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a b s t r a c t

The main purpose of this paper is to address two open questions raised by Reichel (2009)
in [2] on characterizations of balls in terms of the Riesz potential and fractional Laplacian.
For a bounded C1 domain Ω ⊂ RN , we consider the Riesz-potential

u(x) =


Ω

1
| x − y |

N−α
dy

for 2 ≤ α ≠ N . We show that u = constant on ∂Ω if and only if Ω is a ball. In the
case of α = N , the similar characterization is established for the logarithmic potential
u(x) =


Ω
log 1

|x−y| dy. We also prove that such a characterization holds for the logarithmic
Riesz potential

u(x) =


Ω

| x − y |
α−N log

1
| x − y |

dy

when the diameter of the domain Ω is less than e
1

N−α in the case when α − N is a
nonnegative even integer. This provides a characterization for the overdetermined problem
of the fractional Laplacian. These results answer two open questions in Reichel (2009) [2]
to some extent. Moreover, we also establish some nonexistence result of positive solutions
to a class of integral equations in an exterior domain.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

It is well-known that the gravitational potential of a ball of constant mass density is constant on the surface of the ball. It
is shown by Fraenkel [1] that this property indeed provides a characterization of balls. In fact, Fraenkel proves the following
theorem.

Theorem A ([1]). Let Ω ⊂ RN be a bounded domain and ωN be the surface measure of the unit sphere in RN . Consider

u(x) =


1
2π


Ω

log
1

|x − y|
dy, N = 2,

1
(N − 2)ωN


Ω

1
|x − y|N−2

dy, N ≥ 3.
(1.1)

If u(x) is constant on ∂Ω , then Ω is a ball.

∗ Corresponding author.
E-mail addresses: gzlu@math.wayne.edu, gzlu2001@gmail.com (G. Lu), jiuyi.zhu@wayne.edu (J. Zhu).

0362-546X/$ – see front matter© 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.na.2011.11.036

http://dx.doi.org/10.1016/j.na.2011.11.036
http://www.elsevier.com/locate/na
http://www.elsevier.com/locate/na
mailto:gzlu@math.wayne.edu
mailto:gzlu2001@gmail.com
mailto:jiuyi.zhu@wayne.edu
http://dx.doi.org/10.1016/j.na.2011.11.036


G. Lu, J. Zhu / Nonlinear Analysis 75 (2012) 3036–3048 3037

This result has been extended by Reichel [2] to more general Riesz potential, but under a more restrictive assumption on
the domain Ω , i.e., Ω is assumed to be convex. In [2], Reichel considers the integral equation

u(x) =




Ω

log
1

|x − y|
dy, N = α,

Ω

1
|x − y|N−α

dy, N ≠ α,

(1.2)

and proves the following theorem.

Theorem B ([2]). Let Ω ⊂ RN be a bounded convex domain and α > 2, if u(x) is constant on ∂Ω , then Ω is a ball.

This more general Riesz potential is actually closely related to the fractional Laplacian (−∆)
α
2 in RN . Let N0 be the

collection of nonnegative integers. It is known that the fundamental solutionG(x, y) for pseudo-differential operator (−∆)
α
2

in RN has the following representation

G(x, y) =


Γ

N−α
2


2απ

N
2 Γ


α
2

 |x − y|α−N , if
α − N

2
∉ N0,

(−1)k

2α−1π
N
2 Γ


α
2

 |x − y|α−N log
1

|x − y|
, if

α − N
2

∈ N0.

(1.3)

We note that for the case of α = 2, Fraenkel’s result is underweaker assumption on the domainΩ , namely,Ω only needs
to be bounded and open in RN . The surprising part for α = 2 is that there is neither regularity nor convexity requirement
for Ω . Thus, two open problems were raised by Reichel in [2].

Question 1. Is Theorem B true if we remove the convexity assumption of Ω?

Question 2. Is there an analogous result as Theorem B for Riesz-potential of the form

u(x) =


Ω

|x − y|α−N log
1

|x − y|
dy? (1.4)

It is meaningful to study (1.4) because in the case of α−N
2 ∈ N0, up to some rescaling, the kernel function in above integral

is the fundamental solution of the fractional Laplacian (−∆)
α
2 .

Our first goal in this paper is to address the above two open questions.
The first result we establish does remove the convexity assumption in Theorem B.

Theorem 1. Assume that α > 1. Let Ω be a C1 bounded domain. If u in (1.2) is constant on ∂Ω , then Ω is a ball.

As far as Question 2 is concerned, we partially solve it under some additional assumption on the diameter of the domain
Ω . Since we are only interested in the case when α > N , we will assume this when we address Question 2.

Theorem 2. Assume α > N. Let Ω be a C1 bounded domain with diam Ω < e
1

N−α . Thus, Ω is a ball if u(x) in (1.4) is constant
on ∂Ω .

Remark 1.1. In the above two theorems, if the conclusion that Ω is a ball is verified, then we can easily deduce that u(x) is
radially symmetric with respect to the center of the ball.

Concerning our Theorem 2, a natural open question is raised here.

Question. Is the assumption that the diameter of Ω satisfies diam Ω < e
1

N−α necessary to conclude our characterization?

