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Abstract We apply the discrete version of Calderón’s reproducing formula and
Littlewood–Paley theory with weights to establish the H

p
w → H

p
w (0 < p < ∞)

and H
p
w → L

p
w (0 < p ≤ 1) boundedness for singular integral operators and derive

some explicit bounds for the operator norms of singular integrals acting on these
weighted Hardy spaces when we only assume w ∈ A∞. The bounds will be ex-
pressed in terms of the Aq constant of w if q > qw = inf{s : w ∈ As}. Our results
can be regarded as a natural extension of the results about the growth of the Ap

constant of singular integral operators on classical weighted Lebesgue spaces L
p
w in

Hytonen et al. (arXiv:1006.2530, 2010; arXiv:0911.0713, 2009), Lerner (Ill. J. Math.
52:653–666, 2008; Proc. Am. Math. Soc. 136(8):2829–2833, 2008), Lerner et al.
(Int. Math. Res. Notes 2008:rnm 126, 2008; Math. Res. Lett. 16:149–156, 2009),
Lacey et al. (arXiv:0905.3839v2, 2009; arXiv:0906.1941, 2009), Petermichl (Am.
J. Math. 129(5):1355–1375, 2007; Proc. Am. Math. Soc. 136(4):1237–1249, 2008),
and Petermichl and Volberg (Duke Math. J. 112(2):281–305, 2002). Our main result
is stated in Theorem 1.1. Our method avoids the atomic decomposition which was
usually used in proving boundedness of singular integral operators on Hardy spaces.
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1 Introduction and Statement of Results

Weighted Hardy spaces have been studied extensively in the last fifty years (see, for
example, Garcia-Guerva [7], Strömberg–Torchinsky [30, 31], and many other ref-
erences therein), where the weighted Hardy space was defined by using the non-
tangential maximal functions and atomic decompositions were derived. The relation-
ship between H

p
w and L

p
w for p > 1 was considered in both one and multi-parameter

cases (e.g., Strömberg and Wheeden in [32]).
In this paper, we consider the weighted Hardy space estimates for singular inte-

grals using the discrete version of Calderón’s identity and Littlewood–Paley theory
developed in the work of Han with the first author [11]. In [11], the authors deal with
the multiparameter Hardy spaces Hp (0 < p ≤ 1) associated with the flag singular
integrals. The Hp to Hp and Hp to Lp boundedness are proved for flag singular in-
tegrals in [11] for all 0 < p ≤ 1 which extend the Lp theory for 1 < p < ∞ developed
in Nagel–Ricci–Stein [23]. The main purpose of the current paper is to derive some
explicit bounds, in terms of the Aq constant [w]q of the Muckenhoupt weight w ∈ Aq

(see the definition of Muckenhoupt weight below) if q > qw = inf{s : w ∈ As}, for
the H

p
w to L

p
w mapping norms for all 0 < p ≤ 1 and H

p
w to H

p
w mapping norms for

all 0 < p < ∞ on weighted Hardy spaces for a class of singular integral operators.
In other words, we only assume that the weight w is in the class A∞ (see definition
below).

Let us first recall the definition of Ap weight. For 1 < p < ∞, a locally integrable
nonnegative function w on Rn is said to be in Ap if

[w]Ap = sup
I

(
1

|I |
∫

I

w(x)dx

)(
1

|I |
∫

I

w(x)−1/(p−1)dx

)p−1

< ∞,

where for every cube I ∈ Rn, |I | denotes its Lebesgue measure, and [w]Ap is called
the Ap characteristic constant of w. For the case p = 1, w is said to be in A1 if

Mw(x) ≤ C1w(x) for almost all x ∈ Rn

and for some constant C1. If w ∈ A1, then the quantity

[w]A1 = sup
I⊂Rn

(
1

|I |
∫

I

w(x)dx

)
‖w−1‖L∞(I )

is called the A1 characteristic constant of w. Finally, we define

A∞ =
⋃

1≤p<∞
Ap.

For w ∈ A∞, we denote by qw = inf{q : w ∈ Aq} the critical index of w.
It is well known that if w /∈ Ap , then T may not be bounded on L

p
w . However,

it does not contradict with our results since in general H
p
w �= L

p
w when w /∈ Ap for
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p > 1. We refer the reader to the work of Strömberg and Wheeden [32] where the
relations between L

p
u and H

p
u of the real line are studied in the case when p > 1 and

u(x) = |Q(x)|pw(x), where Q(x) is a polynomial and w(x) satisfies the Mucken-
houpt Ap condition. It turns out that H

p
u and L

p
u can be identified when all the zeros

of Q are real, and that otherwise H
p
u can be identified with a certain proper subspace

of L
p
u .

The growth of the Ap constants on classical weighted estimates in Lp spaces
for 1 < p < ∞ for the Hardy–Littlewood maximal function, singular integrals, and
fractional integrals has been investigated extensively in recent years. We refer the
reader to the work of Buckley [3], Petermichl and Volberg [27], Petermichl [25, 26],
Lacey, Moen, Pérez, and Torres [16], Lerner [19, 20], Lerner, Ombrosi, and Pérez
[21, 22], Lacey, Petermichl, and Reguera [15] and Hytonen, Lacey, Reguera, and
Vagharshakyan [14], etc.

