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1. INTRODUCTION

The main purpose of this paper is to investigate the asymptotic behavior
of the oscillatory solutions to the semilinear equation of the form

2u+ f ( |x|, u)=0 in Rn, n�3. (1)

Equation (1) has its origin from, e.g., the prescribed curvature problems
in Riemannian geometry, and astrophysics (i.e., the Lane�Emden�Fowler
equation and the Matukuma equation as special cases). The asymptotic
behavior of the positive solutions to (1) has recently received much atten-
tion, see e.g., [L1, LN, Na].

However, it is well-known that the above equation (1) does not always
have positive solutions or positive radial solutions. In other words, under
suitable conditions, radial solutions to (1) must oscillate about the zero at
infinite times (see e.g., [DCC, NY, N]). Thus it becomes very interesting
to know as precisely as possible the asympototic behaviors of the oscillating
periods, the amplitudes of the oscillatory solutions.

In this paper, we restrict our attention to the study of radial solutions to
(1). More precisely, we shall discuss the asymptotic behavior of oscillatory

article no. DE963208

340
0022-0396�97 �25.00
Copyright � 1997 by Academic Press
All rights of reproduction in any form reserved.

* The second author's research is supported in part by the National Science Foundation
Grant Nos. DMS93-15963 and DMS96-22996.



File: 505J 320802 . By:CV . Date:27:12:96 . Time:10:44 LOP8M. V8.0. Page 01:01
Codes: 2064 Signs: 1146 . Length: 45 pic 0 pts, 190 mm

radial solutions for the following singular initial value problem for the
semilinear elliptic equation

u"+
n&1

r
u$+(br+ |u|q&1+r& |u| p&1) u=0, u(0)=a{0, u$(0)=0,

(2)

where b>0, n�3, +>&2, &>&2, 1<q<(n+2+2+)�(n&2) and

p=
n+2+2&

n&2
=1+

4+2&
n&2

>1. (3)

Ni and Yotsutani [NY] have considered the equation

u"+
n&1

r
u$+ :

k

i=1

cirli(u+) pi=0, u(0)=u0>0, u$(0)=0, (4)

where pi>1, li>&2, ci>0, (1�i�k) and u+=max[u(r), 0]. They con-
cluded for (4) that:

(a) if pi�(n+2+2li)�(n&2), for 1�i�k, with at least one
inequality being a strict one, then u(r) has a finite zero for every u0 .

(b) if pi�(n+2+2li)�(n&2), for 1�i�k, then u(r) is a positive
solution for every u0 .

Nishihara [N] dealt with the second order differential equation

y"(s)+ f (s) | y(s)| p&1 y(s)=0,

which is equivalent to

u"(r)+
n&1

r
u$(r)+k(r) |u(r)| p&1 u(r)=0,

by the transformation u(r)= y(s) and s=(n&2)n&2 r&(n&2). Under
suitable assumptions on f (s), Nishihara proved that the solution y(s) is
nonoscillatory.

Derrick et al. [DCC] recently discussed the following equation when the
restoring function f ( |x|, u) is independent of the radial variable |x|:

u"+
n&1

r
u$+(b |u|q&1+|u| p&1) u=0, u(0){0, u$(0)=0, (5)
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1<q<p=(n+2)�(n&2). They proved that

lim
j � �

t (2n&2)�(q+3)
j |u(tj)|=c and

rj+1&rj

r ((n&1)(q&1))�(q+3)
j+1

�c,

where c is a positive constant, tj and rj are the j th local extremum and zero
of the solution u(r), respectively. This shows that the period between two
consecutive zeros rj+1&rj has a lower bound of the order r ((n&1)(q&1))�(q+3)

j+1

as rj goes to �.
This paper generalizes and improves the results of [DCC] in several

ways. First of all, we allow the restoring function f ( |x|, u) to depend on |x|
rather than to be a function of u only. Secondly, we provide an exact
asymptotic behavior of the period between any two consecutive zeros rj

and rj+1. Namely, we also show an upper bound of the period, which is
of the same order as the lower bound. The precise statement is given in
Theorem 2 below. We also derive in this paper the precise asymptotic
estimate for the energy associated to the equation (2) defined by (8) which
is of independent interest, see Theorem 1 for details.