Our second goal of this paper is to study a general integral equation with Riesz-potential over an exterior domain. Set
G = RN

\ Ω1, where Ω1 is a bounded and connected C1 domain. The integral equation to our interest is as follows:

u(x) =


G

f (u)
|x − y|N−α

dy. (1.5)

We will actually show the nonexistence of any positive solution to Eq. (1.5). Indeed, we establish the following theorem.

Theorem 3. Let 1 < α < N. Assume that the positive solution u ∈ Lq(G) for some q > N
N−α

and f (u) satisfies

(i) f (u) is continuous, increasing and f (0) = 0;
(ii) f ′(u) is non-increasing and f (u)

u ∈ Lr+1(G) ∩ Lp(G) for some r > N
α
and some 1 < p < N

α
.

Then there does not exist any positive solution u to (1.5) such that u is constant on the boundary of Ω1.
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Remark 1.2. Based on the assumption of (i) and (ii), we can infer that f ′(u) ∈ L
N
α (G).

Remark 1.3. We note that we do not assume any regularity on the function u. As a matter of fact, we will be able to show
that u ∈ C1(G) under the assumptions of Theorem 3 by using the regularity lifting method.

Remark 1.4. Since it is impossible to have any positive solution u in (1.5) under the assumptions of Theorem 3, the only
nonnegative solution is the trivial one.

Remark 1.5. It is interesting to note that the method we employed here to prove Theorem 3 is to prove first that a
nonnegative solution to (1.5) must be symmetric using themoving planemethod. Thenwe prove such a symmetric solution
must be trivial.

There has been extensive study in the literature about overdetermined problems in elliptic differential equations
and integral equations. In his seminal paper [3], Serrin showed that the overdetermined boundary value determines the
geometry of the underlying set. This is, if Ω is a bounded C2 domain and u ∈ C2(Ω̄) satisfies the following

1u = −1 in Ω,

u = 0,
∂u
∂n

= constant on Ω,
(1.6)

then Ω is a ball and u is radially symmetric with respect to its center of the ball. Serrin’s proof is based on what is nowadays
called the moving planes method relying on the maximum principle of solutions to the differential equations, which is
originally due to Alexandrov, and has been later used to derive further symmetry results for more general elliptic equations.
Important progress as for the moving plane methods since then are the works of Gidas et al. [4], Caffarelli et al. [5], to just
name some of the early works in this direction.

Immediately after Serrin’s paper, Weinberger [6] obtained a very short proof of the same result, using the maximum
principle applied to an auxiliary function. However, compared to Serrin’s approach, Weinberger’s proof relies crucially on
the linearity of the Laplace operator.

Since the work of [3], many results are obtained about overdetermined problems. The interested reader may refer
to [7–30] and the references therein, for more general elliptic equations. See also [31] and the reference therein for
overdetermined problems in an exterior domain or general domain. In [10], an alternative shorter proof of Serrin’s result,
not relying explicitly on the maximum principle has been given, where they deduce some global information concerning
the geometry of the solution.

Overdetermined problems are important from the point of view of mathematical physics. Manymodels in fluid mechan-
ics, solidmechanics, thermodynamics, and electrostatics are relevant to the overdeterminedDirichlet or Neumann boundary
problems of elliptic partial differential equations. We refer the reader to article [14] for a nice introduction in that aspect.

Instead of a volume potential, single layer potential is also considered in overdetermined problems. A single layer
potential is given by

u(x) =


A


∂Ω

−1
2π

log
1

|x − y|
dσy, N = 2,

A


∂Ω

1
(N − 2)ωN

1
|x − y|N−2

dσy, N ≥ 3,
(1.7)

where A > 0 is the constant source density on the boundary of the domain Ω . If u is constant in Ω̄ , then Ω can be proved
to be a ball under different smoothness assumption on the domain Ω . See [23] for the case of n = 2 and [31] for the case
of n ≥ 3, and also some related works in [21,28]. We also refer the reader to the book of Kenig [32] on this subject of layer
potential.

Generally speaking, two approaches are widely applied in dealing with overdetermined problems. One is the classical
moving plane method. In [3], the moving plane method with a sophisticated version of Hopf boundary maximum principle
plays a very important role in the proof. The other way is based on an equality of Rellich type, as well as an interior
maximum principle; see [6]. Our approach is a new variant of moving plane method—moving plane in integral forms. It
is much different from the traditional methods of moving planes used for partial differential equations. Instead of relying on
the differentiability and maximum principles of the structure, a global integral norm is estimated. The method of moving
planes in integral forms can be adapted to obtain symmetry and monotonicity for solutions. The method of moving planes
on integral equations was developed in the work of Chen et al. [33]; see also [34] for the moving sphere method in integral
forms, the book [35] and an exhaustive list of references therein, where the symmetry of solutions in the entire space was
proved. The moving plane method in integral form over bounded domains has also been carried out in [36].

