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Abstract Let α be a real number satisfying 0 < α < n, 0 ≤ t < α, α∗(t) = 2(n−t)
n−α . We

consider the integral equation

u(x) =
∫

Rn

uα
∗(t)−1(y)

|y|t |x − y|n−α dy, (1)

which is closely related to the Hardy–Sobolev inequality. In this paper, we prove that every
positive solution u(x) is radially symmetric and strictly decreasing about the origin by the
method of moving plane in integral forms. Moreover, we obtain the regularity of solutions
to the following integral equation

u(x) =
∫

Rn

|u(y)|pu(y)

|y|t |x − y|n−α dy (2)

that corresponds to a large class of PDEs by regularity lifting method.

Mathematics Subject Classification (2000) 35B06 · 35B65

1 Introduction

In this paper, we consider a class of integral equations related to the Hardy–Sobolev inequal-
ity. Let α be a real number satisfying 0 < α < n, 0 ≤ t < α, α∗(t) = 2(n−t)

n−α . Let R
n be
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564 G. Lu, J. Zhu

n-dimensional Euclidean space. The main purpose of this paper is to study the symmetry and
regularity of extremals of the following integral equation:

u(x) =
∫

Rn

uα
∗(t)−1(y)

|y|t |x − y|n−α dy. (3)

We will show that solutions to the following differential equation of fractional order satisfy
the above integral equation (3):

⎧⎪⎨
⎪⎩
(−�) α2 u = uα

∗(t)−1

|y|t in R
n,

u > 0,
u ∈ H

α
2 ,2(Rn),

(4)

where ‖u‖
H
α
2 ,2

= ‖((1 + |.|2) α4 û)∨‖L2(Rn).

When t = 0, (3) becomes

u(x) =
∫

Rn

u
n+α
n−α (y)

|x − y|n−α dy. (5)

The integral equation (5) arises as an Euler-Lagrange equation in the context of the
Hardy–Littlewood–Sobolev inequality which has been extensively explored by Chen, Li and
Ou [10] and Li [17] recently, where regularity and extremal functions of (5) are also obtained.
(5) is actually equivalent to the following partial differential equation

(−�) α2 u = u
n+α
n−α . (6)

When α = 2 and 0 ≤ t < 2, the differential equation (4) and the integral equation (3)
are closely related to the well-known Hardy–Sobolev type inequalities. Such inequalities
of second order have been extensively studied by many authors (see [3,6,7,13,20] and the
references therein).

In fact, when α = 2 and t = 0, (3) is closely related to the Euler-Lagrange equation of
the extremal functions of the classical Sobolev inequality. Namely, (3) turns out to be the
corresponding integral equation of the well-known Sobolev inequality

⎛
⎝

∫

Rn

|u| 2n
n−2 dy

⎞
⎠

n−2
2n

≤ C

⎛
⎝

∫

Rn

|�u(y)|2 dy

⎞
⎠

1
2

where the best constant C and the extremal functions were identified by Aubin [2] and
Talenti [23].

Moreover, when α = 2 and 0 < t < 2, (3) is closely related to the Euler–Lagrange equa-
tion of the extremal functions of the classical Hardy–Sobolev inequality which is a special
case of Caffarelli–Kohn–Nirenberg inequality [5]. The classical Hardy–Sobolev inequality
is stated as follows: There is a positive constant C such that

⎛
⎝

∫

Rn

|u|2∗(t)

|y|t dy

⎞
⎠

2
2∗(t)

≤ C
∫

Rn

|�u(y)|2 dy (7)
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Symmetry and regularity of extremals of an integral equation 565

for any u(x) ∈ D1,2(Rn). Furthermore, the best constant in (7) is achieved and the extremal
function is identified by Lieb [19] up to dilation and translation by

u(x) = 1

(1 + |x |2−t )
n−2
2−t

.

We should note that the inequality (7) is a special case of the following more general Caf-
farelli–Kohn–Nirenberg inequality [5]: If 0 ≤ a < n−2

2 , a ≤ b < a + 1, p = 2n
n−2+2(b−a) ,

then
⎛
⎝

∫

Rn

|u(x)|p

|x |bp
dx

⎞
⎠

2
p

≤ Ca,b

∫

Rn

|x |−2a |∇u(x)|2dx (8)

for any u ∈ C∞
0 (R

n). Positive solutions of the associated Euler equation to (8) on an appro-
priate weighted Sobolev space turn out to be symmetric and they can be identified explicitly
by solving an ODE and they are of the same form as in the case a = 0. We refer the reader
to [6,7], etc.