Buckley [3] showed that for 1 < p < ∞, w ∈ Ap , the Hardy–Littlewood maximal
operator M satisfies

‖M‖Lp(w)→Lp(w) ≤ c[w]1/(p−1)
Ap

, ‖M‖Lp(w)→Lp,∞(w) ≤ c[w]1/p
Ap

and the exponent 1/(p−1) is the best possible. A new and rather simple proof of both
Muckenhoupt’s and Buckley’s results were recently given by Lerner [20]. It is shown
in [19] that the Lp(w) (1 < p < ∞) operator norms of Littlewood–Paley operators
are bounded by a multiple of [w]γp

Ap
, where γp = max{1,

p
2 } 1

p−1 .
For the singular integrals, Petermichl and Volberg [27] proved for the Ahlfors

Beurling transform and Petermichl [25, 26] proved for the Hilbert transform and the
Riesz transforms the following estimates:

‖T ‖L
p
w

≤ cp,n[w]max{1, 1
p−1 }

p , 1 < p < ∞,

when the operator T is any one of the aforementioned operators and the exponent
max{1, 1

p−1 } is the best possible. Very recently, Lacey, Petermichl, and Reguera [15]
and Hytonen, Lacey, Reguera, and Vagharshakyan [14] proved sharp bounds in terms
of linear [w]A2 constant on weighted L2 space and sharp bounds in terms of [w]Ap

constant on weighted Lp spaces for Haar Shift Operators, respectively. As a corollary
to their main result they deduced sharp Ap inequalities for T being either the Hilbert
transform in dimension d = 1, the Beurling transform in dimension d = 2, or a Riesz
transform in any dimension d ≥ 2. Let T∗ denote the maximal truncations of these
operators. They proved weighted weak and strong-type L

p
w inequalities:

‖T∗‖L
p,∞
w

≤ [w]Ap‖f ‖L
p
w
, 1 < p < 2,

and

‖T∗‖L
p
w

≤ [w]max{1, 1
p−1 }

Ap
‖f ‖L

p
w
, 1 < p < ∞.

These estimates are sharp in the power of the Ap characteristic of the weight w, and
are consistent with the best possible bounds without the truncations.

In the work of Dragicević, Grafakos, Pereyra, and Petermichl [5], sharp L
p
w es-

timates in terms of [w]Ap in the Rubio de Francia extrapolation theorem [9] have
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been established. In particular, the main result of [5] shows that if a sublinear oper-
ator T is bounded on L2

w with the linear bound for ‖T ‖L2
w

in terms of [w]A2 , then

T is bounded on L
p
w for 1 < p < ∞, and ‖T ‖L

p
w

is at most a multiple of [w]αp

Ap

with αp = max{1, 1
p−1 }. Therefore, the sharp L2

w bound for the Hilbert and Riesz
transforms along with extrapolation shows that for these operators the best possible
exponent αp can be achieved for all p > 1. For more general singular integrals, the
question about the best power of [w]Ap in the operator norm on L

p
w is still open.1

In [21] and [22], Lerner, Ombrosi, and Pérez derived some results related to the
weak Muckenhoupt and Wheeden conjecture for the Calderón–Zygmund operator T ,
they proved that

‖T ‖Lp(w)→Lp(w) ≤ Cpp′[w]A1 (1 < p < ∞),

‖T ‖L1(w)→L1,∞(w) ≤ C[w]A1

(
1 + log[w]A1

)
.

Motivated by these results and recent works on discrete Littlewood–Paley theory
and Calderón’s identity in multiparameter settings [11] and [12], in the present paper
we will describe the explicit dependence of the corresponding H

p
w → L

p
w (0 < p ≤ 1)

and H
p
w → H

p
w (0 < p < ∞) operator norms of singular integrals in terms of the Aq

characteristic constant of w ∈ Aq for arbitrary q > qw = inf{s : w ∈ As}.
A singular integral operator is defined as follows.

Definition 1.1 A one-parameter kernel on Rn is a distribution K on Rn which coin-
cides with a C∞ function away from the origin and satisfies

(1) (Differential Inequalities) For all multi-indices α, and ∀x �= 0,

|∂αK(x)| ≤ Cα|x|−n−|α|. (1.1)

(2) (Cancellation Condition) For any normalized bump function φ on Rn and any
R > 0,

∣∣∣∣
∫

Rn

K(x)φ(Rx)dx

∣∣∣∣ ≤ C, (1.2)

where C is a constant independent of φ and R > 0. An operator with a one-
parameter kernel is called a (one-parameter) singular integral operator.

Remark 1.1 There is another way to describe the cancellation condition (1.2), that is

∣∣∣∣
∫

ε<|x|<N

K(x)dx

∣∣∣∣ ≤ C, for any 0 < ε < N < ∞. (1.3)

1Recent work of T. Hytonen, M. Lacey, M. Reguera, E. Sawyer, I. Uriarte-Tuero, A. Vagharshakyan [13]
has obtained such a sharp bound under the assumption that the kernel of the singular integral satisfies
some smoothness condition by proving a weighted weak type result and combining with the result of
Pérez, Treil, and Volberg [24].
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Under the hypothesis of condition (1.1), the L2 boundedness of T holds if and only
if any one of the cancellation conditions (1.2) or (1.3) holds (see [29]).

Fefferman and Stein [6] first obtained the Hp boundedness of these operators for
0 < p ≤ 1. In the weighted case, when w ∈ A1, n/(n + 1) < p ≤ 1, Lin and Lee [17]
applied the weighted molecular theory and atomic decomposition to obtain the H

p
w

boundedness of these operators.
The aim of this paper is to obtain H

p
w boundedness of T by only assuming w ∈ A∞

and derive the explicit operator norm bounds of the singular integrals on weighted
Hardy spaces. This is accomplished by using discrete Littlewood–Paley theory sim-
ilar to that developed earlier in [11]. Indeed, boundedness of singular integrals on
weighted multiparameter Hardy spaces H

p
w(Rn × R

m) has been established in [4] by
only assuming w ∈ A∞(Rn × R

m). Generalization of such results to weighted Hardy
spaces of arbitrary number of parameters has been done in [28]. However, no explicit
constants for the bounds of singular integrals are given in [4, 28].