The paper is organized as follows: In Section 2, we include a proof that
shows the nonexistence of eventually positive or negative solutions (see
Lemma 1). Section 3 is devoted to the statement and proofs of the main
theorems. The proof of Theorem 1, which shows that any solution of (2)
has the decay property ( |u(r)| � 0), together with Lemma 1, conclude that
any solution of (2) must oscillate around the zero infinitely many times.
This observation is considerably simpler than the proof given in [DCC].

2. PRELIMINARY

We will often use the following Pokhozhaev's second identity (see [Po]
and also [KNY]):

rk+1 _1
2

u$2(r)+F(r, u(r))&+:rku$(r) u(r)+
:
2

(n&1&k) rk&1u2(r)

+\n&1&
k+1

2
&:+ |

r

r0

u$2(s) sk ds

&:
(n&1&k)(k&1)

2 |
r

r0

u2(s) sk&2 ds

+|
r

r0

[:u(s) f (s, u(s))&(k+1) F(s, u(s))&sFs(s, u(s))] sk ds=c0 (6)
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for any k and r0>0, where

c0=rk+1
0 _1

2
u$2(r0)+F(r0 , u(r0))&+:rk

0 u$(r0) u(r0)

+
:
2

(n&1&k) rk&1
0 u2(r0)

and

F(r, u)=|
u

0
f (r, v) dv,

and u(r) is a solution of

u"(r)+
n&1

r
u$(r)+ f (r, u)=0. (7)

Let u(r) be a solution of (2) and define the energy function

Q(r, u(r))=
1
2

u$2(r)+F(r, u(r))=
1
2

u$2(r)+
br+ |u(r)|q+1

q+1
+

r& |u(r)| p+1

p+1
.

(8)

Suppose that the solution u(r) of (2) oscillates about the zero a finite
number of times and has a local maximum at r1 for which u(r)>0 for all
r>r1 . We call such solutions eventually positive solutions.

Lemma 1. The problem (2) has no eventually positive or negative solu-
tions.

Remark 1. Ni and Yotsutani [NY] proved that problem (2) has a
finite number of zeros for every a>0. The techniques of [NY] can be
adapted to prove our Lemma 1. However, we provide here an alternate
proof for the sake of completeness.

Proof of Lemma 1. Since the case for eventually negative solutions
follows trivially by setting v=&u, we only prove that there is no even-
tually positive solutions. Suppose that the conclusion were not true, then
there would exist some r1�0 such that u$(r1)=0 and u(r)>0 for all r�r1 .

Note

u$(r)= &
1

rn&1 |
r

r1

[bs+uq(s)+s&u p(s)] sn&1 ds<0 for r>r1 , (9)
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which implies that u(r) is decreasing for r>r1 . Then

u$(r)�&
b

rn&1 uq(r) |
r

r1

sn&1++ ds=&
b

rn&1 }
uq(r)
n++

(rn++&rn++
1 ),

or

du(r)
uq(r)

� &
b

n++
(r++1&rn++

1 r1&n) dr.

Integrating from r1 to r we get

1
q&1 \

1
uq&1(r1)

&
1

uq&1(r)+
�&

b
n++ \

1
++2

r++2+
1

n&2
rn++

1 r2&n&
n++

(n&2)(++2)
r++2

1 + ,

or

1
uq&1(r1)

+
b(q&1)

n++ \ 1
++2

r++2+
1

n&2
rn++

1 r2&n&
n++

(n&2)(++2)
r++2

1 +
�

1
uq+1(r)

.

