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Abstract

The main results of this paper concern sharp constants for the Moser-Trudinger

inequalities on spheres in complex space C
n . We derive Moser-Trudinger in-

equalities for smooth functions and holomorphic functions with different sharp

constants (see Theorem 1.1). The sharp Moser-Trudinger inequalities under con-

sideration involve the complex tangential gradients for the functions and thus we

have shown here such inequalities in the CR setting. Though there is a close

connection in spirit between inequalities proven here on complex spheres and

those on the Heisenberg group for functions with compact support in any finite

domain proven earlier by the same authors [17], derivation of the sharp constants

for Moser-Trudinger inequalities on complex spheres are more complicated and

difficult to obtain than on the Heisenberg group. Variants of Moser-Onofri-type

inequalities are also given on complex spheres as applications of our sharp in-

equalities (see Theorems 1.2 and 1.3). One of the key ingredients in deriving the

main theorems is a sharp representation formula for functions on the complex

spheres in terms of complex tangential gradients (see Theorem 1.4).

c© 2004 Wiley Periodicals, Inc.

1 Introduction and Statement of Main Theorems

In 1971 J. Moser [28] found the largest positive constant β0 (which sharpened

the result of Trudinger [39]) such that if � is an open subset of euclidean space R
n

(n ≥ 2) with finite Lebesgue measure, then there is a constant C0 depending only

on n such that

(1.1)
1

|�|

∫

�

exp
(

β| f (x)| n
n−1

)

dx ≤ C0

for any β ≤ β0 and any f in the Sobolev space W
1,n
0 (�) provided ‖∇ f ‖Ln(�) ≤ 1.

In fact, Moser showed β0 = nω
1/(n−1)

n−1 , where ωn−1 is the area of the surface

of the unit n-ball. He also proved that if β exceeds β0, then the above inequality

cannot hold with uniform C0 independent of f . Later, D. Adams found sharp
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constants for the Moser inequality in higher-order Sobolev spaces [1], and these

higher-order Moser-Trudinger inequalities were proven for Riemannian manifolds

by Fontana [22] and Branson, Chang, and Yang [7].

Along with the Moser-Trudinger inequality, the question of whether the supre-

mum

(1.2) sup

{

1

|�|

∫

�

exp
(

nω
1/(n−1)

n−1 | f (x)| n
n−1

)

dx : f ∈ W
1,n
0 (�), ‖∇ f ‖Ln(�) ≤ 1

}

is attained has also been considered. In 1986 Carleson and Chang [10] proved

that the above supremum has extremals for the case where � is a ball in R
n for

n ≥ 2. Their result came as a surprise since it was already known that Sobolev

inequality has no extremals supported in balls for p > 1 (see Talenti [38] and

Aubin [2]). Carleson and Chang proved the existence of extremals by reduction

to a one-dimensional problem using a symmetrization argument. We note that

the Carleson-Chang result was extended to arbitrary bounded smooth domains by

Flucher when n = 2 [21] and by Lin for the case n > 2 [27]. Furthermore, Soong

extended the result to some domains contained in n-spheres [36].

With a modification of Moser’s proof of his inequality (1.1), Moser also proved

in [29] that there exists a constant C0 such that 4π is the best constant for the

inequality

(1.3)

∫

S2

exp(4π | f (x)|2)dσ ≤ C0

for any smooth f on S
2 with

∫

S2 |∇ f |2 dσ ≤ 1 and
∫

S2 f dσ = 0, where dσ is the

surface measure and ∇ is the gradient on S
2.

Moser further proved that when the function f is in the class of even functions

on S
2, i.e., f (ξ) = f (−ξ), the best constant for Moser’s inequality is 8π . Namely,

there exists a constant C0 such that 8π is the best constant for the inequality

(1.4)

∫

S2

exp(8π | f (x)|2)dσ ≤ C0

for any smooth f on S
2 with

∫

S2 |∇ f |2 dσ ≤ 1,
∫

S2 f dσ = 0, and f (ξ) = f (−ξ).

Inequality (1.3) is motivated by the Nirenberg problem: characterize all Gauss

curvature functions K (x) belonging to metrics ds2 that are conformally related to

the standard metric ds2
0 so that ds2 = e f ds2

0 for a function f on S
2. Let △ be the

Laplace-Beltrami operator on S
2 with respect to the standard metric ds2

0 . Thus K

and f are related by the equation

(1.5) △ f + K e2 f − 1 = 0 .
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Moser applied inequality (1.3) to the problem of prescribing Gaussian curvature
on S

2. He considered the functional

(1.6) G( f ) = log

{

1

4π

∫

S2

K e2 f dσ

}

− 1

4π

∫

S2

|∇ f |2 dσ − 1

2π

∫

S2

f dσ .

Using inequality (1.3) Moser showed that there is a positive constant C such that

(1.7)
1

4π

∫

S2

e2 f dσ ≤ C exp

{

1

4π

∫

S2

|∇ f |2 dσ + 1

2π

∫

S2

f dσ

}

.

It follows from (1.7) that the functional G( f ) is bounded from above. Under the
further assumption that K (ξ) = K (−ξ) on S

2, Moser showed that equation (1.5)
has a solution f such that f (ξ) = f (−ξ) provided that maxS2 K (ξ) > 0 using the
boundedness from above for the functional G( f ) and inequality (1.4).

We now recall that the Moser-Onofri inequality on S
2 states that

(1.8)
1

4π

∫

S2

e2 f dσ ≤ exp

(

1

4π

∫

S2

(2 f + |∇ f |2)dσ

)

with equality if and only if e2 f g0 is isometric to g0. The contribution of Onofri
[31] lies in the fact that (1.8) is an improvement of (1.7) in the sense that the sharp
constant C in (1.7) is 1. Onofri’s inequality was also independently proven by
Hong [23] (see also another proof in [32]). It was applied to geometry by Osgood,
Phillips, and Sarnak [32, 33], who used it to compute extremals for determinants of
Laplacians on two-dimensional manifolds. As a corollary of Onofri’s inequality, it
follows that among all the metrics on S

2, log det △0 is the maximum. Moreover, it
is shown by Osgood, Phillips, and Sarnak that the isospectral family of metrics on
compact surfaces without boundary forms a compact set in the C∞ topology.

We now turn to the generalization of Onofri’s inequality to the higher-dimen-
sional case. Let △S denote the Laplacian on S

n . We note that the inequality in-
volves the Paneitz operator on the sphere. The Paneitz operator on 4-manifolds
was discovered by Paneitz [34]. It was extended for all dimensions n 6= 2 by
Branson [6] and Beckner [5].

On the n-dimensional sphere, the Paneitz operator is defined as the pullback of
(−△)n/2 under the stereographic projection. More precisely, define the operator
An on L2(Sn) by

An =
n−2

2
∏

j=0

(−△S + j (n − 1 − j)) if n is even

and

An =
n−3

2
∏

j=0

(−△S + j (n − 1 − j))

(

−△S +
(

n − 1

2

)2) 1
2

when n is odd.



MOSER-TRUDINGER INEQUALITIES ON COMPLEX SPHERES 1461

The eigenvalues of An are l(l + 1) · (l + n − 1), l = 0, 1, 2, . . . , and the eigen-
functions are spherical harmonics. It is easy to check that

A1 = (−△S)
1
2 , A2 = −△S , and A4 = (−△S)

2 + 2(−△S) .

This operator An is a natural generalization of the conformal Laplacian on S
2 and

the Paneitz operator on S
4 [7, 34]. We note that An is given in the stereographic

coordinates by h−1(−△)
n
2 , where

h = |Sn|−1

(

2

1 + |x |2
)n

is the Jacobian of the stereographic projection. It is also easy to see that An is
covariant in the sense that for each conformal map

τ : S
n → S

n

and for f : S
n → R,

An( f ◦ τ) = |Jτ |(An f ) ◦ τ .

Thus the higher-dimensional Onofri’s inequality of Beckner (see also Carlen and
Loss [9]) states that

(1.9)
1

2n!

∫

Sn

∣

∣A1/2
n f

∣

∣

2
dµ ≥ log

(∫

Sn

e f dµ

)

−
∫

Sn

f dµ

holds for all f ∈ L2(Sn) for which the left side of the above inequality is finite
(here we use dµ to denote the uniform normalized surface measure on S

n). The
equality holds if and only if there is a conformal τ whose Jacobian is Jτ such that
f = const + log |Jτ |.

The important relationship between the higher-dimensional Moser-Onofri in-
equality and the problem of prescribing Q-curvature on high-dimensional Rie-
mannian manifolds has been explored extensively in the work of Paneitz [34],
Branson [6], Branson, Chang, and Yang [7], Branson and Ørsted [8], Chang and
Yang [13], and Chang, Gursky, and Yang [12]. We refer to Chang [11] and Chang
and Yang [14, 15] for extensive recent accounts and many references in this direc-
tion.

Although there has been substantial development of the theory of conformal
geometry on spheres, euclidean space, and more general Riemannian manifolds,
much less is known in the CR setting.

In the 1980s Jerison and Lee successfully completed the program of prescribing
the scalar curvature problem in the CR setting (see [24, 25, 26]). In particular, they
found the best constant and extremals for the L2 to L2Q/(Q−2) Sobolev inequality
on the Heisenberg group H

n (where Q = 2n + 2 is the homogeneous dimension),
and solved the CR Yamabe problem of conformally changing the contact form to
one with constant Webster curvature in the compact setting. The extensive explo-
ration of conformal geometry and Moser-Trudinger and Moser-Onfri inequalities
on Riemannian manifolds as mentioned above, and the work in the CR setting by
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Jerison and Lee [24, 25, 26], Fefferman [19], Fefferman and Graham [20], and

Bailey, Eastwood, and Graham [3] suggest that a satisfactory theory in the CR set-

ting should be developed. To this end, Cohn and Lu obtained the sharp constant

for the Moser-Trudinger inequality on the Heisenberg group in [17]. The method

of [17] is to derive a sharp pointwise estimate for any function with compact sup-

port on H
n by the convolution of an integral kernel with the subelliptic gradient

of the function. The rearrangement of the convolution (rather than considering the

rearrangement of the function itself) is then used to derive the sharp constant for

the Moser-Trudinger inequality on H
n . The ideas and methods developed in [17]

have also been used to generalize to the Heisenberg-type group in [18] and more

general groups in [4].

