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Abstract

This paper is concerned about maximum principles and radial symmetry for viscosity solutions of fully 
nonlinear partial differential equations. We obtain the radial symmetry and monotonicity properties for 
nonnegative viscosity solutions of

F
(
D2u

)
+ up = 0 in Rn (0.1)

under the asymptotic decay rate u = o(|x|−
2

p−1 ) at infinity, where p > 1 (Theorem 1, Corollary 1). As 
a consequence of our symmetry results, we obtain the nonexistence of any nontrivial and nonnegative so-
lutions when F is the Pucci extremal operators (Corollary 2). Our symmetry and monotonicity results 
also apply to Hamilton–Jacobi–Bellman or Isaacs equations. A new maximum principle for viscosity so-
lutions to fully nonlinear elliptic equations is established (Theorem 2). As a result, different forms of 
maximum principles on bounded and unbounded domains are obtained. Radial symmetry, monotonicity and 
the corresponding maximum principle for fully nonlinear elliptic equations in a punctured ball are shown 
(Theorem 3). We also investigate the radial symmetry for viscosity solutions of fully nonlinear parabolic 
partial differential equations (Theorem 4).
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1. Introduction

In studying partial differential equations, it is often of interest to know if the solutions are 
radially symmetric. In this article, we consider the radial symmetry for viscosity solutions of the 
fully nonlinear elliptic equations

F
(
D2u

)
+ up = 0 in Rn (1.1)

and the Dirichlet boundary value problem in a punctured ball

{
F

(
Du,D2u

)
+ f (u) = 0 in B \ {0},

u = 0 on ∂B.
(1.2)

We also obtain the radial symmetry for viscosity solutions of the fully nonlinear parabolic equa-
tion

{
∂t u − F

(
Du,D2u

)
− f (u) = 0 in Rn × (0, T ],

u(x,0) = u0(x) on Rn × {0}.
(1.3)

We assume in the above that F(Du, D2u) is a continuous function defined on Rn ×Sn(R), where 
Sn(R) is the space of real, n × n symmetric matrix, f (u) is a locally Lipschitz continuous func-
tion and the initial value u0(x) is continuous. More precisely, we consider F : Rn × Sn(R) → R
satisfying the following structure hypothesis.

(F1) There exist γ ≥ 0 and 0 < Λ1 ≤ Λ2 < ∞ such that for all M, N ∈ Sn(R) and ξ1, ξ2 ∈ Rn,

M−
Λ1,Λ2

(M) − γ |ξ1 − ξ2| ≤ F(ξ1,M + N) − F(ξ2,N)

≤ M+
Λ1,Λ2

(M) + γ |ξ1 − ξ2|, (1.4)

where M±
Λ1,Λ2

are the Pucci extremal operators defined as

M+
Λ1,Λ2

(M) = Λ2Σei>0ei + Λ1Σei<0ei, (1.5)

M−
Λ1,Λ2

(M) = Λ1Σei>0ei + Λ2Σei<0ei, (1.6)

where ei , i = 1, · · · , n, is an eigenvalue of M .

For any M = (mij ) ∈ Sn(R), let M(k) be the matrix obtained from M by replacing mik

and mkj by −mik and −mkj for i ≠ k, j ≠ k, respectively. For any vector p, let

p(k) = (p1, · · · ,pk−1,−pk,pk+1, · · · ,pn).
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We assume the following hypothesis for F :

(F2) F
(
p(k),M(k)

)
= F(p,M) (1.7)

for k = 1, · · · , n.

Note that M and M(k) have the same eigenvalues. In this sense,

M±
Λ1,Λ2

(
M(k)

)
= M±

Λ1,Λ2
(M).

Under the hypotheses (F1) and (F2), it is natural to see that the following hypotheses hold for 
the F(D2u) in (1.1), that is,

M−
Λ1,Λ2

(M) ≤ F(M + N) − F(N) ≤ M+
Λ1,Λ2

(M), (1.8)

F
(
M(k)

)
= F(M). (1.9)

Let ξ1 = ξ2; the hypothesis (F1) implies the uniform ellipticity for the fully nonlinear equations. 
Namely, there exist 0 < Λ1 ≤ Λ2 < ∞ such that

Λ1 tr(M) ≤ F(ξ1,M + N) − F(ξ1,N) ≤ Λ2 tr(M)

for all M, N ∈ Sn(R), M ≥ 0, where tr(M) is the trace of the matrix M . It is easy to see that the 
Pucci operators (1.5), (1.6) are extremal in the sense that

M+
Λ1,Λ2

(M) = sup
A∈AΛ1,Λ2

tr(AM),

M−
Λ1,Λ2

(M) = inf
A∈AΛ1,Λ2

tr(AM),

where AΛ1,Λ2 denotes the set of all symmetric matrices whose eigenvalues lie in the interval 
[Λ1, Λ2].

The moving plane method is a powerful tool to show the radial symmetry of solutions in 
partial differential equations. This method goes back to A.D. Alexandroff and then Serrin [20]
applies it to elliptic equations for overdetermined problems. Gidas, Ni and Nirenberg [14] further 
exploit this tool to obtain the radial symmetry of positive C2 solutions of the Dirichlet boundary 
problem for

△u + f (u) = 0, f ∈ C0,1(R)

in a ball. Notice that the Laplace operator corresponds to Λ1 = Λ2 = 1 in our F(Du, D2u). 
In [15], Gidas, Ni and Nirenberg extend their techniques to elliptic equations in Rn. By assum-
ing that the solutions decay to zero at infinity at a certain rate, the radial symmetry of positive 
classical solutions is also derived. Further extensions and simpler proofs are due to Berestycki 
and Nirenberg [2] and C. Li [16]. For the detailed account and applications of the moving plane 
method for semilinear elliptic equations, we refer to Chen and Li’s book [3] and the references
therein.
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Radial symmetry results for classical solutions of fully nonlinear elliptic equations have also 
been considered, see e.g. [16] and [17]. Recently, Da Lio and Sirakov [12] studied the ra-
dial symmetry for viscosity solutions of fully nonlinear elliptic equations. The moving plane 
method is adapted to work in the setting of viscosity solutions. We would like to mention that, 
in these quoted results for radial symmetry in Rn, a supplementary hypothesis that f (u) is non-
increasing in a right neighborhood of zero is required. In the context of fully nonlinear equation 
F(x, u, Du, D2u) = 0, it is equivalent to say that the operator F is proper in a right neighborhood 
of zero, i.e. the operator F is nonincreasing in u in the case when u is small.

We are particularly interested in the nonnegative viscosity solutions of

F
(
D2u

)
+ up = 0 in Rn (1.10)

for p > 1. Note that the proper assumption (that is, nonincreasing in u) for fully nonlinear equa-
tion in (1.10) is violated since f (u) = up is not nonincreasing any more. So the previous results 
no longer hold for (1.10). The typical models of (1.10) are the equations

M±
Λ1,Λ2

(
D2u

)
+ up = 0 in Rn. (1.11)

It is well known that the moving plane method and Kelvin transform provide an elegant way 
of obtaining the Liouville-type theorems (i.e. the nonexistence of solutions) in [4]. For (1.11), 
the critical exponent for nonexistence of viscosity solutions is still an open problem, since the 
Kelvin transform does not seem to be available. Cutrì and Leoni [5] consider the nonnegative 
supersolutions of (1.11), that is,

M±
Λ1,Λ2

(M) + up ≤ 0 in Rn. (1.12)

They show that the inequality (1.12) with M+
Λ1,Λ2

has no non-trivial solution for 1 < p ≤ n∗
n∗−2 , 

the inequality (1.12) with M−
Λ1,Λ2

has no non-trivial solution provided 1 < p ≤ n∗
n∗−2 , where the 

dimension-like numbers are defined as

n∗ = Λ1

Λ2
(n − 1) + 1,

n∗ = Λ2

Λ1
(n − 1) + 1.

