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SUBELLIPTIC POINCARÉ INEQUALITIES:
THE CASE p < 1

S. Buckley, P. Koskela and G. Lu1

Abstract
We obtain (weighted) Poincaré type inequalities for vector fields
satisfying the Hörmander condition for p < 1 under some assump-
tions on the subelliptic gradient of the function. Such inequalities
hold on Boman domains associated with the underlying Carnot-
Carathéodory metric. In particular, they remain true for solutions
to certain classes of subelliptic equations. Our results complement
the earlier results in these directions for p ≥ 1.

1. Introduction

One of the main purposes of this paper is to derive a Poincaré-type
inequality of the form
(1.1)
 1
|B|

∫
B

|f(x) − fB |q dx




1
q

≤cr


 1
|B|

∫
B


∑

j

|〈Xj ,∇f(x)〉|2



p
2

dx




1
p

in Euclidean space R
N for 0 < p < 1 and certain values q > p, where

{Xj}mj=1 is a collection of smooth vector fields which satisfy the
Hörmander condition (see [H]) provided that f is a suitable function
whose subelliptic gradient satisfies a weak reverse Hölder condition (de-
fined below). Here, B denotes any suitably restricted ball of radius r
relative to a metric 
 which is naturally associated with {Xj} (as in,
for example, [FP] and [NSW]), fB is some constant (we may assume
fB = |B|−1

∫
B
f(x) dx if f ∈ L1(B)), and c is a constant which depends
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on the reverse Hölder constant of the subelliptic gradient of f but is oth-
erwise independent of f , and is also independent of B. More generally,
we shall prove one-weight and two-weight versions of this result, and also
results for more general domains.

Inequality (1.1) was derived in [J] for q = p and 1 ≤ p < ∞, and this
result was improved by the third author in the case p > 1 in [L2] where
(1.1) is proved for 1 < p < Q, q = pQ/(Q− p), and Q(≥ N) denotes the
homogeneous dimension of R

N associated with {Xj} (see below for the
definition). Recently the limiting case p = 1 and q = Q

Q−1 was proved
in [FLW] by establishing a new representation formula that improves
the previous one proved in [L1]; this inequality was then applied to the
relative isoperimetric inequality. In the cases p = Q and p > Q, f
was shown to be in BMO and Hölder classes, respectively, when |Xf |
is assumed to be in Lp

loc (see [L3], [L4]); embedding theorems on the
Campanato-Morrey spaces and from the Morrey spaces to BMO and
Lipschitz spaces were also shown. Some related inequalities have been
studied in [BM], [HK], and [MS].

There have been very few Poincaré-type results for p < 1, mainly
because there are easy counterexamples even in the case when {Xi}Ni=1

are the constant vector fields in the coordinate directions, i.e., Xi = ∂
∂xi

,
1 ≤ i ≤ N (see [BK]). However, in this particular case, it has recently
been proved that f satisfies a Poincaré inequality if the gradient of f
satisfies a weak reverse Hölder condition [BK]. We show in this paper
that a similar result is true in the setting of vector fields of the above
type and also in a weighted context. In the unweighted case, we will show
that (1.1) holds for such functions f if 0 < p < 1, p < q < ∞, and p and
q are related by a natural balance condition involving the local doubling
order of Lebesgue measure for metric balls (see [FLW] for p ≥ 1). This
balance condition (introduced earlier in [CW]) can actually be shown
to be necessary and sufficient for the validity of the Sobolev-Poincaré
inequality.

To state our theorems, we need to introduce some notation and def-
initions. Let Ω be a domain in R

N , and let {Xj}mj=1 be a collection of
C∞ real vector fields defined in a neighbourhood of the closure Ω of Ω.
For a multi-index α = (i1, . . . , ik), the commutator
[Xi1 , [Xi2 , . . . , [Xik−1 , Xik ]] . . . ] of length k = |α| will be denoted by
Xα. Throughout this paper we assume that the vector fields satisfy
Hörmander’s condition: there exists some positive integer s such that
{Xα}|α|≤s span R

N at each point of Ω. For the sake of brevity, we shall
refer to such a family of vector fields as a Hörmander family.

With any Hörmander family, we can associate a metric as follows.
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First let us say that γ : [a, b] → Ω is an admissible curve if it is Lipschitz
and there exist functions ci(t), a ≤ t ≤ b, satisfying

∑m
i=1 ci(t)

2 ≤ 1 and
γ′(t) =

∑m
i=1 ci(t)Xi(γ(t)) for almost every t ∈ [a, b]. A natural metric

on Ω associated with X1, . . . , Xm is


(ξ, η) = inf{b ≥ 0 : ∃ an admissible curve γ : [0, b] → Ω
such that γ(0) = ξ, and γ(b) = η}.

Such a metric is often called a Carnot-Carathéodory metric. It fol-
lows from the work of Busemann [Bu, p. 25] that any two points in
Ω can be joined by a geodesic (a rectifiable path whose 
-length equals
the 
-distance between its end-points). We assume that any geodesic
is canonically parametrised by the 
-arclength of its initial segment.
The (open) metric ball with centre x and radius r will be denoted
B(x, r) = {y : 
(x, y) < r}. 
 is locally equivalent to the various
other metrics defined in [NSW], and generates the same topology as
the Euclidean metric. It is shown there that Lebesgue measure is locally
doubling on small balls: if K ⊂⊂ Ω and δ > 0 is sufficiently small, then

(1.2) |B(x, 2r)| ≤ C|B(x, r)|, x ∈ K, 0 < r < δ.

Thus (Ω, 
) is (locally) a homogeneous space in the sense of Coifman-
Weiss.