Motivated by [17], the prominent role of the Heisenberg group H
n and the

sphere in C
n in CR geometry, and the intimate relationship between them (see

expositions for such a relationship in [16, 37]), in this paper we investigate the

sharp Moser-Trudinger and Moser-Onofri inequalities on the sphere in complex

space C
n .

Our main result is a sharp Moser-Trudinger-type inequality with the complex

tangential gradient on spheres of odd dimension. A sphere of odd dimension can

be viewed as a sphere in an n-dimensional complex space; therefore there is a

complex tangential gradient on such a sphere. This complex tangential gradient is

bounded above pointwise by the usual gradient.

To state our main theorems, we must first introduce some necessary notation

and definitions. A more precise and detailed account will be given in Section 2.

Let C denote the complex numbers and C
n be the usual n-dimensional complex

vector space equipped with the Hermitian inner product

〈z, w〉 =
n

∑

j=1

z j w̄j

where z = (z1, . . . , zn) and w = (w1, . . . , wn) ∈ C
n .

We define the standard vector fields

Dk = 1

2

(

∂

∂xk

− i
∂

∂yk

)

and Dk = 1

2

(

∂

∂xk

+ i
∂

∂yk

)

, k = 1, . . . , n,

and recall the complex structure map on vector fields determined by the equations

J Dk = i Dk and J Dk = −i Dk .

Let S (= S
2n−1) be the (real) (2n − 1)–dimensional sphere {z : 〈z, z〉 = 1}

contained in C
n , and R(z) = z · D + z · D =

∑n
j=1 z j · Dj + z j · D j denote the

vector field normal to the sphere.

If f is a smooth function defined on a neighborhood of a point z ∈ C
n , then the

ordinary gradient in C
n is

∇ f (z) =
∑

j

2Dj f (z)Dj + 2Dj f (z)D j .
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Let ∇t f be the projection of ∇ f onto the tangent space at S normal to R, and let

∇C f be the projection of ∇ f onto the complex tangent space at S normal to both

R and J R, respectively. Thus

∇t f (z) = ∇ f (z) − 〈∇ f (z), R(z)〉R(z)

and

∇C f (z) = ∇ f (z) − 〈∇ f (z), R(z)〉R(z) − 〈∇ f (z), J R(z)〉J R(z) .

From this it is clear that

|∇C f (z)|2 = |∇t f (z)|2 − |J R f (z)|2 .

Therefore,

|∇C f (z)| ≤ |∇t f (z)| ;
that is, the complex tangential gradient is pointwise bounded above in the norm by

the euclidean tangential.

Let

(1.10) Mjk(z) = z j Dk − zk Dj , M jk(z) = z j Dk − zk D j ,

and

(1.11) Ek =
√

2
∑

j

z j Mj,k , Ek =
√

2
∑

j

z j M j,k .

Then we get the formulas

(1.12) ∇C f (z) =
∑

j

E j f (z)E j + E j f (z)E j

and

(1.13) |∇C f (z)|2 =
∑

j

|E j f (z)|2 + |E j f (z)|2 .

Let dσ denote the normalized volume element on S, and let

B(p, q) =
∫ 1

0

x p−1(1 − x)q−1 dx

be the beta function for p > 0, q > 0. We also denote by ‖g‖L2n(S) or ‖g‖2n the

L2n norm of a function g on S with respect to the measure dσ . One of the main

theorems of this paper is the following result:

THEOREM 1.1 Let

B = n

(

(n − 1)π−122n−2 · B

(

2n − 1

2
,

1

2

))
1

2n−1

.
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There is a constant C0 such that, for all smooth functions f with
∫

S
f dσ = 0 and

‖∇C f ‖L2n(S) ≤ 1, the inequality

(1.14)

∫

S

exp
(

B| f | 2n
2n−1

)

dσ ≤ C0

is verified. No larger value of B verifies the inequality. If f is taken from the

class of all holomorphic functions with f (0) = 0, then the sharp constant can be

enlarged to BH = 2n/(2n−1) · B.

Recall that the Moser-Trudinger inequality on the real sphere S = S
2n−1 as

stated in the work of Moser [28] and Fontana [22] states that

(1.15)

∫

S

exp
(

β0| f | 2n−1
2n−2

)

dσ ≤ C0

with a different sharp constant β0 > 0 for f with
∫

S
f dσ = 0 and ‖∇t f ‖2n−1 ≤ 1.

There are several differences between inequalities (1.14) and (1.15):

• The smaller gradient |∇C f | occurs in place of the usual gradient |∇t f |.
• The assumptions on the exponents of integrability for the gradients are

different. In (1.14) the exponent is 2n as opposed to the exponent 2n − 1,

which occurs in (1.15).

Using Theorem 1.1 we can derive the following Moser-Onofri-type inequality.

(We do not know, however, the exact values of the sharp constants C0 and C1.)

THEOREM 1.2 Let B be the same constant as in Theorem 1.1. Then there is a

constant C0 such that

log

∫

S

e2n f dσ ≤ log C0 + 2n

∫

S

f dσ

+ (2n)2n−1

(

2nB

2n − 1

)−(2n−1) ∫

S

|∇C f |2n dσ .

If f is taken from the class of all holomorphic functions, then there is a constant C1

such that

log

∫

S

e2n f dσ ≤ log C1 + 2n

∫

S

f dσ

+ (2n)2n−1

(

2nBH

2n − 1

)−(2n−1)∫

S

|∇C f |2n dσ

where BH = 2
n

2n−1 · B.
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We now consider the functionals

I ( f ) = log

∫

S

e2n f dσ − 2n

∫

S

f dσ

− (2n)2n−1

(

2nB

2n − 1

)−(2n−1) ∫

S

|∇C f |2n dσ

for all smooth f and

J ( f ) = log

∫

S

e2n f dσ − 2n

∫

S

f dσ

− (2n)2n−1

(

2nBH

2n − 1

)−(2n−1) ∫

S

|∇C f |2n dσ

for holomorphic f . Then Theorem 1.2 implies the following:

THEOREM 1.3 The functionals I ( f ) and J ( f ) are bounded from above. Namely,

sup I ( f ) < ∞ and sup J ( f ) < ∞ .

In the proof of Theorem 1.1 above, the main tool is a sharp representation for-

mula. For λ ∈ C, let

Kβ(λ) =
(

2n+β−1 B

(

n + β

2
,

1

2

))−1

(n + β − 1) · (1 − |λ|2)β

|1 − λ|n+β−1
,

and let the convolution on the sphere S be defined as

f ∗ Kβ(ξ) =
∫

S

f (z)Kβ(〈z, ξ〉)dz .

Then we get a one-parameter representation formula, which leads to the following

pointwise inequality, where, from now on, cn = (n − 1)π−1:

THEOREM 1.4 Suppose β > −n + 1 and

Bβ =
(

cn2n+β−1 B

(

n + β

2
,

1

2

))−1

.

Then

(1.16) | f (ζ ) − f ∗ Kβ(ζ )| ≤ Bβ

∫

S

|∇C f (z)|(1 − |〈z, ζ 〉|2)β+1/2

|1 − 〈z, ζ 〉|n+β
dσ(z) .

If f is holomorphic, then the constant Bβ on the right-hand side can be replaced

by the smaller number
√

2/2 · Bβ .
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By choosing β = n − 1 in Theorem 1.4, we have

(1.17) | f (ζ ) − f ∗ Kn−1(ζ )| ≤ Bn−1

∫

S

|∇C f (z)|(1 − |〈z, ζ 〉|2)n−1/2

|1 − 〈z, ζ 〉|2n−1
dσ(z) .

Using (1.17) we get the sharp Moser-Trudinger inequality

(1.18)

∫

S

exp

(

B

( | f − f ∗ Kn−1|
‖∇C f ‖2n

)
2n

2n−1
)

dσ ≤ C0

with the same sharp constant B as in Theorem 1.1. The passage from this to The-
orem 1.1 requires the use of an embedding theorem relating the complex gradient
∇C f and the ordinary gradient ∇t f (see Section 7 for more details).

To conclude this introduction, we make some remarks concerning the relation-
ship between the sharp Moser-Trudinger inequalities on the Heisenberg group and
those on complex spheres. One might suppose that the sharp Moser-Trudinger in-
equalities on the sphere S in C

n should follow from those on the Heisenberg group
by using the well-known Cayley transform. As far as we understand, this is not the
case. Indeed, none of the theorems in this paper on the complex sphere seem to
follow in such a way.

To be more precise, we recall what we have proven in [17] concerning the
Moser-Trudinger inequality on the Heisenberg group H

n . Let H
n be the n-dimen-

sional Heisenberg group

H
n = C

n × R

whose group structure is given by

(z, t) · (z′, t ′) = (z + z′, t + t ′ + 2 Im(z · z′))

for any two points (z, t) and (z′, t ′) in H
n .

The Lie algebra of H
n is generated by the left-invariant vector fields

T = ∂

∂t
, X i = ∂

∂xi

+ 2yi

∂

∂t
, Yi = ∂

∂yi

− 2xi

∂

∂t
,

for i = 1, . . . , n. These generators satisfy the noncommutative relationship

[X i , Yj ] = −4δi j T .

Moreover, all the commutators of length greater than 2 vanish, and thus this is a
nilpotent, graded, and stratified group of step 2.