In order to understand the solution structure for (1.11), Felmer and Quaas [13] consider (1.11) in 
the case of radially symmetric solutions. Using phase plane analysis, they establish that

Theorem A.

(i) For (1.11) with the Pucci extremal operator M+
Λ1,Λ2

, there exists no non-trivial radial solu-
tion if 1 < p < p∗

+ and n∗ > 2, where

max
{

n∗

n∗ − 2
,
n + 2
n − 2

}
< p∗

+ <
n∗ + 2
n∗ − 2

.
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(ii) For (1.11) with the Pucci extremal operator M−
Λ1,Λ2

, there exists no non-trivial radial solu-
tion if 1 < p < p∗

−, where

n∗ + 2
n∗ − 2

< p∗
− <

n + 2
n − 2

.

An explicit expression for p∗
+, p∗

− in terms of Λ1, Λ2, n is still unknown. In order to obtain 
the full range of the exponent p for the Liouville-type theorem in (1.11), it is interesting to prove 
that the solutions in (1.11) are radially symmetric.

First we consider the radial symmetry for the fully nonlinear equations with general operator 
F(D2u) and show that

Theorem 1. Assume F(D2u) satisfies (1.8) and (1.9). Let n∗ > 2. If u ∈ C(Rn) is a nonnegative 
non-trivial solution of (1.1) and

u = o
(
|x|−

2
p−1

)
as |x| → ∞ (1.13)

for p > 1, then u is radially symmetric and strictly decreasing about some point.

In the same spirit of the proof in Theorem 1, our conclusions also hold for general function 
f (u), i.e.

F
(
D2u

)
+ f (u) = 0 in Rn. (1.14)

Corollary 1. Assume that F(D2u) satisfies (1.8) and (1.9). Moreover,

f (u) − f (v)

u − v
≤ c

(
|u| + |v|

)α
,

for u,v sufficiently small, and for some α >
2

n∗ − 2
and c > 0. (1.15)

Let n∗ > 2 and u be a positive solution of (1.14) with

u(x) = O
(
|x|2−n∗)

(1.16)

at infinity. Then u is radially symmetric and strictly decreasing about some point in Rn.

Once the radial symmetry property of solutions is established, with the help of Theorem A, 
we immediately have the following corollary. We hope that our symmetry results shed some 
light on the complicated problem of Liouville-type theorems in (1.11) for the full range of the 
exponent p.

Corollary 2.

(i) For (1.11) with the Pucci extremal operator M+
Λ1,Λ2

, there exists no non-trivial nonnegative 
solution satisfying (1.13) if 1 < p < p∗

+ and n∗ > 2.
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(ii) For (1.11) with the Pucci extremal operator M−
Λ1,Λ2

, there exists no non-trivial nonnegative 
solution satisfying (1.13) if 1 < p < p∗

− and n∗ > 2.

In carrying out the moving plane method, the maximum principle plays a crucial role. 
In order to adapt the moving plane method to non-proper fully nonlinear equations (that is, 
F(x, u, Du, D2u) is not nondecreasing in u), a new maximum principle has to be established 
for viscosity solutions.

In this paper, we will establish a new maximum principle for viscosity solutions to the equa-
tion

M−
Λ1,Λ2

(
D2u

)
− γ |Du| + c(x)u ≤ 0 in Ω,

where c(x) ∈ L∞(Ω) is not necessarily negative. A similar maximum principle for classical 
solutions to semilinear equations was given in [3]. Since we consider the viscosity solutions here 
instead of classical solutions in [3], considerably more difficulties have to be taken care of in our 
case. Unlike the pointwise argument in [3], we apply the Hopf lemma for viscosity solutions in 
those minimum points. More specifically, we have

Theorem 2. Let Ω be a bounded domain. Assume that λ(x), c(x) ∈ L∞(Ω), γ ≥ 0, and ψ ∈
C2(Ω) ∩ C1(Ω̄) is a positive solution in Ω̄ satisfying

M+
Λ1,Λ2

(
D2ψ

)
+ λ(x)ψ ≤ 0. (1.17)

Let u be a viscosity solution of

{
M−

Λ1,Λ2

(
D2u

)
− γ |Du| + c(x)u ≤ 0 in Ω,

u ≥ 0 on ∂Ω.
(1.18)

If

c(x) ≤ λ(x) − γ |Dψ |/ψ, (1.19)

then u ≥ 0 in Ω .

Note that the function c(x) need not be negative in order that the maximum principle 
holds. We also would like to point out that the ψ is a supersolution of the equation involving 
M+

Λ1,Λ2
(D2ψ) instead of M−

Λ1,Λ2
(D2ψ). If a specific ψ(x) is chosen, we can get the explicit 

control for c(x) in order to obtain the maximum principle for (1.18). We are also able to extend 
the maximum principle to unbounded domains. We refer to Section 3 for more details.

Recently Caffarelli, Li and Nirenberg [9,10] investigated the following problem

{△u + f (u) = 0 in B \ {0},
u = 0 in ∂B

(1.20)

in the case when f is locally Lipschitz. They obtained the radial symmetry and monotonicity 
property of solutions using an idea of Terracini [21]. Their results are also extended to fully 
nonlinear equations F(x, u, Du, D2u) = 0 with differentiable components for u ∈ C2(B \ {0}). 
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However, their results cannot be directly applied to important classes of equations such as equa-
tions involving Pucci’s extremal operators, Hamilton–Jacobi–Bellman or Isaacs equations, since 
for those equations, the components are not differentiable and the solutions may not be in C2. 
A maximum principle in a punctured domain is established in [9] in order to apply the moving 
plane technique. However, their maximum principle only holds in sufficiently small domains, 
since sufficient smallness of the domain is used in the spirit of Alexandroff–Pucci–Bakelman
maximum principle (see [2]).

In this paper, we consider

M−
Λ1,Λ2

(
D2u

)
− γ |Du| + c(x)u ≤ 0 in Ω \ {0}.

We will obtain a new maximum principle in terms of the assumption of c(x) (see Lemma 10). It is 
especially true for a sufficiently small domain just as in Caffarelli, Li and Nirenberg’s maximum 
principle, since the bound of c(x) in Lemma 10 preserves automatically if |x| is small enough. 
Our result is not only an extension for viscosity solutions, but also an interesting result for semi-
linear elliptic equations. Furthermore, we obtain the radial symmetry of solutions in a punctured 
ball.

Theorem 3. Let u ∈ C(B \ {0}) be a positive viscosity solution of (1.2) in the case when f (u)

is locally Lipschitz. Then u is radially symmetric with respect to the origin and u is strictly 
decreasing in |x|.

Finally, we consider the radial symmetry of the Cauchy problem for viscosity solutions of 
the fully nonlinear parabolic equation (1.3). C. Li [16] obtained the monotonicity and radial 
symmetry properties of classic solution u ∈ C2(Rn × (0, T ]) for fully nonlinear parabolic equa-
tions ∂t u − F(x, u, Du, D2u) = 0 with differentiable components. Again this result does not 
apply to fully nonlinear parabolic equations involving the Pucci extremal operators, Hamilton–
Jacobi–Bellman or Isaac equations. For further extensions about asymptotic symmetry or radial 
symmetry of entire solutions, for parabolic problems on bounded or unbounded domains, we 
refer to the survey of Poláčik [19].