In Sect. 1, we prove the following theorem by the moving plane method in integral forms.

Theorem 1 Assume u(x) ∈ L
2n

n−α (Rn) is a positive solution of (3), then u(x) is radially
symmetric and strictly decreasing about the origin.

In fact, we will derive the same result under the weaker condition that u(x) ∈ L
2n

n−α
loc (R

n) as
indicated in Remark 2.1.

It is well known that the moving plane method was invented by the Soviet mathematician
Alexandrov in the 1950s. Then it was further developed by Serrin [21], Gidas et al. [15],
Caffarelli et al. [4], Chen and Li [8], Chang and Yang [14] and many others. Recently, Chen
et al. [10] applied the moving plane method to integral equations to obtain the symmetry,
monotonicity and nonexistence properties of the solutions to the integral equations, see also
Li [17] using moving sphere method. Instead of the extensive use of maximum principle of
differential equation, moving plane method in integral form explores various specific fea-
tures of the integral equation itself. By virtue of Hardy–Littlewood–Sobolev inequality or
Weighted–Hardy–Littlewood–Sobolev inequality and comparison of solution to the integral
equation (3) and its reflection with the plane, the plane can be started to move from infinity.
Furthermore the plane has to be moved to a critical point. Hence symmetry and monotonicity
properties of solutions to (3) are consequently derived.

In Sect. 2, we study the regularity of extremal functions of the following integral equation

u(x) =
∫

Rn

|u(y)|pu(y)

|y|t |x − y|n−α dy, (9)

where p > 0. In [11] and [17], the authors consider the nonnegative solutions of the above
integral equation in the case t = 0 and p = 2α

n−α . They prove u ∈ C∞(Rn).
In this paper, we consider the symmetry and regularity of solutions to the integral equation

(9) in the case 0 < t < α. Thus, the second main result of our paper is as follows:

Theorem 2 If u(x) ∈ L
pn
α−t (Rn) is the solution of (9), then u(x) ∈ L∞(Rn). Moreover

u(x) ∈ C [α−t],β(Rn) for any β < α − t − [α − t]. In particular, u(x) is C∞ in R
n \ {0},

where [α − t] is the greatest integer function.
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566 G. Lu, J. Zhu

If p = α∗(t) − 2, then pn
α−t = 2n

n−α , which is exactly the critical Sobolev imbedding

exponent of H
α
2 ,2(Rn). If α = 2 and p is as above, our Theorem 2 provides a new proof

of regularity of extremal function of Hardy–Sobolev inequality, since we prove it through
the corresponding integral equation. See [20] for Hölder’s regularity of solutions of (4) in
case of α = 2. Moreover our Theorem 2 not only proves the regularity of extremal function
of (4), but can also be applied to regularity for more general integral equations or correspond-
ing partial differential equations. The method used here is called Regularity Lifting theorem
based on contraction map theorem. The related lemma is presented in Sect. 2. It is a simple
method to boost regularity of solutions. We refer the reader to [11] for more details.

In Sect. 3, we will study the relations of (3) and (4).

Theorem 3 If u(x) is a solution to (4), then u(x) satisfies (3).

In [10], the authors prove the equivalence of (5) and (6), namely the special case of t = 0.
We will prove that (4) and (3) are actually equivalent in Sect. 3. Moreover, if α is an even
number, we then give a new and relatively easy way to derive (3) from (4) by choosing an
appropriate cut-off function.

Combining Theorems 1 and 3, we get the following

Corollary 1 Assume u(x)∈ L
2n

n−α (Rn) is a positive solution of (4), then u(x) is radially
symmetric and strictly decreasing about the origin.

Throughout this paper, the positive constant C is frequently used in the paper. It may differ
from line to line, even within the same line and it has nothing to do with u(x).

2 The proof of Theorem 1

For the convenience of the reader, we present the following Weighted Hardy–Littlewood–
Sobolev inequality (see [16]).

