some new Poincaré type
inequalities of first order in the setting of stratified groups.

We begin with some preliminaries concerning stratified Lie groups (or so-called
Carnot groups). We refer the reader to the books [FS] and [VSCC] for analysis on
stratified groups. Let G be a finite-dimensional, stratified, nilpotent Lie algebra.
Assume that

G = ⊕s
i=1Vi ,

with [Vi, Vj ] ⊂ Vi+j for i + j ≤ s and [Vi, Vj ] = 0 for i + j > s. Let X1, · · · , Xl

be a basis for V1 and suppose that X1, · · · , Xl generate G as a Lie algebra. Then
for 2 ≤ j ≤ s, we can choose a basis {Xij }, 1 ≤ i ≤ kj , for Vj consisting of
commutators of length j . We set Xi1 = Xi, i = 1, · · · , l and k1 = l, and we call
Xi1 a commutator of length 1.

If G is the simply connected Lie group associated with G, then the exponential
mapping is a global diffeomorphism from G to G. Thus, for each g ∈ G, there is
x = (xij ) ∈ R

N , 1 ≤ i ≤ kj , 1 ≤ j ≤ s, N = ∑s
j=1 kj , such that

g = exp(
∑

xijXij ).

A homogeneous norm function | · | on G is defined by

|g| = (
∑

|xij |2s!/j )1/2s!,

and Q = ∑s
j=1 jkj is said to be the homogeneous dimension of G. The dilation

δr on G is defined by

δr (g) = exp(
∑

rj xijXij ) if g = exp(
∑

xijXij ).

The convolution operation on G is defined by

f � h(x) =
∫

G

f (xy−1)h(y)dy =
∫

G

f (y)h(y−1x)dy,

where y−1 is the inverse of y and xy−1 denotes group multiplication of x by y−1.
It is known that for any left invariant vector field X on G,

X(f � h) = f � (Xh).
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We call a curve γ : [a, b] → G “a horizontal curve” connecting two points
x, y ∈ G if γ (a) = x, γ (b) = y and γ

′
(t) ∈ V1 for all t . Then the Carnot-

Caratheodory distance between x, y is defined as

dcc(x, y) = inf
γ

∫ b

a

< γ
′
(t), γ

′
(t) >

1
2 dt,

where the infimum is taken over all horizontal curves γ connecting x and y. It is
known that any two points x, y on G can be joined by a horizontal curve of finite
length and then dcc is a left invariant metric on G. We can define the metric ball
centered at x and with radius r associated with this metric by

Bcc(x, r) = {y : dcc(x, y) < r}.

We must notice that this metric dcc is equivalent to the pseudo-metric ρ(x, y) =
|x−1y| defined by the homogeneous norm | · | in the following sense (see [FS])

Cρ(x, y) ≤ dcc(x, y) ≤ Cρ(x, y).

We denote the metric ball associated with ρ as D(x, r) = {y ∈ G : ρ(x, y) < r}.
An important feature of both of these distance functions is that these distances and
thus the associated metric balls are left invariant, namely,

dcc(zx, zy) = d(x, y), Bcc(x, r) = xBcc(0, r)

and

ρ(zx, zy) = ρ(x, y), D(x, r) = xD(0, r).

From now on, we will always use the metric dcc and drop the subscript from dcc.
Similarly, we will use B(x, r) to denote Bcc(x, r).

We now recall the definition of the class of polynomials on G given by Folland
and Stein in [FS]. Let X1, · · ·, Xl in V1 be the generators of the Lie algebra G, and
let X1, · · ·, Xl, · · ·, XN be a basis of G. We denote d(Xj ) = dj to be the length
of Xj as a commutator, and we arrange the order so that 1 ≤ d1 ≤ · · · ≤ dN .
Then it is easy to see that dj = 1 for j = 1, · · ·, l. Let ξ1, · · ·, ξN be the dual
basis for G∗, and let ηi = ξi ◦ exp−1. Each ηi is a real-valued function on G, and
η1, · · · , ηN gives a system of global coordinates on G. A function P on G is said
to be a polynomial on G if P ◦ exp is a polynomial on G. Every polynomial on G

can be written uniquely as

P(x) =
∑

I

aI η
I (x), ηI = η

i1
1 · · · η

iN
N , aI ∈ R,

where all but finitely many of the coefficients aI vanish. Clearly ηI is homogeneous
of degree d(I ) = ∑N

j=1 ij dj , i.e., ηI (δrx) = rd(I)ηi(x). If P = ∑
I aI η

I , then
we define the homogeneous degree (or order) of P to be max{d(I ) : aI 	= 0}.
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Throughout this paper, we use Pk to denote polynomials of homogeneous
degree less than k for each positive integer k.

We also adopt the following multi-index notation for higher order derivatives.
If I = (i1, · · · , iN ) ∈ N

N , we set

XI = X
i1
1 · X

i2
2 · · · XiN

N .

By the Poincaré–Birkhoff–Witt theorem (cf. Bourbaki [B], I.3.7), the differential
operators XI form a basis for the algebra of left-invariant differential operators in
G. Furthermore, we set

|I | = i1 + i2 + · · · + iN , d(I ) = d1i1 + d2i2 + · · · + dNiN .

Thus, |I | is the order of the differential operator XI , and d(I ) is its degree of
homogeneity; d(I ) is called the homogeneous degree of XI . We will also use the
notation

|Xmf | = ( ∑

I :d(I )=m

|XIf |2)1/2

for any positive integer m.
Let m be a positive integer, 1 ≤ p < ∞, and � be an open set in G. The Fol-

land–Stein Sobolev space Wm,p(�) associated with the vector fields X1, · · · , Xl

is defined to consist of all functions f ∈ Lp(�) with distributional derivatives
XIf ∈ Lp(�) for every XI defined above with d(I ) ≤ m. Here, we say that the
distributional derivative XIf exists and equals a locally integrable function gI if
for every φ ∈ C∞

0 (�),
∫

�

f XIφ dx = (−1)d(I )

∫

�

gIφdx.

Wm,p(�) is equipped with the norm

||f ||Wm,p(�) = ||f ||Lp(�) +
∑

1≤d(I )≤m

||XIf ||Lp(�). (1.1)

When � = G, we sometimes use ||f ||k,p to denote ||f ||Wm,p(G). We also some-
times use ||f ||k,p;� to denote ||f ||Wm,p(�).

To explain the motivation of this paper, we need to review some known results
concerning high order Poincaré inequalities on stratified groups. The following is
Theorem 3.7 in [L2] (see also [N1]).

Theorem 1.2. Let � ⊂ G be an open set of finite Lebesgue measure. Then given any
positive integer k and f ∈ Wk,1(�), there exists a unique polynomial P = P(f, �)

on G of degree less than k such that
∫

�

XI (f − P) = 0, f or any 0 ≤ d(I ) < k. (1.3)

Moreover, P(f, �) linearly depends on f .
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In [L2], we also showed a different type of polynomials associated with the
Sobolev functions which we call “projection polynomials” in [L2].