In this paper, we prove that

Theorem 4. Let u ∈ C(Rn × (0, T ]) be a positive viscosity solution of (1.3). Assume that

∣∣u(x, t)
∣∣ → 0 uniformly as |x| → ∞, (1.21)

and

u0
(
−x1, x

′) ≤ u0
(
y, x′) for −x1 ≤ y ≤ x1, x1 ≥ 0 and x′ = (x2, · · · , xn).

Then u is nondecreasing in x1 and u(−x1, x′, t) ≤ u(x1, x′, t) for x1 ≥ 0. Furthermore, if u0(x)

is radially symmetric with respect to the origin and nonincreasing in |x|, then u(x) is radially 
symmetric with respect to (0, t) for each fixed t ∈ (0, T ] and nonincreasing in |x|.

The outline of the paper is as follows. In Section 2, we present the basic results for the defini-
tion of viscosity solutions, the strong maximum principle and the maximum principle in a small 
domain for viscosity solutions, etc. Section 3 is devoted to providing the proof of Theorem 1 and 
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Theorem 2. New maximum principles and their extensions are established. The radial symme-
try of solutions in a punctured ball and the corresponding maximum principle are obtained in 
Section 4. In Section 5, we prove the radial symmetry for viscosity solutions of fully nonlinear 
parabolic equations. Throughout the paper, the letters C, c denote generic positive constants, 
which are independent of u and may vary from line to line.

2. Preliminaries

In this section, we collect some basic results which will be applied throughout the paper for 
fully nonlinear partial differential equations. We refer to [6–8], and the references therein for 
a detailed account.

Let us recall the notion of viscosity sub and supersolutions of the fully nonlinear elliptic 
equations

F
(
Du,D2u

)
+ f (u) = 0 in Ω, (2.1)

where Ω is an open domain in Rn and F : Rn × Sn(R) → R is a continuous map with F(p, M)

satisfying (F1).

Definition. A continuous function u : Ω → R is a viscosity supersolution (subsolution) of (2.1)
in Ω , when the following condition holds: If x0 ∈ Ω , φ ∈ C2(Ω) and u −φ has a local minimum 
(maximum) at x0, then

F
(
Dφ(x0),D

2φ(x0)
)
+ f

(
u(x0)

)
≤ (≥) 0.

If u is a viscosity supersolution (subsolution), we say that u verifies

F
(
Du,D2u

)
+ f (u) ≤ (≥) 0

in the viscosity sense. We say that u is a viscosity solution of (2.1) when it simultaneously is 
a viscosity subsolution and supersolution.

We also present the notion of viscosity sub and supersolutions of the fully nonlinear parabolic 
equation (see e.g. [22])

∂t u − F
(
Du,D2u

)
− f (u) = 0 in ΩT := Ω × (0, T ]. (2.2)

Definition. A continuous function u : ΩT → R is a viscosity supersolution (subsolution) of (2.2)
in ΩT , when the following condition holds: If (x0, t0) ∈ ΩT , φ ∈ C2(ΩT ) and u − φ has a local 
minimum (maximum) at (x0, t0), then

∂tφ(x0, t0) − F
(
Dφ(x0, t0),D

2φ(x0, t0)
)
− f

(
u(x0, t0)

)
≥ (≤) 0.

We say that u is viscosity solution of (2.2) when it is both a viscosity subsolution and supersolu-
tion.
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We state a strong maximum principle and the Hopf lemma for non-proper operators in fully 
nonlinear elliptic equations (see e.g. [1]).

Lemma 1. Let Ω ⊂ Rn be a smooth domain and let b(x), c(x) ∈ L∞(Ω). Suppose u ∈ C(Ω̄) is 
a viscosity solution of

{
M−

Λ1,Λ2

(
D2u

)
− b(x)|Du| + c(x)u ≤ 0 in Ω,

u ≥ 0 in Ω.

Then either u ≡ 0 in Ω or u > 0 in Ω . Moreover, at any point x0 ∈ ∂Ω where u(x0) = 0, we 
have

lim inf
t→0

u(x0 + tν) − u(x0)

t
< 0,

where ν ∈ Rn \ {0} is such that ν · n(x0) > 0 and n(x0) denotes the exterior normal to ∂Ω at x0.

It is straightforward to deduce the strong maximum principle for proper operators in fully 
nonlinear elliptic equations from the Hopf lemma.

Lemma 2. Let Ω ∈ Rn be an open set and let u ∈ C(Ω) be a viscosity solution of

M−
Λ1,Λ2

(
D2u

)
− b(x)|Du| + c(x)u ≤ 0

with b(x), c(x) ∈ L∞(Ω) and c(x) ≤ 0. Suppose that u achieves a non-positive minimum in Ω . 
Then u is a constant.

We shall make use of the following maximum principle which does not depend on the sign of 
c(x), but instead, on the measure of the domain Ω (see e.g. [12]).

Lemma 3. Consider a bounded domain Ω and assume that |c(x)| < m in Ω and γ ≥ 0. Let 
u ∈ C(Ω̄) be a viscosity solution of

{
M−

Λ1,Λ2

(
D2u

)
− γ |Du| + c(x)u ≤ 0 in Ω,

u ≥ 0 on ∂Ω.

Then there exists a constant δ = δ(Λ1, Λ2, γ , n, m, diam(Ω)) such that we have u ≥ 0 in Ω
provided |Ω| < δ.

The following result is concerned about the regularity of viscosity solutions in [6].

Lemma 4. Let Ω ⊂ Rn be a bounded domain and assume that (F1) is satisfied and f is locally 
Lipschitz. Let u ∈ C(Ω̄) be a viscosity solution of

F
(
Du,D2u

)
+ f (u) = 0 in Ω.

Then u is in C1,α
loc (Ω) for some α ∈ (0, 1).
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In the process of employing the moving plane method, we need to compare u at x with its 
value at its reflection point of x. The next lemma shows that the difference of a supersolution 
and a subsolution of the fully nonlinear equation is still a supersolution. Unlike the case of 
the classical solutions of fully nonlinear equations F(x, u, Du, D2u) = 0 with differentiable 
components, the difficulty here is the lack of regularity of u. The following result is first showed 
in [12]. We also refer the reader to [11] and [18] for related results. In Section 4, we will derive 
similar results for viscosity solutions of fully nonlinear parabolic equations.

Lemma 5. Assume that F(Du, D2u) satisfies (F1) and f is locally Lipschitz. Let u1 ∈ C(Ω̄)

and u2 ∈ C(Ω̄) be respectively a viscosity subsolution and supersolution of

F
(
Du,D2u

)
+ f (u) = 0 in Ω.

Then the function v = u2 − u1 is a viscosity solution of

M−
Λ1,Λ2

(
D2v

)
− γ |Dv| + c(x)v(x) ≤ 0,

where

c(x) =
{ f (u2(x))−f (u1(x))

u2(x)−u1(x) , if u2(x) ≠ u1(x),

0, otherwise.
(2.3)

In the proof of Lemma 5 in [12], an equivalent definition of viscosity solutions in terms 
of semijets is used (see [8]). In order to obtain the parabolic version of Lemma 5, we denote 
by P2,+

Ω , P2,−
Ω the parabolic semijets.

Definition.

P2,+
Ω u(z, s) =

{
(a,p,X) ∈ R × Rn × Sn(R) : u(x, t) ≤ u(z, s) + a(t − s) + ⟨p,x − z⟩

+ 1
2

〈
X(x − z), x − z

〉
+ o

(
|t − s| + |x − z|2

)
as ΩT ∋ (x, t) → (z, s)

}
, (2.4)

while we define P 2,−
Ω (u) := −P 2,+

Ω (−u).