Lemma 2.1 Let 1 < l,m < ∞, 0 < ν < n, τ + β ≥ 0, 1
l + 1

m + ν+β+τ
n = 2 and

1 − 1
m − ν

n ≤ τ
n < 1 − 1

m . Then the weighted HLS inequality states
∣∣∣∣∣∣
∫

Rn

∫

Rn

f (x)g(y)

|x |τ |x − y|ν |y|β dxdy

∣∣∣∣∣∣ ≤ C‖ f ‖Lm ‖g‖Ll .

The Weighted Hardy–Littlewood–Sobolev inequality can also be written in another form.
Let T g(x) = ∫

Rn
g(y)

|x |τ |x−y|ν |y|β dy, then

‖T g(x)‖Lγ = sup‖ f ‖Lm =1 < T g(x), f (x) >≤ C‖g‖Ll , (10)

where 1
l + ν+β+τ

n = 1 + 1
γ
, 1

m + 1
γ

= 1.
In order to prove our theorems, we first introduce some notations. For any real number λ,

define

�λ = {x = (x1, x2, . . . , xn), x1 ≤ λ},
Tλ = {x |x1 = λ}.

Let x ∈ �λ and xλ = (2λ− x1, x2, . . . , xn). Moreover, define uλ(x) = u(xλ).
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Symmetry and regularity of extremals of an integral equation 567

Lemma 2.2 For any solution u(x) of (3), we have

u(x)− uλ(x) =
∫

�λ

[ 1

|x − y|n−α − 1

|xλ − y|n−α ][uα
∗(t)−1(y)

|y|t − uα
∗(t)−1
λ (y)

|yλ|t ] dy. (11)

Proof Since |x − yλ| = |xλ − y|,

u(x) =
∫

�λ

uα
∗(t)−1(y)

|y|t |x − y|n−α dy +
∫

�λ

uα
∗(t)−1
λ (y)

|yλ|t |x − yλ|n−α dy,

u(xλ) =
∫

�λ

uα
∗(t)−1(y)

|y|t |xλ − y|n−α dy +
∫

�λ

uα
∗(t)−1
λ (y)

|yλ|t |x − y|n−α dy.

By considering u(x)− u(xλ) and making a simple calculation, the proof of the lemma is
completed. �

We now outline the ideas of the moving plane method in our proof. To prove Theorem 1,
We compare the value of u(x) with uλ(x) in �λ. The proof consists of two steps. In step 1,
we show that for sufficiently negative λ,

u(x) ≤ uλ(x). (12)

Thus we can start to move the plane Tλ along the x1 direction continuously from near negative
infinity to the right as long as (12) holds. In step 2, We show that the plane can move to the
limit case x1 = 0, hence u(x) ≤ u0(x) for x ∈ �0. If we choose to move the plane from
positive infinity to the left and carry on the same procedure as done in Steps 1 and 2, we can
also prove that u(x) ≥ u0(x) for x ∈ R

n \�0. Therefore u(x) is symmetric about the plane
T0. Since the direction of x1 can be chosen arbitrarily, we deduce that u(x) is symmetric and
decreasing about the origin.

Proof of Theorem : Step 1: We show that for sufficiently negative λ,

u(x) ≤ u(xλ), ∀x ∈ �λ. (13)

Define

wλ(x) = u(x)− u(xλ)

and

�−
λ = {x ∈ �λ|u(x) > u(xλ)}.

From Lemma (2.2), we have

u(x)− u(xλ) =
∫

�λ\�−
λ

(
1

|x − y|n−α − 1

|xλ − y|n−α

) [
uα

∗(t)−1

|y|t − uα
∗(t)−1
λ

|yλ|t
]

dy

+
∫

�−
λ

(
1

|x − y|n−α − 1

|xλ − y|n−α

) [
uα

∗(t)−1

|y|t − uα
∗(t)−1
λ

|yλ|t
]

dy.
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Since |x − y| < |xλ − y| and |y| > |yλ| in �λ, by the definition of �−
λ ,

u(x)− u(xλ) ≤
∫

�−
λ

(
1

|x − y|n−α − 1

|xλ − y|n−α

) [
uα

∗(t)−1 − uα
∗(t)−1
λ

|y|t
]

dy.