We end this introductionwith the following remark concerning the characterization of balls by using the Bessel potential.
The Bessel kernel gα in RN with α ≥ 0 is defined by

gα(x) =
1

r(α)


∞

0
exp


−

π

δ
|x|2


exp


−

δ

4π


δ

α−N−2
2 dδ, (1.8)

where r(α) = (4π)
α
2 Γ


α
2


.
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We consider the Bessel potential type equation:

u(x) =


Ω

gα(x − y) dy. (1.9)

Overdetermined problems for Bessel potential over a bounded domain in RN can be studied. For instance, among other
results, the following theorem has been established in [37]:

Theorem 4. Let Ω be a C1 bounded domain in RN . If u in (1.9) is constant on ∂Ω , then Ω is a ball.

It is well-known that (1.9) is closely related to the following fractional equation

(I − ∆)
α
2 u = χΩ .

In the case of α = 2, it turns out to be the ground state of the Schrödinger equation.
It turns out that the Riesz and Bessel potentials are just examples of more general potentials which can be used to give

characterizations of balls. In fact, we can establish characterizations of balls using more general potentials. We refer the
interested reader to Appendix of this paper where a precise statement of such characterization is given together with
assumptions on the more general potentials. Therefore, Theorem 4 can be viewed as a special case of the more general
theorem (TheoremA.1) in Appendix.We have chosen to present our paper by placing themore general theorem in Appendix
because our primary goal is to address the two open questions raised by Reichel [2]. Finally, we mention that this paper is
a revised version of our earlier article with the same title posted in the arXiv (arXiv:1101.1649). In this version, we have
reformulated the symmetry result of nonnegative solutions to the integral equation (1.5) in the earlier version into the
nonexistence result Theorem 3.

The paper is organized as follows. In Section 2, we show Theorem 1. In Section 3, we carry out the proof of Theorem 2.
Section 4 deals with the nonexistence of any positive solution to the integral equation (1.5) over any exterior domain.
Namely, we give the proof of Theorem 3. Appendix provides a characterization of balls using a more general potential.
Throughout this paper, the positive constant C is frequently used in the paper. It may differ from line to line, even within
the same line. It may also depend on u in some cases.

2. Proof of Theorem 1

In this section, we will prove Theorem 1 by adapting the moving plane method in integral forms; see [33]. Since we are
dealing with the case of bounded domains, we modify the method accordingly (see also [36,38]).

We first introduce some notations. Choose any direction and, rotate coordinate system if it is necessary such that x1-axis
is parallel to it. For any λ ∈ R, define

Tλ = {(x1, . . . , xn) ∈ Ω|x1 = λ}.

Since Ω is bounded, if λ is sufficiently negative, the intersection of Tλ and Ω is empty. Then, we move the plane Tλ all
the way to the right until it intersects Ω . Let

λ0 = min{λ : Tλ ∩ Ω̄ ≠ ∅}.

For λ > λ0, Tλ cuts off Ω . We define

Σλ = {x ∈ Ω|x1 < λ}.

Set

xλ = {2λ − x1, . . . , xn}

and

Σ ′

λ = {xλ ∈ Ω|x ∈ Σλ}.

At the beginning of λ > λ0, Σ ′

λ remains within Ω . As the plane keeps moving to the right, Σ ′

λ will still stay in Ω until at
least one of the following events occurs:

(i) Σ ′

λ is internally tangent to the boundary of Ω at some point Pλ not on Tλ.
(ii) Tλ reaches a position where it is orthogonal to the boundary of Ω at some point Q .

Let λ̄ be the first value such that at least one of the above positions is reached.
We assert that Ω must be symmetric about Tλ̄, i.e.,

Σλ̄ ∪ Tλ̄ ∪ Σ ′

λ̄
= Ω. (2.1)

If this assertion is verified, for any given direction in RN , there also exists a plane Tλ̄ such that Ω is symmetric about Tλ̄.
Moreover, Ω is connected. Then the only domain with those properties is a ball; see [39].

http://arxiv.org/1101.1649
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In order to assert (2.1), we introduce

uλ(x) = u(xλ),

Ωλ = Ω \ (Σλ ∪ Σ ′

λ).

We first establish some lemmas. Throughout the paper, we assume α > 1.

Lemma 2.1. Let l ∈ N with 1 ≤ l < α. Then for any solution in (1.2), u ∈ C l(RN) and differentiation of order l can be taken
under the integral.

Proof. The proof is standard. We refer the reader to [2]. �

Lemma 2.2. For λ0 < λ < λ̄ and u(x) satisfying (1.2), we have the following.

(i) If N ≥ α, uλ(x) > u(x) for any x ∈ Σλ.
(ii) If N < α, uλ(x) < u(x) for any x ∈ Σλ.

Proof. For x ∈ Σλ, in the case of N = α, we rewrite u(x) and uλ(x) as

u(x) =


Σλ

log
1

|x − y|
dy +


Σλ

log
1

|xλ − y|
dy +


Ωλ

log
1

|x − y|
dy,

and

uλ(x) =


Σλ

log
1

|xλ − y|
dy +


Σλ

log
1

|x − y|
dy +


Ωλ

log
1

|xλ − y|
dy.

Then

uλ(x) − u(x) =


Ωλ

log
|x − y|
|xλ − y|

dy. (2.2)

Since |x − y| > |xλ − y| for x ∈ Σλ and y ∈ Ωλ, then

uλ(x) > u(x).