We now use |▽Hn f | to express the (euclidean) norm of the subelliptic gradient
of f :

|▽Hn f | =
n

∑

i=1

(

(X i f )2 + (Yi f )2
)

1
2 .

We also use W
1,p

0 (�) for the open set � ⊂ H
n to denote the completion of C∞

0 (�)

under the norm

‖ f ‖L p(�) + ‖∇Hn f ‖L p(�) .
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The following sharp Moser-Trudinger inequality on the n-dimensional Heisen-

berg group H
n was proven by Cohn and Lu in [17].

THEOREM A Let AQ = Q(cQ)Q′/Q , where

Q = 2n + 2 , Q′ = Q

Q − 1
, and cQ =

ω2n−1Ŵ( 1
2
)Ŵ( Q−1

2
)

Ŵ( Q

2
)

.

There exists a constant C0 such that for all � ⊂ H
n , |�| < ∞, and f ∈ W

1,Q

0 (�),

1

|�|

∫

�

exp
(

AQ| f (u)|Q′)
du ≤ C0 ,

provided ‖∇Hn f ‖L Q ≤ 1. Furthermore, if AQ is replaced by any number greater

than AQ , then the statement is false.

We now let B
n = {w ∈ C

n : |w| < 1} be the unit ball in C
n whose boundary

is S. Let

D = {z = (z′, zn) : Im zn > |z′|2} ⊂ C
n .

The Cayley transform C : B
n → D is thus defined as

C(w) = (w′, wn) =
(

w′

1 + wn

, i
1 − wn

1 + wn

)

.

This transform explores the biholomorphic equivalence between D and B
n . The

(n − 1)–dimensional Heisenberg group H
n−1 arises as the group of translations

of D, and this leads to its identification with the boundary of ∂D; see Stein’s

book [37, p. 530].

This Cayley transform also maps the sphere S minus the south pole to the

boundary of D, the (n − 1)–dimensional Heisenberg group H
n−1. It is natural

to see if there is any way to derive the Moser-Trudinger inequality on S from the

one on H
n−1 obtained from Theorem A. (Note that we need to replace n by n − 1

in Theorem A). This does not seem to be a straightforward matter, as is explained

below.

Theorem A gives only a sharp Moser-Trudinger inequality on the Heisenberg

group for functions with compact support for any given bounded open set �. Un-

der the Cayley transform, such functions are transformed to those functions with

compact support away from the south pole (0, . . . , 0,−1) in S. More precisely, we

can derive through Theorem A an inequality of the following type on S:
∫

E

exp
(

A2n| f | 2n
2n−1

) dσ

|1 + wn|2n
≤ C

∫

E

dσ

|1 + wn|2n

provided ‖∇C f ‖2n ≤ 1, where E is an open subset of S and E ∩ (0, . . . , 0,−1) =
∅ and f are functions supported in E .
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This inequality is unsatisfactory for two reasons. First, the inequality only holds

for functions supported in an open subset away from the south pole. The Moser-

Trudinger inequality derived in this paper (see Theorem 1.1) involves arbitrary

smooth functions on the complex sphere S without restriction on their support. To

achieve this we must have a term
∫

S
f dσ subtracted from f in the inequality of

Theorem 1.1. Second, inequalities derived from Theorem A will involve an extra

weight dσ

|1+wn |2n in the integrals on both sides. Such an inequality is clearly different

from the sharp Moser-Trudinger inequality given by Theorem 1.1.

In summary, although the Cayley transform certainly can be used to reformulate

results on the Heisenberg group to results on the complex sphere, Theorem 1.1 is

not simply a reformulation of Theorem A. This is why we have taken the direct

approach used in this paper.

The organization of the paper is as follows: In Section 2, we introduce in de-

tail the necessary notation and consider the divergence of vector fields in C
n . The

purpose of using this divergence is to make it easier to realize the differential oper-

ator Lβ,ζ under consideration in Section 3 as a divergence operator. In Section 3,

we prove a representation formula in terms of this differential operator Lβ,ζ (see

Theorem 3.3) and thus prove the sharp pointwise estimates Theorem 3.4 (namely,

Theorem 1.4 stated above). Section 4 deals with the estimates for distribution

functions for the kernel arising in the sharp pointwise estimates in Theorem 1.4. In

Section 5, we use the distribution estimates in Section 4 and the sharp pointwise

estimates to prove the Moser-Trudinger inequality (1.12) for f − f ∗Kn−1. We then

prove in Section 6 that such constants derived in Section 5 are optimal. Section 7

provides the proof of the main theorem, Theorem 1.1 stated above. In Section 8,

we prove Theorems 1.2 and 1.3 and give some remarks concerning the functionals

I ( f ) and J ( f ).

2 Preliminaries

Recall from Section 1 that we let C denote the complex numbers and C
n be

the usual n-dimensional complex vector space equipped with the Hermitian inner

product

〈z, w〉 =
n

∑

j=1

z j w̄j

where z = (z1, . . . , zn) and w = (w1, . . . , wn) ∈ C
n . If z and w are identified with

vectors in R
2n , then z · w = Re〈z, w〉 is the usual real inner product.

At each point in C
n we also use the notation 〈 · , · 〉 to denote the usual Hermit-

ian Riemannian metric on complex-valued tangent vectors. Defining the standard

vector fields

Dk = 1

2

(

∂

∂xk

− i
∂

∂yk

)

and Dk = 1

2

(

∂

∂xk

+ i
∂

∂yk

)

, k = 1, . . . , n,
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it follows that the vector fields {
√

2 Dk,
√

2 Dk} form an orthonormal system. If

a ∈ C
n it will also be convenient to use the notation a · D =

∑n
j=1 aj Dj and

a · D =
∑n

j=1 a j D j . It follows that any vector field X is of the form X (z) =
a · D + b · D where a : C

n → C
n and b : C

n → C
n are C

n-valued functions. Note

that 〈a · D + b · D, c · D + d · D〉 = 1
2
(〈a, c〉 + 〈d, b〉). In addition, we recall the

complex structure map on vector fields determined by the equations J Dk = i Dk

and J Dk = −i Dk . Thus J (a · D + b · D) = i(a · D − b · D). It is easy to see

that J 2 = −I , 〈J X, JY 〉 = 〈X, Y 〉 and 〈J X, Y 〉 = −〈X, JY 〉 for all vector fields

X and Y .

Let S be the (real) (2n − 1)–dimensional sphere {z : 〈z, z〉 = 1} contained in

C
n . We will be working with functions defined on the sphere S and vector fields

that are tangent to the sphere. Let R(z) = z · D + z · D denote the vector field

normal to the sphere. Let X = X (z) be a vector field defined on a neighborhood of

S. Then X is called tangential if 〈X (z), R(z)〉 = 0 for all z ∈ S, i.e., X (|z|2) = 0

for all z ∈ S. It follows that the vector field X = a · D + b · D is tangential if and

only if 〈a(z), z〉 + 〈z, b(z)〉 = 0 for all z ∈ S.

A vector field X is called complex tangential if both X and J X are tangential.

Let N = −i J R = (z · D − z · D). Equivalently, X is complex tangential if and

only if both 〈X, R〉 = 0 and 〈X, N 〉 = 0 at all points of the sphere. It is not hard to

verify that X = a · D +b · D is complex tangential if and only if both 〈a(z), z〉 = 0

and 〈b(z), z〉 = 0 for all z ∈ S. Obviously, X is complex tangential if and only if

both a(z) ∈ C
n ⊖ zC and b(z) ∈ C

n ⊖ zC for all z ∈ S.

If f is a smooth function defined on a neighborhood of a point z ∈ C
n , then

∇ f (z) denotes the unique tangent vector with the property that, for all vectors

X (z) in the tangent space at z, X f (z) = 〈X (z), (∇ f )(z)〉. It is easy to see that

∇ f (z) =
∑

j

2Dj f (z)Dj + 2Dj f (z)D j .

If f is a smooth function defined on S, then ∇t f denotes the unique vector field

that is tangential to S with the property that X f (z) = 〈X (z), (∇t f )(z)〉 for all

tangential vector fields X .

If f is a smooth function, then there is also a unique complex tangential vector

field that we denote by ∇C f with the property that X f (z) = 〈X (z), (∇C f )(z)〉 for

all complex tangential vector fields X . We will need formulas for ∇t f and ∇C f .

To get ∇t f and ∇C f , we simply take the projection of ∇ f onto the tangent

space and complex tangent space of S. Thus

∇t f (z) = ∇ f (z) − 〈∇ f (z), R(z)〉R(z)

and

∇C f (z) = ∇ f (z) − 〈∇ f (z), R(z)〉R(z) − 〈∇ f (z), J R(z)〉J R(z)

= ∇t f (z) − J R f (z)J R(z) .
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From this it is clear that

|∇C f (z)|2 = |∇t f (z)|2 − |J R f (z)|2 .

It is easy to check that if E j and E j are the projections defined by

E j (z) =
√

2 Dj − 〈
√

2 Dj , R(z)〉R(z) − 〈
√

2 Dj , J R(z)〉J R(z)

and

E j (z) =
√

2 D j − 〈
√

2 D j , R(z)〉R(z) − 〈
√

2 D j , J R(z)〉J R(z) ,

then

E j (z) =
√

2 (Dj − z j (z · D)) and E j (z) =
√

2 (D j − z j (z · D)) .

Since

∇C f =
∑

j

〈∇C f, E j 〉E j + 〈∇C f, E j 〉E j ,

we get the formulas

∇C f (z) =
∑

j

E j f (z)E j + E j f (z)E j

and

|∇C f (z)|2 = 〈∇C f (z),∇C f (z)〉

= ∇C f ( f )

=
∑

j

|E j f (z)|2 + |E j f (z)|2 .