Moreover, from the Mean Value Theorem,

u(x)− u(xλ) ≤ C
∫

�−
λ

1

|x − y|n−α
1

|y|t uα
∗(t)−2(u − uλ) dy. (14)

By virtue of the Weighted–Hardy–Littlewood–Sobolev inequality, i.e. Lemma 2.1 (see also
(10)) in the case of τ = 0 in (14), for any q > n

n−α (without loss of generality, let q = 2n
n−α ),

we have

‖wλ‖Lq (�−
λ )

≤ C‖uα
∗(t)−2wλ‖

L
nq

αq+n−qt (�−
λ )
.

Then from Hölder’s inequality, we get

‖wλ‖Lq (�−
λ )

≤ C‖u‖
2(α−t)

n−α
L

2n
n−α (�−

λ )
‖wλ‖Lq (�−

λ )
.

Since u ∈ L
2n

n−α (Rn), we can choose sufficiently negative λ such that

C‖u‖
2(α−t)

n−α
L

2n
n−α (�−

λ )
≤ 1

2
.

Therefore

‖wλ‖Lq (�−
λ )

≤ 1

2
‖wλ‖Lq (�−

λ )
.

This implies �−
λ must be of measure zero. Hence (13) is verified.

Step 2: Assuming that the plane can move to the critical point λ0 < 0. If there exists some
point x0 in �λ0 such that u(x0) = uλ0(x0), from Lemma (2.2), we have

0 = u(x0)− uλ0(x0) =
∫

�λ0

[ 1

|x0 − y|n−α − 1

|xλ0 − y|n−α ][uα
∗(t)−1

|y|t − uα
∗(t)−1
λ0

|yλ0 |t
] dy.

Let xλ0 = (x0)λ0 . Since |y| > |yλ0 | in �λ0 ,

u(y)α
∗(t)−1

|y|t <
uλ0(y)

α∗(t)−1

|yλ0 |t
in�λ0 .

Moreover |x0 − y| < |xλ0 − y| in �λ0 , we infer that

u(x) ≡ uλ0(x) ≡ 0, ∀x ∈ �λ0 .

This also implies that u(x) ≡ 0. But it is impossible. Hence

u(x) < uλ0(x), ∀x ∈ �λ0 .

We Claim that

λ0 = sup{λ|u(x)− uλ(x) ≤ 0, ∀x ∈ �λ} = 0. (15)
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Symmetry and regularity of extremals of an integral equation 569

If not, i.e. λ0 < 0, we prove that the plane can be moved to the right a little bit further. Since

u ∈ L
2n

n−α (Rn), for any small ε, there exists a large enough ball BR(0) such that
∫

Rn\BR(0)

u
2n

n−α dx < ε.

By virtue of Lusin’s theorem, for any δ, there exists a closed set Fδ such that wλ0 |Fδ is con-
tinuous, with Fδ ⊂ BR(0)

⋂
�λ0 = E and m(E − Fδ) < δ. As wλ0(x) < 0 in the interior

of �λ0 , wλ0(x) < 0 in Fδ .
Choosing ε1 sufficiently small, for any λ ∈ [λ0 , λ0 + ε1), it holds that

wλ < 0, ∀ x ∈ Fδ.

It follows that, for such λ,

�−
λ ⊂ M := (Rn \ BR(0)) ∪ (E \ Fδ) ∪ [(�λ \�−

λ0
) ∩ BR(0)].

Choosing ε, δ and ε1 so small and from the absolute continuity of integration, we have

C‖u‖
2(α−t)

n−α
L

2n
n−α (M)

≤ 1

2
.

Finally

||wλ‖Lq (�−
λ )

≤ C‖u‖
2(α−t)

n−α
L

2n
n−α (�−

λ )
‖wλ‖Lq (�−

λ )
<

1

2
‖wλ‖Lq (�−

λ )
.

This again implies �−
λ must be empty. It contradicts with the assumption that λ0 < 0.