Definition 1.4. For each k ∈ N and ball B ⊂ � ⊂ G, a projection of order k

associated with the ball B is defined to be a linear map

πk(B) : Wk,1(�) −→ Pk

such that

sup
x∈B

|πk(B)f (x)| ≤ Cr(B)−Q‖f ‖L1(B) (1.5)

with C independent of f and B and

πk(B)P = P for all P ∈ Pk. (1.6)

Clearly, polynomials constructed in Theorem 1.2 satisfy (1.6) but not necessar-
ily (1.5). The existence of projection polynomials was proved in Theorem 3.6 in
[L2]. It is also shown in [L2] (see Theorem 3.8 in [L2]) that the following theorem
holds.

Theorem 1.7. For each k ∈ N and ball B ⊂ �, then for any projection πk(B) :
Wk,1(�) −→ Pk of order k, the following holds: for any 1 ≤ q ≤ ∞, and any
multiple index I with d(I ) = l ≥ 0

‖XIπk(B)f ‖Lq(B) ≤ C‖Xlf ‖Lq(B) (1.8)

with C independent of f and B (noticing that when l ≥ k the left side is zero).

This shows that a certain order of subelliptic derivative of πk(B)f is controlled
by the same order of subelliptic derivative of f .

We now recall some results concerning higher order Poincaré inequalities
proved in [L1], [L2].

Theorem 1.9. Let f ∈ Wk,p(�). Given any ball B ⊂ �, there exists Pk(f, B) ∈
Pk such that we have for any 0 ≤ j < i ≤ k

(
1

|B|
∫

B

|Xj (f (x) − Pk(f, B)(x)) |qij dx

) 1
qij

≤ Cr(B)i−j

(
1

|B|
∫

B

|Xi (f (x) − Pk(f, B)(x)) |pdx

) 1
p

for all 1 ≤ p <
Q

i−j
and qij ≤ pQ

Q−(i−j)p
, where C is independent of B and f .

We remark that the existence of the polynomial Pm(f, B) is guaranteed by The-
orem 1.2. The proof of theorem (1.9) follows from the repeated use of the standard
sharp Poincaré inequality of first order proved in [L4] for p > 1 and for all p ≥ 1
in [MS] and [FLW1] (see also [CDG]). In the proof we have used the property of
the polynomial Pk(f, B), i.e., the vanishing integral property (1.3).
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As a simple corollary of this theorem we get the special Poincaré inequality
when i = k (see Corollary 6.2 in [L2]) by dropping the polynomial on the right
hand side (see also [N1]). This follows from theorem (1.9) by taking i = k and
noting that XkPk(f, B) = 0.

If we choose the projection polynomial πk(B)f ∈ Pk , then Theorem 1.9 can be
improved. Namely, we can drop the polynomial Pk(f, B) on the right hand side of
the Poincaré inequality even for 1 ≤ i < k. Theorem 6.3 in [L2] states as follows:

Theorem 1.10. Let f ∈ Wm,p(�) and let B ⊂ � be any ball. Then we have for
any 0 ≤ j < i ≤ k

(
1

|B|
∫

B

|Xj (f (x) − πk(B)f (x)) |qij dx

) 1
qij

≤ Cr(B)i−j

(
1

|B|
∫

B

|Xif (x)|pdx

) 1
p

for all 1 ≤ p <
Q

i−j
and qij ≤ pQ

Q−(i−j)p
, where C is independent of B and f .

Since we do not necessarily have the vanishing integral property for the projec-
tion polynomial πk(B)f , the proof of Theorem (1.10) does not follow immediately
from the Poincaré inequality of first order. The interesting feature of the theorem
is that even for i < k (thus the degree of the polynomial πk(B)f is bigger than
i), the left hand side is still controlled by the i−th order derivatives of f alone.
Similar Poincaré inequalities on domains satisfying the Boman chain condition are
also proved (see Theorem 6.4 in [L2]).

Polynomials constructed in Theorems 1.2, 1.7 have applications to proving ex-
tension theorems on high order Sobolev spaces on stratified groups as given in [L2],
[L3] and Sobolev interpolation inequalities of any order (see [L1], [L2]). In partic-
ular, polynomials satisfying (1.5) enable us to construct a bounded linear extension
operator on extension domains such that the derivatives of the extended functions
can be controlled by the same order of derivatives of the original Sobolev functions
(see [L2], [L3]). We should mention the existence of polynomials satisfying (1.3)
was proved earlier on the Heisenberg group with application to Sobolev extension
theorems on the Heisenberg group in [N2].

We mention in passing that polynomials in metric spaces were introduced in
[LW] and [LLW]. The authors showed that the existence of polynomials satisfying
L1 to L1 Poincaré inequalities implies higher order representation formulas. This is
motivated by the first order result of [FLW2]. In particular, on the stratified groups,
we showed in [LW1] that such representation formulas of higher order do hold (si-
multaneous representation formulas for the derivatives of functions were obtained
in [LW2] recently). We also defined the notion of higher order Sobolev spaces in
metric spaces in [LLW] and proved that several definitions are equivalent if func-
tions of polynomial type exist. In the case of stratified groups, where polynomials
do exist, we showed in [LLW] that our spaces are equivalent to the Sobolev spaces
defined by Folland and Stein in [FS]. Our results in [LLW] extended the notion of
first order Sobolev spaces in metric spaces of [Ha] and also give some alternate
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definitions of higher order Sobolev spaces in the classical Euclidean case and on
stratified groups.

We now restate the result in Theorem 1.2 in a form which is consistent with
what we will show more generally in this paper. If we consider the linear operator

T : Lp(�) → R, T (u) =
∫

�

u(x)dx, for p > 1

then Theorem 1.2 actually says that there exists a map L : Wm,p(�) → Pm such
that for each u ∈ Wm,p(�) and multi-index I with d(I ) ≤ m − 1,

T (XIu) = T (XIP ) (1.13)

where P = L(u).
Inspired by this simple result on the stratified group G, and the results of Maz’ya

[Ma1]-[Ma3], Meyers [Me1], Meyers-Ziemer [MZ], Hedberg [He] (see also the
books by Adams and Hedberg [AH], Ziemer [Z], and Maz’ya [Ma1]) in Euclid-
ean space, we will prove a more general theorem on a stratified group G which
shows such a result holds for fairly general linear operators T . Results of this pa-
per generalize those in Euclidean space by Meyers [Me1], Meyers-Ziemer [MZ]
to this subelliptic setting and improve those in [L1,L2] substantially in several
ways. First of all, our results show that for any element T in the dual space of
Wm−k,p(�), where 0 < k < m, we can associate with T a linear projection opera-
tor L : Wm,p(�) → Pk+1 such that the norm of L is well controlled by T . Second,
we can prove a Poincaré inequality such that ||u − L(u)||Wp,k(�) is controlled by
||Xk+1u||Wm−(k+1),p(�) and the norm ||T || of T . If we choose appropriately the linear
functional T , we can show the corresponding linear projection operator L is zero.
Thus we can derive considerably more general theorems than those in [L1,L2]. In
particular, we can derive Poincaré inequalities for functions vanishing on sets of
positive Lebesgue measure or furthermore on sets of merely positive Bessel capacity
(see Theorems 2.4, 2.5 and 2.6 in §2). Finally, we obtain an analogue of Hedberg-
Wolff’s characterization concerning Radon measures being in the dual space of the
fractional Sobolev space Wα,p(G) (seeAdams [Ad1] and Hedberg-Wolff [HW]). In
order to derive these results mentioned above, we must proceed with caution because
of the noncommutative group multiplication. The noncommutativity of the convo-
lutions on the group G also results in difficulties in dealing with the measures in the
dual space of Wm,p(�) in conjunction with the Bessel potentials of the measures.