3. Symmetry of viscosity solutions in RRRn

In this section, we will obtain the radial symmetry of nonnegative solution in (1.1). First we
present a technical lemma about the eigenvalue of a radial function. It could be verified by a direct 
calculation.

Lemma 6. Let ψ : (0, +∞) → R be a C2 radial function. For ∀x ∈ Rn \ {0}, the eigenvalues of 
D2ψ(|x|) are ψ ′′(|x|), which is simple and ψ

′(|x|)
|x| , which has multiplicity (n − 1).
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Based on the above conclusion, we may select specific functions. For instance, let ψ = |x|−q

and 0 < q < n∗ − 2. Recall that n∗ = Λ1
Λ2

(n − 1) + 1. The eigenvalues are q(q + 1)|x|−q−2 and 
−q|x|−q−2. From the above lemma, for x ∈ Rn \ {0},

M+
Λ1,Λ2

(
D2ψ

)
(x) = Λ2q(q + 1)|x|−q−2 − Λ1(n − 1)q|x|−q−2

= q(Λ2(q + 1) − Λ1(n − 1))

|x|2 ψ(x).

Notice that 0 < q < n∗ − 2 implies that

q
(
Λ2(q + 1) − Λ1(n − 1)

)
< 0.

We shall make use of a simple lemma, which enables us to consider the product of a viscosity 
solution and an auxiliary function. The argument is in the spirit of Lemma 2.1 in [12]. How-
ever, the idea behind it is different. In their lemma, u(x) is assumed to be nonnegative. We do 
not impose this assumption. In other words, we specifically focus on the points where u(x) is 
negative.

Lemma 7. Let u ∈ C(Ω) satisfy

M−
Λ1,Λ2

(
D2u

)
− b(x)|Du| + c(x)u ≤ 0, (3.1)

where b(x), c(x) ∈ L∞(Ω). Suppose ψ ∈ C2(Ω) ∩ C1(Ω̄) is strictly positive in Ω̄ . Assume 
u(x0) < 0. Then ū := u/ψ satisfies

M−
Λ1,Λ2

(
D2ū

)
− b̄(x)|Dū| + c̄(x)ū ≤ 0 (3.2)

at x0, where

b̄(x) = 2
√

nΛ2|Dψ |
ψ

+ |b|

and

c̄(x) = c(x) +
M+

Λ1,Λ2
(D2ψ) + |b||Dψ |

ψ
.

Proof. Let φ(x) ∈ C2(Ω) be the test function that touches ū from below at x0, that is φ(x0) =
ū(x0) and ū(x) ≥ φ(x) in Ω . Then u(x0) = φ(x0)ψ(x0) and u(x) ≥ φ(x)ψ(x) in Ω , which 
indicates that φ(x)ψ(x) touches u from below. Simple calculations show that

D(φψ) = Dφ · ψ + Dψ · φ,

D2(φψ) = φD2ψ + 2Dφ ⊗ Dψ + D2φψ,

where ⊗ denotes the symmetric tensor product with p⊗q = 1
2 (piqj +pjqi)i,j . By the properties 

of the Pucci extremal operators, we have
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M−
Λ1,Λ2

(M + N) ≥ M−
Λ1,Λ2

(M) + M−
Λ1,Λ2

(N),

M−
Λ1,Λ2

(aM) = aM+
Λ1,Λ2

(M)

for a ≤ 0. We also note that

tr
(
A(p ⊗ q)

)
≤ |A||p ⊗ q| ≤ √

nΛ2|p||q|,

where A is a matrix whose eigenvalues lie in [Λ1, Λ2] and |A| :=
√

tr(AT A). Since φψ is a test 
function for u and φ(x0) = ū(x0) < 0, taking into account the above properties, we get

0 ≥ c(x)φψ − b
∣∣D(φψ)

∣∣ + M−
Λ1,Λ2

(
D2(ψφ)

)

≥ c(x)φψ + |b||Dψ |φ − |b||Dφ|ψ + ψM−
Λ1,Λ2

(
D2φ

)
− 2

√
nΛ2|Dφ||Dψ |

+ φM+
Λ1,Λ2

(
D2ψ

)

≥
(
c(x)ψ + M+

Λ1,Λ2

(
D2ψ

)
+ |b||Dψ |

)
φ −

(
2
√

nΛ2|Dψ | + |b|ψ
)
|Dφ| + ψM−

Λ1,Λ2

(
D2φ

)

at x0. Dividing both sides by ψ , we obtain

M−
Λ1,Λ2

(
D2φ

)
(x0) − b̄(x0)|Dφ|(x0) + c̄(x0)φ(x0) ≤ 0,

where b̄(x), c̄(x) are in the statement of the lemma. ✷

Using the above lemma and the strong maximum principle in Lemma 2, we are able to con-
sider the maximum principle in terms of c(x) for non-proper operators in fully nonlinear elliptic 
equations.

Proof of Theorem 2. We prove it by a contradiction argument. Suppose that u(x) < 0 some-
where in Ω . Let

ū(x) = u(x)

ψ(x)
.

Then ū(x) < 0 somewhere in Ω . Since u(x) ≥ 0 on ∂Ω , we may assume that ū(x∗) =
infΩ ū(x) < 0, where x∗ ∈ Ω . By the continuity of ū(x), we can find a connected neigh-
borhood Ω ′ containing x∗ such that ū(x) < 0 in Ω ′ and ū(x) ≢ u(x∗) in Ω ′. Otherwise, 
u(x) ≡ u(x∗) in Ω , it is obviously a contradiction. Thanks to Lemma 7 with b(x) replaced 
by γ , ū satisfies

M−
Λ1,Λ2

(
D2ū

)
− b̄(x)|Dū| + c̄(x)ū ≤ 0 in Ω ′. (3.3)

Recall that

b̄(x) = 2
√

nΛ2|Dψ |
ψ

+ γ ∈ L∞(
Ω ′)

and
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c̄(x) = c(x) +
M+

Λ1,Λ2
(D2ψ) + γ |Dψ |

ψ
∈ L∞(

Ω ′).

By the assumptions (1.19) and (1.17),

c(x) +
M+

Λ1,Λ2
(D2ψ) + γ |Dψ |

ψ
≤ 0.

Thanks to the strong maximum principle in Lemma 2, ū(x) ≡ ū(x∗) in Ω ′. It contradicts our 
assumption. This contradiction leads to the proof of the theorem. ✷

Remark 1.

1. From the proof, we can see that the same reasoning follows when the conditions (1.17)
and (1.19) hold where u is negative.

2. If c(x), λ(x) are continuous, we only need c(x∗) < λ(x∗) − γ |Dψ |/ψ(x∗), where x∗ is the 
point where u reaches minimum.

In the spirit of the above argument, we extend the corresponding maximum principle to un-
bounded domains. We need to guarantee that the minimum is only achieved in the interior of the 
domain.

Lemma 8. Let Ω be an unbounded domain. If u, ψ satisfy the same conditions as that in Theo-
rem 2 and we assume that

lim inf
|x|→∞

u(x)

ψ(x)
≥ 0, (3.4)

then u ≥ 0 in Ω .

Proof. Note that the assumption (3.4) implies that the minimum of u/ψ will not go to infinity. 
Then the minimum of u/ψ lies only in the interior of Ω . Applying the same argument as in the 
proof of Theorem 2, the conclusion follows. ✷

If some particular ψ(x) is given, then c(x) could be controlled explicitly, which is especially 
useful in applying the maximum principle. We call the following useful maximum principle as 
“decay at infinity”. See the similar arguments for semilinear elliptic equations in [3].