If B is a metric ball and t > 0, r(B) and rB both denote the radius of
B, tB denotes the “t-dilate” of B (the concentric ball with radius t · rB),
and zB denotes the centre of B. In proofs, C denotes any constant whose
exact value is unimportant for the purposes of the proof.

By the Rothschild-Stein lifting theorem (see [RS]), the vector fields
{Xi}mi=1 on Ω ⊂ R

N can be lifted to vector fields {X̃i}mi=1 in Ω̃ = Ω ×
T ⊂ R

N × R
M−N , where T is the unit ball in R

M−N , by adding extra
variables so that the resulting vector fields are free, i.e., the only linear
relation between the commutators of order less than or equal to s at
each point of Ω̃ are the antisymmetric and Jacobi’s identity. Let G(m, s)
be the free Lie algebra of steps with m generators, that is the quotient
of the free Lie algebra with m generators by the ideal generated by the
commutators of order at least s + 1. Then {Xα}|α|≤s are free if and
only if N = dimG(m, s). We define the homogeneous dimension of Ω
to be Q ≡

∑s
j=1 jmj , where mj is the number of linearly independent

commutators of length j for the lifted vector fields.
A weight function w(x) on an open subset E of Ω is a nonnegative

function on E which is locally integrable with respect to Lebesgue mea-
sure and not everywhere zero. Given 0 < α < 1, we say that a positive
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Borel measure µ on an open subset E of Ω is an α-strong doubling mea-
sure (or simply a strong doubling measure) on E if there exists Cµ > 0
such that µ(2B ∩ E) ≤ Cµµ(B ∩ E) for all metric balls B for which
αB ⊂ E. If dµ(x) = w(x) dx for some weight w, we say that w is an
α-strong doubling weight. If 1 ≤ p < ∞, we say that a weight w is in the
class (local)-Ap(E) ≡ Ap(E, 
, dx) if there is some constant Cw ≥ 1 such
that


 1
|B|

∫
B

w dx





 1
|B|

∫
B

w−1/(p−1) dx



p−1

≤ Cw, when 1 < p < ∞,

1
|B|

∫
B

w dx ≤ Cw ess inf
B

w, when p = 1,

for all metric balls 2B ⊂ E. Since Lebesgue measure is doubling with
respect to metric balls, we can develop the usual theory of these Mucken-
houpt Ap classes as in [Ca], at least for balls B = B(x, r) with 0 < r < r0

and x belonging to a compact subset of E. In particular, it follows easily
from the above definition that Ap weights are (local) doubling weights:
µ(2B) ≤ Cµµ(B) whenever 4B ⊂ E. These weights are not necessarily
strongly doubling. We should note that our definition is more “local”
than Calderón’s (since we are only assuming the defining inequality for
balls B such that 2B ⊂ E), but Calderón’s proofs can be easily adjusted
to handle this variant; our more local definition allows us to handle
certain important classes of weights that would not belong to a more re-
stricted class (for instance, positive powers of distance to the boundary).

We now introduce the notion of functions satisfying a weak reverse
Hölder condition. Given a doubling measure µ on an open subset E
of Ω, we say that a non-negative function w on E is in WRHp(E,µ) if
w �≡ 0, w ∈ Lp

loc(E,µ), and if there is a constant Cw,µ > 0 such that

(
1

µ(B)

∫
B

w(x)p dµ
) 1

p

≤ Cw,µ

(
1

µ(B)

∫
σB

w(x)q dµ
) 1

q

for all B : σ′B ⊂ E.

Here q, σ, and σ′ are parameters satisfying 0 < q < p, 1 < σ ≤ σ′.
These definitions are independent of the choice of q, σ, σ′, as we shall
show in Lemma 1.4 (whose proof is adapted from the proof for Lebesgue
measure and Euclidean space in [IN]). When dµ(x) = v(x) dx, we shall
abuse notation as before and write WRHp(E, v) in place of WRHp(E,µ);
in the particular case v = 1, we simply write WRHp(E). For a convenient
choice of q, σ, σ′, the smallest constant Cw,µ for which the above defining
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inequality remains valid is called the WRHp(E, µ) constant of w. Since
we use this constant only as an upper bound on the variability of the
gradient, it follows from Lemma 1.4 below that the exact choices of q, σ,
σ′, are unimportant for our purposes. Before stating Lemma 1.4, let us
first state the following Whitney decomposition result of Coifman and
Weiss (see [CoWe, Theorem III.1.3]).

Lemma 1.3. If E is a proper open subset of a homogeneous space
(S, d, µ), then there exists a family F of disjoint metric balls B and
constants 1 < K1 < K2 < K3, M such that

(a) E =
⋃
B∈F K1B.

(b)
∑

B∈F χ
K2B

(x) ≤ M χ
E
(x) for all x ∈ S.

(c) K3B intersects Ec for every B ∈ F .

Note that by examining the proof of Lemma 1.3 in [CoWe], it is
easily verified that the constants K1, K2/K1, and K3/K2 can be chosen
arbitrarily and independently, provided that they exceed certain lower
bounds. For the first and last of these constants, this is essentially trivial,
while increasing K2/K1 corresponds to using smaller balls in the proof
of this lemma.

Lemma 1.4. Let G be an open subset of a homogeneous space (S, d, µ)
and let F(G) be the set of metric balls contained in G. Suppose that for
some 0 < q < p and non-negative f ∈ Lp

loc(µ), there are constants A > 1
and 1 < σ0 ≤ σ′

0 such that

(1.5)
(
−
∫
B

fp dµ

)1/p

≤ A

(
−
∫
σ0B

fq dµ

)1/q

∀B : σ′
0B ∈ F(G).

Then for any 0 < r < q and 1 < σ ≤ σ′ < σ′
0, there exists a constant

A′ > 1 such that

(1.6)
(
−
∫
B

fp dµ

)1/p

≤ A′
(
−
∫
σB

fr dµ

)1/r

∀B : σ′B ∈ F(G).