Thus

u(r)�cr&((++2)�(q&1)) (10)

for r>r2 with sufficiently large r2�r1 .
Inserting (10) into (9) we obtain

|u$(r)|�
c

rn&1+
c

rn&1 |
r

r1

sn&1++&(((++2) q)�(q&1)) ds

+|
r

r1

sn&1+&&((+(+2) p�( )q&1)) ds

�c } max(r&((++2)�(q&1))&1, r&+1&(((++2) p)�(q&1)), r&(n&1)). (11)

Applying (6) with k=n&1, r0=0 and :=(n&2)�2 we get

rn \1
2

u$2(r)+F(r, u(r))++
n&2

2
rn&1u$(r) u(r)

=
n+2+2+&(n&2) q

2(q+1) |
r

0
|u(s)|q+1 sn&1++ ds (12)
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Using (10) and (11), we derive

rn \1
2

u$2(r)+
br+ |u(r)|q+1

q+1 +
�c } max(r&((n+2+2+&(n&2) q)�(q&1)), rn+2(&+1&(((++2) p)�(q&1))), r&(n&2))

and

rn+& |u(r)| p+1

p+1
�cr&((n+2+2+&(n&2) q)�((q&1)(n&2))) } (n+&).

Letting r � � in (12) we get a contradiction, since the left side of (12) is
nonpositive, while the right side is a positive number. Thus Lemma 1
follows.

3. MAIN THEOREMS AND THEIR PROOFS

By Lemma 1 and the first part of the proof of Theorem 1 below, the
solutions of (2) must oscillate about zero infinitely many times. This can be
seen by the decay property (22), which is true for any solution of (2). Then
we may let rj be the zeros of u(r) and tj be the local extremum points of
u(r) with rj<tj<rj+1. Now we will study the amplitudes and the periods
of the oscillations.

Theorem 1. There exists a positive constant c1 such that

lim
r � �

r(2(n&1)(q+1)&2+)�(q+3)Q(r, u(r))=c1 . (13)

Consequently,

lim
j � �

t (2n&2++)�(q+3)
j |u(tj)|=_(q+1) c1

b &
1�(q+1)

and

lim
j � �

r ((n&1)(q+1)&+)�(q+3)
j |u$(rj)|=- 2c1 . (14)

Proof. Applying (6) with :=(2n&2++)�(q+3) and

k=
2(n&1)(q+1)&2+

q+3
&1=n&1&

n+2+2+&(n&2) q
q+3

<n&1, (15)
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we have

rk+1( 1
2u$2(r)+F(r, u(r)))+:rku$(r) u(r)+c2rk&1u2(r)

+c3 |
r

r0

|u(s)| p+1 sk+& ds+c$3 |
r

r0

s+ |u|q+1 ds

=c4 |
r

r0

u2(s) sk&2 ds+c0 , (16)

or

1
4

rk+1u$2(r)+rk+1 \ b
q+1

r+ |u(r)|q+1+
1

p+1
r& |u(r)| p+1+

+
1
4

[ru$(r)+2:u(r)]2+c3 |
r

r0

|u(s)| p+1 sk+& ds

+c$3 |
r

r0

sk++ |u| q+1 ds

=c4 |
r

r0

u2(s) sk&2 ds+c0+(:2&c2) rk&1u2(r), (17)

where c0 is defined as in (6),

c$3=b \:&
k+1
q+1

&
+

q+1+=0,

c2=
(2n&2++)(n+2+2+&(n&2) q)

2(q+3)2 , c4=c2(k&1),

and

c3=:&
k+1
p+1

&
&

p+1
=

2(n&1)( p&q)++( p+3)&&(q+3)
(q+3)( p+1)

.

Since

2(n&1)( p&q)++( p+3)&&(q+3)&2[n+2+2+&(n&2) q]

=[2(n&1)++] p&2(n&1) q+3+&&q&3&&2(n+2)&4++2q(n&2)

=[2(n&1)++]
n+2+2&

n&2
&+&2q&&q&3&&2(n+2)

=(2+&)
n+2+2+&(n&2) q

n&2
>0, (18)
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we then get c3>0. By Holder's inequality with two conjugate exponents
( p+1)�2 and ( p+1)�( p&1) we have

|c4 | u2(s) sk&2=(u2(s) s(2(k+&))�( p+1))( |c4 | sk&2&((2(k+&))�( p+1)))

�c3 |u(s)| p+1 sk+&+cs;, (19)

where

;=\k&2&
2k+2&
p+1 + }

p+1
p&1

=k&2&
4+2&
p&1

=k&n+
(n&2) p&n&2&2&

p&1
=k&n<&1

by (15). Using (19), we also get

|:2&c2 | rk&1u2(r)=|:2&c2 | r } [u2(r) rk&2]