Let V : C
n → C

n be a complex linear map. Then the map defined on tangent

vectors by

V (a · D + b · D) = V (a) · D + V (b) · D

is also complex linear, and if V ∗ is the Hermitian adjoint of V with respect to the

inner product on C
n , then it is also true that 〈V X, Y 〉 = 〈X, V ∗Y 〉. We have the

following proposition:

PROPOSITION 2.1 Let V be a unitary map. Then

∇C( f ◦ V )(z) = V ∗[(∇C f )(V (z))] .

PROOF: Notice that if X (z) = a(z) · D + b(z) · D is complex tangential, then

the vector field defined by

Y (z) = V ∗(X (V (z)) = V ∗(a(V z)) · D + V ∗(b(V z)) · D

is also complex tangential. By the chain rule,

(a · D + b · D)( f ◦ V )(z) = (V (a(z)) · D + V (b(z)) · D)( f )(V z) .
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From this it follows that if X is complex tangential, then

X ( f ◦ V )(z) = 〈V X (z), (∇C f )(V z)〉
= 〈X (z), V ∗(∇C f )(V z)〉 .

Since Y (z) = V ∗(∇C f )(V z) defines a complex tangential vector field, the propos-

tion is established. �

Let

Mjk(z) = z j Dk − zk Dj , M jk(z) = z j Dk − zk D j ,

and

N (z) = z · D − z · D , N (z) = z · D − z · D = −N .

It is easy to see that these are tangential vector fields and that Mj,k and M j,k are

complex tangential. Furthermore,

〈N , Mj,k〉 = 〈N , M j,k〉 = 〈Mj,k, Mr,s〉 = 0 .

LEMMA 2.2 The following formulas are true:

Ek =
√

2
∑

j

z j Mj,k and Ek =
√

2
∑

j

z j M j,k .

The advantage of the vector fields Mj,k and M j,k is that they satisfy the follow-

ing formula, which is easy to check:

LEMMA 2.3 Let f and g be smooth functions on S. Then

∫

S

gMj,k f d S =
∫

S

f Mj,k g d S and

∫

S

gM j,k f d S =
∫

S

f M j,k g d S .

We now turn to the discussion of divergence of tangential vector fields. The

purpose of defining such a divergence is for the convenience of presentation in

Section 3 in proving the sharp representation formulas using the differential op-

erator Lβ,ζ in the form of divergence. It is convenient to adapt this notion to do

integration by parts.

It follows from Lemma 2.3 that if X is a complex tangential vector field and X∗

its formal adjoint, then

X =
∑

j,k

〈X, Ek〉z j Mj,k + 〈X, Ek〉z j M j,k
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and

X∗ + X = −
∑

k

Ek(〈X, Ek〉) + Ek(〈X, Ek〉)

−
∑

j,k

〈X, Ek〉Mj,k(z j ) + 〈X, Ek〉M j,k(z j )

= −
∑

k

Ek(〈X, Ek〉) + Ek(〈X, Ek〉)

−
∑

j,k

〈X, Ek〉(z jδjk − zk) + 〈X, Ek〉(z jδjk − zk)

= −
∑

k

Ek(〈X, Ek〉) + Ek(〈X, Ek〉) − (n − 1)〈X, R(z)〉

= −
∑

k

Ek(〈X, Ek〉) + Ek(〈X, Ek〉) .

If f is a smooth function on S and X is a tangential vector field on S, then the

tangential divergence divt is defined by the equation
∫

S

f divt X dσ =
∫

S

X f dσ =
∫

S

〈X,∇t f 〉dσ ,

where dσ is the volume element on the sphere. Thus, divt is the formal adjoint

of ∇t. It follows from integration by parts, i.e., Stokes theorem (see Rudin’s book

[35]) that if

X = 〈X, N 〉N +
∑

j

〈X, E j 〉E j + 〈X, E j 〉E j

is tangential, then

divt X = −N (〈X, N 〉) −
∑

j

E j (〈X, E j 〉 − E j (〈X, E j 〉) .

3 Sharp Representation Formulas on Complex Spheres

The goal of this section is to prove the sharp representation formulas (The-

orem 1.4), which are some of the key ingredients in deriving the sharp Moser-

Trudinger inequalities (Theorem 1.1).

We will use the following notation. Let λ ∈ C and β > −n + 1. Define

Hβ(λ) = (1 − |λ|2)β and Cβ(λ) = |1 − λ|1−n−β ,

and for ζ ∈ S define

Hβ,ζ (z) = Hβ(〈z, ζ 〉) .
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Define the operator

Lβ,ζ f (z) = − divt

(

Hβ,ζ∇C f
)

(z)

=
∑

j

E j

(

Hβ,ζ E j f
)

(z) + E j

(

Hβ,ζ E j f
)

(z) ,

and let Ľβ,ζ f = Lβ,ζ f .

LEMMA 3.1 Let Qζ (z) = z − 〈z, ζ 〉ζ be the projection of z onto the orthogonal

complement of the subspace of C
n spanned by ζ . Then

Ľβ,ζ = Hβ,ζ
(

∑

j

4(Dj D j − z · D z · D) − 2(n + β − 1)R(z)
)

− 2β Hβ−1,ζ R(Qζ (z)) .

Note that
Ľ0 =

∑

j

4(Dj D j − z · D z · D) − 2(n − 1)R(z)

is the usual sub-Laplacian in C
n and therefore

Ľβ,ζ = Hβ,ζ
(

Ľ0 − 2β R(z)
)

− 2β Hβ−1,ζ R(Qζ (z)) .

For each fixed ζ ∈ S, there is a parametrization of the sphere S using the
variables λ ∈ C and ξ ∈ C

n given by the equation

z = λζ +
√

1 − |λ|2ξ ,

where |λ| < 1 and ξ belongs to the lower-dimensional sphere orthogonal to ζ

{ξ : |ξ | = 1, 〈ξ, ζ 〉 = 0}.
We will use the symbol dσ to denote the normalized volume element on S.

Then it follows from Rudin’s book [35] that

dσ(z) = cn(1 − |λ|2)n−2 d A(λ)d S̃(ξ)

where d S̃ is the normalized volume element on the lower-dimensional sphere

{ξ : |ξ | = 1, 〈ξ, ζ 〉 = 0} ,

d A(λ) is the two-dimensional Lebesgue measure, and cn = (n − 1)π−1. It will be

convenient to let d Ã(λ) = cnd A(λ).

Let

aβ = (n + β − 1)2

∫

|λ|<1

(1 − |λ|2)β+n−2

|1 − λ|n+β−1
d Ã(λ) .

From Lemma 3.2 below we conclude that

aβ = (n + β − 1)cn

∫ π
2

− π
2

(2 cos θ)n+β−1 dθ

= (n + β − 1)cn2(n+β−1) · B

(

n + β

2
,

1

2

)

.
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LEMMA 3.2
∫

|λ|<1

(1 − |λ|2)β+n−2

|1 − λ|n+β−1
d Ã(λ) = 1

n + β − 1
cn

∫ π
2

− π
2

(2 cos θ)n+β−1 dθ .

PROOF: Let z = reiθ = 1
1−λ

. Then

1 − |λ|2 =
2 cos θ − 1

r

r
.

Therefore,
∫

|λ|<1

(1 − |λ|2)β+n−2

|1 − λ|n+β−1
d A(λ) =

∫ π
2

− π
2

∫

r> 1
2 cos θ

(

2 cos θ − 1

r

)n+β−2

r−2 dr dθ

= 1

n + β − 1

∫ π
2

− π
2

(2 cos θ)n+β−1 dθ .

Note that d Ã(λ) = cnd A(λ), so the lemma follows. �

The main theorem of this section is the following sharp representation formula:

THEOREM 3.3 For f sufficiently smooth, we have

aβ f (ζ ) =
∫

S

{

−Ľβ,ζ f (z) + (n + β − 1)2 Hβ,ζ (z) f (z)
}

Cβ(〈z, ζ 〉)dσ(z) .

Before we prove this theorem, we will use it to derive the following pointwise

estimates, which are crucial to derive the sharp constants for the Moser-Trudinger

inequalities. Recall cn = (n − 1)π−1.

THEOREM 3.4 Let β > −n + 1 and Bβ = (cn2n+β−1 B(
n+β

2
, 1

2
))−1. Then

| f (ζ ) − f ∗ Kβ(ζ )| ≤ Bβ

∫

S

|∇C f (z)|(1 − |〈z, ζ 〉|2)β+ 1
2

|1 − 〈z, ζ 〉|n+β
dσ(z) .

If f is holomorphic, then

| f (ζ ) − f ∗ Kβ(ζ )| ≤
√

2

2
Bβ

∫

S

|∇C f (z)|(1 − |〈z, ζ 〉|2)β+ 1
2

|1 − 〈z, ζ 〉|n+β
dσ(z) .

PROOF: Let g be a complex-valued function of a single complex variable λ.

If f is a function defined on the sphere, we have a substitute for the operation of

convolution given by

f ∗ g(ζ ) =
∫

S

f (z)g(〈ζ, z〉)dσ(z) .
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Notice that if V denotes a unitary transformation of C
n , then

( f ◦ V ) ∗ g = ( f ∗ g) ◦ V .

Let

(3.1) Kβ(λ) = a−1
β (n + β − 1)2 · (1 − |λ|2)β

|1 − λ|n+β−1
.

Then the representation formula above (Theorem 3.3) may be restated as

aβ f (ζ ) = −Ľβ,ζ f ∗ Cβ(ζ ) + aβ f ∗ Kβ(ζ ) .

Thus, it follows that

aβ( f (ζ ) − f ∗ Kβ(ζ )) =
∫

S

divt

(

Hβ,ζ∇C f
)

Cβ(〈z, ζ 〉)dσ(z)

=
∫

S

〈

Hβ,ζ∇C f ,∇tCβ(〈z, ζ 〉)
〉

dσ(z)

=
∫

S

〈∇C f ,∇CCβ(〈z, ζ 〉)〉Hβ,ζ (z)dσ(z) .