To describe our main results, we begin by recalling some properties of weight
functions.

Proposition 1.1 [10] Let w ∈ Ap for some 1 ≤ p < ∞. Then

(1) [δλ(w)]Ap = [w]Ap , where δλ(w)(x) = w(λx1, . . . , λxn), λ ∈ R.
(2) [τ z(w)]Ap = [w]Ap , where τ z(w)(x) = w(x − z), z ∈ Rn.
(3) [λw]Ap = [w]Ap for all λ > 0.
(4) When 1 < p < ∞, σ = w−1/(p−1) ∈ Ap′ with characteristic constant [σ ]Ap′ =

[w]1/(p−1)
Ap

.
(5) [w]Ap ≥ 1 for all w ∈ Ap . Equality holds if and only if w is a constant.
(6) For 1 ≤ p < q < ∞, we have [w]Aq ≤ [w]Ap . And limq→1+[w]Aq = [w]A1 .
(7) The measure w(x)dx is doubling: precisely, for all λ > 1 and all cubes Q we

have

w(λQ) ≤ λnp[w]Apw(Q).

Let ψ be a Schwartz function on Rn which satisfies
∫

Rn

ψ(x)xαdx = 0, for all multi-indicesα, (1.4)

and ∑
j∈Z

|ψ̂(2−jξ )|2 = 1, for all ξ �= 0. (1.5)

Strictly speaking, the classical Hardy spaces Hp should be defined by using
bounded distributions or distributions modulus polynomials; see [10] and [29]. For
our purpose here, we need to introduce some new class which is similar to distribu-
tions modulus polynomials.

Definition 1.2 A function f (x) defined on Rn is said to be in SM(Rn) where M is a
positive integer, if f (x) satisfies the following conditions:
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(i) For |α| ≤ M − 1,

|Dαf (x)| ≤ C
1

(1 + |x|)n+M+|α| ;

(ii) For |x − x′| ≤ 1
2 (1 + |x|) and |ν| = M ,

|Dνf (x) − Dνf (x′)| ≤ C
|x − x′|

(1 + |x|)n+2M
;

(iii) For |α| ≤ M − 1,

∫
Rn

f (x)xαdx = 0.

If f ∈ SM(Rn) the norm of f in SM(Rn) is then defined by

‖f ‖SM(Rn) = inf
{
C : (i) and (ii) hold

}
.

It is easy to check that SM(Rn) with this norm is a Banach space. Denote by
(SM(Rn))′ the dual of SM(Rn).

For f ∈ (SM(Rn))′, define the Littlewood–Paley square function of f by

g(f )(x) =
{∑

j∈Z

|ψj ∗ f (x)|2
} 1

2

, (1.6)

where ψj (x) = 2−jnψ(2−j x).
Now we give the definition of one-parameter weighted Hardy spaces H

p
w on Rn.

Definition 1.3 Let 0 < p < ∞,w ∈ A∞. Let M = [(2qw/p − 1)n] + 1, where [·]
denotes the integer function. The one-parameter weighted Hardy spaces are defined
by

Hp
w

(
Rn

) = {
f ∈ (SM)′ : g(f ) ∈ Lp

w

(
Rn

)}

and the norm of f in H
p
w(Rn) is defined by

‖f ‖H
p
w(Rn) = ‖g(f )‖L

p
w(Rn).

Our main result is the following theorem.

Theorem 1.1 Let w ∈ A∞. The one-parameter singular integral operator T is
bounded on H

p
w for 0 < p < ∞ and bounded from H

p
w to L

p
w for 0 < p ≤ 1. Namely,

if r satisfies n
n+M

< r < min{ p
qw

,1} and q > qw (where qw is the critical index of the
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weight w defined above), then

‖T (f )‖H
p
w

≤ C(n,p, r)K1([w]Ap/r )‖f ‖H
p
w
, 0 < p < ∞,

‖T (f )‖L
p
w(Rn) ≤ C(n,p,q, r)K1([w]Aq )

2K2([w]Ap/r )[w]
1
p

+max{1,
q′
2 }

Aq
‖f ‖H

p
w(Rn),

0 < p ≤ 1,

where M is the constant in Definition 1.2 and constants K1([w]Aq ) and K2([w]Ap/r )

are defined as follows:

K1([w]Aq ) =
⎧⎨
⎩

[w]
1

q−1
Aq

, if q ≤ 2,

[w]Aq , if q > 2,

(1.7)

and

K2([w]Ap/r ) =
⎧⎨
⎩

([w]Ap/r )
r

p−r , if p ≤ 2,

([w]Ap/r )
r

2−r , if p > 2.
(1.8)

In [4], the authors showed that the weighted Hardy spaces defined by discrete
Littlewood–Paley operators are the same as the classical ones defined by a smooth
maximal function (see [7] and [31]). Let ϕ ∈ S(Rn) with

∫
ϕ(x)dx = 1 and the max-

imal function defined as follows

f ∗(x) = sup
t>0

|ϕt ∗ f (x)|

where ϕt (x) = t−nϕ(x/t). Then weighted Hardy space Hp
w(Rn) consists of those

tempered distributions for which f ∗ ∈ L
p
w with ‖f ‖Hp

w
= ‖f ∗‖L

p
w

.
We end the introduction with the following remarks. First of all, a sharp contrast

with the weighted Lp boundedness results (where w ∈ Ap was often required) is that
we establish the weighted boundedness of singular integrals on Hardy spaces H

p
w(Rn)

by only assuming w ∈ A∞. This also significantly improves the earlier known re-
sults on weighted Hardy spaces (see, e.g., [17]). This is accomplished by employing
the discrete Littlewood–Paley analysis. We mention in passing that consideration of
weighted Hardy spaces H

p
w(Rn) with w ∈ A∞(Rn) was given earlier; see [8, 33],

and also the more recent work [2, 4, 18]. Second, we are not aware if our results
of the operator norm bounds for the singular integrals are sharp or not. In partic-
ular, unlike in the case of Lp bounds (1 < p < ∞) the definition of the weighted
Hardy spaces depends on the choice of the Schwartz functions we use. Nonetheless,
we are able to determine a nice bound when the definition is given in terms of the
discrete Littlewood–Paley square functions. As a consequence, we are also deriving
the bounds when an equivalent definition is taken into account using the discrete
Littlewood–Paley analysis.