�
1

2( p+1)
|u(r)| p+1 rk+1+&+cr;+1. (20)

Substituting (19) and (20) into (17) yields

1
4

rk+1u$2(r)+rk+1 _ b
q+1

r+ |u(r)|q+1+
1

p+1
r& |u(r)| p+1&

+c3 |
r

r0

|u(s)| p+1 sk+& ds

�c3 |
r

r0

|u(s)| p+1 sk+& ds+c |
r

r0

s; ds

+
1

2( p+1)
rk+1+& |u(r)| p+1+cr;+1+c0 . (21)

Thus we have simultaneously proved that

rk+1Q(r, u(r))�c, |u(r)|�cr&((2n&2++)�(q+3))

and

|u$(r)|�cr&(((n&1)(q+1)&+)�(q+3)). (22)
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Consequently we have from (22)

|:rku(r) u$(r)|�cr((2(n&1)(q+1)&2+)�(q+3))&1 } r&((2n&2++)�(q+3))

_r&(((n&1)(q+1)&+)�(q+3))

=cr&((n+2+2+&(n&2) q)�(q+3)), (23)

rk&1u2(r)�cr((2(n&1)(q+1)&2+)�(q+3))&2 } r&((2(2n&2++)�(q+3))

=cr&((2[n+2+2+&(n&2) q])�(q+3)), (24)

Letting r � � in (16) and using (23) and (24) we derive

lim
r � �

rk+1Q(r, u(r))=c4 |
�

r0

u2(s) sk&2 ds&c3 |
�

r0

|u(s)| p+1 sk+& ds+c0 .

(25)

Now we claim that

lim
r � �

rk+1Q(r, u(r))=c1>0. (26)

Suppose otherwise, then c1=0, since Q(r, u(r))>0 for all r>0. Set

*=
n+2+2+&(n&2) q

q+3
&=0>2(q+1) =0>0

for small =0 . By L'Hospital's rule, (22)�(24) and (18) we will get

} lim
r � �

c4 �r
r0

u2(s) sk&2 ds&c3 �r
r0

|u(s)| p+1 sk+& ds+c0

r&* }
�

c
*

( lim
r � �

u2(r) rk&1+*+ lim
r � �

|u(r)| p+1 rk+1+*+&)

�
c
*

( lim
r � �

r*&((2(n+2+2+&(n&2) q)�(q+3))

+ lim
r � �

r*&((2(n&1)( p&q)+( p+3) +&&(q+3))�(q+3)))

=0. (27)

Thus, multiplying (16) by r* and using (23), (24) and (27) we get

lim
r � �

rk+1+*Q(r, u(r))=0
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or

|u(r)|�cr&((k+1+*++)�(q+1))�cr&((2n&2++)�(q+3))&(*�(q+1)). (28)

Consequently, we have by (28), (22) and (18),

|:rku(r) u$(r)|�cr&((n+2+2+&(n&2) q)�(q+3))&(*�(q+1))

�cr&((2(n+2+2+&(n&2) q))�(q+3))&2=0 (29)

and

|u(r)| p+1 rk+1+&�cr&((2(n&1)( p&q)+( p+3)+&&(q+3))�(q+3))&((*( p+1))�(q+1))

�cr&((n+2+2+&(n&2) q)�(q+3))&2=0. (30)

We can repeat the process in (27) by using

*1=
n+2+2+&(n&2) q

q+3
+=0

to obtain

lim
r � �

rk+1+*1Q(r, u(r))=0. (31)

On the other hand, using (12) with r=rj and u(rj)=0, we get

rn
j Q(rj , u(rj))=

n+2+2+&(n&2) q
2(q+1) |

rj

0
|u(s)| q+1 sn&1++ ds>0

which contradicts (31) since k+1+*1=n+=0 . Hence c1>0 in (26) and
the proof is complete.