Therefore,

aβ | f (ζ ) − f ∗ Kβ(ζ )|

≤
∫

S

|∇C f (z)|Hβ,ζ (z)

∣

∣

∣

∣

∇C

1

|1 − 〈z, ζ 〉|n+β−1

∣

∣

∣

∣

dσ(z)

= (n + β − 1)

∫

S

|∇C f (z)|Hβ,ζ (z)

∣

∣

∣

∣

(1 − |〈z, ζ 〉|2) 1
2

|1 − 〈z, ζ 〉|n+β

∣

∣

∣

∣

dσ(z) .

Thus, we have derived

| f (ζ ) − f ∗ Kβ(ζ )| ≤ Bβ

∫

S

|∇C f (z)| (1 − |〈z, ζ 〉|2)β+ 1
2

|1 − 〈z, ζ 〉|n+β
dσ(z) .

In the case where f is holomorphic, we can say a little more. Decomposing the

complex tangential gradient into holomorphic and antiholomorphic parts, we have

∇C = ∇1,0 + ∇0,1

where

∇1,0 f =
∑

j

(E j f )E j and ∇0,1 f =
∑

j

(E j f )E j .
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If f is holomorphic, i.e., ∇C f = ∇0,1 f , then it follows that

aβ( f (ζ ) − f ∗ Kβ(ζ )) =
∫

S

divt

(

Hβ,ζ∇0,1 f
)

Cβ(〈z, ζ 〉)dσ(z)

=
∫

S

〈

Hβ,ζ∇0,1 f ,∇tCβ(〈z, ζ 〉)
〉

dσ(z)

=
∫

S

〈

∇0,1 f ,∇0,1Cβ(〈z, ζ 〉)
〉

Hβ,ζ (z)dσ(z) .

Notice that if G is a real-valued function defined on S, then |∇CG|2 = 2|∇1,0G|2.

Therefore, we have proven in the case where f is holomorphic that

| f (ζ ) − f ∗ Kβ(ζ )| ≤
√

2

2
Bβ

∫

S

|∇C f (z)| (1 − |〈z, ζ 〉|2)β+ 1
2

|1 − 〈z, ζ 〉|n+β
dσ(z) .

�

We now turn to the proof of Theorem 3.3.

PROOF OF THE REPRESENTATION FORMULA (THEOREM 3.3): Let A < 1.

Let ζ = e1 = (1, 0, . . . , 0). We show first that for any f ∈ C∞(S)

aβ f (e1) = lim
A→1

∫

S

−Ľβ,e1
f (z)

dσ(z)

|1 − Az1|n+β−1

+ (n + β − 1)2

∫

S

f (z)Hβ,e1(z)
dσ(z)

|1 − z1|n+β−1
.

Let

8β,A(z) = |1 − Az1|−(n+β−1) .

We integrate by parts (see [35, 18.2.2, eq. (4)]) and see that this is equivalent to

showing that

aβ f (e1) = lim
A→1

{∫

S

− f (z)Lβ,e1
8β,A(z)dσ(z)

+ (n + β − 1)2

∫

S

f (z)Hβ,e1(z)8β,A(z)dσ(z)

}

.

In other words,

aβδe1
= lim

A→1

{

−Lβ,e1
8β,A(z) + (n + β − 1)2 Hβ,e1(z)8β,A(z)

}

.
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A straightforward calculation based on Lemma 3.1 shows that

Lβ,e1
8β,A(z) =

Hβ,e1(z)
(

4(1 − |z1|2)D1 D1 − 2(n + β − 1)(z1 D1 + z1 D1)
)

8β,A(z) .

More computation gives

Lβ,e1
8β,A(z) =

(n + β − 1)2
[

Hβ,e1(z)8β,A(z) + (A2 − 1)Hβ,e1(z)8β+2,A(z)
]

.

Integration by parts shows that
∫

S

Lβ,e1
8β,A(z)dσ(z) = 0

for all A < 1. From this it follows that

−(n + β − 1)2

∫

S

Hβ,e1(z)8β,A(z)dσ(z) =

(A2 − 1)

∫

S

Hβ,e1(z)8β+2,A(z)dσ(z)

for all A < 1. It follows that

(A2 − 1)Hβ,e1(z)8β+2,A(z)dσ(z)

converges in the weak-star topology on C(S) to c · δe1
where

c = −(n + β − 1)2

∫

S

Hβ,e1(z)8β,1(z)dσ(z) = −aβ .

This gives the formula for ζ = e1.

Now let ζ ∈ S and let V be a unitary transformation such that V e1 = ζ .
Let Cβ,ζ (z) = C(〈z, ζ 〉) so Cβ,ζ (V z) = Cβ(〈z, e1〉). Since ( f ◦ V ) ∗ K (e1) =
f ∗ K (V e1) = f ∗ K (ζ ), it follows from the formula for e1 that

aβ( f (ζ ) − f ∗ Kβ(ζ )) =
∫

S

divt

(

Hβ,e1∇C( f ◦ V )
)

Cβ(〈z, e1〉)dσ(z)

=
∫

S

〈

Hβ,ζ (V z)∇C( f ◦ V )(z),∇t(Cβ,ζ ◦ V )(z)
〉

dσ(z)

=
∫

S

〈

(∇C f )(V z), (∇CCβ,ζ )(V z)
〉

Hβ,ζ (V z)dσ(z)

=
∫

S

〈

(∇C f )(z),∇CCβ,ζ (z)
〉

Hβ,ζ (z)dσ(z) .

This completes the argument and then Theorem 3.3 follows. �
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Remark. By considering a class of quasi-linear subelliptic differential operators

involving the complex tangential gradients on S, we can find an alternative way

to derive Theorem 3.3. This is not hard to do since we already know a priori the

form of the fundamental solutions to such quasi-linear subelliptic equations from

this representation formula (Theorem 3.3).

4 The Distribution Function of the Kernel

We will need to use the rearrangement of functions on S.

Suppose F is a nonnegative function defined on S. Define the nonincreasing

rearrangement of F by

F∗(t) = inf{s > 0 : λF(s) ≤ t} ,

where λF(s) = σ({u ∈ S : F(u) > s}). In addition, define

F∗∗(t) = t−1

∫ t

0

F∗(s)ds .

Suppose g is a nonnegative function of one complex variable. For each ζ ∈ S

let gζ (z) = g(〈z, ζ 〉) for z ∈ S. Since the measure σ is invariant under unitary

transformations, the nonincreasing rearrangement (gζ )
∗ is the same for all ζ ∈ S.

In the sequel, we will omit the subscript ζ and simply write g∗.

Now let U = f ∗ g be the convolution on S. It is easy to check that the

following version of O’Neil’s lemma [30] regarding rearrangement of convolution

of two functions holds on S:

LEMMA 4.1 Suppose U = f ∗ g on S. Then

U ∗(t) ≤ U ∗∗(t) ≤ t f ∗∗(t)g∗∗(t) +
∫ ∞

t

f ∗(s)g∗(s)ds .

In order to use O’Neil’s lemma, we will need to estimate the distribution func-

tion for various kernels.

Define the measure dm on the unit disk D = {λ ∈ C : |λ| < 1} by

dm(λ) = (1 − |λ|2)n−2 d Ã(λ)

where d Ã(λ) = cnd A(λ) and cn = (n − 1)π−1. Let

(4.1) Kβ,α(λ) = (1 − |λ|2)β

|1 − λ|n+β−α

and

Et = {|λ| < 1 and Kβ,α(λ) > t} .

Set

m(Et) =
∫

Et

(1 − |λ|2)n−2 d Ã(λ) .
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Observe that for ζ ∈ S

σ({z ∈ S : Kβ,α(〈z, ζ 〉) > t}) = m(Et) .

LEMMA 4.2 Let

Aβ,α = n

cn

∫ π/2

−π/2
(2 cos θ)

βn
n−α

+n−2 dθ

= n

(

cn2
βn

n−2 +n−2 B

(

n2 + (β − α − 1)n + α

2(n − α)
,

1

2

))−1

.

(4.2)

The following estimate holds:

m(Et) ≤ (Aβ,α)
−1t− n

n−α .

PROOF: For 0 < α < n, β > 0, and t > 0, the set Et is

Et = {|λ| < 1, Kβ,α(λ) > t} .

Use the change of variables w = reiθ = (1 − λ)−1. Then the disk D is mapped to

the half-plane

H = {reiθ : r cos θ > 1
2
}

and

d A(λ) = r−3 dr dθ ,

(1 − |λ|2) = r−2(2 cos θ − 1) ,

and therefore

dm(λ) = cnr−2n+1(2r cos θ − 1)n−2 dr dθ .

Furthermore, the set Et is mapped to the region

Ht =
{

reiθ :
(

2 cos θ − 1

r

)β

rn−α > t

}

∩ H .

Since

dm(λ) ≤ cnr−n−1(2 cos θ)n−2 dr dθ

and

Ht ⊂ {reiθ : (2 cos θ)βrn−α > t} ∩ H

⊂ {reiθ : (2 cos θ)βrn−α > t, −π
2

< θ < π
2
} ,
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it follows that

m(Et) ≤ cn

∫ π
2

− π
2

∫ ∞

[ t

(2 cos θ)β
]

1
n−α

r−n−1 dr · (2 cos θ)n−2 dθ

= cn

n

∫ π
2

− π
2

(2 cos θ)n−2(t2−β cos−β θ)− n
n−α dθ

= cnn−1t− n
n−α

∫ π
2

− π
2

(2 cos θ)
βn

n−α
+n−2 dθ

= cnn−1t− n
n−α 2

βn
n−α

+n−2 B

(

n2 + (β − α − 1)n + α

2(n − α)
,

1

2

)

.