In fact, we can choose A′ = C0A
s/(σ−1)C0 , where s=(r−1−p−1)/(q−1−

p−1) and C0 is a sufficiently large constant independent of f , A, σ, and
σ′.

Proof: Without loss of generality, we assume that σ = σ′ < σ0. Let
E ⊂ G be any metric ball. For simplicity, we normalise the metric and
the measure so that rE = 1 and µ(E) = 1. Let W∞ be the set of all



318 S. Buckley, P. Koskela, G. Lu

metric balls in the Whitney decomposition of E with constants K1, K2,
K3 chosen so that K2 is larger than 2K4 ≡ 2σ′

0K1 (so that we can choose
B in (1.5) to be the K1-dilate of any Whitney ball). For all k ≥ 0, let
Wk be the set of all Whitney balls of radius greater than 2−k, and let
Ek =

⋃
B∈Wk

K1B. Since µ is doubling, there exists 0 < b < 1 such
that µ(B) ≥ bk for all B ∈ Wk, and hence there are at most Mb−k

balls in Wk. Letting t = p(q − r)/q(p − r), we see that 0 < t < 1 and
q−1 = tp−1 + (1 − t)r−1. Now (1.5) and Hölder’s inequality imply that(

−
∫
K1B

fp dµ

)1/p

≤ A

(
−
∫
K4B

fp dµ

)t/p(
−
∫
K4B

fr dµ

)(1−t)/r

and so∫
K1B

fp dµ ≤ Ap

(
−
∫
E

fr dµ

)(1−t)p/r (∫
K4B

fp dµ

)t

µ(B)(1−t)(1−p/r).

Now µ(B)(1−t)(1−p/r) ≤ b−k1 for all B ∈ Wk, where b1 = b(1−t)(p−r)/p.
Thus ∫

Ek

fp dµ ≤
∑

B∈Wk

∫
K1B

fp dµ

≤ Apb−k1

(
−
∫
E

fr dµ

)(1−t)p/r ∑
B∈Wk

(∫
K4B

fp dµ

)t

.

If x ∈ K4B for some B ∈ Wk, then d(x,Ec) ≥ K42−k (since K2 > 2K4).
On the other hand, if x ∈ K1B

′, for some B′ ∈ W∞, then d(x,Ec) ≤
d(x, zB′)+d(zB′ , Ec) ≤ (K1 +K3)rB′ . It follows that if we fix an integer
m > log2[(K1 + K3)/K4], then

⋃
Q∈Wk

K4B ⊂ Ek+m, and so writing
b2 = b · b1, we get

(1.7)
∫
Ek

fp dµ ≤ MApb−k2

(
−
∫
E

fr dµ

)(1−t)p/r (∫
Ek+m

fp dµ

)t

.

Iterating (1.7) we see that

∫
Ek

fp dµ ≤
[
MAp

(
−
∫
E

fr dµ

)(1−t)p/r]αl

b−γl

2

(∫
Ek+ml

fp dµ

)tl

where αl =
∑l−1

j=0 t
j and γl =

∑l−1
j=0(k + mj)tj . Letting l → ∞, we see

that αl → (1 − t)−1 and γl → (k(1 − t) + mt)/(1 − t)2 and so

(1.8)
(
−
∫
Ek

fp dµ

)1/p

≤ CA1/(1−t)b−k/p(1−t)2

(
−
∫
E

fr dµ

)1/r

.
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If we choose k to be the least integer larger than log2[(K1+K3)σ/(σ−1)],
then σ−1E ⊂ Ek, and so (1.6) follows for all admissible B by choosing
E = σB in (1.8). The last statement of the theorem follows since 1/(1−
t) = s and b

−k/p(1−t)
2 ≤ C(σ − 1)−C0 for sufficiently large C0.

It was shown in [FLW] that, given a compact subset K of Ω and a
ball B = B(x, r), r < r0, x ∈ K, there exist positive constants γ and c,
depending on K and r0 (or on B if we wish), so that

(1.9) |J | ≤ c

(
r(J)
r(I)

)Nγ

|I|

for all balls I, J with I ⊂ J ⊂ B. We shall call γ the doubling order
of Lebesgue measure for B. We always have N ≤ Nγ ≤ Q, where Q is
the homogeneous dimension defined previously. We can of course choose
Nγ = Q, but smaller values may arise for particular vector fields, and
these values may vary with B(x, r).

If E ⊂ Ω is open and f ∈ C1(E), we write

Xjf(x) = 〈Xj(x),∇f(x)〉, j = 1, . . . ,m,

and

|Xf(x)|2 =
m∑
j=1

|Xjf(x)|2,

where ∇f is the usual gradient of f and 〈 , 〉 is the usual inner product
on R

N .
We now state the unweighted version of our main Poincaré estimate,

which essentially generalises the main result of [BK] and extends the
main result of [L2].

Theorem 1.10. Let K be a compact subset of Ω. There exists r0 > 0
depending on K, Ω and {Xj} such that if E = B(x, r) is a ball with
x ∈ K and 0 < r < r0, and if 1/q = 1/p − 1/(Nγ), 0 < p < 1, where γ
is defined by (1.9) for E, then there exists a constant fE such that

(
1
|E|

∫
E

|f(x) − fE |q dx
) 1

q

≤ C0r

(
1
|E|

∫
E

|Xf(x)|p dx
) 1

p

for any f ∈ C1(E) provided that |Xf | ∈ WRH1(E) . The constant C0

depends on p, K, Ω, {Xj}, the WRH1(E)-constant, and the constants
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c and γ in (1.9). We may choose fE = |E′|−1
∫
E′ f(x) dx for any com-

pactly contained sub-ball E′ of E, (in which case the constant C0 also
depends on the choice of E′).