Theorem 2. There exist two positive constants 0<c2<c3 such that

c2�
rj+1&rj

r ((n+1)(q&1)&2+)�(q+3)
j+1

�c3 . (32)

Proof. Since u$(tj)=0 and u(r) does not change sign in [tj , rj+1], we
have by (14), (9) and (10) for j large enough,
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- c1�r ((n&1)(q+1)&+)�(q+3)
j+1 |u$(rj+1)|

=r&((2(n&1)++)�(q+3))
j+1 |

rj+1

tj

(bs+ |u(s)|q+s& |u(s)| p) sn&1 ds

�cr&((2(n&1)++)�(q+3))
j+1 |

rj+1

tj

sn&1++&(((2n&1++) q)�(q+3)) ds

�cr&((2(n&1)++)�(q+3))
j+1 |

rj+1

tj

s((n&1)(3&q)+3+)�(q+3)q+3)) ds. (33)

If (n&1)(3&q)+3+�0, then the integrand is monotone increasing so that

- c1�cr&(((n&1)(q&1)&2+)�(q+3))
j+1 |

rj+1

tj

ds

�cr&(((n&1)(q&1)&2+)�(q+3))
j+1 (rj+1&rj).

If (n&1)(3&q)+3+<0, since

(n&1)(3&q)+3+
q+3

+1=
3n&(n&2) q+3+

q+3
>0

we can calculate (33) directly and get

- c1�
c(q+3)

3n&q(n&2)+3+
r&((2(n&1)++)�(q+3))

j+1

_(r(((n&1)(3&q)+3+)�(q+3))+1
j+1 &t (((n&1)(3&q)+3+)�(q+3))+1

j )

=cr&(((n&1)(q&1)&2+)�(q+3))
j+1 (rj+1&r&(((n&1)(3&q)+3+)�(q+3))

j+1

_t (((n&1)(3&q)+3+)�(q+3))+1
j )

�cr&(((n&1)(q&1)&2+)�(q+3))
j+1 (rj+1&tj)

�cr&(((n&1)(q&1)&2+)�(q+3))
j+1 (rj+1&rj). (34)

Thus we have proved the first inequality in (32).
Now let us prove the second inequality in (32). First suppose u(t2j)>0

for j=1, 2, ... . Let s2j # (t2j , r2j+1) such that

u$2(s2j)=2F(s2j , u(s2j)) and u$2(r)>2F(r, u(r)), (35)

for r # (s2j , r2j+1). Note that such s2j must exist because if we set

g(r)=u$2(r)&2F(r, u(r))=u$2(r)&2 \br+ |u(r)| q+1

q+1
+r& |u(r)| p+1

p+1 + ,
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then g(t2j)=&2F(t2j , u(t2j))<0 and g(r2j+1)=u$2(r2j+1)>0. Thus

s2j= sup
r # (t2j , r2j+1)

[r | u$2(r)=2F(r, u(r))].

Using (13) and (35) we have

sk+1
2j Q((s2j , u(s2j))=2sk+1

2j F(s2j , u(s2j)) � c1 as j � �,

which implies that

s(2(n&1)++)�(q+3)
2j u(s2j) � \(q+1) c1

2b +
1�(q+1)

=c0 as j � �. (36)

Using (13) and (35) again, we get

c1

2
<rk+1Q(r, u(r))�rk+1u$2(r),

for r # (s2j , r2j+1) and j large enough, which implies that (notice u$(r)<0 in
(t2j , r2j+1))

r((n&1)(q+1)&+)�(q+3)(&u$(r))=r(k+1)�2(&u$(r))��c1

2
. (37)

Multiplying both sides of (37) by r&((n&1)(q&1)&2+)�(q+3) and adding a
similar term to both sides, gives

&
2(n&1)++

q+3
u(r) r ((2(n&1)++)�(q+3))&1&u$(r) r(2(n&1)++)�(q+3)

��c1

2
r&((n&1)(q&1)&2+)�(q+3)&

2(n&1)++
q+3

u(r) r((2(n&1)++)�(q+3))&1,

or

&
d
dr

(u(r) r(2(n&1)++)�(q+3))

�r&(((n&1)(q&1)&2+)�(q+3)) \�c1

2
&

2(n&1)++
q+3

_u(r) r(2(n&1)++)�(q+3) } r&((n+2&(n&2) q+2+)�(q+3))+ . (38)
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Since u(r) r(2(n&1)++)�(q+3) is bounded by (22) and r&((n+2+2+&(n&2) q)�(q+3))