While in the case of N ≠ α, uλ(x) and u(x) have the following representations respectively:

u(x) =


Σλ

|x − y|α−N dy +


Σλ

|xλ − y|α−N dy +


Ωλ

|x − y|α−N dy,

and

uλ(x) =


Σλ

|xλ − y|α−N dy +


Σλ

|x − y|α−N dy +


Ωλ

|xλ − y|α−N dy.

Thus,

uλ(x) − u(x) =


Ωλ

(|xλ − y|α−N
− |x − y|α−N) dy, (2.3)

Note that |x − y| > |xλ − y| for x ∈ Σλ and y ∈ Ωλ. Thus, (i) and (ii) are concluded. �

Lemma 2.3. Assume that u(x) satisfies (1.2) and suppose λ = λ̄ in the first case, i.e. Σ ′

λ is internally tangent to the boundary of
Ω at some point Pλ̄ not on Tλ̄, then Σλ̄ ∪ Tλ̄ ∪ Σ ′

λ̄
= Ω .

Proof. When N ≥ α, thanks to Lemma 2.1, uλ̄(x) ≥ u(x) for x ∈ Σλ̄. While N < α, uλ̄(x) ≤ u(x) for x ∈ Σλ̄. We argue by
contradiction. Suppose Σλ̄ ∪ Tλ̄ ∪ Σ ′

λ̄
& Ω; that is, Ωλ̄ ≠ ∅. At Pλ̄, from (2.2) and (2.3), u(Pλ̄) > u(P) in the case of N ≥ α.

It is a contradiction since Pλ̄, P ∈ ∂Ω and u(Pλ̄) = u(P) = constant. From the same reason, u(Pλ̄) < u(P) when N < α. It
also contradicts the fact that u is constant on the boundary. Therefore, the lemma is completed. �

Lemma 2.4. Assume that u(x) satisfies (1.2) and suppose that the second case occurs, i.e. Tλ̄ reaches a positionwhere is orthogonal
to the boundary of Ω at some point Q , then, Σλ̄ ∪ Tλ̄ ∪ Σ ′

λ̄
= Ω .
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Proof. Since u(x) is constant on the boundary and Ω ∈ C1, ▽u is parallel to the normal at Q . As implied in the second
case, ∂u

∂x1


Q

= 0. We denote the coordinate of Q by z. Suppose Ωλ̄ ≠ ∅, there exists a ball B ⊂⊂ Ωλ̄. Choose a sequence

{xi}∞1 ∈ Σλ̄ \ Tλ̄ such that xi → z as i → ∞. It is easy to see that xi
λ̄

→ z as i → ∞. Since B ⊂⊂ Ωλ̄, we can also find a δ

such that diam Ω > |xi
λ̄
− y| > δ for any y ∈ B and any xi

λ̄
.

If N = α, by (2.2),

u(xi
λ̄
) − u(xi) =


Ωλ̄

log
|xi − y|
|xi

λ̄
− y|

dy.

Let e1 = (1, 0, . . . , 0) ∈ RN , then (xi
λ̄
− xi) · e1 is the first component of (xi

λ̄
− xi). By the Mean Value Theorem,

u(xi
λ̄
) − u(x)

(xi
λ̄
− xi) · e1

=


Ωλ̄

log |xi − y| − log |xi
λ̄
− y|

(xi
λ̄
− xi) · e1

dy

=


Ωλ̄

(y − x̄i
λ̄
) · e1

|y − x̄i
λ̄
|2

dy

> C

B

1
|diam Ω|2

dy

> C, (2.4)

where x̄i
λ̄
is some point between xi

λ̄
and xi. Nevertheless,

lim
i→∞

u(xi
λ̄
) − u(xi)

(xi
λ̄
− xi) · e1

=
∂u
∂x1


Q

= 0,

which contradicts (2.4). Therefore, Ωλ̄ = ∅.
In the case of N > α, similarly we have

u(xi
λ̄
) − u(xi)

(xi
λ̄
− xi) · e1

=


Ωλ̄

|xi
λ̄
− y|α−N

− |xi − y|α−N

(xi
λ̄
− xi) · e1

dy

=


Ωλ̄

(α − N)|x̄i
λ̄
− y|α−N−2((xi

λ̄
− y) · e1) dy

>


B
(α − N)|x̄i

λ̄
− y|α−N−2((xi

λ̄
− y) · e1) dy

> C . (2.5)

It also contradicts ∂u
∂x1


Q

= 0, thus Ωλ̄ = ∅.

The same idea can be applied to the case of N < α with minor modification. In conclusion, Σλ̄ ∪ Tλ̄ ∪ Σ ′

λ̄
= Ω when the

second case occurs. �

Combining Lemmas 2.3 and 2.4, Theorem 1 is implied.

3. Proof of Theorem 2

In this section, we will prove Theorem 2 under some restriction on the diameter of Ω . Since we are mainly interested in
the case of α−N

2 ∈ N0. This is the case when the fundamental solution of (−∆)
α
2 has representation (1.3). Therefore, we will

assume α > N in this section. Obviously, u ∈ C1(RN) in (1.4). We begin with establishing several lemmas.

Lemma 3.1. For λ0 < λ < λ̄, assume u(x) satisfies (1.4) with diam Ω < e
1

N−α ; then uλ(x) < u(x) for any x ∈ Σλ.