Corollary 3 (Decay at infinity). Assume that there exists R > 0 such that

c(x) ≤ −q(Λ2(q + 1) − Λ1(n − 1))

|x|2 − γ q

|x| for |x| > R (3.5)

and

lim inf
|x|→∞

u(x)|x|q ≥ 0. (3.6)
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Let Ω be a region in Bc
R(0) = Rn \ BR(0). If u satisfies (1.18) in Ω , then

u(x) ≥ 0 for all x ∈ Ω.

Proof. We consider the specific function ψ(x) = |x|−q . As we know,

M+
Λ1,Λ2

(
D2ψ

)
(x) − q(Λ2(q + 1) − Λ1(n − 1))

|x|2 ψ(x) = 0.

Applying Lemma 8, we conclude the proof. ✷

Remark 2.

(i) It is similar to Remark 1, the conclusion holds when (3.5) is true at points where u is negative.
(ii) In the case of γ = 0, c(x) ≤ −q(Λ2(q+1)−Λ1(n−1))

|x|2 . Notice that c(x) need not be negative in 
order that the maximum principle holds.

In the rest of this section, we are going to adapt the moving plane technique in the setting of 
viscosity solutions to prove Theorem 1. We refer to the book [3] for a more detailed account of 
the moving plane method in semilinear elliptic equations. Before we carry out the moving plane 
method, we introduce several necessary notations. Set

Σλ =
{
x = (x1, · · · , xn) ∈ Rn

∣∣ x1 < λ
}

and Tλ = ∂Σλ. Define xλ be the reflection of x with respect to Tλ, i.e. xλ = (2λ −x1, x2, · · · , xn). 
Let

uλ(x) = u
(
xλ

)

and

vλ(x) = uλ(x) − u(x).

The moving plane method to obtain the radial symmetry consists of two steps. In the first step, 
we show that the plane can be moved, that is, we will deduce that, for sufficiently negative λ,

vλ(x) ≥ 0, ∀x ∈ Σλ, (3.7)

where we are going to use the corollary of decay at infinity. In the second step, we will move the 
plane Tλ to the right as long as (3.7) holds. The plane will stop at some critical position, say at 
λ = λ0. We will verify that

vλ0 ≡ 0, ∀x ∈ Σλ0 . (3.8)

These two steps imply that u(x) is symmetric and monotone decreasing about the plane Tλ0 . 
Since Eq. (1.1) is invariant under rotation, we can further infer that u(x) must be radially sym-
metric with respect to some point.
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Proof of Theorem 1. We derive the proof in two steps.

Step 1. By the hypothesis (1.9), uλ satisfies the same equation as u does. Thanks to Lemma 5 for 
the case γ = 0,

M−
Λ1,Λ2

(
D2vλ

)
+ pψ

p−1
λ (x)vλ(x) ≤ 0, (3.9)

where ψλ(x) is between uλ(x) and u(x). In order to apply the corollary of decay at infinity, 
by (ii) in Remark 2, it is sufficient to verify that

ψ
p−1
λ (x) ≤ C

|x|2 (3.10)

and

lim inf
|x|→∞

vλ(x)|x|q ≥ 0. (3.11)

For (3.10), to be more precise, we only need to show that (3.10) holds at the points x̃
where vλ is negative (see Remark 2). At those points,

uλ(x̃) < u(x̃).

Then

0 ≤ uλ(x̃) ≤ ψλ(x̃) ≤ u(x̃).

By the decay assumption (1.13), we derive that

c(x̃) = pψ
p−1
λ (x̃) ≤ o

(
|x̃|−2) ≤ C|x̃|−2,

that is, (3.10) is satisfied. Note that the fact that λ is sufficiently close to negative infinity is 
applied. By the decay assumption (1.13) again, for any small ϵ,

lim inf
|x|→∞

vλ(x)|x|q ≥ lim inf
|x|→∞

−u(x)|x|q ≥ lim inf
|x|→∞

−ϵ

|x|
2

p−1 −q
.

If 2
p−1 − q > 0, then (3.11) is fulfilled. Hence we fixed 0 < q < min{ 2

p−1 , (n∗ − 2)}.

Step 2. We continue to move the plane Tλ to the right as long as (3.7) holds. Define

λ0 = sup
{
λ

∣∣ vµ(x) ≥ 0 in Σµ for every µ ≤ λ
}
.

Since u(x) → 0 as |x| → ∞, we infer that λ0 < ∞. If λ0 > 0, by the translation invariance 
of the equation, we may do a translation to let the critical position be negative. If λ0 = 0, we 
move the plane from the positive infinity to the left. If λ0 = 0 again, we obtain the symmetry 
of the solution at x1 = 0. In all the cases, we may consider Σλ0 with λ0 < 0, which avoids the 
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singularity of ψ(x) = |x|−q at the origin. Our goal is to show that vλ0(x) ≡ 0 in Σλ0 . Otherwise, 
by the strong maximum principle in Lemma 1, we have vλ0 > 0 in Σλ0 . If this is the case, we 
will show that the plane can continue to move to the right a little bit more, that is, there exists 
an ϵ0 such that, for all 0 < ϵ < ϵ0, we have

vλ0+ϵ ≥ 0, ∀x ∈ Σλ0+ϵ . (3.12)

It contradicts the definition of λ0. Therefore, (3.8) must be true. Set

v̄λ(x) := vλ(x)

ψ(x)
.

Suppose that (3.12) does not hold, then there exist a positive sequence of ϵi such that ϵi → 0 and 
a sequence of {xi}, where {xi} is the minimum point such that

v̄λ

(
xi

)
= lim inf

Σλ0+ϵi

vλ(x).

We claim that there exists an R̄ such that |xi | < R̄ for all i. For a clear presentation, this claim 
is verified in Lemma 9 below. By the boundedness of {xi}, there exists a subsequence of {xi}
converging to some point x0 ∈ Σλ0 . Since

v̄λ0

(
x0) = lim

i→∞
v̄λ0+ϵi (xi) ≤ 0

and v̄λ0(x) > 0 for x ∈ Σλ0 , we obtain that x0 ∈ Tλ0 and v̄λ0(x
0) = 0. By the regularity of 

fully nonlinear equations in Lemma 4 and the fact that ψ(x) ∈ C2(Σλ0), we know that at least 
v̄λ(x) ∈ C1(Σλ0). Consequently,

∇v̄λ0

(
x0) = lim

i→∞
∇v̄λ0+ϵi

(
xi

)
= 0.

It follows that

∇vλ0

(
x0) = ∇v̄λ0

(
x0)ψ

(
x0) + v̄λ0

(
x0)∇ψ

(
x0) = 0. (3.13)

Since vλ0(x
0) = 0 and vλ0(x) > 0 for x ∈ Σλ0 , thanks to the Hopf lemma (i.e. Lemma 1), we 

readily get that

∂vλ0

∂n

(
x0) < 0,

where n is the outward normal at Tλ0 . It is a contradiction to (3.13). In the end, we conclude that 
uλ0(x) ≡ u(x), i.e. (3.8) holds. ✷

We are left to verify the claim in the proof of Theorem 1.

Lemma 9. There exists an R̄ (independent of λ) such that |x0| < R̄, where x0 is the point where 
v̄λ(x) achieves the minimum and v̄λ(x0) < 0.
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Proof. If |x0| is sufficiently large, by the decay rate of u,

c(x0) = pψ
p−1
λ (x0) < C|x0|−2 = −

M+
Λ1,Λ2

(D2ψ)(x0)

ψ(x0)
, (3.14)

where C = −q(Λ2(q + 1) − Λ1(n − 1)) > 0 and ψ(x) = |x|−q . It follows from the argument of 
Theorem 2 in the case of γ = 0 that

M−
Λ1,Λ2

(
D2v̄λ

)
− b̄(x)|Dv̄λ| + c̄(x)v̄λ ≤ 0 in Σλ.