This result and its proof is a hybrid of the main unweighted results of
[FLW] and [L2] with the main result of [BK]. As mentioned earlier, we
may always choose Nγ = Q.

Note that if we assume Theorem 1.10 for a particular choice of the sub-
ball E′, and use also the corresponding Poincaré inequality for p = 1 (as
in [FLW]), a standard argument gives Theorem 1.10 for all valid choices
of E′. Accordingly we shall prove this theorem only when E′ is the
“central” ball in an appropriate Whitney decomposition of E. Similarly,
if f ∈ L1(E), we readily see that fE can be chosen to be the average of
f over all of E (as it is usually defined when p ≥ 1). Similar comments
apply to the weighted results below which, for simplicity, we state only
for a particular choice of fE .

Given 0 < p < 1, p < q < ∞, and a metric ball E ⊂ Ω, we shall
be interested in weights w1, w2 on E for which the following balance
condition holds:

(1.11)
r(I)
r(J)

(
w2(I)
w2(J)

) 1
q

≤ c

(
w1(I)
w1(J)

) 1
p

for all metric balls I, J with I ⊂ J ⊂ E. Note that in the case of
Lebesgue measure (w1 = w2 = 1), (1.11) reduces to (1.9) if 1/q = 1/p−
1/(Nγ). A balance condition of type (1.11) was introduced previously in
[CW] to study weighted Poincaré inequalities (see also [FGuW], [FLW],
and [L1]). We shall use notation such as (1.11)p0,q0 when we wish to refer
to (1.11) with parameters p = p0 and q = q0.

We now state a weighted Poincaré inequality for 0 < p < 1, p < q,
which complements the case 1 ≤ p < q considered in [FLW]. It also
generalises Theorem 1.10, since Lebesgue measure is doubling on small
balls centred in K.

Theorem 1.12. Let K be a compact subset of Ω. There exists r0 > 0
depending on K, Ω and {Xj} such that if E = B(x, r) is a ball with
x ∈ K and 0 < r < r0, if 0 < p < 1, p < q < ∞, and if w1, w2 are
weights satisfying the balance condition (1.11) for E, with w1 ∈ A1(E)
and w2 α-strongly doubling on E for sufficiently small α = α(Ω) > 0,
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then

(1.13)
(

1
w2(E)

∫
E

|f(x) − fE |qw2(x) dx
) 1

q

≤ C0r

(
1

w1(E)

∫
E

|Xf(x)|pw1(x) dx
) 1

p

for any f ∈ C1(E), with fE = w2( 1
2E)−1

∫
1
2E

f(x)w2(x) dx, provided
|Xf | ∈ WRH1(E,w1). The constant C0 depends only on p, K, Ω, {Xj},
the WRH1(E,w1)-constant, and the constants in the conditions imposed
on w1 and w2.

For the necessity of (1.11) see Section 2. In the particular case when
w ≡ w1 = w2 is α-strongly doubling (for α < 1/11, say), we claim that
(1.11) is always satisfied for some q−1 = p−1 − δ where δ ∈ (0, 1/p) is
dependent only on the strong doubling constant. This is clearly true
if rI > rJ/10, so we assume rI < rJ/10. We may also assume that

(zJ , zI) > rJ/10.

We claim that I ⊂ J1 ⊂ J for some metric ball J1 for which rJ1 =
rJ/10. To construct J1, let g : [0, s] → J , s < rJ , be the geodesic
curve for which g(0) = zJ and g(s) = zI . Let Bt be the ball of radius
rJ/10 − rI , and centre g(t), and let t0 = inf{0 < t ≤ s : zI ∈ Bt}. Since
g is a geodesic, it readily follows that I ⊂ J1 ⊂ J if rJ1 = rJ/10 and
zJ1 = g(t0).

Clearly, w(J1)/w(J) > β > 0 for some 0 < β < 1 dependent only
on the strong doubling constant. Continuing this process, we can create
a finite nested sequence of metric balls Ji of radius rJ/10i whose final
member Jm contains I but has radius not more than 10rI . It follows
easily that w(I)/w(J) > Cβm if rI/rJ < 10−m, establishing our claim.

The following one-weighted corollary of Theorem 1.12 now follows.

Corollary 1.14. Let K be a compact subset of Ω. Then there exists
r0 depending on K, Ω and {Xj} such that if E = B(x, r) is a ball with
x ∈ K and 0 < r < r0, if w ∈ A1(E, 
, dx) is α-strongly doubling on E
for sufficiently small α = α(Ω) > 0, and if q ≤ q0, 0 < p ≤ 1, where
p < q0 = q0(p, w), then(

1
w(E)

∫
E

|f(x) − fE |qw(x) dx
) 1

q

≤C0r

(
1

w(E)

∫
E

|Xf(x)|pw(x) dx
) 1

p

for any f ∈ C1(E) provided that |Xf | ∈ WRH1(E,w). The constant C0

depends on p, K, Ω, {Xj}, w, the WRH1(E)-constant, and the constants
c and γ in (1.9). Also, we may take fE = w( 1

2E)−1
∫

1
2E

f(x)w(x) dx.
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As an example, Corollary 1.14 is valid for w(x) = [
(x,Ec)]r, for all
r > 0. Trivially such weights are in A1(E). Also, the doubling property
w(2B∩E) ≤ Cw(B∩E) follows immediately from (strong) doubling for
Lebesgue measure if 4B ⊂ E, so it suffices to prove the strong doubling
property of w for balls “near” the boundary. Suppose therefore that
B is a metric ball with αB ⊂ E for some fixed α > 0, but 4B �⊂ E.
By a geodesic argument similar to that used in the paragraphs before
Corollary 1.14, we see that there is some ball B′ ⊂ αB whose radius
and distance to the boundary of E are both at least αrB/4. It then
follows that w(B ∩E) ≥ (αrB/4)r|B′|, while w(2B ∩E) ≤ (6rB)r|2B| ≤
CrrB |B′|, by the strong doubling property of Lebesgue measure.

