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a b s t r a c t

The main purpose of this paper is to establish a number of results concerning bounded-
ness of multi-linear Calderón–Zygmund operators with kernels of mild regularity. Let T be
a multilinear Calderón–Zygmund operator of type ω(t) with ω being nondecreasing and
ω ∈ Dini(1), but without assuming ω to be concave. We obtain the end-point weak-type
estimates formultilinear operator T . Themultiple-weighted norm inequalities formultilin-
ear operator T and multilinear commutators of T with BMO functions are also established.

As applications, multiple-weighted norm estimates for para-products and bilinear
pseudo-differential operators with mild regularity and their commutators are obtained.

Moreover, some boundedness properties of the multilinear operators are also estab-
lished on variable exponent Lebesgue spaces.

Our results improve most of the earlier ones in the literature by removing the assump-
tion of concavity of ω(t) and weakening the assumption of ω ∈ Dini(1/2) to ω ∈ Dini(1).

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction and main results

Themultilinear Calderón–Zygmund theorywas first studied by Coifman andMeyer in [1–3]. This theorywas then further
investigated bymany authors in the last fewdecades, see for example [4–9], for the theory ofmultilinear Calderón–Zygmund
operators with kernels satisfying the standard estimates. Recently, there are a number of studies concerning multilinear
singular integrals which possess rough associated kernels so that they do not belong to the standard Calderón–Zygmund
classes. See, for example [10–14] and the references therein. We also mention that the Lp estimates for multi-linear and
multi-parameter Coifman–Meyer Fourier multipliers have been established in [15–18].

Recently, Lerner et al. [7] developed a multiple-weight theory that adapts to the multilinear Calderón–Zygmund opera-
tors. They established the multiple-weighted norm inequalities for the multilinear Calderón–Zygmund operators and their
commutators.

In 2009, Maldonado and Naibo [13] established the weighted norm inequalities, with the Muckenhoupt weights, for the
bilinear Calderón–Zygmund operators of type ω(t), and applied them to the study of para-products and bilinear pseudo-
differential operators with mild regularity.
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Motivated by [5,7,13], we will consider the m-linear Calderón–Zygmund operators of type ω(t) and their commutators,
and give some applications to the para-products and the bilinear pseudo-differential operators with mild regularity. In
addition, some boundedness properties of themultilinear operators involved on variable exponent Lebesgue spaces are also
obtained.

We now give the definition of the multilinear Calderón–Zygmund operators of type ω(t).
Throughout this paper,we always assume thatω(t) : [0, ∞) → [0, ∞) is a nondecreasing functionwith 0 < ω(1) < ∞.

For a > 0, we say that ω ∈ Dini(a), if

|ω|Dini(a) :=

 1

0

ωa(t)
t

dt < ∞.

Obviously, Dini(a1) ⊂ Dini(a2) provided 0 < a1 < a2, and, if ω ∈ Dini(1) then
∞
j=0

ω(2−j) ≈

 1

0

ω(t)
t

dt < ∞,

here and in what follows, X ≈ Y means there is a constant C > 0 such that C−1Y ≤ X ≤ CY .

Definition 1.1. A locally integrable function K(x, y1, . . . , ym), defined away from the diagonal x = y1 = · · · = ym in
(Rn)m+1, is called anm-linear Calderón–Zygmund kernel of type ω(t), if there exists a constant A > 0 such that

|K(x, y1, . . . , ym)| ≤
A

(|x − y1| + · · · + |x − ym|)mn
(1.1)

for all (x, y1, . . . , ym) ∈ (Rn)m+1 with x ≠ yj for some j ∈ {1, 2, . . . ,m}, and

|K(x, y1, . . . , ym) − K(x′, y1, . . . , ym)| ≤
A

(|x − y1| + · · · + |x − ym|)mn
ω


|x − x′

|

|x − y1| + · · · + |x − ym|


(1.2)

whenever |x − x′
| ≤

1
2 max1≤j≤m |x − yj|, and

|K(x, y1, . . . , yj, . . . , ym) − K(x, y1, . . . , y′

j, . . . , ym)|

≤
A

(|x − y1| + · · · + |x − ym|)mn
ω


|yj − y′

j|

|x − y1| + · · · + |x − ym|


(1.3)

whenever |yj − y′

j| ≤
1
2 max1≤i≤m |x − yi|.