Here

b̄(x) = 2
√

nΛ2|Dψ |
ψ

and

c̄(x) = c(x) +
M+

Λ1,Λ2
(D2ψ)

ψ
.

From (3.14), we see that there exists a neighborhood Ω ′ of x0 such that c̄(x) < 0 in Ω ′. The 
strong maximum principle in Lemma 2 further implies that

v̄λ(x) ≡ v̄λ(x0) < 0 for |x| > |x0|. (3.15)

On the other hand,

v̄λ(x) =
[
o
(
|xλ|−

2
p−1

)
− o

(
|x|−

2
p−1

)]
|x|q → 0

as |x| → ∞, which contradicts (3.15). Hence the lemma is completed. ✷

Proof of Corollary 1. Adopting the same notations in the proof of Theorem 1, for the general 
function f (u), we have

M−
Λ1,Λ2

(
D2vλ

)
+ cλ(x)vλ(x) ≤ 0, (3.16)

where

cλ(x) =
{ f (uλ(x))−f (u(x))

uλ(x)−u(x) , if uλ(x) ≠ u(x),

0, otherwise.
(3.17)

As argued in Theorem 1, we should verify that

cλ(x) ≤ C

|x|2 (3.18)

and
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lim inf
|x|→∞

vλ(x)|x|q ≥ 0. (3.19)

We only need to focus on the points x̃ where uλ(x̃) < u(x̃) for (3.18). From the assump-
tion (1.15), if x̃ is large enough,

cλ(x̃) ≤ c
(
|uλ| + |u|

)α
(x̃) = O

(
|x̃|(2−n∗)α)

≤ C

|x̃|2 (3.20)

for α > 2
n∗−2 . Recall that n∗ = Λ1

Λ2
(n − 1) + 1. Since u(x) is positive, then

vλ(x)|x|q > −u(x)|x|q .

If u(x) = O(|x|2−n∗
), then

lim inf
|x|→∞

vλ(x)|x|q ≥ lim inf
|x|→∞

−u(x)|x|q = 0

for 0 < q < n∗ − 2. Hence (3.18) and (3.19) are satisfied. The rest of the proof follows from the 
same argument in Theorem 1. ✷

4. Symmetry of viscosity solutions in a punctured ball

In this section, we consider the radial symmetry of viscosity solutions in a punctured ball. 
Due to the singularity of the point, the corresponding maximum principle shall be established. 
Instead of only considering sufficiently small domains, our result is valid under the appropriate 
upper bound of c(x). The result also holds if c(x) is bounded and the domain is appropriately 
small. Thanks to Lemma 5, we only consider the following equation.

M−
Λ1,Λ2

(
D2u

)
− γ |Du| + c(x)u ≤ 0 in Ω \ {0}. (4.1)

Lemma 10. Let Ω be a connected and bounded domain in Rn and u be the viscosity solution 
of (4.1). Assume that c(x) ∈ L∞(Ω \ {0}), and

⎧
⎪⎪⎨

⎪⎪⎩

c(x) ≤ q(Λ1(n − 1) − Λ2(q + 1))

|x|2 − γ q

|x| with 0 < q < n∗ − 2 if n∗ > 2,

or

c(x) ≤ Λ2/4
(
− ln |x|

)−2|x|−2 − γ /2
(
− ln |x|

)−1|x|−1 with |x| ≤ 1 in Ω if n∗ = 2.

(4.2)

Moreover, u is bounded from below and u ≥ 0 on ∂Ω . Then u ≥ 0 in Ω \ {0}.

Proof. Our proof is based on the idea in Theorem 2. Recall again that n∗ = Λ1
Λ2

(n − 1) + 1. If 
n∗ > 2, let ψ(x) = |x|−q . If n∗ = 2, we select ψ(x) = (− ln |x|)a , where 0 < a < 1. Set

ū(x) := u(x)

ψ(x)
.

Since u is bounded from below in Ω \ {0} and ψ(x) → ∞ as |x| → 0, then
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lim inf
|x|→0

ū(x) ≥ 0.

It is easy to know that ū(x) ≥ 0 on ∂Ω . Suppose u(x) < 0 somewhere in Ω \ {0}, then ū(x) < 0
somewhere in Ω \ {0}. Hence infΩ\{0} ū(x) is achieved at some point x0 ∈ Ω \ {0}. Therefore, 
we can find a neighborhood Ω ′ of x0 such that ū(x) < 0 and ū(x) ̸≡ ū(x0) in Ω ′. Otherwise, 
ū(x) ≡ ū(x0) in Ω ′, which is obviously impossible. Recall in Theorem 2 that

M−
Λ1,Λ2

(
D2ū

)
− b̄(x)|Dū| + c̄(x)ū ≤ 0 in Ω ′, (4.3)

where

c̄(x) = c(x) +
M+

Λ1,Λ2
(D2ψ) + γ |Dψ |

ψ
.

In order to apply the strong maximum principle, we need c̄(x) ≤ 0, i.e.

c(x) ≤ −
M+

Λ1,Λ2
(D2ψ) + γ |Dψ |

ψ
. (4.4)

If n∗ > 2, then ψ(x) = |x|−q ,

M+
Λ1,Λ2

(D2ψ) + γ |Dψ |
ψ

= q(Λ2(q + 1) − Λ1(n − 1))

|x|2 + γ q

|x| .

Let

c(x) ≤ q(Λ1(n − 1) − Λ2(q + 1))

|x|2 − γ q

|x| .

Then (4.4) is satisfied.
If n∗ = 2, then ψ(x) = (− ln |x|)a ,

M+
Λ1,Λ2

(D2ψ) + γ |Dψ |
ψ

= Λ2(a − 1)a
(
− ln |x|

)−2|x|−2 + γ a
(
− ln |x|

)−1|x|−1.

Hence we may assume that

c(x) ≤ Λ2/4
(
− ln |x|

)−2|x|−2 − γ /2
(
− ln |x|

)−1|x|−1, (4.5)

which implies that (4.4) holds for a = 1/2. If c(x) is in the above range, by the strong maximum 
principle in Lemma 2, we readily deduce that u(x) ≡ u(x0) in Ω ′. We then arrive at a contradic-
tion. The proof of the lemma follows. ✷

Remark 3. The assumption (4.2) is clearly satisfied when |c(x)| is bounded and Ω is sufficiently 
small.
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With the above maximum principle in hand, we are able to prove the radial symmetry of 
viscosity solutions. We adapt the argument of [10] in our setting. Let the domain O be bounded 
and convex in direction of x1, symmetric with respect to the hyperplane {x1 = 0}. We prove the 
radial symmetry and monotonicity properties in O . Theorem 3 is an immediate consequence of 
Theorem 5 below. Let us first introduce several notations. Set

Σλ :=
{
x = (x1, · · · , xn) ∈ O

∣∣ x1 < λ
}

and Tλ = {x ∈ O | x1 = λ}. Define xλ to be the reflection of x with respect to Tλ. Let

uλ(x) = u
(
xλ

)

and

vλ(x) = uλ(x) − u(x).

Theorem 5. Let u ∈ C(Ō \ {0}) be a positive viscosity solution of

F
(
Du,D2u

)
+ f (u) = 0 in Ō \ {0}. (4.6)

Then u is symmetric in x1, that is, u(x1, x2, · · · , xn) = u(−x1, x2, · · · , xn) for all x ∈ O \ {0}. In 
addition, u is strictly increasing in x1 < 0.