Similarly for any r1, r2 > 0, we can take wi(x) = [
(x,Ec)]ri in
Theorem 1.12, as long as these weights satisfy the balance condition.

We mention in passing that it is possible to use the Poincaré esti-
mates above to derive analogous estimates for domains other than balls.
In particular, our proof of the Poincaré inequalities can be naturally
generalised to handle domains which satisfy the Boman chain condition.
Such a generalisation is given after the end of the proof of Theorem 1.12
in Section 2.

2. Proof of the Poincaré estimates:
Theorems 1.10 and 1.12

As noted in the introduction, Theorem 1.10 is a special case of The-
orem 1.12. To prove Theorem 1.12, we first derive a weaker version in
which the domain of integration on the left-hand side of the Poincaré
inequality is a ball B and, on the right-hand side, it is cB for some
c > 1. This weaker version for a given B with 2cB ⊂ E will follow
readily from the weak reverse Hölder inequality applied to the results
of [FLW]. Standard arguments then easily give the case rB ⊂ E for
any r > 1, but the case r = 1 we want requires more work. The rest
of the proof of Theorem 1.12 consists of covering E by a collection of
metric sub-balls and chaining together the associated weak inequalities
to recover this stronger one. This chaining argument is similar to the
proof of the sharp Poincaré inequality for p > 1 and w1 = w2 = 1 in
the Carnot-Carathéodory metric case given in [L2], but with the balance
condition (1.11) replacing Lemma 4.2 of [L2]. Similar arguments have
also been used for the Euclidean case in [Boj], [Bom], [IN] (see also
[BK], [Ch], and [FGuW]).

To carry out the chaining argument, we need to define the so-called
Boman chain condition in the context of a homogeneous space. The
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definition given below may seem slightly different from the corresponding
version in Euclidean space, but it suffices for our purpose.

Definition 2.1. Let (S, d, µ) be a homogeneous space in the sense
of Coifman-Weiss. A domain (i.e. a connected open set) E in S is said
to satisfy the Boman chain condition if there exist constants M , λ > 1,
C2 > C1 > 1, and a family F of disjoint metric balls B such that

(i) E =
⋃
B∈F C1B.

(ii)
∑

B∈F χ
C2B

(x) ≤ M χ
E
(x) for all x ∈ S.

(iii) There is a so-called “central ball” B∗ ∈ F such that for each
ball B ∈ F , there is a positive integer k = k(B) and a chain of
balls {Bj}kj=0 such that B0 = B, Bk = B∗, and C1Bj−1

⋂
C1Bj

contains a metric ball Dj whose volume is comparable to those of
both Bj−1 and Bj for all 1 ≤ j ≤ k.

(iv) B ⊂ λBj , for all j = 0, . . . , k(B).
We shall call such a set E a (Boman) chain domain. We shall refer

to individual chains as (λ,C1, C2)-chains if we wish to specify the pa-
rameters. Clearly all chain domains are bounded. M is a “dimensional
constant” which is of no great concern to us. If λ is much larger than
C1 and C2, it indicates the domain is “bad” (for instance, it may be
very elongated or it may have narrow bottlenecks). C1 and C2 are not
important, as there is a lot of freedom in their choice. Trivially for in-
stance, λ, C1, and C2 can all be multiplied by the same factor larger
than 1 (while holding M constant) if we shrink the balls accordingly.
Also, whenever we shall need to assume a domain is a chain domain, the
proof can be altered easily to work no matter how much we weaken the
chain condition by increasing C1 or decreasing C2, as long as C1 < C2.
Let us therefore assume C1 = 2 and C2 = 10, unless otherwise specified.

If S = R
N and d is the Euclidean metric, this is the standard Boman

chain condition, and it is known to be satisfied by bounded Lipschitz
domains, (ε,∞) domains, and John domains. In the general homoge-
neous space, it is difficult to determine whether or not a domain is a
chain domain. However, in the Carnot-Carathéodory case, we have the
following result which we formally state for future reference.

Lemma 2.2. [L2] Let E ⊂ Ω be a metric ball. Then E is a chain
domain.

We note that in [BKL], metric John domains are defined in general
homogeneous spaces and are shown to be chain domains. This allows
one to state a version of Lemma 2.2 for metric balls satisfying a weak
geodesic condition in an arbitrary homogeneous space which satisfies a
certain quasigeodesic condition.
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The following lemma is a generalisation of a lemma of Boman [Bom]
(where it is stated for the unweighted Euclidean case with E = R

n). A
version for doubling weights in R

n is stated in [ST, p. 1055].

Lemma 2.3. Suppose 1 < λ, 1 ≤ p < ∞ and w2 is an α-strong
doubling weight for sufficiently small α = α(S, λ) > 0 on a subset E
of a homogeneous space S. Let {Bβ}β∈I be an arbitrary family of open
metric balls contained in E, and let {aβ}β∈I be non-negative numbers.
Then ∥∥∥∑

β∈I
aβχλBβ∩E

∥∥∥
L

p
w2

(E)

≤ C
∥∥∥∑
β∈I

aβχBβ

∥∥∥
L

p
w2

(E)

,

where C is independent of {aβ} and {Bβ}.