Therefore, (15) is verified.
On the other hand, we can also move the plane from positive infinity to zero by the similar

procedure, hence u(x) is symmetric and monotonic with respect to x1 = 0. Moreover, since
the x1 direction can be chosen arbitrarily, u(x) is radial symmetric and strictly monotonic
with respect to the origin. We thus have completed the proof of Theorem 1. �

Remark 2.1 Since (3) is invariant under the Kelvin transform, we can also prove that u(x)

is symmetric with respect to the origin under a weaker assumption that u(x) ∈ L
2n

n−α
loc (R

n).
Assume

v(x) = 1

|x |n−α u

(
x

|x |2
)
,

then v(x) satisfies (3) and v(x) ∈ L
2n

n−α
oc (�), where � is any domain with positive distance

from the origin. Carrying out the first and second steps for v(x) as we did before, we conclude
that v(x) is symmetric and monotonic with respect to the origin. This implies that u(x) is
symmetric with respect to the origin.

3 The proof of Theorem 2

In this section, we prove the regularity for functions satisfying (9) by the contraction map.
We present the regularity lift lemma below. See also ([9]).
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570 G. Lu, J. Zhu

Let Z be a given vector space, ‖.‖X and ‖.‖Y be two norms on Z. Define a new norm
‖.‖Z by

‖.‖Z = p
√

‖.‖p
X + ‖.‖p

Y .

For simplicity, we assume that Z is complete with respect to the norm‖.‖Z . Let X and Y be
the completion of Z under ‖.‖X and ‖.‖Y , respectively. Here one can choose p, 1 ≤ p ≤ ∞,
according to what one needs. It’s easy to see that Z = X

⋂
Y.

Lemma 3.1 (Regularity Lifting) Let T be a contraction map from X into itself and from Y
into itself. Assume that f ∈ X and that there exists a function g ∈ Z such that f = T f + g,
then f also belongs to Z .

Proof of Theorem 2: We define a linear operator

Tuw(x) =
∫

Rn

|u(y)|pw

|y|t |x − y|n−α dy.

For any positive real number a, define{
ua(x) = u(x), if |u(x)| > a or |x | > a,
ua(x) = 0, otherwise.

(16)

Let ub(x) = u(x)− ua(x). Since u satisfies (9),

ua(x) =
∫

Rn

|ua |pua

|y|t |x − y|n−α dy + I (x), (17)

where I (x) = ∫
Rn

|ub|pub
|y|t |x−y|n−α dy − ub(x).

As to I (x), for s > n
n−α , we Claim that

I (x) ∈ L∞(Rn)
⋂

Ls(Rn).

Obviously, ub(x) ∈ L∞(Rn)
⋂

Ls(Rn).

Thus, we only need to prove A(x) := ∫
Rn

|ub|pub
|y|t |x−y|n−α dy ∈ L∞(Rn)

⋂
Ls(Rn).

By the definition of ub(x), for ∀x ∈ R
n ,

|A(x)| ≤ C
∫

|y|≤a

1

|y|t |x − y|n−α dy.

If x ∈ R
n \ B2a(0), |x − y| ≥ |y|, then∫

|y|≤a

1

|y|t |x − y|n−α dy ≤
∫

|y|≤a

1

|y|n−α+t
dy < ∞.

If x ∈ B2a(0),∫

|y|≤a

1

|y|t |x − y|n−α dy ≤
∫

|y|≤a

1

|y|n−α+t
dy +

∫

|x−y|≤3a

1

|x − y|n−α+t
dy < ∞,

hence A(x) ∈ L∞(Rn). Using Weighted Hardy–Littlewood–Sobolev inequality,

‖A(x)‖Ls ≤ ‖|ub|pub‖L
ns

αs+n−st (Ba)
< ∞,
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Symmetry and regularity of extremals of an integral equation 571

then A(x) ∈ Ls(Rn). Therefore, we have proved the claim.
Next for any q > n

n−α , we show that Tuaw is a contraction map. Applying the Weighted
Hardy–Littlewood–Sobolev inequality and, then Hölder’s inequality, we get

‖Tuaw‖Lq ≤ ‖|ua |pw‖
L

nq
αq+n−qt

≤ ‖|ua |p‖
L

n
α−t

‖w‖Lq . (18)

Since u(x) ∈ L
np
α−t , for sufficiently large a, we deduce

‖Tuaw(x)‖Lq ≤ 1

2
‖w‖Lq , (19)

which shows that Tuaw is a contraction map. Applying (19) to both the case of q = np
α−t

and the case of any q0 >
n

n−α , and by the contraction map lemma (i.e. Lemma 3.1), we can
conclude that ua ∈ Lq ⋂

Lq0 .