Proof. Without loss of generality, we may assume that infO x1 = −1. We carry out the moving 
plane method in two steps.

Step 1. We show that the plane can move, i.e. there exists −1 < λ0 < − 1
2 such that

vλ ≥ 0 in Σλ

for −1 < λ < λ0. By (F2), uλ satisfies the same equation as u does. Thanks to Lemma 5, we 
know that vλ satisfies

M−
Λ1,Λ2

(
D2vλ

)
− γ |Dvλ| + cλ(x)vλ ≤ 0 in O \ {0},

where

cλ(x) =
{ f (uλ(x))−f (u(x))

uλ(x)−u(x) , if uλ(x) ≠ u(x),

0, otherwise.
(4.7)

Since f is locally Lipschitz in (0, ∞), then |cλ(x)| < C in O for some C > 0. It is clear that 
vλ(x) ≥ 0 in ∂Σλ. If λ is sufficiently close to −1, then Σλ is small enough. By the maximum 
principle for small domains in Lemma 3, we readily deduce that vλ ≥ 0 in Σλ. Step 1 is then 
completed.

Define

λ0 = sup
{
λ

∣∣ −1 < µ < 0, vµ ≥ 0 in Σµ \
{
0µ

}
for µ ≤ λ < 0

}
.
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Step 2. We are going to show that λ0 = 0. If it is true, we move the plane from the position 
where supO x1 = 1 to the left. By the symmetry of O , the plane will reach λ0 = 0 again. Hence 
the symmetry of viscosity solutions is obtained. We divide the proof into three cases and show 
that the following cases are impossible to occur.

Case 1: −1 < λ0 < − 1
2 .

If this is the case, we are going to show that the plane can still be moved a little bit more to the 
right. By the strong maximum principle in Lemma 1, we have vλ0(x) > 0 in Σλ0 . Set λ = λ0 + ϵ

for sufficiently small ϵ. Let K be a compact subset in Σλ0 such that |Σλ0 \ K| < δ/2. Recall 
that δ is the measure of O for which the maximum principle for small domains in Lemma 3
holds. By the continuity of vλ, there exists some r > 0 such that vλ > r in K . In the remaining 
Σλ \ K , we can check that vλ satisfies

{
M−

Λ1,Λ2

(
D2vλ

)
− γ |Dvλ| + cλ(x)vλ ≤ 0 in Σλ \ K,

vλ ≥ 0 on ∂(Σλ \ K).

By the maximum principle for small domains again, vλ ≥ 0 in Σλ \ K by selecting sufficiently 
small ϵ. Together with the fact that vλ ≥ r in K , we infer that vλ ≥ 0 in Σλ. It contradicts the 
definition of λ0.

Case 2: λ0 = − 1
2 .

We also argue that the plane can be moved further, which indicates that λ0 = − 1
2 is impossible. 

Since O is symmetric with respect to the hyperplane x1 = 0, then 0−1/2 = (−1, 0, · · · , 0). We 
select a compact set K in Σ−1/2 such that |Σλ0 \ K| < δ/2. By the positivity and continuity 
of v−1/2, there exists some r > 0 such that v−1/2 > r in K . Without loss of generality, we may 
assume that dist(K, Σ−1/2) ≥ r ′ for some r ′ > 0. We consider a small ball Br ′/2(e) centered 
at e = (−1, 0, · · · , 0) with radius r ′/2. From the positivity of v−1/2 again, we have, making r
smaller if necessary,

v−1/2 > r/2 in ∂Br ′/2(e) ∩ Ō.

Let λ = −1/2 + ϵ for small ϵ > 0. By the continuity of vλ, we get

vλ > r/4 in
(
∂Br ′/2(e) ∩ Ō

)
∪ K.

For such small ϵ, 0−1/2+ϵ lies in Br ′/2(e) ∩ Ō . We also know that vλ ≥ 0 on Br ′/2(e) ∩ ∂O . 
Therefore,

vλ ≥ 0 in ∂
(
Br ′/2(e) ∩ O

)
.

Choose r ′ so small that Lemma 10 is valid, then

vλ ≥ 0 in Br ′/2(e) ∩ O.

We consider the remaining set Σλ \ (K ∪ Br ′/2(e)). We can verify that vλ satisfies
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{
M−

Λ1,Λ2

(
D2vλ

)
− γ |Dvλ| + cλ(x)vλ ≤ 0 in Σλ \

(
K ∪ Br ′/2(e)

)
,

vλ ≥ 0 on ∂
(
Σλ \

(
K ∪ Br ′/2(e)

))
.

Therefore, for sufficiently small ϵ, the maximum principle of small domains implies that vλ ≥ 0
in Σλ \ (K ∪ Br ′/2). In conclusion, vλ ≥ 0 for λ = −1/2 + ϵ. We arrive at a contradiction.

Case 3: −1/2 < λ0 < 0.
We show that this critical position is also impossible. For the singular point 0λ0 , we choose 

a ball Br ′/2(0λ0) centered at 0λ0 with radius r ′/2. Let λ = λ0 +ϵ. For ϵ > 0 small enough, 0λ still 
lies in Br ′/2(0λ0). By the continuity and positivity of vλ0 , there exists some r > 0 such that vλ ≥ r

on ∂Br ′/2(0λ0). Applying Lemma 10 for small value of r ′/2, we infer that vλ ≥ 0 in Br ′/2(0λ0). 
Similar argument as in Case 1 and Case 2 could show that vλ ≥ 0 in Σλ \ {0} for λ = λ0 + ϵ. ✷

5. The radial symmetry for viscosity solutions of fully nonlinear parabolic equations

We consider the radial symmetry of fully nonlinear parabolic equation in this section. First we
show that the difference of supersolution and subsolution of the parabolic equation satisfies an 
inequality involving the Pucci extremal operator, which enables us to compare the value of u at x

and its value at the reflection of x. The following lemma is non-trivial since u is not of class C2. 
The proof of the lemma below is inspired by the work in [12] and [18].

Lemma 11. Let u1, u2 be a continuous subsolution and supersolution respectively in Rn ×
(0, T ] of

∂t u − F
(
Du,D2u

)
− f (u) = 0. (5.1)

Then w̃ = u2 − u1 is a viscosity supersolution of

−∂t w̃ + M−
Λ1,Λ2

(
D2w̃

)
− γ |∇w̃| + c(x, t)w̃ ≤ 0, (5.2)

where

c(x, t) =
{ f (u1(x,t))−f (u2(x,t))

u1(x,t)−u2(x,t) , if u1(x, t) ≠ u2(x, t),

0, otherwise.
(5.3)

Proof. We consider w = u1 − u2 = w̃, then apply the property of

M−
Λ1,Λ2

(
D2w

)
= −M+

Λ1,Λ2

(
D2w̃

)

to verify (5.2). Let ϕ ∈ C2 be a test function such that w−ϕ has a local maximum at (x̃, ̃t ). Then 
there exists r > 0 such that, for all (x, t) ∈ Br (x̃) × (t̃ − r, ̃t ] ⊂ Rn × (0, T ], (w − ϕ)(x, t) <
(w − ϕ)(x̃, ̃t ). Define

Φϵ(x, y, t) = u1(x, t) − u2(y, t) − ϕ(x, t) − |x − y|2
ϵ2 .
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Let (xϵ, yϵ, tϵ) be the maximum point of Φϵ(x, y, t) in Br (x̃) × Br (x̃) × (t̃ − r, ̃t ]. Standard 
argument shows that

⎧
⎨

⎩

(i) (xϵ, yϵ) → (x̃, x̃),

(ii)
|xϵ − yϵ |2

ϵ2 → 0
(5.4)

as ϵ → 0. Let θ = Br (x̃) and

ψϵ(x, y, t) = ϕ(x, t) + |xϵ − yϵ |2
ϵ2 .