As the above lemma is proved in a similar fashion to all previous
versions, we omit a formal proof. As with the other versions, the proof
reduces to the boundedness of the relevant maximal operator M on the
conjugate space Lp′

w2
(E), which in turn follows from the boundedness of

M from L1
w2

(E) to weak-L1
w2

(E). For this last result, we simply use the
correct covering lemma, specifically Theorem III.1.2 of [CoWe]. The
maximal operator needed here is

Mg(x) = sup
B(x,r)

1
w2(B(x, r))

∫
B(x,r)

|g(y)|w2(y) dy.

where the supremum is taken over all balls B for which λ−1B ⊂ E.

Proof of Theorem 1.12: For any (compactly contained) metric
sub-ball B of E used in this proof, fB will denote the average
w2(B)−1

∫
B

f(x)w2(x) dx (rather than an average over (1/2)B). By as-

sumption, w1, w2 satisfy the condition (1.11)p,q with p < 1, and so they
also satisfy (1.11)1,q. Thus, if B is any metric ball for which cσB ⊂ E,
it follows from [FLW] that,

(2.4)
(

1
w2(B)

∫
B

|f(x) − fB |qw2(x) dx
)1/q

≤ C rB

(
1

w1(B)

∫
cB

( m∑
i=1

|Xif |
)
w1(x) dx

)
.

Since |Xf | ∈ WRH1(E,w1), we deduce that

(2.5)
(

1
w2(B)

∫
B

|f(x) − fB |qw2(x) dx
)1/q

≤ C rB

(
1

w1(B)

∫
cσB

( m∑
i=1

|Xif |
)p

w1(x) dx

)1/p

.
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By an easy covering argument, we can (for the sake of simplicity) reduce
(2.5) to

(2.6)
(

1
w2(B)

∫
B

|f(x) − fB |qw2(x) dx
)1/q

≤ C rB

(
1

w1(B)

∫
2B

( m∑
i=1

|Xif |
)p

w1(x) dx

)1/p

.

We note that (2.6) is equivalent to
(2.7)∫

B

|f − fB |qw2 ≤ C rqB w2(B)w1(B)−q/p
(∫

2B

( m∑
i=1

|Xif |
)p

w1

)q/p

,

for the p, q, w1, w2 satisfying the balance condition (1.11).
Next fix the central ball B∗ as in the definition of the chain domain

selected by Lemma 2.2. We have

(2.8)

‖f − f2B∗ ‖
q
Lq

w2 (E)
≤ max(1, 2q−1)

∑
B∈F

‖f − f2B
‖q

L
q
w2

(2B)

+ max(1, 2q−1)
∑
B∈F

‖f2B
− f2B∗ ‖

q

L
q
w2

(2B)

= I + II.

Before we proceed, let us note that, in a completely abstract setting,
(f, g) �→ ‖f − g‖pLq is a metric on Lq whenever 0 < p < min(1, q).
This follows easily from the fact that (f, g) �→ ‖f − g‖tLq is a metric
for t = min(1, q), and the fact that a metric raised to a power strictly
between 0 and 1 is also a metric (and p, p/q < 1).

Now we temporarily fix B ∈ F and consider the chain F(B) =
{B0, . . . , Bk(B)} constructed according to Lemma 2.2. Thus

‖f2B
− f2B∗ ‖

p

L
q
w2

(2B)
≤ C

k(B)−1∑
j=0

‖f2Bj
− f2Bj+1

‖p
L

q
w2

(2B)

≤ C

k(B)−1∑
j=0

( w2(B)
w2(4Bj

⋂
4Bj+1)

)p/q
· ‖f2Bj

− f2Bj+1
‖p

L
q
w2

(4Bj∩4Bj+1)

≤ C

k(B)−1∑
j=0

( w2(B)
w2(Bj)

)p/q
‖f − f2Bj

‖p
L

q
w2

(4Bj)
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+ C

k(B)−1∑
j=0

( w2(B)
w2(Bj+1)

)p/q
‖f − f2Bj+1

‖p
L

q
w2

(4Bj+1)

≤ 2C

k(B)∑
j=0

( w2(B)
w2(Bj)

)p/q
‖f − f2Bj

‖p
L

q
w2

(4Bj)
.

We observe that

‖f − f2Bj
‖p

L
q
w2

(4Bj)
≤ ‖f − f4Bj

‖p
L

q
w2

(4Bj)
+ ‖f4Bj

− f2Bj
‖p

L
q
w2

(4Bj)
,

and

‖f4Bj
− f2Bj

‖
L

q
w2

(4Bj)
≤ w2(4Bj)1/q

(
1

w2(2Bj)

∫
2Bj

|f − f4Bj |w2

)

≤ C

(∫
4Bj

|f − f4Bj |qw2

)1/q

.

Therefore, we get

‖f2B
− f2B∗ ‖

p

L
q
w2

(2B)
≤ C

k(B)−1∑
j=0

( w2(B)
w2(Bj)

)p/q
‖f − f4Bj

‖p
L

q
w2

(4Bj)
.

Since, by the chain condition, B ⊂ λBj for each Bj ∈ F(B), we then
have

‖f2B
−f2B∗ ||

p

L
q
w2

(2B)

χ
B
(ξ)

w2(B)p/q
≤ C

∑
A∈F

( 1
w2(A)

)p/q
‖f − f4A

‖p
L

q
w2

(4A)
χλA(ξ)

≤ C
∑
A∈F

(
rAw1(A)−1/p||Xf ||Lp

w1(8A)

)p
χλA(ξ)

= C
∑
A∈F

aA χλA(ξ).