We say T : S (Rn)×· · ·×S (Rn) → S ′(Rn) is anm-linear operator with anm-linear Calderón–Zygmund kernel of type
ω(t), K(x, y1, . . . , ym), if

T (f1, . . . , fm)(x) =


(Rn)m

K(x, y1, . . . , ym)f1(y1) · · · fm(ym)dy1 · · · dym

whenever x ∉
m

j=1 supp fj and each fj ∈ C∞
c (Rn), j = 1, . . . ,m.

If T can be extended to a bounded multilinear operator from Lq1(Rn) × · · · × Lqm(Rn) to Lq,∞(Rn) for some 1 < q,
q1, . . . , qm < ∞with 1/q1+· · ·+1/qm = 1/q, or, from Lq1(Rn)×· · ·×Lqm(Rn) to L1(Rn) for some 1 < q1, . . . , qm < ∞with
1/q1+· · ·+1/qm = 1, then T is called anm-linear Calderón–Zygmund operator of typeω(t), abbreviated tom-linearω-CZO.

Obviously, when ω(t) = tε for some ε > 0, the m-linear ω-CZO is exactly the multilinear Calderón–Zygmund operator
studied by Grafakos and Torres in [5]. The linear Calderón–Zygmund operator of type ω(t) was studied by Yabuta [19]. The
bilinear case in this form was considered by Maldonado and Naibo in [13].

In what follows, the letter C always stands for a constant independent of the main parameter and not necessarily the
same at each occurrence. A cube Q in Rn always means a cube whose sides are parallel to the coordinate axes and denote
its side length by ℓ(Q ). For some t > 0, the notation tQ stands for the cube with the same center as Q and with side length
ℓ(tQ ) = tℓ(Q ). For 1 ≤ p ≤ ∞, let p′ be the conjugate index of p, that is, 1/p + 1/p′

= 1. And we will occasionally use the
notations f⃗ = (f1, . . . , fm), T (f⃗ ) = T (f1, . . . , fm), dy⃗ = dy1 · · · dym and (x, y⃗) = (x, y1, . . . , ym) for simplicity. For a set E
and a positive integer l, we will use the notation (E)l = E × · · · × E  

l

sometimes.

1.1. Boundedness of m-linear ω-CZO

Our first result on multilinear operators with multilinear Calderón–Zygmund kernel of type ω is the following end-point
weak-type estimates on the product of Lebesgue spaces.
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Theorem 1.1. Let ω ∈ Dini(1) and T be an m-linear operator with an m-linear Calderón–Zygmund kernel of type ω(t), K(x,
y1, . . . , ym). Suppose that for some 1 ≤ q1, . . . , qm ≤ ∞ and some 0 < q < ∞ with

1
q

=
1
q1

+ · · · +
1
qm

,

T maps Lq1(Rn) × · · · × Lqm(Rn) into Lq,∞(Rn). Then T can be extended to a bounded operator from L1(Rn) × · · · × L1(Rn) into
L1/m,∞(Rn). Moreover, there is a constant Cm,n,|ω|Dini(1) (that depends only on the parameters indicated) such that

∥T∥L1×···×L1→L1/m,∞ ≤ Cm,n,|ω|Dini(1)


A + ∥T∥Lq1×···×Lqm→Lq,∞


,

where A is the constant appearing in (1.1)–(1.3).

Remark 1.1. When ω(t) = tε for some ε > 0, Theorem 1.1 was proved in [5]. For the bilinear case, Theorem 1.1 was
proved in [13] when ω is concave and ω ∈ Dini(1/2). Comparing our Theorem 1.1 with Theorem 6.1 of [13], we remove the
hypothesis that ω is concave and reduce the condition ω ∈ Dini(1/2) to a weaker condition ω ∈ Dini(1).