Furthermore, we Claim that u ∈ L∞(Rn). Since u(x) = ua(x) + ub(x) and ub(x) ∈
L∞(Rn), we only need to verify ua(x) ∈ L∞(Rn). Due to (17) and I (x) ∈ L∞(Rn), it is
equivalent to verify that

B(x) :=
∫

Rn

|ua |pua

|y|t |x − y|n−α dy ∈ L∞(Rn).

Note

B(x) ≤
∫

Ba(0)

|ua |p+1

|y|t |x − y|n−α dy +
∫

Rn\Ba(0)

|ua |p+1

|y|t |x − y|n−α dy. (20)

If x ∈ R
n \ B2a(0), then |x − y| > |y| and

∫

Ba(0)

|ua |p+1

|y|t |x − y|n−α dy ≤
∫

Ba(0)

|ua |p+1

|y|n−α+t
dy < ∞ (21)

by Hölder’s inequality with the help of ua ∈ Lq ⋂
Lq0 .

If x ∈ B2a(0), similarly
∫

Ba(0)

|ua |p+1

|y|t |x − y|n−α dy ≤
∫

Ba(0)

|ua |p+1

|y|n−α+t
dy +

∫

B3a(x)

|ua |p+1

|x − y|n−α+t
dy < ∞ (22)

by Hölder’s inequality and the property that ua ∈ Lq ⋂
Lq0 .

Combining (21) and (22), for any x ∈ R
n , we derive that

∫

Ba(0)

|ua |p+1

|y|t |x − y|n−α dy < ∞. (23)

Next, for ∀x ∈ R
n ,

∫

Rn\Ba(0)

|ua |p+1

|y|t |x − y|n−α dy ≤ 1

at

∫

Ba(x)

|ua |p+1

|x − y|n−α dy

+
∫

(Rn\Ba(0))
⋂
(Rn\Ba(x))

|ua |p+1

|y|t |x − y|n−α dy.

(24)
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By virtue of Hölder’s inequality, it is easy to see that

1

at

∫

Ba(x)

|ua |p+1

|x − y|n−α dy < ∞. (25)

Since ∫

(Rn\Ba(0))
⋂
(Rn\Ba(x))

|ua |p+1

|y|t |x − y|n−α dy ≤
∫

Rn\Ba(x)

|ua |p+1

|x − y|n−α+t
dy

+
∫

Rn\Ba(0)

|ua |p+1

|y|n−α+t
dy,

we can also prove that
∫

(Rn\Ba(0))
⋂
(Rn\Ba(x))

|ua |p+1

|y|t |x − y|n−α dy < ∞ (26)

by Hölder’s inequality and the estimate ua ∈ Lq ⋂
Lq0 .

Through (24), (25) and (26), we deduce that
∫

Rn\Ba(0)

|ua |p+1

|y|t |x − y|n−α dy < ∞. (27)

Therefore, from (20), (23) and (27), we have B(x) ∈ L∞(Rn). Hence the claim that u(x) ∈
L∞(Rn) is verified.
To show the higher regularity, we first show that u(x) ∈ C∞(Rn \ {0}).

For any x ∈ R
n \ {0}, we choose a ball B3r (x) with radius 3r such that 0 /∈ B̄3r (x), then

u(x) =
∫

Rn\B3r (x)

|u|pu

|y|t |x − y|n−α dy +
∫

B3r (x)

|u|pu

|y|t |x − y|n−α dy. (28)

We show that R(x) := ∫
Rn\B3r (x)

|u|pu
|y|t |x−y|n−α dy ∈ C∞(Rn \ {0}).