The organization of the paper is as follows. In Sect. 2, we first establish the discrete
Calderón identity (Theorem 2.1). Then we prove that the weighted Hardy spaces are
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well defined by proving a Min-Max comparison principle with an explicit bound.
Next, we obtain the bound control of the weighted L

p
w norms of a function in a

dense class of H
p
w by their weighted H

p
w norms (Theorem 2.3). To do this, we need

to establish an alternative discrete Calderón identity with Schwartz function with
compact support. Finally, we prove Theorem 1.1 to conclude Sect. 2.

2 Boundedness on Weighted Hardy Spaces H
p
w(Rn)

In this section, we shall prove the boundedness of singular integrals on weighted
Hardy Spaces H

p
w(Rn). For our purpose, we introduce some new Littlewood–Paley

g function. Let φ be a C∞
0 function on Rn supported in the unit ball and satisfying

condition (1.5) and
∫

Rn

φ(x)xαdx = 0, for |α| ≤ M0, (2.1)

where M0 ≥ M and M is the same as in the definition of H
p
w .

We introduce discrete Littlewood–Paley g function and its maximal analogue by

gd(f )(x) =
{∑

j

∑
Q

|φj ∗ f (xQ)|2χQ(x)

} 1
2

and

g
sup
d (f )(x) =

{∑
j

∑
Q

sup
u∈Q

|φj ∗ f (u)|2χQ(x)

} 1
2

respectively, where xQ is any point in Q, φj (x) = 2−jnφ(2j x) and the summation of
Q is taken over all dyadic cubes Q with side length 2−j−N in Rn for each j ∈ Z and
a fixed large integer N .

We need the following weighted Fefferman–Stein vector-valued inequality, for
every 1 < p, r < ∞,w ∈ Ap (see [10], and also [1] for an earlier version of such an
inequality without the explicit bounds):

∥∥∥∥
(∑

j

|M(fj )|r
)1/r∥∥∥∥

L
p
w

≤ K
(
n, r,p, [w]Ap

)∥∥∥∥
(∑

j

|fj |r
)1/r∥∥∥∥

L
p
w

(2.2)

for all sequence of functions {fj } in L
p
w , where if we set N(t) = t

1
r−1 ,

K(n, r,p, [w]Ap) =
⎧⎨
⎩

2N(K1(n,p, r)[w]
r−1
p−1
Ap

), if p < r,

2
pr

r(p−1) N(K2(n,p, r)[w]Ap), if p ≥ r

and K1(n,p, r),K2(n,p, r) are constants that depend only on n,p, r .
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Proposition 2.1 If M0 ≥ M in (2.1), then weighted Hardy spaces can be character-
ized by these discrete square functions. That is, for any 0 < p < ∞,

‖f ‖H
p
w

≈ ‖gd(f )‖L
p
w
.

It was pointed out in [19] that if 1 < r < ∞ and w ∈ Ar , we have the following
weighted version of the Littlewood–Paley–Stein inequality:

‖g‖Lr
w→Lr

w
≈ ‖gd‖Lr

w→Lr
w

≤ Cn[w]max{1, r
2 } 1

r−1
Ar

.

By the duality argument together with Calderón’s identity, we also have

‖f ‖Lr
w

≤ C′
n[w]max{1, r′

2 }
Ar

‖g(f )‖Lr
w
.

In fact, let σ(x) = w(x)−r ′/r , then σ ∈ Ar ′ .

‖f ‖Lr
w

= sup
‖h‖

Lr′
σ

≤1

∣∣∣∣
∫

f (x)h(x)dx

∣∣∣∣ = sup
‖h‖

Lr′
σ

≤1

∣∣∣∣
∫ (∑

j

ψj ∗ ψj ∗ f

)
(x)h(x)dx

∣∣∣∣

≤ sup
‖h‖

Lr′
σ

≤1

∫
g(f )(x)g(h)(x)dx ≤ sup

‖h‖
Lr′

σ
≤1

‖g(f )‖Lr
w
‖g(h)‖

Lr′
σ

≤ C′
n[σ ]max{1, r′

2 } 1
r′−1

Ar′ ‖g(f )‖Lr
w

= C′
n[w]max{1, r′

2 }
Ar

‖g(f )‖Lr
w
.

Lemma 2.1 [11] If ψ and φ are in the class SM(Rn), then for any given positive
integers L,K , there exists a constant C = C(L,K) depending only on L,K such
that

|ψt ∗ φt ′(x)| ≤ C

(
t

t ′
∧ t ′

t

)L
(t ∨ t ′)K

(t ∨ t ′ + |x|)n+K
.