Proof. Since |xλ − yλ| = |x − y|, and |xλ − y| = |x − yλ|, we write u(x) and uλ(x) in the following forms:

u(x) =


Σλ

|x − y|α−N log
1

|x − y|
dy +


Σλ

|xλ − y|α−N log
1

|xλ − y|
dy +


Ωλ

|x − y|α−N log
1

|x − y|
dy,

and

uλ(x) =


Σλ

|xλ − y|α−N log
1

|xλ − y|
dy +


Σλ

|x − y|α−N log
1

|x − y|
dy +


Ωλ

|xλ − y|α−N log
1

|xλ − y|
dy.
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Then,

uλ(x) − u(x) =


Ωλ

|x − y|α−N log |x − y| dy −


Ωλ

|xλ − y|α−N log |xλ − y| dy. (3.1)

We consider the function sα−N log s. Note α > N , thus

(sα−N log s)′ = sα−N−1
[(α − N) log s + 1] < 0,

whenever s < e
1

N−α . Since |x − y| > |xλ − y| for x ∈ Σλ, y ∈ Ωλ, and diam Ω < e
1

N−α , we easily infer that uλ(x) < u(x) for
any x ∈ Σλ. �

Lemma 3.2. u(x) satisfies (1.4) and suppose λ = λ̄ in the first case, i.e. Σ ′

λ̄
is internally tangent to the boundary of Ω at some

point Pλ̄ not on Tλ̄, then Σλ̄ ∪ Tλ̄ ∪ Σ ′

λ̄
= Ω .

Proof. The proof is essentially the same as that of Lemma 2.3. �

Lemma 3.3. Suppose that u(x) satisfies (1.4) with diam Ω < e
1

N−α and that the second case occurs, i.e. Tλ̄ reaches a position
where is orthogonal to the boundary of Ω at some point Q , then, Σλ̄ ∪ Tλ̄ ∪ Σ ′

λ̄
= Ω .

Proof. The argument follows that of the proof of Lemma 2.4. Since u(x) is constant on ∂Ω and Ω ∈ C1, ∂u
∂x1


Q

= 0. We

denote the coordinate of Q by z. Suppose Ωλ̄ ≠ ∅, there exists a ball B ⊂⊂ Ωλ̄. Choosing a sequence {xi}∞1 ∈ Σλ̄ \ Tλ̄ such
that xi → z as i → ∞, then xi

λ̄
→ z as i → ∞. Since B ⊂⊂ Ωλ̄, we find a δ such that diam Ω > |xi

λ̄
− y| > δ for any y ∈ B

and any xi
λ̄
.

From (3.1), by Mean Value Theorem,

u(xi
λ̄
) − u(xi)

(xi
λ̄
− xi) · e1

=


Ωλ̄

|xi − y|α−N log |xi − y| − |xi
λ̄
− y|α−N log |xi

λ̄
− y|

(xi
λ̄
− xi) · e1

dy

=


Ωλ̄

−|x̄i
λ̄
− y|α−N−2((xi

λ̄
− y) · e1)((α − N) log |x̄i

λ̄
− y| + 1) dy

<


B
−|x̄i

λ̄
− y|α−N−2((xi

λ̄
− y) · e1)((α − N) log |x̄i

λ̄
− y| + 1) dy

< −C (3.2)

where x̄i
λ̄
is some point between xi

λ̄
and xi. The assumption diam Ω < e

1
N−α is applied in the last inequalities. Consequently,

(3.2) contradicts ∂u
∂x1


Q

= 0 as i → ∞. Therefore, the lemma is verified. �

With the help of the above two lemmas, Theorem 2 is confirmed.

4. Proof of Theorem 3

We first show that the assumptions in Theorem 3 imply u ∈ C1(Ḡ). To this end, we now introduce a regularity lifting
lemma in [35] which is needed to show u ∈ C1(Ḡ).

Lemma 4.1 (Regularity Lifting). Let V be a Hausdorff topological vector space. Suppose there are two extended norms (i.e. the
norm of an element in V might be infinity) defined on V ,

∥ · ∥X , ∥ · ∥Y : V → [0, ∞].

Assume that the spaces

X := {v ∈ V : ∥v∥X < ∞} and Y := {v ∈ V : ∥v∥Y < ∞}

are complete under the corresponding norms, and the convergence in X or in Y implies the convergence in V .
Let T be a contracting map from X into itself and from Y into itself. Assume that f ∈ X, and that there exists a function

g ∈ Z := X ∩ Y such that f = Tf + g in X. Then f also belongs to Z.

Then we can show the following.

Lemma 4.2. If u and f (u) satisfy the assumptions in Theorem 3, then u ∈ C1(Ḡ).
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Proof. Define the linear operator

Tuv =


G

f (u)
u v

|x − y|N−α
dy.

For any real number a > 0, set
ua(x) = u(x), |u(x)| > a or |x| > a;
ua(x) = 0, if otherwise.

Let ub(x) = u(x) − ua(x).
Since u(x) satisfies (1.5), we can write it as

ua(x) = Tuaua + g(x) − ub(x) (4.1)

with g(x) =

G

f (ub)
|x−y|N−α dy.