The organization of the paper is as follows. Main theorems are stated in Section
§2. In Section §3, we consider the dual of anisotropic Folland-Stein Sobolev space
Wm,p(�) on stratified groups. For every linear bounded functional T on Wm,p(�),
we derive in Section §3 a projection operator L from Wm,p(�) to the collection
Pk of polynomials of degree less than k such that T (XI (Lu)) = T (XIu) for all
u ∈ Wm,p(�) and multi-index I with d(I ) < k (see Theorem 2.1). We then prove
in Section §4 a general Poincaré inequality involving this operator L and the linear
functional T (see Theorems 2.2 and 2.3). As applications, in Section §5 we choose
a linear functional T such that the associated L is zero and consequently we prove
Poincaré inequalities for functions vanishing on sets of positive Lebesgue measures
(see Theorem 2.4). In particular, in Section §6 we obtain Poincaré inequalities for
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functions vanishing on tiny sets of positive Bessel capacity on stratified groups
(see Theorems 2.5 and 2.6). Finally, we derive in Section §7 a Hedberg-Wolff type
characterization of measures in the dual of the fractional anisotropic Folland-Stein
Sobolev spaces Wα,p(�) (see Theorem 2.7).

2. Statements of Main Theorems

To state our main theorems, we let (Wm,p(�))∗ denote the dual space of the Sobolev
space Wm,p(�).

Theorem 2.1. Let k and m be two integers with 0 ≤ k < m and p ≥ 1. Let � ⊂ G

be an open set of finite Lebesgue measure and χ� be the characteristic function
of �. Suppose that T ∈ (

Wm−k,p(�)
)∗

has the property that T (χ�) 	= 0. Then
there is a projection L : Wm,p(�) → Pk+1 such that for each u ∈ Wm,p(�) and
multi-index I with d(I ) ≤ k,

T (XIu) = T (XIP )

where P = L(u). Moreover, L has the form

L(u) =
∑

I :d(I )≤k

aI η
I (x)

where aI = ∑
J :d(J )≥d(I ) bJ XJ u, and

||L|| ≤ C

( ||T ||
T (χ�)

)k+1

,

where C = C(k, p, |�|) and ||T || is the norm of the linear functional T and ||L||
is the operator norm of the map

L : Wm,p(�) → Pk(G) ⊂ Wm,p(�).

Before we state the next theorem, we now recall the notion of extension domains
on G.A domain � ⊂ G is said to be an extension domain if there is a bounded exten-
sion operator on Wk,p(�). A bounded extension operator on Wk,p(�) is a bounded
linear operator � : Wk,p(�) → Wk,p(G) such that �f |�= f ∀f ∈ Wk,p(�).
Moreover, we use the notation

‖�‖ = sup
‖f ‖

Wk,p(�)
=1

‖�f ‖Wk,p(G).

Theorem 2.2. Let k and m be two integers with 0 ≤ k < m and p ≥ 1. Let � ⊂ G

be an open, bounded extension domain and χ� be the characteristic function of �.
Suppose that T ∈ (

Wm−k,p(�)
)∗

has the property that T (χ�) 	= 0. Then for the
projection operator L : Wm,p(�) → Pk+1 associated with T whose existence is
guaranteed by Theorem 2.1, we have

||u − L(u)||Wk,p(�) ≤ C

( ||T ||
T (χ�)

)k+1

||Xk+1u||Wm−(k+1),p(�),

with C = C(k, p, �).
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Theorem 2.3. With the same hypotheses as in Theorem 2.2, we have

||u − L(u)||Lp∗(�) ≤ C

( ||T ||
T (χ�)

)k+1

||Xk+1u||Wm−(k+1),p(�)

where p∗ = pQ
Q−kp

for 1 ≤ p <
Q
k

, p∗ < ∞ for pk = Q and p∗ = ∞ when
pk > Q.

Theorem 2.4. Let � ⊂ G be a bounded extension domain. Let 0 ≤ k < m be
integers and p ≥ 1. Suppose that u ∈ Wm,p(�) has the property that

∫

E

XIudx = 0, for 0 ≤ d(I ) ≤ k,

where E ⊂ � is a measurable set of positive Lebesgue measure. Then, there is a
constant C = C(k, m, p, |E|) such that for u ∈ Wm,p(�).

||u||Wk,p(�) ≤ C||Xk+1u||Wm−(k+1),p(�)

and
||u||Lp∗(�) ≤ C||Xk+1u||Wm−(k+1),p(�)

where p∗ = pQ
Q−kp

for 1 ≤ p <
Q
k

, p∗ < ∞ for pk = Q and p∗ = ∞ when
pk > Q.

Next two theorems are concerning Poincaré inequalities in terms of Bessel ca-
pacities on G. We refer the reader to Section §6 for notations and definitions of
Bessel capacity.

Theorem 2.5. Let � ⊂ G be a bounded extension domain, and let A ⊂ � be a
Bm−k,p−capacitable set with Bm−k,p(A) > 0 where 0 ≤ k < m are integers and
p ≥ 1. Then there exists a projection L : Wm,p(�) → Pk+1(G) such that

||u − L(u)||Wk,p ≤ C
(
Bm−k,p(A)

)−1/p ||Xk+1u||Wm−(k+1),p(�),

and

||u − L(u)||Lp∗
(�) ≤ C

(
Bm−k,p(N)

)−1/p ||Xk+1u||Wm−(k+1),p(�),

with C = C(k, p, m, �) and where p∗ = pQ
Q−kp

for 1 ≤ p <
Q
k

, p∗ < ∞ for
pk = Q and p∗ = ∞ when pk > Q.

Theorem 2.6. Let � ⊂ G be a bounded extension domain, u ∈ Wm,p(�) and let
N ⊂ � be a set defined by

N = �
⋂

{x : XIu(x) = 0 for all 0 ≤ d(I ) ≤ k}.
If Bm−k,p(N) > 0 where 0 ≤ k < m are integers and p ≥ 1. Then

||u||Wk,p ≤ C
(
Bm−k,p(N)

)−1/p ||Xk+1u||Wm−(k+1),p(�),

and
||u||Lp∗

(�) ≤ C
(
Bm−k,p(N)

)−1/p ||Xk+1u||Wm−(k+1),p(�),

with C = C(k, p, m, �) and where p∗ = pQ
Q−kp

for 1 ≤ p <
Q
k

, p∗ < ∞ for
pk = Q and p∗ = ∞ when pk > Q.
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The case of m = 1, k = 0 is of particular interest which gives rise to first order
Poincaré inequalities for functions vanishing on sets of positive capacity. The dif-
ference between Theorems 2.4 and 2.6 is that functions vanishing on sets of positive
capacity may not vanish on sets of positive Lebesgue measure. Thus, Theorem 2.6
is a stronger result than Theorem 2.4. Finally, we prove in Section §7 the following
Hedberg-Wolff type characterization of Radon measures being in the dual of the
fractional Sobolev spaces Wα,p(G) (see Section §6 for definition of such Sobolev
spaces).

Theorem 2.7. Let p > 1 and 0 < αp ≤ Q. If µ is a Radon measure, then
µ ∈ (Wα,p(G))∗ if and only if

∫

G

∫ 1

0

(
µ[B(y, r)]

rQ−αp

) 1
p−1 dr

r
dµ(y) < ∞.