Lemma 2.2 Let I, I ′ be dyadic cubes in Rn such that l(I ) = 2−j−N , l(I ′) = 2−j ′−N .
Then for any u,u∗ ∈ I and any r satisfying n

n+K
< r ≤ 1, we have

∑
I ′

2−|j−j ′|L|I ′|2−(j∧j ′)K

(2−j∧j ′ + |u − xI ′ |)n+K
|ψj ′ ∗ f (xI ′)|

≤ C2−|j−j ′|L2( 1
r
−1)Nn2( 1

r
−1)n(j ′−j)+

(
M

(∑
I ′

|ψj ′ ∗ f (xI ′)|χI ′
)r

(u∗)
)1/r

,

where (j ′ − j)+ = max{j ′ − j,0}, xI ′ ∈ I ′ and C is a constant depending on dimen-
sion n.
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Proof We set

A0 =
{
I ′ : l

(
I ′) = 2−j ′−N,

|u − xI ′ |
2−j∧j ′ ≤ 1

}
,

and for l ≥ 1,

Al =
{
I ′ : l(I ′) = 2−j ′−N, 2l−1 <

|u − xI ′ |
2−j∧j ′ ≤ 2l

}
.

Then
∑
I ′

2−|j−j ′|L|I ′|2−(j∧j ′)K

(2−j∧j ′ + |u − xI ′ |)n+K
|ψj ′ ∗ f (xI ′)|

≤
∑
l≥0

2−l(n+K)2−|j−j ′|L2−n(j ′+N)2(j∧j ′)n ∑
I ′∈Al

|ψj ′ ∗ f (xI ′)|

≤
∑
l≥0

2−l(n+K)2−|j−j ′|L2−n(j ′+N)2(j∧j ′)n
( ∑

I ′∈Al

|ψj ′ ∗ f (xI ′)|r
)1/r

=
∑
l≥0

2−l(n+K)2−|j−j ′|L2−n(j ′+N)2(j∧j ′)n

×
(∫

I ′
|I ′|−1

∑
I ′∈Al

|ψj ′ ∗ f (xI ′)|rχI ′
)1/r

≤
∑
l≥0

2−|j−j ′|L2−l(n+K− n
r
)2( 1

r
−1)Nn2( 1

r
−1)n(j ′−j)+

×
(

M

( ∑
I ′∈Al

|ψj ′ ∗ f (xI ′)|rχI ′
)

(u∗)
)1/r

= C2−|j−j ′|L2( 1
r
−1)Nn2( 1

r
−1)n(j ′−j)+

(
M

(∑
I ′

|ψj ′ ∗ (xI ′)|χI ′
)r

(u∗)
)1/r

the last inequality follows from the assumption that r > n
n+K

which can be done by
choosing K big enough. �

With the almost orthogonality estimate (Lemma 2.1) and Lemma 2.2, we now give
the following discrete Calderón reproducing formula.

Theorem 2.1 Suppose that ψj is the same as in (1.6). Then for any M ≥ 1, we can
choose a large N depending on M and ψ such that the following discrete Calderón
reproducing identity:

f (x) =
∑
j

∑
I

|I |ψ̃j (x, xI )ψj ∗ f (xI ) (2.3)

holds in SM(Rn) and in the dual space (SM)′, where ψ̃j (x, xI ) ∈ SM(Rn), I ′s are
dyadic cubes with side-length l(I ) = 2−j−N , and xI is a fixed point in I .
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Proof For f ∈ SM , we use the discrete Calderón identity f (x) = ∑
j ψj ∗ψj ∗f (x)

as follows. We rewrite

f (x) =
∑
j

∑
I

∫
I

ψj (x − u)(ψj ∗ f )(u)du

=
∑
j

∑
I

[∫
I

ψj (x − u)du

]
(ψj ∗ f )(xI ) + R(f )(x).

We shall show that R is bounded on SM with a small operator norm when the I ’s are
dyadic cubes with side-length 2−j−N for a large N , and xI ∈ I .

R(f )(x) =
∑
j,I

∫
I

ψj (x − u)[(ψj ∗ f )(u) − (ψj ∗ f )(xI )]du

=
∑
j,I

∫
I

ψj (x − u)

(∫
ψj (u − u′)f (u′)du′

−
∫

ψj (xI − u′)f (u′)du′
)

du

=
∫ (∑

j,I

∫
I

ψj (x − u)[ψj (u − u′) − ψj (xI − u′)]duf (u′)
)

du′

=
∫

R(x,u′, xI )f (u′)du′

where R(x,u′, xI ) is the kernel of R. It is not difficult to check that
∑
I

∫
I

ψj (x − u)
[
ψj

(
u − u′) − ψj

(
xI − u′)]du

satisfies all conditions of ψj (x − xI ) but with the constant of SM(Rn) norm re-
placed by C2−N . This follows from the smooth conditions of ψj and the fact that u,

xI ∈ I, l(I ) = 2−j−N . Then R(f )(x) ∈ SM(Rn) and

‖R(f )‖SM(Rn) ≤ C2−N‖f ‖SM(Rn). (2.4)

Thus if we set

T (f )(x) =
∑
j

∑
I

[∫
I

ψ(x − u)du

]
(ψj ∗ f )(xI ),

then T −1 = (I − R)−1 exists and

f (x) = T −1T (f )(x) =
∞∑
i=0

RiT (f )(x)

=
∑
j,I

[ ∞∑
i=0

Ri

∫
I

ψj (· − u)du

]
(x)(ψj ∗ f )(xI ).
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Set [∑∞
i=0 Ri

∫
I
ψj (· − u)du](x) = |I |ψ̃j (x, xI ). Then it follows from (2.4) that

ψ̃j ∈ SM(Rn). Thus, the discrete Calderón identity on SM(Rn) is obtained. The proof
of Theorem 2.1 is completed from the duality argument. �

Now we are ready to give the following Plancherel–Pôlya-type inequality, i.e., the
Min-Max inequality.