Employing the Hardy–Littlewood–Sobolev inequality, then Hölder ’s inequality to g(x), for any s > N
N−α

,

∥g(x)∥Ls(G) ≤

 f (ub)

ub


L
N
α (G)

∥ub∥Ls(G).

By the definition of ub and the assumption of f (u), we conclude that g ∈ Ls(G) for any s > N
N−α

.
As for Tuav, applying the Hardy–Littlewood–Sobolev inequality, then Hölder ’s inequality again, we have for any t > N

N−α

∥Tuav∥Lt (G) ≤

 f (ua)

ua
v


L

Nt
N+αt (G)

≤

 f (ua)

ua


L
N
α (G)

∥v∥Lt (G).

Choosing a > 0 sufficiently large, then

∥Tuav∥Lt (G) ≤
1
2
∥v∥Lt (G).

Therefore, Tua is a contracting map. By the Regularity lifting lemma above, ua ∈ Lt ∩ Lq for any t > N
N−α

. This implies that
u ∈ Lt ∩ Lq for any t > N

N−α
.

Next we show that u ∈ L∞(G). For any x ∈ G, we choose a ball BR(x) with fixed radius R, then

u(x) =


G∩BR(x)

f (u)
|x − y|N−α

dy +


G\BR(x)

f (u)
|x − y|N−α

dy

=: I1 + I2.

We estimate I1, I2 respectively.
For I1, from Hölder ’s inequality,

|I1| ≤ ∥ |x − y|α−N
∥
L

r
r−1 (BR(x))

 f (u)
u


Lr+1(G∩BR(x))

∥u∥Lr(r+1)(G∩BR(x))

≤ C, (4.2)

by the fact that r > N
α
implies that −(N − α) r

r−1 + N > 0 and r(r + 1) > N
N−α

, the assumption of f (u), and the fact that
u ∈ Lt for any t > N

N−α
.

For I2,

|I2| ≤
1

RN−α


G\BR(x)

f (u) dy

≤
1

RN−α

 f (u)
u


Lp(G\BR(x))

∥u∥
L

p
p−1 (G\BR(x))

≤ C, (4.3)

due to the fact that p < N
α
implies that p

p−1 > N
N−α

and the assumption of f (u). Together with (4.2) and (4.3), we have shown
∥u∥L∞ < C . Thanks to the continuity of f (u), furthermore, we can infer that f (u) < C .
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We next claim that u ∈ C1(Ḡ). Fix η ∈ C∞

0 (Rn) satisfying 0 ≤ η ≤ 1, and η(t) = 0 as |t| ≤ 1, and η(t) = 1 as |t| ≥ 2.
Define for any ϵ,

uϵ =


G

ηϵ f (u)
|x − y|N−α

dy,

where ηϵ = η(
|x−y|

ϵ
). We can easily deduce that

uϵ → u;

Dxiuϵ →


G
(α − N)

f (u)(xi − yi)
|x − y|N−α+2

dy

uniformly in G as ϵ → 0. Therefore, we have shown the claim holds. Consequently, the lemma follows. �

To prove Theorem 3, we also need to introduce some notations to avoid any confusion. If not specified, they are the same
as those in above sections. Set

Tλ = {x ∈ G|x1 = λ},

Σλ = {x ∈ G|x1 < λ},

Hλ = {x ∈ RN
|x1 < λ},

Gλ = {x ∈ Σλ|xλ ∈ Ω1}

and

Ωλ
1 = {xλ ∈ Ω1|x ∈ Hλ ∩ Ω1}.

Since we consider the exterior domain, the plane move from negative infinity towards Ω1. Ωλ
1 will still stay in Ω1 until

at least one of the following events occurs:

(i) Ωλ
1 is internally tangent the boundary of Ω1 at some point P not on Tλ.

(ii) Tλ reaches a position where it is orthogonal to the boundary of Ω1 at some point Q .

Let λ̄ be the first value such that at least one of above positions is reached.
We assert that Gmust be symmetric about Tλ̄, i.e.,

Σλ̄ ∪ Tλ̄ ∪ Σ ′

λ̄
= G. (4.4)

If the assertion is true, Ω1 is a ball as derived before.
For any solution u in (1.5), we have

u(x) =


Σλ

f (u)
|x − y|N−α

dy +


Σλ\Gλ

f (uλ)

|xλ − y|N−α
dy

and

uλ(x) =


Σλ

f (u)
|xλ − y|N−α

dy +


Σλ\Gλ

f (uλ)

|x − y|N−α
dy.

Then

uλ(x) − u(x) =


Σλ\Gλ

[f (uλ) − f (u)]


1
|x − y|N−α

−
1

|xλ − y|N−α


dy

−


Gλ

f (u)


1
|x − y|N−α

−
1

|xλ − y|N−α


dy. (4.5)

Since |x − y| < |xλ − y| for x ∈ Σλ and y ∈ Gλ, furthermore, f (u) > 0 from the assumption (i) of f (u), we have

uλ(x) − u(x) ≤


Σλ\Gλ

[f (uλ) − f (u)]


1
|x − y|N−α

−
1

|xλ − y|N−α


dy. (4.6)

In order to carry out the moving plane method in integral form, we shall show that the plane can be started. Let

Σ−

λ = {x ∈ Σλ \ Gλ|uλ(x) > u(x)}

and

wλ(x) = uλ(x) − u(x).