3. Theorem 2.1: Projection operators associated with linear functionals

Definition 3.1. If X is a Banach space and Y ⊂ X a subspace, then a bounded
linear map L : X → Y onto Y is called a projection if L · L = L

Note that L(y) = y for y ∈ Y , for there exists x ∈ X such that L(x) = y and
y = L(x) = L(L(x)) = L(y).

We now are ready to prove Theorem 2.1. The proof of this theorem is similar
to the case when T (u) = ∫

�
u for u ∈ Wm,p(�) given in [L1,2], and combining

the ideas from [Me1] in Euclidean spaces. The proof also gives more precise ex-
pressions of L(u), and the norm of L is given here. We must mention that we shall
proceed with caution and use the Poincaréé-Birkhoff-Witt theorem on the stratified
group G to express polynomials uniquely.

Proof of Theorem 2.1. Recall XI = X
i1
1 · · · XiN

N with I = (i1, · · · , iN ) and d(I ) <

k. The proof is given by examining closely the definition of polynomials on
stratified groups. We first observe that for each multi-index I and J with the same
length d(I ) = d(J ) we have

XI (ηJ ) = I !δIJ , where I ! = i1! · · · iN ! δIJ = 1 if I = J ; and = 0 if I 	= J.

(3.2)

This follows from the definition of the dual basis η1, · · ·, ηN on G∗, which indicates
the inner product defining the dual basis satisfies

< XJ , ηI >= I !δIJ .

We also note that for any polynomial P of degree less than or equal to k. i.e.,
P ∈ Pk+1 we have XIP = 0 for any d(I ) > k. Since by the Poincaré-Birk-
hoff-Witt theorem any polynomial P on G of degree less than or equal to k can be
uniquely written as

P(x) =
∑

I :d(I )≤k

aI η
I (x), ηI = η

i1
1 · · · η

iN
N ,

we thus only need to determine the coefficients aI .
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If P ∈ Pk+1 and P has the form P(x) = ∑
I :d(I )≤k aI η

I (x), then XIP (x) =
aI I ! if d(I ) = k. In particular, in order for the following identity

T (XIu) = T (XIP ) (3.3)

to hold, the coefficients aI of the polynomial must satisfy

aI = T (XIu)

I !T (χ�)
,

if d(I ) = k. Similarly, if d(I ) = k − 1 then

XIP (x) = aI I ! +
∑

J :d(J )=1

aI+J

(I + J )!

J !
ηJ (x) (3.4)

where I + J = (i1 + j1, · · · , iN + jN) if I = (i1, · · · , iN ) and J = (j1, · · · , jN).
In view of (3.3), (3.4) will hold if aI satisfies the identity

aI = T (XIu)

I !T (χ�)
−

∑

J :d(J )=1

aI+J

(I + J )!

I !J !

T (ηJ )

T (χ�)
,

where d(I ) = k − 1. Continue recursively, for all I with d(I ) ≤ k we thus have

aI = T (XIu)

I !T (χ�)
−

k−d(I )∑

J :d(J )=1

aI+J

(I + J )!

I !J !

T (ηJ )

T (χ�)
. (3.5)

Since L(u) = P implies XI [L(u)] = XIP for any multi-index I , then for d(I ) ≤
k,

T (XIu) = T (XIP ) = T [XI (Lu)].

This immediately leads to L·L = L by the definition of aI given in (3.5). Therefore,
L is a projection operator.

We next estimate the norm of the operator L. Note that

||L|| = sup
u:||u||Wm,p(�)≤1

||L(u)||Wm,p(�)

= sup
u:P=L(u):||u||Wm,p(�)≤1

||P ||Wm,p(�).

Let u ∈ Wm,p(�) with ||u||Wm,p(�) ≤ 1 and P = L(u), where

P(x) =
∑

I :d(I )≤k

aI η
I (x).

To estimate the Wm,p norm of P , we need to have the upper bound of the coeffi-
cients aI . To this end, we first consider aI for d(I ) = k. Note that for d(I ) = k

and any nonnegative integer l,

||T ||
I !T (χ�)

= ||T || · T (χ�)l

I !T (χ�)1+l
≤ C(l, p, |�|)

( ||T ||
T (χ�)

)l+1

because |T (χ�)| ≤ |�|1/p||T ||.
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In particular, this holds for l = k. Thus,

|aI | ≤ ||T ||
I !T (χ�)

≤ C(k, p, |�|)
( ||T ||

T (χ�)

)k+1

.

If d(I ) = k − 1, k ≥ 1, then from the estimate for aI when d(I ) = k and the fact
that ||T ||

T (χ�)
≥ |�|−1/p,

we get

|aI | ≤ ||T ||
I !T (χ�)

+ C(k, |�|)
∑

J :d(J )=1

|aI+J | ||T ||
T (χ�)

≤ C(k, p, |�|)
( ||T ||

T (χ�)

)2

≤ C′(k, p, |�|)
( ||T ||

T (χ�)

)k+1

.

Continuing in this fashion, we get if d(I ) = k − i, k ≥ i, then

|aI | ≤ C(k, p, |�|)
( ||T ||

T (χ�)

)i+1

≤ C(k, p, |�|)
( ||T ||

T (χ�)

)k+1

.

Therefore, we have shown that

||L|| ≤ C(k, p, |�|)
( ||T ||

T (χ�)

)k+1

.

This completes the proof of the theorem. ��

4. Theorem 2.2: Poincaré inequalities associated with linear functionals

The main purpose of this section is to show Theorem 2.2. We first need the following
lemma due to N. Meyers [Me1].

Lemma 4.1. Let X0 be a normed linear space with norm || · ||0 and let X ⊂ X0
be a Banach space with norm || · ||. Suppose || · || = || · ||0 + || · ||1, where
|| · ||1 is a semi-norm and assume that bounded sets in X are precompact in X0. Let
Y = X

⋂{x : ||x||1 = 0}. If L : X → Y is a projection, then there is a constant C

independent of L such that

||x − L(x)||0 ≤ C||L|| · ||x||1,
for all x ∈ X.
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Proof of Theorem 2.2. Set X = Wm,p(�), X0 = Wk,p(�) and Y = Pk+1.
From the Rellich compact embedding theorem on extension domain �, the bound-
ed sets in Wm,p(�) are precompact in Wk,p(�). Set ||u||0 = ||u||Wk,p(�) and
||u||1 = ||Xk+1u||Wm−(k+1),p(�). Clearly, ||u|| = ||u||0 + ||u||1 is an equiva-
lent norm on Wm,p(�). Moreover, ||u||1 = 0 if and only if u ∈ Pk+1. Thus,
if T ∈ (

Wm−k,p(�)
)∗

with T (χ�) 	= 0, and L is the associated projection
operator

L : Wm,p(�) → Pk+1

whose existence and estimate of upper bound of the norm ||L|| are guaranteed by
Theorem 2.1, we will have

||u − L(u)||Wk,p(�) ≤ C||L|| · ||Xk+1u||Wm−(k+1),p(�)

≤ C

( ||T ||
T (χ�)

)k+1

||Xk+1u||Wm−(k+1),p(�).