Theorem 2.2 Let ψ,ϕ ∈ SM(Rn). Suppose ψj and ϕj satisfy the same conditions
as in (1.6). Then for 0 < p < ∞,w ∈ A∞, f ∈ (SM)′(Rn), and for any r satisfying

n
n+K

< r < min{ p
qw

,1},
∥∥∥∥
{∑

j,I

inf
u∈I

|ϕj ∗ f (u)|2χI (x)

}1/2∥∥∥∥
L

p
w

≤
∥∥∥∥
{∑

j,I

sup
u∈I

|ψj ∗ f (u)|2χI (x)

}1/2∥∥∥∥
L

p
w

≤ C(n,p, r)K2([w]Ap/r )

∥∥∥∥
{∑

j,I

inf
u∈I

|ϕj ∗ f (u)|2χI (x)

}1/2∥∥∥∥
L

p
w

where I ∈ Rn are dyadic cubes with side-length l(I ) = 2−j−N for a fixed large inte-
ger N , and K2([w]Ap/r ) is as given in (1.8).

Proof The discrete Calderón reproducing formula (2.3) on SM(Rn) implies that

(ψj ∗ f )(u) =
∑
j ′,I ′

|I ′|(ψj ∗ ϕ̃j )(u, xI ′)(ϕj ∗ f )(xI ′).

From the almost orthogonality estimates in Lemma 2.1 by choosing t = 2−j , t ′ =
2−j ′

and from Lemma 2.2, we have that for any given positive integers L,K and for
any u,u∗ ∈ I ,

|ψj ∗ f (u)| ≤ C
∑
j ′,I ′

2−|j−j ′|L2−(j∧j ′)K |I ′|
(2−j∧j ′ + |u − xI |)n+K

|ϕj ′ ∗ f (xI ′)|

≤ C
∑
j ′

2−|j−j ′|L
(

M

[(∑
I ′

|ϕj ′ ∗ f (xI )|χI ′
)r])1/r

(u∗).

Summing over j, I yields that

(∑
j,I

sup
u∈I

|ψj ∗ f (u)|2χI

)1/2

≤
(∑

j ′

{
M

[∑
I ′

|ϕj ′ ∗ f (xI ′)|χI ′
]r}2/r)1/2

.

Since n
n+K

< r < min{ p
qw

,1}, it means that qw < p/r , we have w ∈ Ap/r .

The Hölder inequality and the L
p/r
w (l2/r ) boundedness of M , i.e., the weighted
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Fefferman–Stein vector-valued inequality (2.2), yield

∥∥∥∥
(∑

j,I

sup
u∈I

|ψj ∗ f (u)|2χI

)1/2∥∥∥∥
L

p
w

≤ C

∥∥∥∥
(∑

j ′

{
M

[∑
I ′

inf
u∈I ′ |ϕj ′ ∗ f (u)|χI ′

]r}2/r)1/2∥∥∥∥
L

p
w

≤ C(n,p, r)K2([w]Ap/r )

∥∥∥∥
(∑

j ′,I ′
inf
u∈I ′ |ϕj ′ ∗ f (u)|2χI ′

)1/2∥∥∥∥
L

p
w

,

where we use the fact that xI ′ is arbitrary in I ′. �

From this theorem, we know that the definition of weighted Hardy spaces is in-
dependent of the particular choice of ψj . Moreover, it can be characterized by the
discrete Littlewood–Paley square function defined by

Gd(f )(x) =
{∑

j,I

|ψj ∗ f (xI )|2χI (x)

} 1
2

, xI ∈ I.

That is, a distribution f belongs to H
p
w(Rn) if and only if Gd(f ) ∈ L

p
w(Rn), and

‖f ‖H
p
w(Rn) ≈ ‖Gd(f )‖L

p
w(Rn).

Proposition 3.2 in [4] tell us that when w ∈ A∞, SM(Rn) is dense in H
p
w(Rn) for

0 < p < ∞.

Theorem 2.3 If f ∈ L2(Rn) ∩ H
p
w(Rn),0 < p ≤ 1, then f ∈ L

p
w(Rn), and there

exists a constant C(n,p,q) > 0 such that

‖f ‖L
p
w(Rn) ≤ C(n,p,q)K1

([w]Aq

)2[w]
1
p

+max{1,
q′
2 }

Aq
‖f ‖H

p
w(Rn),

where q is fixed such that q > qw , K1([w]Aq ) is given as in (1.7).

To prove this theorem, we need a new version of Calderón-type identity. To be
more precise, take φ ∈ C∞

0 with
∫

Rn

φ(x)xαdx = 0, for all α satisfying 0 ≤ |α| ≤ M0

where M0 is a large positive integer which will be determined later (indeed M0 >

(2qw/p − 1)n suffices), and
∑
j

|φ̂(2−j ξ)|2 = 1, for all ξ ∈ Rn \ {0}.

Moreover, we may assume that φ is supported in the unit ball of Rn.
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We need a discrete Calderón reproducing formula in terms of φ.

Lemma 2.3 There exists an operator T −1
N such that

f (x) =
∑
j,I

|I |φ̃j (x − xI )φj ∗ (
T −1

N (f )
)
(xI ) (2.5)

where T −1
N is bounded on L2(Rn) and H

p
w(Rn), 0 < p < ∞, and the series converges

in L2(Rn).

Proof As in the proof of Theorem 2.1, for f ∈ L2(Rn), the operator R is defined by
the following:

f (x) =
∑
j

∑
I

∫
I

ψ(x − u)(ψj ∗ f )(u)du

=
∑
j

∑
I

[∫
I

ψj (x − u)du

]
(ψj ∗ f )(xI ) + R(f )(x).