Lemma 4.3. If λ is close to negative infinity, then u(x) ≥ uλ(x) for any x ∈ Σλ \ Gλ.
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Proof. Since f (u) is increasing, from (4.6),

uλ(x) − u(x) ≤


Σ

−

λ

[f (uλ) − f (u)]


1
|x − y|N−α

−
1

|xλ − y|N−α


dy

≤


Σ

−

λ

[f (uλ) − f (u)]
1

|x − y|N−α
dy

=


Σ

−

λ

f ′(θu + (1 − θ)uλ)(uλ − u)
1

|x − y|N−α
dy, (4.7)

where f ′(θu + (1 − θ)uλ) is deduced by Mean Value Theorem and 0 < θ < 1.
Applying the Hardy–Littlewood–Sobolev inequality, then Hölder ’s inequality to (4.7), since q > N

N−α
, we get

∥wλ∥Lq(Σ−

λ ) ≤ C∥f ′(θu + (1 − θ)uλ)wλ∥
L

Nq
N+αq (Σ−

λ )

≤ C∥f ′(θu + (1 − θ)uλ)∥
L
N
α (Σ−

λ )
∥wλ∥Lq(Σ−

λ ).

By the assumption (ii) of f , if λ is close to negative infinity, then,

C∥f ′(θu + (1 − θ)uλ)∥
L
N
α (Σ−

λ )
≤

1
2
,

which implies that

∥wλ∥Lq(Σ−

λ ) = 0.

Hence Σ−

λ measures 0, then wλ(x) ≤ 0 for any x ∈ Σλ \ Gλ if λ is sufficient negative. �

Next we show that the plane can continue to move all the way to the right.

Lemma 4.4. Suppose λ < λ̄ and u(x) ≥ uλ(x) in Σλ \ Gλ, then there exists ϵ > 0 such that u(x) > uλ̂(x) for any x ∈ Σλ̂ \ Gλ̂,
where λ̄ > λ̂ := λ + ϵ.

Proof. Since u(x) ≥ uλ(x), then f (u) ≥ f (uλ) by the assumption of f . Suppose there exists some point x0 in Σλ \ Gλ such
that u(x0λ) − u(x0) = 0; that is, from (4.5)

0 =


Σλ\Gλ

[f (uλ) − f (u)]


1
|x0 − y|N−α

−
1

|x0λ − y|N−α


dy −


Gλ

f (u)


1
|x0 − y|N−α

−
1

|x0λ − y|N−α


dy.

Thus, f (u) ≡ 0 in Gλ, which is impossible since f (u) > 0. Therefore, u(x) > uλ(x) in Σλ \ Gλ.
We next show that the plane Tλ can be moved a little further. Since f ′(u) ∈ L

N
α (G), for any small µ, there exists large

enough BR such that

∥f ′(u)∥
L
N
α (G\BR)

≤ µ. (4.8)

For such fixed BR, thanks to the integrability of f ′(u) again, we choose small enough ϵ such that

∥f ′(u)∥
L
N
α ((Σ

λ̂
\Σλ−ϵ )∩BR)

≤ µ. (4.9)

Due to the continuity of u, wλ(x) < 0 in the compact set BR ∩ (Σλ−ϵ \ Gλ−ϵ). Thus the set Σ−

λ̂
only lies in M :=

{((Σλ̂ \ Σλ−ϵ) ∩ BR)} ∪ {G \ BR}. From (4.7),

wλ̂ ≤


M
f ′(θu + (1 − θ)uλ̂)wλ̂

1
|x − y|N−α

dy.

As before, we apply Hardy–Littlewood–Sobolev inequality, then Hölder ’s inequality,

∥wλ∥Lq(M) ≤ C∥f ′(θu + (1 − θ)uλ)∥
L
N
α (M)

∥wλ∥Lq(M).

By (4.8), (4.9) and above estimate, we have ∥wλ∥Lq(M) = 0. Therefore, Σ−

λ̂
is empty. Hence u(x) ≥ uλ̂(x). Using the same

argument at the beginning of the lemma, we shall show that u(x) > uλ̂(x) for any x ∈ Σλ̂ \ Gλ̂. �

Lemma 4.5. Suppose u(x) satisfies (1.5) and λ = λ̄ in the first case, i.e., Ω λ̄
1 is internally tangent to the boundary of Ω1 at some

point Pλ̄ not on Tλ̄, then Σλ̄ ∪ Tλ̄ ∪ Σ ′

λ̄
= G.



3046 G. Lu, J. Zhu / Nonlinear Analysis 75 (2012) 3036–3048

Proof. If not, then Gλ ≠ ∅. From (4.5), at P , u(P) > u(Pλ̄) since f (uλ̄) ≤ f (u) in Σλ̄ \ Gλ̄ and f (u) > 0 in Gλ. However,
u(P) = u(Pλ̄) by our assumption that u is constant on ∂G. Therefore, a contradiction is arrived. Hence Gλ = ∅, which implies
that Σλ̄ ∪ Tλ̄ ∪ Σ ′

λ̄
= G. �

Lemma 4.6. u(x) satisfies (1.5) and suppose that the second case occurs, i.e., Tλ̄ reaches a position where is orthogonal to the
boundary of Ω1 at some point Q , then, Σλ̄ ∪ Tλ̄ ∪ Σ ′

λ̄
= G.