�0 as r � �, we can assume that

\�c1

2
&

2(n&1)++
q+3

u(r) r(2(n&1)++)�(q+3)

_r&((n+2+2+&(n&2) q)�(q+3))+�
- c1

2
,

for r # (s2j , r2j+1) and j sufficiently large. Thus (38) becomes

&
d
dr

(u(r) r(2(n&1)++)�(q+3))�
- c1

2
r&(((n&1)(q&1)&2+)�(q+3)) (39)

Integrating (39) from s2j to r2j+1 yields, by (36),

2c0�s (2(n&1)++)�(q+3)
2j u(s2j)

�{
- c1

2
r&(((n&1)(q&1)&2+)�(q+3))

2j+1 (r2j+1&s2j), if (n&1)(q&1)�2+;

- c1

2
s&(((n&1)(q&1)&2+)�(q+3))

2j (r2j+1&s2j), if (n&1)(q&1)<2+.

(40)

Noticing that u(r) is a decreasing function on (t2j , r2j+1), it follows that by
(35) and (9),

2 - b s+�2
2j u(q+1)�2(s2j)�- 2F(s2j , u(s2j))

=&u$(s2j)�s&(n&1)
2j |

s2j

t2j

bs+uq(s) sn&1 ds

�bs&(n&1)
2j uq(s2j) |

s2j

t2j

sn&1++ ds

=bs+
2ju

q(s2j) |
s2j

t2j

ds=bs+
2ju

q(s2j)(s2j&t2j),

This shows that

2�- b s+�2
2j u(q&1)�2(s2j)(s2j&t2j).
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Then we get by (36)

2�- b s+�2
2j u (q&1)�2(s2j)(s2j&t2j)

�
- b

2
c(q&1)�2

0 s&((2(n&1)++)�(q+3)) } ((q&1)�2)+(+�2)
2j (s2j&t2j)

_{
�

- b
2

c (q&1)�2
0 r&(((n&1)(q&1)&2+)�(q+3))

2j+1 (s2j&t2j)

(41)
if (n&1)(q&1)�2+;

=
- b

2
c(q&1)�2

0 s&(((n&1)(q&1)&2+)�(q+3))
2j (s2j&t2j)

if (n&1)(q&1)<2+

If (n&1)(q&1)<2+ then by (40) and (41), r2j+1&t2j � 0 as j � �, which
implies

s&(((n&1)(q&1)&2+)�(q+3))
2j � 1

2r&(((n&1)(q&1)&2+)�(q+3))
2j+1 , (42)

for j sufficiently large.
Adding (40) and (41) together, using (42) in the case (n&1)(q&1)<2+,

we thus have proved the second inequality of (32) in the interval
(t2j , r2j+1), i.e., replacing r2j by t2j in (32).

We still need to prove the similar inequality in the interval [r2j , t2j].
Notice that

u$(t2j)=&
1

tn&1
2j

|
t2j

t2j&1

f (s, u(s)) sn&1 ds=0,

we have

u$(r)=&
1

rn&1 |
r

t2j&1

f (s, u(s)) sn&1 ds=
1

rn&1 |
t2j

r
f (s, u(s)) sn&1 ds,

for r # (r2j , t2j). Then we can obtain the second inequality of (32) in the
interval (r2j , t2j) by similar arguments. By adding these two inequalities we
thus have proved the second inequality of (32) when u(t2j)>0. Similarly we
can prove the result when u(t2j+1)<0.

Remark 2. From the conclusion of Theorem 2, we notice the very inter-
esting phenomena, that is, if (n&1)(q&1)&2+>0 then oscillatory period
of the solution becomes longer and longer while if (n&1)(q&1)&2+<0
it becomes shorter and shorter. Especially, when (n&1)(q&1)&2+=0, it
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changes between two constants. For n=3, +=q&1, the behaviors of solu-
tions of (2) are very similar to that of the following linear equation

u"+
2
r

u$+Au=0, u(0)=a{0, u$(0)=0.

The solution is u=(a�- A r) sin - A r because the order of the amplitude
of two solutions is the same (all are 1�r). We note the zeros of the solution
are rj=( j?)�- A and thus rj+1&rj=?�- A , which is a constant for all j.
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