In the above expression, aA is notationally defined in an obvious way.
For the term II in (2.8), we have

II ≤ C
∑
B∈F

∫
E

(
‖f2B

− f2B∗‖
p
)q/p

L
q
w2

(2B)

χ
B
(ξ)

w2(B)
w2(ξ) dξ

≤ C

∫
E

∣∣∣ ∑
A∈F

aA χλA

∣∣∣q/pw2(ξ) dξ.
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Since q/p ≥ 1, we can use Lemma 2.3 to get

II ≤ C

∫
E

∣∣∣ ∑
A∈F

aA χA

∣∣∣q/pw2(ξ) dξ.

Since the balls in F are disjoint, we have

II ≤ C
∑
A∈F

a
q/p
A

∫
E

χA(ξ)w2(ξ) dξ

≤ C
∑
A∈F

(
rpAw1(A)−1||Xf ||p

Lp
w1 (8A)

)q/p
w2(A).

Therefore,

(2.9)

II ≤ C
∑
A∈F

w2(A)w1(A)−q/prqA

(∫
8A

( m∑
i=1

|Xif |
)p

w1

)q/p

≤ C w2(E)w1(E)−q/prqE
∑
A∈F

(∫
8A

( m∑
i=1

|Xif |
)p

w1

)q/p

≤ C w2(E)w1(E)−q/prqE

(∫
E

( m∑
i=1

|Xif |
)p

w1

)q/p

.

In the last inequality we used the fact that q ≥ p, and that
∑

A∈F χ8A(ξ)
≤ CχE(ξ), while in the middle inequality, we used the balance condi-
tion (1.11).

For the term I in (2.8), the estimate is the same by replacing 4A by
2A in the estimate of II.

Remarks.
(1) The argument used above in order to obtain Theorem 1.12 from

its weaker version can be adapted to derive an analogue of Theorem 1.12
for suitable chain domains. In fact, let D be a chain domain as defined
above. Define

A = sup
I,J

C2I,C2J⊂D
I⊂λJ

{
r(I)
r(J)

(
w2(I)
w2(J)

) 1
q

(
w1(I)
w1(J)

)− 1
p

}
.

If D̄ is a compact subset of Ω whose diameter is small compared with its
distance to the boundary, then we only have to change all parenthesised
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instances of “E” to “B∗” in (2.9) above to get a proof of the following
Poincaré inequality:

‖f − fD‖Lq
w2 (D) ≤ C0‖Xf‖Lp

w1 (D),

where fD is the w2-average of f over B∗, and C0 now depends also on
D.

(2) As for the case p ≥ 1, some sort of balance condition is needed to
prove a two-weighted inequality like (1.13) (assuming w1, w2 are as in
Theorem 1.12). Let us show that (1.11) must hold for all I ⊂ J = E.
It suffices by strong doubling to prove this for rI < rJ/100, 8I ⊂ J .
There is a bump function f which equals 1 on I, is supported on 2I,
and such that |Xf | ≤ C/rI (see [L1, Lemma 7.12]). It is not clear that
|Xf | ∈ WRH1(E), but Lemma 2.1 of [BK] can be adapted to show
that g = M(|Xf |2)1/2 belongs to WRH1(4I), where M(|Xf |2) is the
restricted maximal function

M(|Xf |2)(x) = sup
B=B(x,r)

2B⊂4I

1
w2(B)

∫
B

|Xf |2w2 dx.

Extending g to be zero on E \ 4I, it is clear that g ∈ WRH1(E) (since
it has compact support in 3I) and that |Xf | ≤ g. The proof of The-
orem 1.12 and the Lp-boundedness of the maximal function then show
that (1.13) holds for f . By the doubling property of w2, we see that
for t ∈ {0, 1}, w2 ({x ∈ E | f(x) �= t}) ≥ Cw2(I) and so, no matter what
choice of constant fE we make, the left hand side of (1.13) is at least
C(w2(I)/w2(E))1/q. However, the right-hand side of (1.13) is at most

C
r(E)
r(I)

(
w1(I)
w1(E)

)1/p

,

and (1.11) readily follows. Thus, if we have a weighted Poincaré inequal-
ity on E and on all of its sub-balls (with a uniform constant C0), (1.11)
holds for all I ⊂ J ⊂ E.

(3) One can also prove some results for more general domains, for
example metric versions of the John-α domains defined in [BK]. We
shall not state or prove such results here as the statements lack elegance
and we suspect this method does not give sharp results for such domains.
Suffice it to say that one can prove such results in certain cases where
it is possible to modify the above proof as in [BK] to avoid the use of
Lemma 2.3. In particular this can be done if q < 1.
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Finally, let us give an application of the above to solutions of a class of
quasilinear subelliptic equations. We show that the conclusion of The-
orem 1.12 holds for these solutions with fE replaced by f(x), where x
is an arbitrary point of 1

2E. In order to deduce this from Theorem 1.12
we have to verify two facts: a reverse Hölder inequality for |Xu| when u
is a solution, and an estimate for |u(x) − uE |, where uE is the average
of u in 1

2E. The first of these is a consequence of a Caccioppoli type in-
equality and the second essentially follows from a mean-value inequality
established in [L4].

Results of this type have appeared in [Z], [BK] (with Xi = ∂
∂xi

), and
in [L5] for Hörmander families. In particular we shall show here that
Theorem 5.14 of [BK] for 0 < p < 1 remains true for Hörmander vector
fields, thereby extending the result of [L5] to the case 0 < p < 1.

We consider quasilinear second order subelliptic partial differential
equations of the form
(2.10)
m∑
j=1

X∗
jAj(x, u,X1u,X2u, . . . ,Xmu) + B(x, u,X1u,X2u, . . . ,Xmu) = 0,

under certain structral assumptions. Harnack inequalities for weak so-
lutions, subsolutions, and supersolutions of (2.10) have been established
in [L4].