Proof. As deduced before, ∂u
∂x1


Q

= 0. Denote the coordinate Q by z. Suppose Gλ̄ ≠ ∅, then there exists a ball B ⊂⊂ Gλ̄.

Choose a sequence {xi}∞1 ∈ Σλ̄ \ Tλ̄ such that xi → z as i → ∞. Correspondingly, xi
λ̄

→ z as i → ∞. Since B ⊂⊂ Gλ̄, we
can find a δ such that |xi

λ̄
− y| > δ for any y ∈ B and any xi

λ̄
. By (4.5),

u(xi
λ̄
) − u(xi)

(xi
λ̄
− xi) · e1

≤


Gλ̄

f (u)
|xi

λ̄
− y|α−N

− |xi − y|α−N

(xi
λ̄
− xi) · e1

dy

=


Gλ̄

(α − N)f (u)|x̄i
λ̄
− y|α−N−2((xi

λ̄
− y) · e1) dy

<


B
(α − N)f (u)|x̄i

λ̄
− y|α−N−2((xi

λ̄
− y) · e1) dy

< −C . (4.10)

As before, x̄i
λ̄
is some point between xi

λ̄
and xi and Mean Value Theorem is applied above. However,

lim
i→∞

u(xi
λ̄
) − u(xi)

(xi
λ̄
− xi) · e1

=
∂u
∂x1


Q

= 0.

It apparently contradicts (4.10). In the end, the lemma holds. �

Through Lemmas 4.5 and 4.6, we infer thatΩ1 is a ball. Furthermore, Lemmas 4.3 and 4.4 lead to the radial symmetry and
monotonicity of solution u if we regard x1 as any given direction. Hence, u is radially symmetric with respect to the center
of the ball and increasing in radial direction. Without loss of generality, let u = a > 0 on ∂Ω1 and Ω1 = B1. Then

G
uq(x) dx =


RN\B1

uq(|x|) dx >


RN\B1

aq dx = ∞,

which obviously is a contradiction. Therefore, Theorem 3 is complete.
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Appendix

In this section, we extend our results to the more general integral equation for a bounded domain Ω ⊂ RN , i.e.,

u(x) =


Ω

g(|x − y|) dy. (A.1)

Assume that g(r) ∈ C1(R+) satisfies either

g ′(r) < 0, ∀0 < r < diam(Ω), (A.2)
or

g ′(r) > 0, ∀0 < r < diam(Ω). (A.3)
Moreover,

ϵ−1
 ϵ

0
|g(r)|rN−1 dr → 0 (A.4)

and  ϵ

0
|g ′(r)|rN−1 dr → 0, (A.5)

as ϵ → 0. Since differentiability of u is applied in the second case of critical position, i.e., Tλ̄ reaches a position where is
orthogonal to the boundary of Ω at some point Q , we first prove that u is C1(Ω̄). In fact, we will show the following lemma.



G. Lu, J. Zhu / Nonlinear Analysis 75 (2012) 3036–3048 3047

Lemma A.1. If u(x) satisfies (A.4) and (A.5) in (A.1), then u(x) ∈ C1(RN).

Proof. Without loss of generality, we only show that D1u =
∂u
∂x1

is continuous in Ω̄ . Since g(r) ∈ C1(R+), the possible
singularity is r = 0. Let η : [0, ∞) → [0, 1] be a C∞ function with η ≡ 0 on [0, 1

2 ] and η ≡ 1 on [1, ∞). Let ηϵ = η( t
ϵ
) and

define

uϵ(x) :=


Ω

g(|x − y|)ηϵ(|x − y|) dy

and

v1(x) :=


Ω

D1g(|x − y|) dy.

v1(x) exists because of (A.5). Furthermore, for any x ∈ Ω̄ ,

|D1uϵ(x) − v1(x)| ≤


Ω

|D1((ηϵ(|x − y|) − 1)g(|x − y|)) dy

≤ Cϵ−1


Bϵ (x)
|g(|x − y|)| dy +


Bϵ (x)

|g ′(|x − y|)| dy

= Cϵ−1
 ϵ

0
|g(r)|rN−1 dr +

 ϵ

0
|g ′(r)|rN−1 dr

→ 0

by the assumptions of (A.4) and (A.5). Thus, D1uϵ converges uniformly to v1 on RN . Therefore u(x) ∈ C1(RN). �

Adapting the proofs of Theorems 1 and 2, we can similarly establish the following more general characterization of balls.

Theorem A.1. Let Ω be a C1 bounded domain. Then u in (A.1) is constant on ∂Ω if and only if Ω is a ball.

We should point out that themonotonicity of the function g plays an essential role in the proofs of Theorems 1 and 2. The
assumption on the function g assures that the argument in the proof of TheoremA.1 carries throughwithout any substantial
difficulty.
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