�

5 Moser-Trudinger Inequalities for Functions Minus a Potential

In this section, we will first use Lemmas 4.1 and 4.2, and follow the argument

as done in the work of authors [17] in the nonisotropic setting to conclude the

following:

THEOREM 5.1 If u(z) = f ∗ Kβ,α(z), then

u∗(t) ≤ A
− n−α

n

β,α

(

n

α
t− n−α

n

∫ t

0

f ∗(s)ds +
∫ ∞

t

f ∗(s)s− n−α
n ds

)

.

Moreover, there exists a constant C0 such that with n = αp

∫

S

exp

(

Aβ,α

(

f ∗ Kβ,α

‖ f ‖p

)p
′
)

dσ ≤ C0 .

We shall not repeat the proof since it is very similar to that for the case on the

Heisenberg group [17] as long as we have Lemma 4.2 available (see also [1] for an

earlier argument of this type in an isotropic euclidean setting).

Combining Theorem 5.1 and Theorem 3.4, we will derive the following theo-

rems:

THEOREM 5.2 Let

B = n

(

(n − 1)π−122n−2 · B

(

2n − 1

2
,

1

2

))
1

2n−1

.

Then there is a constant C0 such that the inequality

∫

S

exp

(

B

( | f − f ∗ Kn−1|
‖∇C f ‖2n

)
2n

2n−1
)

dσ ≤ C0

is verified for all smooth functions f .
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THEOREM 5.3 Let

BH = 2
n

2n−1 B = 2
n

2n−1 · n

(

(n − 1)π−122n−2 · B

(

2n − 1

2
,

1

2

))
1

2n−1

.

Then there is a constant C0 such that the inequality

∫

S

exp

(

BH

( | f − f ∗ Kn−1|
‖∇C f ‖2n

)
2n

2n−1
)

dσ ≤ C0

holds for all holomorphic functions f on S.

To prove Theorems 5.2 and 5.3, we first restate Theorem 3.4 using the kernel

Kβ,α. We recall that Kβ,α is defined in (4.1), Kβ is defined in (3.1), and Aβ,α is

defined in (4.2).

PROPOSITION 5.4 Let β > −n + 1 and Bβ = (cn2n+β−1 B(
n+β

2
, 1

2
))−1. Then for

any smooth f

| f (ζ ) − f ∗ Kβ(ζ )| ≤ Bβ

(

|∇C f | ∗ Kβ+ 1
2 , 1

2

)

(ζ ) .

If f is holomorphic, then

| f (ζ ) − f ∗ Kβ(ζ )| ≤
√

2

2
Bβ

(

|∇C f | ∗ Kβ+ 1
2 , 1

2

)

(ζ ) .

PROOF OF THEOREMS 5.2 AND 5.3: We apply Proposition 5.4 with β = n −1

and α = 1
2

and get

| f (ζ ) − f ∗ Kn−1(ζ )| ≤ Bn−1|∇C f | ∗ Kn− 1
2 , 1

2
(ζ ) .

Therefore, using Theorem 5.1 we have

∫

S

exp

(

B

( | f − f ∗ Kn−1|
‖∇C f ‖2n

)
2n

2n−1
)

dσ ≤ C0

provided

B · B
2n/(2n−1)

n−1 ≤ An− 1
2 , 1

2
,

i.e.,

B ≤ B
−2n/(2n−1)

n−1 · An− 1
2 , 1

2

= nB
−1/(2n−1)

n−1

= n

(

(n − 1)π−122n−2 · B

(

2n − 1

2
,

1

2

))
1

2n−1

.
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If f is holomorphic, we use the following:

| f (ζ ) − f ∗ Kn−1(ζ )| ≤
√

2

2
Bn−1|∇C f | ∗ Kn− 1

2 , 1
2
(ζ ) ,

and the same argument shows

∫

S

exp

(

BH

( | f − f ∗ Kn−1|
‖∇C f ‖2n

)
2n

2n−1
)

dσ ≤ C0

provided

BH ·
(
√

2 cn B−1
n−1

)− 2n
2n−1 ≤ An− 1

2 , 1
2
,

i.e.,
BH ≤ 2

n
2n−1 B .

In summary, the above argument has already shown Theorems 5.2 and 5.3. �

6 Sharpness of Moser-Trudinger Inequalities

for Functions Minus a Potential

To show that the constants B and BH in Theorems 5.2 and 5.3 are optimal, we
need several propositions.

PROPOSITION 6.1 Let R < 1 and let o(1 − R) denote that limR→1− o(1 − R) = 0.

Then

IR =
∫

|λ|<1

(1 − |λ|2)2n−2

|1 − Rλ|2n
d A(λ)

= log
1

1 − R
· Jn · (1 + o(1 − R))

where the number Jn is defined by

Jn =
∫ π

2

− π
2

(2 cos θ)2n−2 dθ

= 22n−2 B

(

2n − 1

2
,

1

2

)

.

(6.1)

PROOF: Make the change of variables w = (1 − R)(1 −λ)−1. Let w = u + iv.
Then an easy calculation shows that

IR =
∫

2u>1−R

(2u − (1 − R))2n−2|w|−2n|w + R|−2nr dr dθ

where w = reiθ , which can be written as
∫ ∞

1−R
2

[ ∫

{cos θ> 1−R
2r

}

(2 cos θ − 1−R
r

)2n−2

|reiθ + R|2n
dθ

]

dr

r
= I + II ,
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where

I =
∫ 1

1−R
2

[∫ cos−1( 1−R
2r

)

− cos−1( 1−R
2r

)

(2 cos θ − 1−R
r

)2n−2

|reiθ + R|2n
dθ

]

dr

r

and

II =
∫ ∞

1

[ ∫

{cos θ> 1−R
2r

}

(2 cos θ − 1−R
r

)2n−2

|reiθ + R|2n
dθ

]

dr

r

≤
∫ ∞

1

∫ π
2

− π
2

(2 cos θ)2n−2

|reiθ + R|2n
dθ

dr

r

= C < ∞ .

To calculate I, we make the change of variable r−1 = et and write

I =
∫ log 2

1−R

0

[∫ cos−1(
et (1−R)

2 )

− cos−1(
et (1−R)

2 )

(2 cos θ − (1 − R)et))2n−2

|e−t+iθ + R|2n
dθ

]

dt .

Now make the change of variable

x = t

log 2
1−R

so t = log

(

2

1 − R

)x

and get

I = log

(

2

1 − R

)∫ 1

0

∫ cos−1(( 1−R
2 )1−x )

− cos−1(( 1−R
2 )1−x )

(2 cos θ − (1 − R)1−x)2n−2

|( 1−R
2

)x eiθ + R|2n
dθ dx .

By the dominated convergence theorem

lim
R→1

(

log

(

1

1 − R

))−1

IR = Jn

where we recall Jn is given in (6.1). This proves the proposition. �
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We now define

fR(z) =
(

log
1

1 − R

)−1

· log
1

|1 − Rz1|
.

Then an easy calculation shows that we have the following:

PROPOSITION 6.2

|∇C fR(z)| = R

(

log
1

1 − R

)−1
√

1 − |z1|2
|1 − Rz1|

,

(‖∇C fR(z)‖2n)
2n

2n−1

=
(

R

(

log
1

1 − R

)−1) 2n
2n−1

( ∫

|λ|<1

(1 − |λ|2)2n−2

|1 − Rλ|2n
d Ã(λ)

)
1

2n−1

=
(

R

(

log
1

1 − R

)−1) 2n
2n−1

(

log
1

1 − R
· Jn ·

(

1 + o(1 − R)

))
1

2n−1

.

Furthermore, we have the following:

PROPOSITION 6.3

(i) fR ∗ Kn−1(z) → 0 uniformly in z as R → 1.

(ii) If |z1 − 1| < 1 − R, then

fR(z) ≥ 1 +
1
2

log 1
1−R

= 1 + o(1 − R) .

(iii) σ {z : |z1 − 1| < 1 − R} = c(1 + o(1 − R))(1 − R)n ≥ c(1 − R)n .

The proofs of Propositions 6.2 and 6.3 are not hard and we omit the details.

With these preparations, we will be able to show the sharpness of the con-

stant B.

PROOF OF THE SHARPNESS OF B IN THEOREM 5.2: Suppose now that

∫

S

exp

(

β

( | f − f ∗ Kn−1|
‖∇C f ‖2n

)
2n

2n−1
)

dσ ≤ C0

for all smooth f . Let �R = {z : |1 − z1| < 1 − R} and σ(�R) =
∫

�R
dσ . Then

σ(�R) exp

(

β

(

1 − o(1 − R)

‖∇C fR‖2n

)
2n

2n−1
)

≤ C0 .
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Therefore,

β(1 − o(1 − R))
2n

2n−1 ≤ log
(

C0 · σ(�R)−1
)

(‖∇C fR‖2n)
2n

2n−1

≤
(

log C0 + n log
1

1 − R

)

·
(

log
1

1 − R

)−1

· (cn Jn · (1 + o(1 − R)))
1

2n−1 · R
2n

2n−1

= [n + o(1 − R)] · (cn · Jn(1 + o(1 − R)))
1

2n−1 · R
2n

2n−1 .

Let R → 1 and we get that

β ≤ n(cn Jn)
1

2n−1 = B .

�

To show that the constant BH is sharp, we abuse the notation fR again and

define

fR(z) =
(

log
1

1 − R

)−1

· log
1

(1 − Rz1)
.

Then we have the following:

PROPOSITION 6.4

|∇C fR(z)| = R
√

2

(

log
1

1 − R

)−1
√

1 − |z1|2
|1 − Rz1|

,

(‖∇C fR‖2n)
2n

2n−1

=
(√

2 R

(

log
1

1 − R

)−1) 2n
2n−1

( ∫

|λ|<1

(1 − |λ|2)2n−2

|1 − Rλ|2n
d Ã(λ)

)
1

2n−1

=
(√

2 R

(

log
1

1 − R

)−1) 2n
2n−1

(

log
1

1 − R
· Jn ·

(

1 + o(1 − R)

))
1

2n−1

.