The argument of Theorem 8.3 in [8] indicates that, for all α > 0, there exist X, Y ∈ Sn(Rn) such 
that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(i)
(
aϵ,Dxψϵ(xϵ, yϵ, tϵ),X

)
∈ Pθ

2,+u1(xϵ, tϵ),
(
bϵ,Dyψϵ(xϵ, yϵ, tϵ), Y

)
∈ Pθ

2,+(−u2)(yϵ, tϵ),

(ii) −
(
1/α + ∥A∥

)
Id ≤

(
X 0
0 Y

)
≤ A + αA2,

(iii) aϵ + bϵ = ∂tψϵ(xϵ, yϵ, tϵ) = ∂tϕ(xϵ, tϵ),

(5.5)

where A = D2ψϵ(xϵ, yϵ, tϵ) =
(

D2
xϕ(xϵ ,tϵ)+ 2

ϵ2 Id − 2
ϵ2 Id

− 2
ϵ2 Id 2

ϵ2 Id

)
.

Furthermore, by the definition of P2,+
θ , P2,−

θ , we have

aϵ − F
(
Dxψϵ(xϵ, yϵ, tϵ),X

)
− f

(
u1(xϵ, tϵ)

)
≤ 0, (5.6)

−bϵ − F
(
−Dyψϵ(xϵ, yϵ, tϵ),−Y

)
− f

(
u2(yϵ, tϵ)

)
≥ 0. (5.7)

Combining (iii) in (5.5), (5.6) and (5.7), we obtain

∂tϕ(xϵ, tϵ) − F
(
Dxψϵ(xϵ, yϵ, tϵ),X

)
+ F

(
−Dyψϵ(xϵ, yϵ, tϵ),−Y

)

− f
(
u1(xϵ, tϵ)

)
+ f

(
u2(yϵ, tϵ)

)
≤ 0. (5.8)

Let α = ϵ2. A similar argument to that in [12] leads to

X − D2ϕϵ(xϵ, tϵ) + Y ≤ −Cϵ2Y 2 + O(ϵ) (5.9)

for some C > 0. Then

(
∂tϕ − M+

Λ1,Λ2

(
D2ϕ

)
− f (u1)

)
(xϵ, tϵ) + f (u2)(yϵ, tϵ) − γ |Dxψ + Dyψ |(xϵ, yϵ, tϵ)

+ Cϵ2M−
Λ1,Λ2

(
Y 2) + O(ϵ) ≤ 0.

Since M−
Λ1,Λ2

(Y 2) ≥ 0, letting ϵ → 0, we get

(
∂tϕ − M+

Λ1,Λ2

(
D2ϕ

)
− γ |Dxϕ| − f (u1) + f (u2)

)
(x̃, t̃ ) ≤ 0.
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By the mean value theorem,

(
∂tϕ − M+

Λ1,Λ2

(
D2ϕ

)
− γ |Dxϕ| − c(x̃, t̃ )(u1 − u2)

)
(x̃, t̃ ) ≤ 0,

where c(x, t) is in (5.3). Hence

∂tw − M+
Λ1,Λ2

(
D2w

)
− γ |Dxw| − c(x, t)w ≤ 0

for (x, t) ∈ Rn × (0, T ]. Since w̃ = −w,

−∂t w̃ + M−
Λ1,Λ2

(
D2w̃

)
− γ |Dxw̃| + c(x, t)w̃ ≤ 0.

The proof of the lemma is then fulfilled. ✷

We are ready to give the proof of Theorem 4.

Proof of Theorem 4. We adopt the moving plane method to prove the theorem. Define

Σλ =
{(

x1, x
′, t

)
∈ Rn+1 ∣∣ x1 < λ, 0 < t ≤ T

}
,

where x′ = {x2, · · · , xn}. Set

uλ

(
x1, x

′, t
)
= u

(
2λ − x1, x

′, t
)

and vλ(x, t) = uλ(x, t) − u(x, t).

Step 1. We start the plane from negative infinity. Since uλ satisfies the same equation as u does 
by (F2), thanks to Lemma 11, we have

−∂t vλ + M−
Λ1,Λ2

(
D2vλ

)
− γ |∇vλ| + c(x, t)vλ ≤ 0.

We may assume that |c(x, t)| ≤ c0 for some c0 > 0, since f (u) is locally Lipschitz. Let

v̄λ = vλ

e−(c0+1)t
,

then v̄λ satisfies

−∂t v̄λ + M−
Λ1,Λ2

(
D2v̄λ

)
− γ |∇v̄λ| + c̃(x, t)v̄λ ≤ 0, (5.10)

where c̃(x, t) = c(x, t) − c0 − 1. Note that c̃(x, t) < 0. In order to prove that vλ ≥ 0 in Σλ, it is 
sufficient to show that v̄λ ≥ 0 in Σλ. Suppose the contrary, that v̄λ < 0 somewhere in Σλ. Since

∣∣u(x, t)
∣∣ → 0 uniformly as |x| → ∞,

then

vλ(x, t) ≥ −u(x, t)e(c0+1)t → 0
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as |x| → ∞. Due to the fact that v̄λ = 0 on ∂Σλ := {(x1, x′, t) 
∣∣ x1 = λ, 0 < t ≤ T } and the 

assumption of initial boundary condition u0(x), there exists some point z0 ∈ Σλ such that

v̄λ

(
z0) = min

z∈Σλ

v̄λ(x, t) < 0.

By the strong maximum principle for fully nonlinear parabolic equations, we know it is a con-
tradiction. Step 1 is then completed.

Step 2. Set

λ0 := sup{λ < 0 | vµ ≥ 0 in Σµ for − ∞ < µ < λ}.

Our goal is to show that λ0 = 0. Suppose that λ0 < 0, then there exists sufficiently small ϵ > 0
such that λ0 + ϵ < 0. We are going to prove that vλ ≥ 0 in Σλ for λ = λ0 + ϵ, which contradicts 
the definition of λ0. If vλ0+ϵ < 0 somewhere in Σλ0+ϵ , by the asymptotic behavior of u and the 
initial boundary condition, we know that the minimum point is achieved in the interior of Σλ0+ϵ . 
By the same argument as that in Step 1, we see it is impossible. Therefore, we confirm that 
λ0 = 0, that is, u is nondecreasing in x1 and u(x1, x′, t) ≤ u(−x1, x′, t) for x1 ≤ 0.

If the initial value u0 is radially symmetric and nonincreasing in |x|. We move the plane from 
positive infinity to the left. By the same argument as above, we will reach at λ0 = 0 again, which 
leads to the symmetry of the solution at x1 = 0. By the rotation invariance of the equation, we 
obtain that u is radially symmetric with respect to (0, t) for any fixed t ∈ (0, T ] and nonincreasing 
in |x|. ✷
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[19] P. Poláčik, Symmetry properties of positive solutions of parabolic equation: a survey, in: Recent Progress on 
Reaction–Diffusion Systems and Viscosity Solutions, World Scientific, Hackensack, NJ, 2009, pp. 170–208.

[20] J. Serrin, A symmetry problem in potential theory, Arch. Ration. Mech. Anal. 43 (1971) 304–318.
[21] S. Terracini, On positive entire solutions to a class of equations with a singular coefficient and critical exponent, 

Adv. Differential Equations 1 (2) (1996) 241–264.
[22] L. Wang, On the regularity theory of fully nonlinear parabolic equation: I, Comm. Pure Appl. Math. 45 (1992) 

27–76.