Let F(x, y) := |u(y)|pu(y)
|y|t |x−y|n−α χRn\B3r (x). For fixed x , if h is small enough, considering

∣∣∣∣ F(x + hei , y)− F(x, y)

h

∣∣∣∣ =
∣∣∣∣∣∣

|u(y)|pu(y)
|y|t (

χRn\B3r (x+hei )

|x+hei −y|n−α − χRn\B3r (x)

|x−y|n−α )

h

∣∣∣∣∣∣
≤ C

|u(y)|p+1χRn\B3r (x+θhei )

|y|t |x + θhei − y|n−α+1

≤ C
|u(y)|p+1

|y|t |x + θhei − y|n−α+1 χRn\B2r (x)

≤ C

{ |u(y)|p+1

|y|t rn−α+1 χBε (0)

+ |u(y)|p+1

|y|t |x − y|n−α+1 χRn\(Br (x)∪Bε (0))

}
,

(29)
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where ei = {0, . . . , 1, . . . , 0} is the i th unit vector, 0 < θ < 1 and ε is so small that
Bε(0) ∩ B3r (x) = ∅. Since u ∈ L∞(Rn), it is easy to verify

∫

Bε (0)

|u|p+1

|y|t rn−α+1 dy < ∞, (30)

for fixed r .
For such fixed r and ε, let

∫

Rn\(Br (x)∪Bε (0))

|u|p+1

|y|t |x − y|n−α+1 dy <
∫

Rn\Br (x)

|u|p+1

|x − y|n−α+1+t
dy

+
∫

Rn\Bε (0)

|u|p+1

|y|n−α+1+t
dy.

Since u ∈ Lq for any q > np
α−t , using Hölder’s inequality,

∫

Rn\Br (x)

|u|p+1

|x − y|n−α+1+t
dy < ∞,

∫

Rn\Bε (0)

|u|p+1

|y|n−α+1+t
dy < ∞,

then
∫

Rn\(Br (x)∪Bε (0))

|u|p+1

|y|t |x − y|n−α+1 dy < ∞. (31)

With (29), (30), (31) and the Lebesgue dominated convergence theorem, R(x) ∈ C1

(Rn \ {0}). Continuing this process,

R(x) ∈ C∞(Rn \ {0}). (32)

By standard singular integral estimates (Chap. 10 in [18]),
∫

B2r (x)

|u|pu

|y|t |x − y|n−α dy ∈ Cβ1(Rn \ {0}) (33)

for any β1 < α. Combining (28), (32) and (33), u(x) ∈ Cβ1(Rn \ {0}). By the bootstrap
technique, we can prove that u(x) ∈ C∞(Rn \ {0}).

The difficulty of regularity occurs around the origin. We note that

u(x)− u(0) =
∫

Rn\B2r (0)

|u|pu

|y|t [ 1

|x − y|n−α − 1

|y|n−α ] dy

+
∫

B2r (0)

|u|pu

|y|t [ 1

|x − y|n−α − 1

|y|n−α ] dy.
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If α − t ≤ 1, 0 ∈ D and the domain D ⊂ Br (0), we show that u ∈ C0,β(D) for any
β < α − t . Indeed, from the following property

||x − z|−c − |y − z|−c| ≤ c|x − y|b(|x − z|−c−b + |y − z|−c−b),

where c > 0 and 0 < b < 1( see also chapter 10 in [18]),

supx∈D
|u(x)− u(0)|

|x |β ≤ Csupx∈D

∫

Rn\B2r (0)

|u|p+1

|y|t |x − y|n−α+β dy

+ Csupx∈D

∫

B2r (0)

|u|p+1

|y|t |x − y|n−α+β dy.

With the help of Hölder’s inequality as in (27), we have

supx∈D

∫

Rn\B2r (0)

|u|p+1

|y|t |x − y|n−α+β dy < ∞. (34)

From Hölder’s inequality again and the property u ∈ L∞(Rn), we show

supx∈D

∫

B2r (0)

|u|p+1

|y|t |x − y|n−α+β dy < ∞ (35)

for any β < α − t . Therefore, (34) and (35) imply that u ∈ C0,β(Rn).
If 1 < α − t < 2, similarly we can prove u(x) ∈ C1,β(D) for β < α − t , then

u(x) ∈ C1,β(Rn). For more general 0 < t < α, we conclude that u ∈ C [α−t],β(Rn) for any
β < α − t − [α − t]. Hence, the proof of Theorem 2 is complete. �

4 The proof of Theorem 3

Proof of Theorem 3:
The proof follows from the properties of the Riesz potential and the Fourier transform

of the Riesz potential and is quite similar to that in [10]. For the completeness and the
convenience of the reader, we include a proof here.