We claim that for 0 < p < ∞, there is a constant C > 0 such that

‖R(f )‖L2(Rn) ≤ C2−N‖f ‖L2(Rn),

and

‖R(f )‖H
p
w(Rn) ≤ C2−NK2

([w]Ap/r

)‖f ‖H
p
w(Rn).

Assume the claim for the moment. Set

TN(f )(x) =
∑
j,I

[∫
I

φj (x − u)du

]
(φj ∗ f )(xI ).

The proof in Theorem 2.1 shows that if N is large enough, then both TN and (TN)−1

are bounded on H
p
w(Rn) ∩ L2. Thus,

f (x) =
∑
j,I

|I |φ̃j (x − xI )
(
ψ ∗ T −1

N (f )
)
(xI ),

where φ̃j ∈ SM(Rn) and the series converges in L2(Rn).
Now we prove the claim. Suppose f ∈ L2(Rn). By Theorem 2.1,

‖G(R(f ))‖L
p
w

≤ C

∥∥∥∥
{∑

j,I

|ψj ∗ R(f )|2χI

}1/2∥∥∥∥
L

p
w

= C

∥∥∥∥
{∑

j,I

∑
j ′I ′

|I ′|ψj ∗ R(ψ̃j ′(·, xI ′) · (ψj ′ ∗ f )(xI ′))|2χI

}1/2∥∥∥∥
L

p
w

.
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By the almost orthogonality estimate

∣∣(ψj ∗ R
(
ψ̃j ′(·, xI ′)

))
(x)

∣∣ ≤ C2−N2−|j−j ′|M 2−(j∧j ′)M

(2−j∧j ′ + |x − xI ′ |)n+M
.

Then from Lemma 2.2, Hölder’s inequality, and the L
p/r
w (l2/r ) boundedness of the

maximal operator (w ∈ Ap/r ), we have

‖R(f )‖H
p
w

≤ 2−N

∥∥∥∥
(∑

j ′

[
M

(∑
I ′

|ψj ∗ f (xI ′)|χI ′
)r]2/r)1/2∥∥∥∥

L
p
w

≤ C2−NK2([w]Ap/r )

∥∥∥∥
(∑

j ′I ′
|ψj ′ ∗ f (xI ′)|2χI ′

)1/2∥∥∥∥
L

p
w

≤ C2−NK2([w]Ap/r )‖f ‖H
p
w
.

Another inequality in the claim follows immediately by taking w = 1 and p = 2 in
the above inequality. Then the proof of Lemma 2.3 is completed. �

Using a similar argument as in the proof of Theorem 2.2, we can get

Corollary 2.1 Suppose w ∈ A∞. If f ∈ L2 ∩ H
p
w(Rn), 0 < p < ∞, then

‖f ‖H
p
w(Rn) ≈

∥∥∥∥
{∑

j,I

∣∣(φj ∗ T −1
N (f )

)
(xI )

∣∣2
χI

}1/2∥∥∥∥
L

p
w

.

Now we are ready to prove Theorem 2.3.

Proof of Theorem 2.3 We may assume w ∈ Aq for some 2 < q < ∞. Define a square
function by

g̃(f )(x) =
{∑

j,I

∣∣φj ∗ (
T −1

N (f )(xI )
)∣∣2

χI (x)

}1/2

.

By Corollary 2.1, for f ∈ L2 ∩ H
p
w , we have

‖g̃(f )‖L
p
w

≤ C‖f ‖H
p
w
.

Let f ∈ L2 ∩ H
p
w , set

�i = {
x ∈ Rn : g̃(f )(x) > 2i

}
.

Denote

Bi =
{
(j, I ) : w(I ∩ �i) >

1

2
w(I), w(I ∩ �i+1) ≤ 1

2
w(I)

}

where I are dyadic cubes with side-length l(I ) = 2−j−N .
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We use φI to denote φj when l(I ) = 2−j−N . By the discrete Calderón reproducing
formula (2.5), we can write

f (x) =
∑

i

∑
(j,I )∈Bi

|I |φ̃I (x − xI )φI ∗ (
T −1

N (f )
)
(xI )

where the series converges in L2 norm and hence almost everywhere and also w

almost everywhere.
We claim

∥∥∥∥
∑

(j,I )∈Bi

|I |φ̃I (x − xI )φI ∗ (
T −1

N (f )
)
(xI )

∥∥∥∥
p

L
p
w

≤ C(n,p,q)K1
([w]Aq

)2p[w]1+max{1,q ′/2}p
Aq

2piw(�i) (2.6)

which together with the fact that 0 < p ≤ 1 yields

‖f ‖p

L
p
w

≤
∑

i

∥∥∥∥
∑

(j,I )∈Bi

|I |φ̃I (x − xI )φI ∗ (T −1
N (f ))(xI )

∥∥∥∥
p

L
p
w

≤ CK1([w]Ap)2p[w]1+max{1,q ′/2}p
Aq

∑
i

2piw(�i)

≤ CK1([w]Ap)2p[w]1+max{1,q ′/2}p
Aq

‖g̃(f )‖p

L
p
w

≤ CK1([w]Ap)2p[w]1+max{1,q ′/2}p
Aq

‖f ‖p

H
p
w
.

To finish the proof, it remains to show the claim (2.6). Note that for (j, I ) ∈ Bi , if
x ∈ I , then M(χ�i

)(x) ≥ 1/2. And note that if φ is supported in the unit ball, then
φj (x − xI ) is supported in �̃i = {x : M(χ�i

)(x) > 1
100 }. Thus for any fixed q > qw ,

by Hölder’s inequality,

∥∥∥∥
∑

(j,I )∈Bi

|I |φ̃I (x − xI )φI ∗ (T −1
N (f ))(xI )

∥∥∥∥
p

L
p
w

≤ Cw(�̃i)
1−p/q

∥∥∥∥
∑

(j,I )∈Bi

|I |φ̃I (x − xI )φI ∗ (T −1
N (f ))(xI )

∥∥∥∥
p

L
q
w

.