��
We now show the norm on the left hand side above can be replaced by the Lp∗

norm of u − L(u) where p∗ = Qp
Q−mp

, namely, Theorem 2.3. To this end, we need
the Sobolev interpolation inequality which can be deduced from those proved in
[L1,2].

Lemma 4.2. Suppose m > 1 is an integer and p ≥ 1. Let � ⊂ G be a bounded
extension domain. Then for each integer k with 1 ≤ k ≤ m − 1, and ε > 0 there is
a constant C = C(Q, m, p, k, ε, �) such that

||Xku||Lp(�) ≤ C||u||Lp(�) + ε||Xmu||Lp(�),

whenever u ∈ Wm,p(�).

To prove this lemma, we need to use the following result from [L2] (Theorem
10.1 in [L2])

Lemma 4.3. Let � be an extension domain in G. Let 1 ≤ p ≤ q < ∞ be such
that the first order Lp to Lq Poincaré inequality holds, namely, q = pQ

Q−p
for

1 ≤ p < Q and 1 ≤ q < ∞ for p ≥ Q. Let i, k be positive integers such that
1 ≤ i < k and 1 ≤ r ≤ q. Then

||Xif ||Lq(�) ≤ C||f ||
Q
q +k− Q

p −i

k+ Q
r − Q

p

Lr (�) · ||Xkf ||
Q
r +i− Q

q

k+ Q
r − Q

p

Lp(�)

for all f such that Xkf ∈ Lp(�) with ||Xkf ||Lp(�) 	= 0.

Proof of Lemma 4.2. Taking p = q = r and k = m in Lemma 4.3, we get the
inequality

||Xif ||Lp(�) ≤ C||f ||1− i
m

Lp(�) · ||Xmf ||
i
m

Lp(�)

= C

(

ε− m
i ||f ||1− i

m

Lp(�)

)

·
(

ε
m
i ||Xmf ||

i
m

Lp(�)

)

.



322 W.S. Cohn et al.

Using Holder’s inequality on the right hand side with two conjugate exponents m
m−i

and m
i

, we get immediately Lemma 4.2. ��
We now prove Theorem 2.3 stated in Section §2.

Proof of Theorem 2.3. If v ∈ Wm,p(G) has compact support, then

||v||Lp∗(G) ≤ C||v||Wm,p(G).

Since � ⊂ G is an extension domain, u ∈ Wm,p(�) has an extension to v ∈
Wm,p(G) with compact support such that ||v||Wm,p(G) ≤ C||u||Wm,p(�). There-
fore,

||u||Lp∗
(�) ≤ C||v||Lp∗

(G)

≤ C||v||Wm,p(G)

≤ C||u||Wm,p(�)

≤ C
[||u||Lp(�) + ||Xmu||Lp(�)

]
.

In the last inequality above we have used the Sobolev interpolation inequality from
Lemma 4.2. Thus,

||u||Lp∗
(�) ≤ C

[||u||Lp(�) + ||Xmu||Lp(�)

]
. (4.4)

Since XI (L(u)) = 0 for I with d(I ) = m, we obtain by replacing u with
u − L(u) and using Theorem 2.2 to control ||u − L(u)||Lp(�)

||u − L(u)||Lp∗(�) ≤ C
[||u − L(u)||Lp(�) + ||Xmu||Lp(�)

]

≤ C

( ||T ||
T (χ�)

)k+1

||Xk+1u||Wm−(k+1),p(�).

This completes the proof of Theorem 2.3. ��

5. Poincaré inequalities for functions vanishing on sets of positive
Lebesgue measure

In this section, we will use the general Poincaré inequalities associated with the giv-
en operator T to derive some basic Poincaré estimates involving high order deriva-
tives. By considering Lebesgue measure and its variants as elements of (Wm,p(�))∗
and introducing some appropriate linear functionals T such that the associated pro-
jection operator L is zero, we will prove some interesting Poincaré inequalities for
functions vanishing on sets of positive Lebesgue measure, namely, Theorem 2.4
stated in Section §2.

Theorem 5.1. Let � ⊂ G be a bounded set. Let 0 ≤ k ≤ m be integers and p ≥ 1.
Then, there is a constant C = C(k, m, p, diam(�)) such that

||Xku||Lp(�) ≤ C||Xmu||Lp(�)
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for u ∈ W
m,p
0 (�). Moreover, for q = Qp

Q−(m−k)p
and 1 ≤ p <

Q
m−k

||Xku||Lq(�) ≤ C||Xmu||Lp(�)

for u ∈ W
m,p
0 (�) with C = C(k, m, p) independent of �.

Proof. We first note, by a scaling argument, that the Lp to Lq inequality holds with
the constant C independent of the domain �. We thus may assume with no loss of
generality that � is a ball � = B(0, 2r) centered at the origin 0 and with radius
2r . We may further assume that all the functions u ∈ Wm,p(�) are supported in
B(0, r).

Define T ∈ (Wm−(k+1),p(�)
)∗

by

T (w) =
∫

�

vwdx

for w ∈ Wm−(k+1),p(�), where v = χB(0,2r) − χB(0,r). Since u is supported in
B(0, r),

T (XIu) = 0, 0 ≤ d(I ) ≤ k.

Therefore, by the construction of the associated operator L given in Theorem 2.1,
we derive that all the coefficients of L are zero. Therefore, L(u) = 0. Note that
Xku ∈ Wm−(k+1),p(�), thus the theorem follows from Theorems 2.2 and 2.3. This
completes the proof of the desired result. ��

We are now ready to prove the main theorem of this section, namely Theorem
2.4 in §2. Again, we set p∗ = pQ

Q−kp
for 1 ≤ p <

Q
k

, p∗ < ∞ for pk = Q and
p∗ = ∞ when pk > Q.

Proof of Theorem 2.4. Define T ∈ (Wm−k,p(�)
)∗

by

T (w) =
∫

E

wdx, w ∈ Wm−k,p(�).

Then, T (χ�) 	= 0, and

T (XIu) = 0, for 0 ≤ d(I ) ≤ k.

Then the associated functional (projection) L, constructed in Theorem 2.1, has the
property that L(u) = 0. The theorem then follows again from Theorem 2.2 and
2.3. ��
Corollary 5.2. Let � ⊂ G be a bounded extension domain. Let 0 ≤ k < m be
integers and p ≥ 1. Suppose that u ∈ Wm,p(�) has the property that

XIu = 0, a.e. x ∈ E for 0 ≤ d(I ) ≤ k,

where E ⊂ � is a measurable set of positive Lebesgue measure. Then, there is a
constant C = C(k, m, p, |E|) such that

||u||Wk,p(�) ≤ C||Xk+1u||Wm−(k+1),p(�)

for u ∈ Wm,p(�). In particular,

||u||Lp∗(�) ≤ C||Xk+1u||Wm−(k+1),p(�)

The case m = 1 has its special interest.
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Theorem 5.3. Let � ⊂ G be a bounded extension domain. Let p ≥ 1. Suppose
that u ∈ W 1,p(�) has the property that u > 0 on A and u < 0 on B, where A

and B are measurable subsets of � of positive Lebesgue measures. Then, there is
a constant C = C(k, m, p, |A|, |B|) such that

||u||Wm,p(�) ≤ C||Xu||Lp(�)

and
||u||Lp∗

(�) ≤ C||Xu||Lp(�)

for p∗ = pQ
Q−p

when 1 ≤ p < Q and p∗ < ∞ when p = Q, and p∗ = ∞ when
p > Q.