We let x, η denote vectors in R
N and R

m respectively, and Xu =
(X1u, . . . ,Xmu). A(x, u, η) = (A1(x, u, η), . . . , Am(x, u, η)) and
B(x, u, η) are, respectively, vector and scalar measurable functions de-
fined on Ω × R × R

m, where Ω is a domain in R
N .

For all M < ∞ and for all (x, u, η) ∈ Ω × (−M,M) × R
N , we assume

the structure of (2.10) satisfies the following inequalities:

(2.11)
|A(x, u, η)| ≤ a0|η|s−1 + (a1(x)|u|)s−1

,

η ·A(x, u, η) ≥ |η|s − (a2(x)|u|)s

|B(x, u, η)| ≤ b0|η|s + b1(x)|η|s−1 + (b2(x))s |u|s−1

where s > 1, a0, b0 are constants, ai(x), bi(x) are nonnegative measurable
functions; s, a0, b0, ai(x), bi(x) may possibly depend on M . All the
coefficients ai(x), bi(x) are assumed to be in certain subspaces of Lt

loc(Ω),
where t = max(s,Q) (see [L4] for the details).

We now define the notion of a solution to the equation (2.10). First,
for a domain D ⊂ Ω, the Sobolev class W 1,s(D) (W 1,s

0 (D)), is defined
as the closure of C1-smooth (and compactly supported) functions in the
norm ||u|| = ||u||s,D + ||Xu||s,D. Here || · ||s,D is the usual Ls-norm in
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D. Integration by parts shows that each u ∈ W 1,s(D) has a unique
subgradient Xu ∈ Ls(D). We say u is a weak solution of (2.10) in Ω if
u belongs to W 1,s

loc (Ω) and

∫
Ω

{Xφ ·A(x, u,Xu) − φB(x, u,Xu)} dx = 0

for all bounded φ(x) ∈ W 1,s
0 (Ω).

Given ai(x), bi(x) ∈ LQ
loc(Ω), u(x) ∈ L∞

loc, a standard approximation
argument shows that, if the above equation holds for all φ(x) ∈ C1

0 (Ω),
then it still holds for all φ(x) given in the definition.

As an application of Theorem 1.10 we obtain the following result. We
note that the boundedness assumption on u can be dropped if b0 = 0
(and (2.11) is true for all M > 0 with parameters independent of M).

Theorem 2.12. Let K be a compact subset of Ω. There exists r0 such
that whenever E = B(x, r), x ∈ K, and 0 < r < r0, the following holds.
Let 0 < p < 1 and 1/q = 1/p − 1/(Nγ), where γ is defined by (1.9) for
E (we can always choose Nγ = Q). Let u ∈ W 1,s

loc (E), |u| ≤ M , be a
weak solution of (2.10). Then there is a constant C depending on the
structure conditions (2.11), p, s, q, ||u||s, 12E, Ω, and b0M such that for
any point x0 ∈ 1

2E

(
1
|E|

∫
E

|u− u(x0)|q
) 1

q

≤ Cr

(
1
|E|

∫
E

|Xu|p
) 1

p

,

where ρ(E) is the radius of E.

In order to deduce Theorem 2.12 from Theorem 1.10 we have to verify
that Xu satisfies a weak reverse Hölder inequality and then replace the
average of u over 1

2E by u(x0). We first establish a weak reverse Hölder
inequality.

Caccioppoli Estimate. If u ∈ W 1,s(E) is a solution of (2.10), then
for any metric ball B such that 2B ⊂ E, any ξ ∈ C∞

0 (2B), and any
constant c, we have∫

2B

ξs|Xu|s ≤ C

∫
2B

(|ξ|s + |Xξ|s) |u− c|s.

This is a special case of formula (3.26) in [L4] derived by setting
q = 1 and replacing u by u − c (note that u − c is a solution to an
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equation also satisfying structural conditions (2.11)). In particular, if
we select a cut-off function relative to the Carnot-Carathéodory metric
(see Lemma (7.12) in [L1]), we can choose 0 ≤ ξ ≤ 1, ξ ∈ C∞

0 (2B),
ξ = 1 on B and |Xξ| ≤ Cr−1

B . Thus

∫
B

|Xu|s ≤ CrsB

∫
2B

|u− c|s,

and so by using the Sobolev-Poincaré inequality on 2B (see [L2]) to
control the right-hand side of the above inequality we see that |Xu| ∈
WRHs(E).

Therefore, the solutions satisfy the hypothesis of Theorem 1.10. Let
B = 1

2E, and let uB be the average value of u on B. For simplicity, we
normalise so that rB = 1. Now

|u(x) − u(x0)| ≤ |u(x) − uB | + |uB − u(x0)|,

so it suffices to control the q-integrals of the two right-hand side terms.
For the first term, we use Theorem 1.10. By Hölder’s inequality, and
Theorem 2.13 below, the second term can be bounded the Ls(B)-norm
of |u − uB |. Using the classical Poincaré inequality, this can then be
bounded by the Ls-norm of |Xu|, which is comparable with the Lp-norm
of |Xu| by Lemma 1.4, since we have shown that |Xu| ∈ WRHs(E). This
reasoning establishes Theorem 2.12.

Theorem 2.13. Suppose u is a weak solution of (2.10) in a metric
ball 2B, |u| ≤ M in 2B. Then

max
x∈B

|u(x) − uB | ≤ C

(
1
|B|

∫
B

|u− uB |q
) 1

q

for any q > s − 1, where C depends on s, Q, the structure conditions
(2.11), and b0M .

We omit the proof of this theorem, as it follows readily from Theo-
rem 3.15 of [L4]).
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[L2] G. Lu, The sharp Poincaré inequality for free vector fields:
An endpoint result, Revista Mat. Iberoamericana 10(2)
(1994), 453–466.

[L3] G. Lu, Embedding theorems on Campanato-Morrey spaces for
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