Let φ ∈ C∞
0 (R

n) and ψ(x) = ∫
Rn

φ(y)
|x−y|n−α dy. Then (−�)α2 ψ = φ. Then ψ ∈ Hα(Rn).

So if u is a solution to the differential equation, then

∫

Rn

(−�)α4 u(−�)α4 ψdx =
∫

Rn

uα
∗(t)(y)

|y|t ψ(y)dy.

This implies

∫

Rn

u(x)(−�)α2 ψ(x)dx =
∫

Rn

⎛
⎝

∫

Rn

uα
∗(t)(y)

|y|t
1

|x − y|n−α dy

⎞
⎠φ(x)dx

for allφ ∈ C∞
0 (R

n). Therefore, u(x) = ∫
Rn

uα
∗(t)(y)
|y|t

1
|x−y|n−α dy, namely, the integral equation

holds.
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On the other hand, if the integral equation (3) i.e. u(x) = ∫
Rn

uα
∗(t)(y)
|y|t

1
|x−y|n−α dy holds,

then by taking Fourier transform on both sides we get

û(ξ) = cn |ξ |−α
̂

(
uα∗(t)(y)

|y|t
)
(ξ).

This implies that

|ξ |α û(ξ) = cn

̂
(

uα∗(t)(y)

|y|t
)
(ξ).

Thus for any φ ∈ C∞
0 (R

n) we have

∫

Rn

(−�)α2 uφ =
∫

Rn

(−�)α4 u(−�)α4 φ

= cn

∫

Rn

|ξ |α û(ξ)φ̂(ξ)dξ = cn

∫

Rn

̂
(

uα∗(t)(y)

|y|t
)
(ξ)φ̂(ξ)dξ

= cn

∫

Rn

uα
∗(t)(y)

|y|t φ(y)dy.

Therefore,

(−�)α2 u = uα
∗(t)(y)

|y|t ,

namely u satisfies (4). �

We conclude this section by giving another proof of the fact that (4) implies (3) in the
case of α = 2m, where m is a positive integer.

Proof We argue as follows. By the regularity theorem in [1], u ∈ W 2m, s
loc (Rn) for some

1 < s < 2n
n+2m . For any x ∈ R

n , we multiply both sides of (4) by 1
|x−y|n−2m ψ(x − y). The

cut-off function ψ(x − y) = η
( |x−y|

R

)
. When 0 < r < 1, η(r) = 1, while η(r) = 0 when

r > 2. Moreover 0 < η(i)(r) < 2 in (0, 2) for i = 1, . . . , 2m. Then

∫

Rn

(−�)mu
ψ(x − y)

|x − y|n−2m
dy =

∫

Rn

u(2m)∗(t)−1 ψ(x − y)

|y|t |x − y|n−2m
dy.

Using integration by parts several times, we have

∫

Rn

u(−�)m
(

1

|x − y|n−2m

)
ψ +�2m

i=1Ci

∫

Rn

u|x − y|−n+iη(i)
( |x − y|

R

)
R−i

=
∫

Rn

u(2m)∗(t)−1 1

|y|t
ψ(x − y)

|x − y|n−2m
,
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where Ci is some constant independent of u(x). Since u(x) ∈ L
2n

n−2m , using Hölder’s inequal-
ity for the second integration,

∫

Rn

u|x − y|−n+iη(i)R−i ≤ Ci R−i

⎛
⎝

∫

Rn

|u| 2n
n−2m

⎞
⎠

n−2m
2n

⎛
⎜⎝

∫

B2R\BR

|x − y| 2n(i−n)
n+2m

⎞
⎟⎠

n+2m
2n

≤ Ci R−i

⎛
⎝

2R∫

R

r
2n(i−n)
n+2m rn−1

⎞
⎠

n+2m
2n

→ 0

as R → ∞. Therefore,

u(x) =
∫

Rn

u(2m)∗(t)−1 1

|y|t
1

|x − y|n−2m
dy.

�
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