Moreover, we have the following estimates:

PROPOSITION 6.5

(i) fR ∗ Kn−1(z) → 0 uniformly in z as R → 1.

(ii) If |z1 − 1| < 1 − R, then

| fR(z)| ≥ 1 +
1
2

log 1
1−R

= 1 + o(1 − R)

on |z1 − 1| < 1 − R.
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PROOF OF THE SHARPNESS OF BH IN THEOREM 5.3: Suppose now that

∫

S

exp

(

β

( | f − f ∗ Kn−1|
‖∇C f ‖2n

)
2n

2n−1
)

dσ ≤ C0

for all holomorphic f . Repeating the previous argument using the test functions fR

gives the upper bound β ≤ n2
n

2n−1 (cn Jn)
1

2n−1 = BH . This completes the proof. �

7 Moser-Trudinger Inequalities for Functions

Minus the Average: Theorem 1.1

In Section 5, we derived the constants for the Moser-Trudinger inequalities

stated in Theorems 5.2 and 5.3. In Section 6, we proved the sharpness of those

constants. However, we note that the inequalities involve | f − f ∗ Kn−1| rather

than | f −
∫

S
f dσ |. The goal of this section is to show Theorem 1.1, stated in the

introduction. This will follow from Theorems 5.2 and 5.3 combined with Proposi-

tion 7.3 below.

We first show the following:

PROPOSITION 7.1

Mjk( f ∗ Kn−1)(z) = (Mjk f ) ∗ K̃n−1(z)

and

M jk( f ∗ Kn−1)(z) = (M jk f ) ∗ K̃ n−1(z)

where

K̃n−1(λ) = n − 1

n − 3
· (1 − λ)− n+1

2 · (1 − λ)− n−3
2 when n 6= 3

and

K̃n−1(λ) = n − 1

2
· log(1 − λ)

(1 − λ)
n+1

2

when n = 3 .

Moreover,

|Mjk( f ∗ Kn−1)(z)| ≤ C( f ∗ J )(z)

and

|M jk( f ∗ Kn−1)(z)| ≤ C( f ∗ J )(z)

where

J (λ) = 1

|1 − λ|n− 1
2

.

PROOF: We first note

f ∗ Kn−1(z) =
∫

S

f (ζ )Kn−1(〈z, ζ 〉)dσ(ζ )

and Kn−1(〈z, ζ 〉) = Kn−1(〈ζ, z〉).
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Then it follows from this identity that

M z
jk Kn−1(〈z, ξ〉) = −M

ξ

jk K̃n−1(〈z, ξ〉)

where

M z
jk = z j

∂

∂zk

− zk

∂

∂z j

and M
ξ

jk = ξj

∂

∂ξk

− ξk

∂

∂ξj

.

Using integration by parts, we get

Mjk( f ∗ Kn−1)(z) =
∫

S

f (ξ)

[

M z
jk

1

(1 − 〈z, ξ〉) n−1
2

· 1

(1 − 〈ξ, z〉) n−1
2

]

dσ(ξ)

=
∫

S

f (ξ)

[

n − 1

2
· z jξk − zkξj

(1 − 〈z, ξ〉) n+1
2

· 1

(1 − 〈ξ, z〉) n−1
2

]

dσ(ξ)

= (Mjk f ) ∗ K̃n−1(z) .

Using the second equality above and noticing that
∑

j,k

|z jξk − zkξj |2 =
∑

j,k

(

|z j |2|ξk |2 + |zk |2|ξj |2
)

−
∑

j,k

(z j zkξkξj − zkz jξjξk)

= 2 − 2|〈z, ξ〉|2

= 2(1 + |〈z, ξ〉|)(1 − |〈z, ξ〉|)

≤ 4|1 − |〈z, ξ〉|| ,

we have

|z jξk − zkξj | ≤ C |1 − λ| 1
2 .

Combining this with the second equality above gives

|Mjk( f ∗ Kn−1)(z)| ≤ C( f ∗ J )(z)

where

J (λ) = 1

|1 − λ|n− 1
2

.

Similarly, we can show

M jk( f ∗ Kn−1)(z) = (M jk f ) ∗ K̃ n−1(z)

and

|M jk( f ∗ Kn−1)(z)| ≤ C |( f ∗ J )(z)| .
�
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PROPOSITION 7.2

|M jk(Mjk( f ∗ Kn−1))(z)| ≤ C |Mjk f | ∗ J (z)

and

|Mjk((M jk( f ∗ Kn−1))(z)| ≤ C |M jk f | ∗ J (z) .

PROOF: We note that

M jk(Mjk( f ∗ Kn−1))(z)

= M jk((Mjk f ) ∗ K̃n−1)(z)

=
∫

S

Mjk f (ζ )M
z

jk K̃n−1(〈z, ζ 〉)dσ(ζ )

= n − 1

2

∫

S

Mjk f (ζ )

[

z jζk − zkζj

(1 − 〈ζ, z〉) n−1
2

· 1

(1 − 〈z, ζ 〉) n+1
2

]

dσ(ζ ) .

So the estimates follow. �

PROPOSITION 7.3 Let
∫

S
|∇C f |2n dσ = 1 and assume

∫

S
f dσ = 0. Let

F = f ∗ Kn−1 .

Then

‖F‖∞ ≤ C .

PROOF: Suppose now that F = f ∗ Kn−1 where

∇C f ∈ L2n and

∫

S

|∇C f |2n dσ = 1 .

We will show that if q < ∞ then

(∫

S

|∇t F |qdσ

)
1
q

≤ Cq‖∇C f ‖2n .

We observe that if N F =
∑

j (z j Dj − z j D j )F , then

|∇t F |2 = |∇C F |2 + |N F |2 .

But

(n − 1)N F = −
∑

j,k

[Mjk, M jk]F ,

and each commutator is of the form

Mjk M jk F − M jk Mjk F = Mjk(M jk( f ∗ Kn−1)) − M jk(Mjk( f ∗ Kn−1)) ,
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and it follows from Proposition 7.2 that

|(N F)(z)| ≤ C(|∇C f | ∗ J )(z) =
∫

S

|∇C f |(ζ )J (〈z, ζ 〉)dσ(ζ )

where

J (λ) = 1

|1 − λ|n− 1
2

.

We also note that

Mjk F(z) = Mjk( f ∗ Kn−1)(z) = ((Mjk f ) ∗ K̃n−1)(z)

and

|K̃n−1(λ)| ≤ C

|1 − λ|n−1
≤ C

|1 − λ|n− 1
2

.

Thus, the estimate

|∇t F(z)| ≤ C(|∇C f | ∗ J )(z)

holds.

Now if K (z, ζ ) = J (〈z, ζ 〉), it follows that
∫

S

|K (z, ζ )|sdσ ≤ Ms < ∞ for s <
n

n − 1
2

= 2n

2n − 1
.

Let ǫ = q−1. Then there is a constant Cq such that

(∫

S

|∇t F |qdσ

)
1
q

≤ Cq

(∫

S

(|∇C f | ∗ K )qdσ

)
1
q

≤ Cq

(∫

S

|∇C f |2n dσ

)
1
q

= Cq

because with s−1 = 2n−1
2n

+ ǫ,

q−1 = (2n)−1 + s−1 − 1 = ǫ .

We have now shown that |∇t F | is in Lq(dσ) (with norm less than a constant de-

pending on q) for any q < ∞. Let ζ · z = Re〈ζ, z〉 denote the real inner product on
R

2n . Using the well-known integral representation formula for the real sphere (S
is considered to be a (2n − 1)–dimensional real sphere) in terms of the tangential
gradient ∇t F , we have

|F(z) −
∫

S

Fdσ | ≤
∫

S

|∇t F(ζ )| · G(ζ · z)dσ(ζ ) ,

where

G(ζ · z) ≤ C

|1 − ζ · z|n− 1
2

.
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If
∫

S
f dσ = 0, then

∫

S
f ∗ K dσ = 0, i.e.,

∫

S
F dσ = 0. We also note that

2|1 − ζ · z| = |ζ − z|2 on S .

By choosing q sufficiently large (and thus its conjugate q
′

is very close to 1), it

follows that

|F(z)| ≤
∫

S

|∇t F(ζ )| · G(ζ · z)dσ(ζ )

≤
(∫

S

|∇t F(ζ )|q)dσ

)
1
q

·
(∫

S

|G(ζ · z)|q
′
dσ(ζ )

)
1

q
′

≤ M

where M is independent of F or z. �

Using Proposition 7.3, we can immediately deduce the sharp Moser-Trudinger

inequalities, Theorem 1.1 stated in the introduction, from Theorems 5.2 and 5.3.

Indeed, given
∫

S
f dσ = 0 and

∫

S
|∇C f |2n dσ = 1, we have ‖F‖∞ ≤ C for

F = f ∗ Kn−1. Therefore, combining Theorems 5.2 and 5.3 with this, we can

conclude the Moser-Trudinger inequalities in Theorem 1.1 with the same constants

B and BH as in Theorems 5.2 and 5.3. The sharpness of these constants for such

inequalities as in Theorem 1.1 follow the same argument as in Section 6.

8 Proof of Theorems 1.2 and 1.3

We now give the proof of Theorem 1.2 using Theorem 1.1. Write

2n( f − fS) =
(

ǫ · f − fS

‖∇C f ‖2n

)

·
(

ǫ−1(2n) · ‖∇C f ‖2n

)

.

Using Hölder’s inequality with the exponents p = 2n
2n−1

and p′ = 2n, we get

2n( f − fS) ≤ 2n − 1

2n

(

ǫ · f − fS

‖∇C f ‖2n

)p

+ (2n)−1
(

ǫ−1(2n) · ‖∇C f ‖2n

)2n
.