Proof. Given the above u we let α = ∫
A

udx and β = ∫
B

udx and define T ∈
(W 1,p(�))∗ by

T (w) =
∫

�

vwdx, w ∈ W 1,p(�)

with v = 1
α
χA − 1

β
χB . Then T (u) = 0. Therefore, the projection operator L

associated to T , as constructed in Theorem 2.1, satisfies L(u) = 0, and the
results again follow from Theorem 2.2 and 2.3. ��

6. Poincaré’s inequalities for functions vanishing on sets
of positive capacities

In this section we develop further the results obtained in section §3, §4 and §5.
to derive Poincaré inequalities for which the term L(u) is zero in the inequality.
We will show that this term vanishes when the set {x : u(x) 	= 0} is non-zero
when measured by an appropriate capacity. While results in §5 require the sets
where Sobolev functions vanish to have positive Lebesgue measure, these results
are stronger than those in section §5 because sets of positive capacities can still
have zero Lebesgue measure. The main purpose here is to prove Theorems 2.5 and
2.6 stated in Section §2.

To state and prove our main theorems, we need to recall some results concerning
Riesz and Bessel capacities on a stratified group G given in [L5].

Definition 6.1. The Riesz kernel Iα , 0 < α < Q, is defined by

Iα (x) = d(x, 0)α−Q

The Riesz potential of a function f defined as the convolution

f ∗ Iα(x) =
∫

G

f (y) dy

d(x, y)Q−α
.

We now let ht (x) be the heat kernel associated with the sub-Laplacian on G,
namely, if we set Htf (x) = f ∗ ht (x), then

∂

∂t
Htf (x) + LHtf (x) = 0

on G×(0, ∞), where L is the sub-Laplacian on G. Many properties of heat kernels
can be found in [F] and [VSCC].
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Definition 6.2. For each α > 0 we define

Gα(x) =
∫ ∞

0
t

α
2 −1e−t ht (x)dt,

where ht (x) is the heat kernel associated with the sub-Laplacian on G. We call Gα

the Bessel kernel and f ∗ Gα the Bessel potential of f .

This integral has the following properties (see [F]):

1) For each α > 0, Gα ∈ L1.
2) For α > 0, β > 0, Gα ∗ Gβ = Gα+β .
3) For each α > 0 and a multi-index I , and any x 	= 0

XIGα(x) =
∫ ∞

0
t

α
2 −1e−tXIht (x)dt.

Let 1 ≤ p ≤ ∞. We use Lα,p(G), α > 0, 1 ≤ p ≤ ∞ to denote all functions
u such that u = f ∗ Gα for some f ∈ Lp(G).

The following theorem is due to Folland [F].

Theorem 6.3. If k is a positive integer and 1 < p < ∞, then

Lk,p (G) = Wk,p (G) .

Moreover, if u ∈ Lk,p (G) with u = f ∗ Gα , then

C−1 ‖f ‖p ≤ ‖u‖k,p ≤ C ‖f ‖p

where C = C (α, p, Q) .

Remark. The equivalence of the spaces Lk,p and Wk,p fails when p = 1 or p = ∞.

Definition 6.4. For α > 0 and p > 1, the Bessel capacity is defined as

Bα,p(E) = inf{||f ||pp : f ∗ Gα ≥ 1 on E, f ≥ 0}
whenever E ⊂ G. In case α = 0, we take Bα,p as Lebesgue measure. The Riesz
capacity for 0 < α < Q is defined as

Rα,p(E) = inf{||f ||pp : f ∗ Iα ≥ 1 on E, f ≥ 0}
whenever E ⊂ G.

Our definition of Bessel kernel Gα on stratified groups is motivated by above
Theorem 6.3 of Folland. Namely, the anisotropic Sobolev spaces Lα,p defined by
the Bessel potential Gα coincides, when α = m, with the Folland-Stein space
Wm,p(G)(1 < p < ∞) given earlier in the introduction. The benefit of our def-
inition of Gα is as we mentioned earlier that Lα,p coincides with Wm,p when
1 < p < ∞ and α = m following Folland’s work. This important result in the
classical Euclidean space was established by A.P. Calderon [Ca] (see also Stein
[St]). Moreover, our definition of the Bessel kernel Gα allows us to show that it
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satisfies the following important property of its lower and upper bound near the
origin and infinity. Indeed, this is the key observation on which the Hedberg-Wolff
estimates in Section §7 rely. Using this property of the Bessel kernel, we will derive
in §7 a Hedberg-Wolff type characterization of Radon measures belonging to the
dual of anisotropic Sobolev space Lα,p(G) on stratified groups.

Theorem 6.5. The Bessel kernel Gα is a positive, integrable function satisfying
Gα(x) = Gα(x−1). There exist some C1 > 0, C2 > 0, M > 1 such that when
d(x, 0) → ∞ we have

C1d(x, 0)(1/2)(α−Q−1)e−Md(x,0) ≤ Gα(x) ≤ C2d(x, 0)(1/2)(α−Q−1)e− d(x,0)
M .

Moreover, there exist C3 and C4 such that as d(x, 0) → 0 we have

C3d(x, 0)α−Q + o
(
d(x, 0)α−Q

)
≤ Gα (x) ≤ C4d(x, 0)α−Q + o

(
d(x, 0)α−Q

)

and there exist C5, C6, C7 and C8 such that for all x ∈ G and any multi-index I

we have
C5

d(x, 0)Q−α+d(I )
e−C6d(x,0). ≤

∣
∣
∣XIGα (x)

∣
∣
∣ ≤ C7

d(x, 0)Q−α+d(I )
e−C8d(x,0).

We mention in passing that the Riesz potential and Riesz capacity on stratified
groups were already given in [V1]1. Many potential theoretical properties for Riesz
capacity similar to those in Euclidean space were also developed in [V1] and [V2].

The following observations are then easy to see: Since Gα(x) ≤ CIα(x) for all
x ∈ G, it follows from the definition that for 0 < α < Q, 1 < p < ∞, there exists
a constant C = C(α, p, Q) such that

Rα,p(E) ≤ CBα,p(E), whenever E ⊂ G.

Moreover, it is also true (see [L5]) that for αp < Q

Rα,p(E) = 0 if and only if Bα,p(E) = 0.

We also note that for the Riesz capacity, we can easily get by an argument of
dilation

Rα,p(B(x, r)) = Cα,prQ−αpRα,p(B(x, 1)) = Cα,prQ−αpRα,p(B(0, 1)).

This is easily seen because the Riesz kernel Iα is homogeneous of degree α − Q.
However, it is considerably harder to give the estimates of Bessel capacity for metric
balls because of the complicated kernel Gα . Fortunately, we were able to succeed
in [L5] thanks to Theorem 6.5. Indeed, we derive in [L5] the estimates of Bessel
capacities on metric balls on stratified groups, which extends N. Meyers’ theorem in
Euclidean space ([Me2]). We also establish in [L5] the relationship between Riesz
and Bessel capacities, which extends results by Adams [Ad3] in Euclidean space.
The relationship between Hausdorff measures and capacities on Carnot groups was
established in [L6].