By the duality argument, for all h ∈ Lq ′
(w1−q ′

) with ‖h‖
Lq′

(w1−q′
)
≤ 1.

∣∣∣∣
〈 ∑
(j,I )∈Bi

|I |φ̃I (x − xI )φI ∗ (T −1
N (f ))(xI ), h

〉∣∣∣∣

=
∣∣∣∣
〈 ∑
(j,I )∈Bi

|I |(φ̃I ∗ h(xI )), (φI ∗ (T −1
N (f ))(xI ))

〉∣∣∣∣
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=
∣∣∣∣

∑
(j,I )∈Bi

∫
(φ̃I ∗ h(xI ))(φI ∗ (T −1

N (f ))(xI ))χI (x)dx

∣∣∣∣

≤
(∫ ( ∑

(j,I )∈Bi

|φI ∗ (T −1
N (f ))(xI )|2χI (x)

)q/2

w(x)dx

)1/q

×
(∫ ( ∑

(j,I )∈Bi

|φ̃I ∗ h(xI )|2χI (x)

)q ′/2

w(x)1−q ′
dx

)1/q ′

= �1 · �2.

We first estimate �2. Since w ∈ Aq implies w1−q ′ ∈ Aq ′ , by the weighted Fefferman–
Stein inequality, we have the following estimate:

�2 ≤
∥∥∥∥
{ ∑

(j,I )∈Bi

(
M(φ̃I ∗ h)

)2
χI (x)

}1/2∥∥∥∥
Lq′

(w1−q′
)

≤ C1K1
([w]Aq

)‖g(h)‖
Lq′

(w1−q′
)
≤ C1K1

([w]Aq

)[w]max{1,q ′/2}
Aq

. (2.7)

As for �1, since χI (x) ≤ 2M(χI∩(�̃i\�i+1)
)(x), then using the weighted Feffer-

man–Stein inequality (2.2) again, we have

�
q

1 =
∥∥∥∥
{ ∑

(j,I )∈Bi

|φI ∗ T −1
N (f )(xI )|2χI (x)

}1/2∥∥∥∥
q

Lq(w)

=
∫ { ∑

(j,I )∈Bi

|φI ∗ T −1
N (f )(xI )|2χI (x)

}q/2

w(x)dx

≤ C

∫ { ∑
(j,I )∈Bi

|φI ∗ T −1
N (xI )M(χI∩�̃i\�i+1

)(x)|2
}q/2

w(x)dx

≤ C2K1([w]Aq )
q

∫
�̃i\�i+1

{ ∑
(j,I )∈Bi

|φI ∗ T −1
N (xI )|2χI (x)

}q/2

w(x)dx

≤ C2K1([w]Aq )
q2iqw(�̃i). (2.8)

Note that �i ⊂ �̃i , and by the weak Lq(w) boundedness of the maximal oper-
ator, w(�̃i) ≤ C[w]Aq w(�i). Combining these estimates for �1 and �2 proves
claim (2.6). Thus we complete the proof of Theorem 2.3. �

Proof of Theorem 1.1 Since L2 ∩ H
p
w is dense in H

p
w , by the standard density argu-

ment, we assume f ∈ L2 ∩ H
p
w(Rn). Using Lemma 2.3 and Corollary 2.1, we have
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for 0 < p < ∞

‖T (f )‖H
p
w

≤
∥∥∥∥
{∑

j,I

|φj ∗ K ∗ f (x)|2χI (x)

}1/2∥∥∥∥
L

p
w

= C

∥∥∥∥
{∑

j,I

[∑
j ′I ′

|I ′|(φj ∗ K ∗ φ̃j ′(· − xI ′))(x)

× (φj ′ ∗ T −1
N (f ))(xI ′)

]2

χI (x)

}1/2∥∥∥∥
L

p
w

≤ C

∥∥∥∥
(∑

j ′

{
M

[∑
I ′

|φj ′ ∗ (T −1
N (f ))(xI ′)|χI ′

]r}2/r)1/2∥∥∥∥
L

p
w

≤ CK2([w]Ap/r )

∥∥∥∥
(∑

j ′,I ′
|φj ′ ∗ (T −1

N (f ))(xI ′)|2χI ′
)1/2∥∥∥∥

L
p
w

≤ CK2([w]Ap/r )‖f ‖H
p
w

where in the second-to-the-last inequality, we use the following almost orthogonality
estimate:

∣∣(φj ∗ φ̃j (· − xI ′)
)
(x)

∣∣ ≤ C2−|j−j ′|M 2−(j∧j ′)M

(2−(j∧j ′) + |x − xI ′ |)n+M
.

When 0 < p ≤ 1, since T is bounded on L2 ∩ H
p
w(Rn), we have T (f ) ∈ L2 ∩

H
p
w(Rn) whenever f ∈ L2 ∩ H

p
w(Rn). Thus from Theorem 2.3,

‖T (f )‖L
p
w(Rn) ≤ CK1([w]Aq )

2[w]
1
p

+max{1,
q′
2 }

Aq
‖T (f )‖H

p
w(Rn)

≤ CK1([w]Aq )
2K2([w]Ap/r )[w]

1
p

+max{1,
q′
2 }

Aq
‖f ‖H

p
w(Rn).

By a density argument again, we complete the proof. �
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