Taking ǫ = (Bp)(2n−1)/2n and using the Moser-Trudinger inequality in Theo-

rem 1.1, we get
∫

S

e2n( f − fS) dσ ≤ C0 · exp
(

(2n)−1
(

ǫ−1(2n) · ‖∇C f ‖2n

)2n)

.

Inserting the value of ǫ, we conclude the first part of Theorem 1.2.

The proof of the second part of Theorem 1.2 for holomorphic functions is the

same by using the second part of Theorem 1.1.

Theorem 1.3 is an immediate consequence of Theorem 1.2.
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We now end this section with the following remark. The interest of the func-

tionals I ( f ) and J ( f ) lie in the fact that the term ‖∇C f ‖2n is conformally in-

variant. This can be seen in the following way: Let ∇0 f =
∑

k(Ek f )Ek ; thus

〈Ek, E j 〉0 = δk j under the inner product defined by the standard Hermitian metric

〈 · , · 〉0 on S. Let 〈 · , · 〉1 = g · 〈 · , · 〉0 be the inner product defined by the con-

formal metric where g is a function. Thus, 〈g−1/2 Ek, g−1/2 E j 〉1 = δk j , and the

subelliptic gradient associated with the new metric is

∇1 f =
∑

k

g− 1
2 Ek f · g− 1

2 Ek = g−1 · ∇0 f ,

and under the inner product associated with the new metric we have

〈∇1 f,∇1 f 〉1 = g−1〈∇0 f,∇0 f 〉0 .

Note that dσ1 = gn dσ0 on S, where dσ1 and dσ0 are the volume elements associ-

ated with the new and old metrics. Thus, we can see that ‖∇C f ‖2n is conformally

invariant. We will further investigate this conformal invariant in the future.

Acknowledgments. Results of this paper were presented at invited talks of the

International Conference in Harmonic Analysis and Applications in August 2002

in Hangzhou, China, at the 51st Midwest PDE Seminar at UIC in April 2003, and at

the Workshop on Second Order Subelliptic Equations and Applications in Cortona,

Italy, in June 2003. Research was partly supported by an NSF grant.

We would like to thank Prof. Sun-Yung A. Chang for her comments on an early

draft of this paper. In particular, we thank her for encouraging us to include The-

orems 1.2 and 1.3 as an application of Theorem 1.1 and for helpful discussions in

this direction. We would also like to thank Prof. David Jerison for discussions con-

cerning the relationship between Moser-Trudinger inequalities on the Heisenberg

group and complex spheres.

Bibliography

[1] Adams, D. R. A sharp inequality of J. Moser for higher order derivatives. Ann. of Math. (2) 128

(1988), no. 2, 385–398.

[2] Aubin, T. Best constants in the Sobolev imbedding theorem: the Yamabe problem. Seminar

on Differential Geometry, 173–184. Annals of Mathematics Studies, 102. Princeton University,

Princeton, N.J., 1982.

[3] Bailey, T. N.; Eastwood, M. G.; Graham, C. R. Invariant theory for conformal and CR geometry.

Ann. of Math. (2) 139 (1994), no. 3, 491–552.

[4] Balogh, Z. M.; Manfredi, J. J.; Tyson, J. T. Fundamental solution for the Q-Laplacian and sharp

Moser-Trudinger inequality in Carnot groups. J. Funct. Anal. 204 (2003), no. 1, 35–49.

[5] Beckner, W. Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality. Ann.

of Math. (2) 138 (1993), no. 1, 213–242.

[6] Branson, T. P. Differential operators canonically associated to a conformal structure. Math.

Scand. 57 (1985), no. 2, 293–345.

[7] Branson, T. P.; Chang, S.-Y. A.; Yang, P. C. Estimates and extremals for zeta function determi-

nants on four-manifolds. Comm. Math. Phys. 149 (1992), no. 2, 241–262.



1492 W. S. COHN AND G. LU

[8] Branson, T. P.; Ørsted, B. Explicit functional determinants in four dimensions. Proc. Amer.

Math. Soc. 113 (1991), no. 3, 669–682.

[9] Carlen, E.; Loss, M. Competing symmetries, the logarithmic HLS inequality and Onofri’s in-

equality on S
n . Geom. Funct. Anal. 2 (1992), no. 1, 90–104.

[10] Carleson, L.; Chang, S.-Y. A. On the existence of an extremal function for an inequality of

J. Moser. Bull. Sci. Math. (2) 110 (1986), no. 2, 113–127.

[11] Chang, S.-Y. A. The Moser-Trudinger inequality and applications to some problems in confor-

mal geometry. Nonlinear partial differential equations in differential geometry (Park City, UT,

1992), 65–125. IAS/Park City Mathematics Series, 2. American Mathematical Society, Provi-

dence, R.I., 1996.

[12] Chang, S.-Y. A.; Gursky, M. J.; Yang, P. C. An equation of Monge-Ampère type in conformal

geometry, and four-manifolds of positive Ricci curvature. Ann. of Math. (2) 155 (2002), no. 3,

709–787.

[13] Chang, S.-Y. A.; Yang, P. C. Extremal metrics of zeta function determinants on 4-manifolds.

Ann. of Math. (2) 142 (1995), no. 1, 171–212.

[14] Chang, S.-Y. A.; Yang, P. C. Non-linear partial differential equations in conformal geometry.

Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002), 189–207.

Higher Education, Beijing, 2002.

[15] Chang, S.-Y. A.; Yang, P. C. The inequality of Moser and Trudinger and applications to confor-

mal geometry. Comm. Pure Appl. Math. 56 (2003), no. 8, 1135–1150.

[16] Chen, S.-C.; Shaw, M.-C. Partial differential equations in several complex variables. AMS/IP

Studies in Advanced Mathematics, 19. American Mathematical Society, Providence, R.I.; In-

ternational, Boston, 2001.

[17] Cohn, W. S.; Lu, G. Best constants for Moser-Trudinger inequalities on the Heisenberg group.

Indiana Univ. Math. J. 50 (2001), no. 4, 1567–1591.

[18] Cohn, W. S.; Lu, G. Best constants for Moser-Trudinger inequalities, fundamental solutions and

one-parameter representation formulas on groups of Heisenberg type. Acta Math. Sin. (Engl.

Ser.) 18 (2002), no. 2, 375–390.

[19] Fefferman, C. Parabolic invariant theory in complex analysis. Adv. in Math. 31 (1979), no. 2,

131–262.

[20] Fefferman, C.; Graham, C. R. Q-curvature and Poincaré metrics. Math. Res. Lett. 9 (2002),

no. 2-3, 139–151.

[21] Flucher, M. Extremal functions for the Trudinger-Moser inequality in 2 dimensions. Comment.

Math. Helv. 67 (1992), no. 3, 471–497.

[22] Fontana, L. Sharp borderline Sobolev inequalities on compact Riemannian manifolds. Com-

ment. Math. Helv. 68 (1993), no. 3, 415–454.

[23] Hong, C. W. A best constant and the Gaussian curvature. Proc. Amer. Math. Soc. 97 (1986),

no. 4, 737–747.

[24] Jerison, D.; Lee, J. M. The Yamabe problem on CR manifolds. J. Differential Geom. 25 (1987),

no. 2, 167–197.

[25] Jerison, D.; Lee, J. M. Extremals for the Sobolev inequality on the Heisenberg group and the

CR Yamabe problem. J. Amer. Math. Soc. 1 (1988), no. 1, 1–13.

[26] Jerison, D.; Lee, J. M. Intrinsic CR normal coordinates and the CR Yamabe problem. J. Differ-

ential Geom. 29 (1989), no. 2, 303–343.

[27] Lin, K.-C. Extremal functions for Moser’s inequality. Trans. Amer. Math. Soc. 348 (1996),

no. 7, 2663–2671.

[28] Moser, J. A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20 (1970/71),

1077–1092.



MOSER-TRUDINGER INEQUALITIES ON COMPLEX SPHERES 1493

[29] Moser, J. On a nonlinear problem in differential geometry. Dynamical systems (Proc. Sympos.,

Univ. Bahia, Salvador, 1971), 273–280. Academic, New York, 1973.

[30] O’Neil, R. Convolution operators and L(p, q) spaces. Duke Math. J. 30 (1963), 129–142.

[31] Onofri, E. On the positivity of the effective action in a theory of random surfaces. Comm. Math.

Phys. 86 (1982), no. 3, 321–326.

[32] Osgood, B.; Phillips, R.; Sarnak, P. Compact isospectral sets of surfaces. J. Funct. Anal. 80

(1988), no. 1, 212–234.

[33] Osgood, B.; Phillips, R.; Sarnak, P. Extremals of determinants of Laplacians. J. Funct. Anal. 80

(1988), no. 1, 148–211.

[34] Paneitz, S. M. A quartic conformally covariant differential operator for arbitrary pseudo-

Riemannian manifolds. Preprint, 1983.

[35] Rudin, W. Function theory in the unit ball of Cn . Grundlehren der Mathematischen Wis-

senschaften, 241. Springer, New York–Berlin, 1980

[36] Soong, T. L. Extremal functions for the Moser inequality on S
2 and S

4. Doctoral dissertation,

University of California, Los Angeles, 1991.

[37] Stein, E. M. Harmonic analysis: real-variable methods, orthogonality, and oscillatory inte-

grals. Princeton Mathematical Series, 43. Monographs in Harmonic Analysis, 3. Princeton

University, Princeton, N.J., 1993.

[38] Talenti, G. Best constant in Sobolev inequality. Ann. Mat. Pura Appl. (4) 110 (1976), 353–372.

[39] Trudinger, N. S. On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17

(1967), 473–483.

WILLIAM S. COHN GUOZHEN LU

Wayne State University Wayne State University
Department of Mathematics Department of Mathematics
Detroit, MI 48202 Detroit, MI 48202
E-mail: cohn@math.wayne.edu E-mail: gzlu@math.wayne.edu

Received July 2003.