We now give the following

1 The second author wishes to thank T. Coulhon for bringing the work of [V1] to his
attention and for sending him a copy of [V1].
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Definition 6.6. A set E ⊂ G is called a Bα,p−capacitable set if

Bα,p(E)= inf{Bα,p(U) :E ⊂ U, U open}=sup{Bα,p(K) :K ⊂ E, K compact}.

It is shown in [L5] that any Borel sets in G are Bα,p−capacitable. More gen-
eral sets in G can be Bα,p−capacitable. The notion of so-called analytical sets in
Euclidean space can be introduced without difficulty (see [CH], [Me2]). However,
we shall not discuss this here further.

We now introduce an equivalent formulation of Bessel capacity.

Definition 6.7. For 1 < p < ∞, and E ⊂ G be a Bα,p-capacitable set, let M (E)

denote the class of Radon measures µ on G such that µ (G − E) = 0. We define

bα,p (E) = sup {µ (G)}

where the supremum is taken over all µ ∈ M (E) such that

‖µ ∗ Gα‖p′ ≤ 1.

The following result is shown in [L5].

Proposition 6.8. For any Bα,p−capacitable set E we have

bα,p (E) = Bα,p(E)
1
p .

We will need the following lemma in the rest of this section.

Lemma 6.9. Let Gα be the Bessel kernel and Iα be the Riesz kernel, we have

∫

G

(f ∗ Gα)(x)h(x)dx =
∫

G

(h ∗ Gα)(x)f (x)dx

and ∫

G

(f ∗ Iα)(x)h(x)dx =
∫

G

(h ∗ Iα)(x)f (x)dx.

This follows from the important fact that Gα(x) = Gα(x−1) and Iα(x) =
Iα(x−1).

We now prove

Lemma 6.10. Let � be a bounded extension domain. Let us assume that µ is a non-
negative measure with the properties that sptµ ⊂ �andµ∗Gm−k ∈ Lp′

(G), where
k is an integer, 0 ≤ k < m. Then µ can be viewed as an element of

(
Wm−k,p(�)

)∗

if we define T : Wm−k,p(�) → R by T (u) = ∫
udµ. Moreover,

||T || ≤ ||µ ∗ Gm−k||p′ .
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Proof. Let u ∈ Wm−k,p(�) where � ⊂ G is a bounded extension domain. Then
there is an extension operator � such that

||�u||Wm−k,p(G) ≤ C||u||Wm−k,p(�).

With no loss of generality we assume that �u has compact support. Then �u has
the representation

�u = f ∗ Gm−k

where f ∈ Lp(G) and ||f ||Lp(G) ≈ ||�u||Wm−k,p(G). Using Lemma 6.9

∫

udµ =
∫

�udµ

=
∫

f ∗ Gm−kdµ

=
∫

(µ ∗ Gm−k) · f dx

≤ ||µ ∗ Gm−k||p′ ||f ||p
≤ C||µ ∗ Gm−k||p′ ||�u||m−k,p

≤ C||µ ∗ Gm−k||p′ ||u||Wm−k,p(�).

Thus, µ ∈ (Wm−k,p(�)
)∗

and ||T || ≤ C||µ ∗ Gm−k||p′ . ��

We are now ready to prove the following main theorem of this section (namely,
Theorem 2.5 stated in Section §2).

Proof of Theorem 2.5. By the alternative formulation of capacity, i.e., Proposition
6.8, there exists a nonnegative measure µ supported in A and

||µ ∗ Gm−k||p′ ≤ 1

and µ(G) ≥ 1
2 (Bm−k,p(A))1/p. If we set T = µ in Theorem 2.1, we have T (χ�) =

µ(G) ≥ 1
2 (Bm−k,p(A))1/p > 0 and from the above Lemma 6.10 that

||T || ≤ C||µ ∗ Gm−k||p′ ≤ C

and thus it follows from Theorem 2.1

||L|| ≤ C
(
Bm−k,p(A)

)−1/p

which yields the first part of Theorem 2.5. The Lp∗
-norm estimate follows from

the same argument as in the proof of Theorem 2.3 in §4. ��

Using Theorem 2.5, we can give the following
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Proof of Theorem 2.6. Clearly, N is Bm−k,p−capacitable. Recall from Definition
6.7 and Proposition 6.8, if Bm−k,p(N) > 0 where

N = � ∩ {x : XIu(x) = 0, d(I ) ≤ k},

there exists a nonnegative measure µ supported in N such that

||µ ∗ Gm−k||p′ ≤ 1

andµ(G) ≥ 1
2 (Bm−k,p(A))1/p.We thus haveT (χ�) = µ(G) ≥ 1

2 (Bm−k,p(A))1/p.
Define T (u) = ∫

N
udµ. Then

T (XIu) =
∫

XIudµ

for all 0 ≤ d(I ) ≤ k and thus are all zeros because µ is supported on N . Since
the coefficients of the polynomial L(u) depend on T (XIu) = ∫

N
XIudµ and thus

are all zeros. This completes the proof of the first inequality of the theorem. The
second inequality follows from the Sobolev interpolation inequality.This completes
the proof of Theorem 2.5 as we did in the proofs of Theorems 2.2 and 2.3. ��

Because of the particular importance of the case m = 1, k = 0, we state the
Poincaré inequality separately.

Corollary 6.11. Let � ⊂ G be a bounded extension domain, u ∈ Wm,p(�) and
let N ⊂ � be a set defined by

N = �
⋂

{x : u(x) = 0 }.

If B1,p(N) > 0, then

||u||Lp∗
(�) ≤ C

(
B1,p(N)

)−1/p ||Xu||Lp(�),

with C = C(k, p, m, �).

As a generalization, we obtain

Theorem 6.12. Let p > 1 and suppose 0 ≤ k ≤ m are integers. Let � ⊂ G be a
bounded extension domain. If there is some µ which is a nonnegative measure on
G such that µ ∈ (Wm−k,p(�))∗, µ(G) 	= 0 and

∫

XIudµ = 0, for all d(I ) ≤ k,

then

||u||p∗;� ≤ C||Xk+1u||m−(k+1),p;�

where C = C(k, p, m, µ, �).
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7. Hedberg-Wolff’s characterization of the dual
of anisotropic Sobolev spaces

If µ is a Radon measure, we define the fractional maximal operator

Mαµ(x) = sup{rα−Qµ(B(x, r)) : r > 0}.

It is easy to see Mαµ(x) ≤ Cµ ∗ Iα(x). The following is much less trivial and is
due to Muckenhoupt and Wheeden [MW] in Euclidean space. For a generalization
to homogeneous space by adapting the method in [MW], we refer the reader to the
independent work of [V1] and the second author’s thesis in 1991 [L7] in which it
is shown:

Lemma 7.1. Let 1 < p < ∞ and 0 < k < Q, then there exists C = C(α, p, Q)

such that

||µ ∗ Iα||p ≤ C||Mαµ||p.

The (α, p) energy of µ is defined as

Eα,p(µ) =
∫

(µ ∗ Gα)p
′
dx.

Clearly, by Lemma 6.9

Eα,p(µ) =
∫

(µ ∗ Gα)
1

p−1 ∗ Gαdµ.

Since the Bessel kernel is dominated by the Riesz kernel, we have

Eα,p(µ) ≤ C

∫

(µ ∗ Iα)p
′
dx

= C

∫

(µ ∗ Iα) · (µ ∗ Iα)
1

p−1 dx

= C

∫

(µ ∗ Iα)
1

p−1 ∗ Iαdµ

where we have also used Lemma 6.9 in the last equality above. The expression

(µ ∗ Iα)
1

p−1 ∗ Iα is called the nonlinear potential of µ.
To prove the main theorem of this section (stated as Theorem 2.7 in Section

§2), we need the following lemma which gives another characterization of Radon
measures belonging to the dual of the fractional Sobolev space Wα,p(�).

Lemma 7.2. A Radon measure µ is in (Wα,p(G))∗ (1 < p < ∞) if and only if
||µ ∗ Gα||p′ < ∞, namely, if and only if the (α, p) energy of µ is finite.
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Proof. For u ∈ Wα,p(G), write u = f ∗ Gα . Thus

∫

udµ =
∫

f ∗ Gαdµ

=
∫

µ ∗ Gα · f dx

≤ ||µ ∗ Gα||p′ · ||f ||p
≤ C||µ ∗ Gα||p′ · ||u||α,p,

which implies that µ ∈ (Wα,p(G))∗.
Conversely, if µ ∈ (Wα,p(G))∗, then

||µ ∗ Gα||
p

′ = sup
f ∈Lp

∫

(µ ∗ Gα)f dx = sup
f ∈Lp

∫

(f ∗ Gα)dµ < ∞.

Therefore, ||µ ∗ Gα||p′ < ∞, namely, the (α, p) energy of µ is finite. ��

Proof of Theorem 2.7. Observe that

µ (B(x, r))

rQ−α
≤
(∫ 2r

r

[
µ (B(x, t))

tQ−α

]p′
dt

t

) 1
p′

≤
(∫ ∞

0

[
µ (B(x, t))

tQ−α

]p′
dt

t

) 1
p′

Thus, the fractional maximal function is bounded by

Mαµ(x) ≤
(∫ ∞

0

[
µ (B(x, t))

tQ−α

]p′
dt

t

) 1
p′

.

Hence, using the Lp
′

boundedness of

||µ ∗ Iα||
p

′ ≤ C||Mαµ||
p

′

we get

Eα,p(µ) ≤ C

∫

G

(µ ∗ Iα)p
′
dx

≤ C

∫

G

(Mαµ)p
′
dx

≤ C

∫

G

(∫ ∞

0

[
µ (B(x, t))

tQ−α

]p′
dt

t

)

dx.
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To estimate the last term, we notice that
∫

G

µ(B(x, t))p
′
dx =

∫

G

µ(B(x, t))
1

p−1 µ(B(x, t))dx

=
∫

G

µ(B(x, t))
1

p−1

∫

B(x,t)

dµ(y)dx

≤
∫

G

∫

B(x,t)

µ(B(y, 2t))
1

p−1 dµ(y)dx

≤ C

∫

G

µ[B(y, 2t)]
1

p−1 |B(y, t)|dµ(y)

= CtQ
∫

G

µ[B(y, 2t)]
1

p−1 dµ(y).

In next to the last equality we have used the Fubini’s theorem and we used |B(y, t)| =
CtQ. Thus,

Eα,p(µ) ≤ C

∫ ∞

0
(tα−Q)p

′
tQ
∫

G

µ[B(y, 2t)]
1

p−1 dµ(y)
dt

t

= C

∫

G

∫ ∞

0

(
µ[B(y, t)]

tQ−αp

) 1
p−1 dt

t
dµ(y).

Since µ has compact support and µ(G) < ∞, thus it is easy to see that the expres-
sion on the right hand side of the above inequality is finite if

∫

G

∫ 1

0

(
µ[B(y, t)]

tQ−αp

) 1
p−1 dt

t
dµ(y) < ∞

and consequently Eα,p(µ) is finite and then by Lemma 7.2 we get µ ∈ (Wα,p(G))∗.
This proves the sufficiency of Theorem 2.7.

To prove the necessity, we need to use the lower bound of the Bessel kernel (see
Theorem 6.5)

Gα(x) ≥ C|x|α−Qe−M|x| for x ∈ G, x 	= 0.

The (α, p) energy of µ can be written as

Eα,p(µ) =
∫

G

(µ ∗ Gα)
1

p−1 ∗ Gαdµ.

If write f = (µ ∗ Gα)
1

p−1 , then

f ∗ Gα(x) =
∫

G

f (xy−1)Gα(y)dy

≥ C

∫ ∞

0

(∫

B(x,r)

f (y)dy

)

rα−Qe−Mr dr

r
.
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But for y ∈ B(x, r)

f (y) ≥
(∫

B(x,r)

Gα(z−1y)dµ(z)

) 1
p−1

≥ C

(∫

B(x,r)

|z−1y|α−Qe−M|z−1y|dµ(z)

) 1
p−1

≥ C

(∫

B(x,r)

rα−Qe−2Mrdµ(z)

) 1
p−1

= C
(
µ(B(x, r))rα−Qe−2Mr

) 1
p−1

where we have used the fact |z−1y| ≤ 2r for y, z ∈ B(x, r). Thus,

f ∗ Gα(x) ≥ C

∫ ∞

0

(∫

B(x,r)

f (y)dy

)

rα−Qe−Mr dr

r

≥ C

∫ ∞

0

(∫

B(x,r)

(
µ(B(x, r))rα−Qe−2Mr

) 1
p−1

dy

)

rα−Qe−Mr dr

r

≥ C

∫ ∞

0

(
µ[B(x, r)]

rQ−αp

) 1
p−1

e−2p′Mr dr

r
.

This implies that

Eα,p(µ) ≥ C

∫

G

∫ ∞

0

(
µ[B(x, r)]

rQ−αp

) 1
p−1

e−2p′Mr dr

r
dµ(x)

≥ C

∫

G

∫ 1

0

(
µ[B(y, r)]

rQ−αp

) 1
p−1

e−2p′Mr dr

r
dµ(x)

≥ Ce−2Mp′
∫

G

∫ 1

0

(
µ[B(x, r)]

rQ−αp

) 1
p−1 dr

r
dµ(x)

This establishes the necessity of Theorem 2.7 by using Lemma 7.2 again. ��
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equalities and representation formulas in spaces of homogeneous type Interna-
tional Math. Research Notices, 1996, pp. 1–14

[Ha] Hajlasz, P.: Sobolev spaces on an arbitrary metric space. Potential Analysis 5,
403–415 (1996)

[He] Hedberg, L.: Spectral synthesis in Sobolev spaces, and uniqueness of solutions
of Dirichlet problem. Acta Math. 147, 237–264 (1981)

[HW] Hedberg, L., Wolff, T.: Thin sets in nonlinear potential theory. Ann. Inst. Fourier
(Grenoble) 23, 161–187 (1983)

[L1] Lu, G.: Local and global interpolation inequalities for the Folland–Stein Sobolev
spaces and polynomials on the stratified groups. Math. Res. Letters 4, 777–790
(1997)

[L2] Lu, G.: Polynomials, higher order Sobolev extension theorems and interpola-
tion inequalities on weighted Folland–Stein spaces on stratified groups. Acta
Mathematica Sinica, English Series 16(3), 405–444 (2000)

[L3] Lu, G.: Extension and interpolation theorems on weighted anisotropic Sobolev
spaces on stratified groups. Math. Sci. Res. Hot-Line 3(6), 1–27 (1999)
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