Recently, Pérez andTorres [14] introduced theminimal regularity conditions, so-called the bilinear geometricHörmander
conditions (BGHC), on the kernels of bilinear operators. They showed that the BGHC is sufficient for the existence of end-
point estimates of the bilinear Calderón–Zygmund operators. Instead of (1.3), they considered the following condition

|K(x, y1, y2) − K(x, y′

1, y
′

2)| ≤
C

(|x − y1| + |x − y2|)2n
ω


|y1 − y′

1| + |y2 − y′

2|

|x − y1| + |x − y2|


(1.4)

whenever |y1 − y′

1| ≤
1
2 |x − y1| and |y2 − y′

2| ≤
1
2 |x − y2|. They verified that ω ∈ Dini(1) together with condition (1.4)

implies the BGHC. Obviously, if K satisfies (1.4) then it also satisfies (1.3).

Remark 1.2. Though some ideas of the proof of Theorem 1.1 are from [5,13,14], there are some substantial differences and
modifications in our arguments. For instance, the concavity ofω, which implies the doubling property ofω, is needed in [13],
while in Theorem 1.1 we do not require ω to be concave. In addition, the Marcinkiewicz function is a basic tool in studying
the weak-type estimates for the multilinear Calderón–Zygmund operators, see [5,11] for example, and we make no use of
it in the proof of Theorem 1.1. Moreover, our (1.3) is a weaker assumption than (1.4), and our estimates appear to be more
delicate and complicated.

To state the weighted norm inequalities for the multilinear Calderón–Zygmund operators of typeω(t), we first recall the
definition of multiple-weights introduced by Lerner et al. [7].

Definition 1.2. Let P⃗ = (p1, . . . , pm) and 1/p = 1/p1 + · · · + 1/pm with 1 ≤ p1, . . . , pm < ∞. Given w⃗ = (w1, . . . , wm)
with each wj being nonnegative measurable, set

νw⃗ =

m
j=1

w
p/pj
j .

We say that w⃗ satisfies the AP⃗ condition and write w⃗ ∈ AP⃗ , if

sup
Q


1

|Q |


Q

νw⃗(x)dx
1/p m

j=1


1

|Q |


Q

wj(x)
1−p′

jdx
1/p′

j

< ∞,

where the supremum is taken over all cubes Q ⊂ Rn, and the term
 1

|Q |


Q wj(x)

1−p′
jdx
1/p′

j is understood as

infQ wj

−1

when pj = 1.

From now on, we will use the following notations. For 0 < p < ∞ and w ∈ A∞, denote by Lp(w) the collection of all
functions f satisfying

∥f ∥Lp(w) :=


Rn

|f (x)|pw(x)dx
1/p

< ∞.

And, denote by Lp,∞(w) the weak space with norm

∥f ∥Lp,∞(w) := sup
t>0

tw

{x ∈ Rn

: |f (x)| > t}
1/p

,

where w(E) :=

E w(x)dx for a measurable set E ⊂ Rn.
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Our next theorem concerns the multiple-weighted norm inequalities and weak-type estimates.

Theorem 1.2. Let T be anm-linear ω-CZOwithω ∈ Dini(1). Let P⃗ = (p1, . . . , pm)with 1/p = 1/p1+· · ·+1/pm, and w⃗ ∈ AP⃗ .

(1) If 1 < pj < ∞ for all j = 1, . . . ,m, thenT (f⃗ )

Lp(νw⃗)

≤ C
m
j=1

∥fj∥Lpj (wj)
.

(2) If 1 ≤ pj < ∞ for all j = 1, . . . ,m, and at least one of the pj = 1, thenT (f⃗ )

Lp,∞(νw⃗)

≤ C
m
j=1

∥fj∥Lpj (wj)
.

Remark 1.3. Whenω ∈ Dini(1/2) andω is concave, the first part of Theorem 1.2was proved in [13, Theorem 6.8] form = 2
and νw⃗ = w1 = w2 ∈ Amin(p1,p2). So, the first part of Theorem 1.2 improves the corresponding result in [13] in two aspects.
Firstly, we reduce the condition ω ∈ Dini(1/2) to a weaker condition ω ∈ Dini(1) and remove the hypothesis that ω is
concave. Secondly, we extend the weights from the classical Ap class to the AP⃗ class. Moreover, when ω(t) = tε for some
ε > 0, Theorem 1.2 was proved in [7].

1.2. Commutators of m-linear ω-CZO

Let T be anm-linear operator, given a collection of locally integrable functions b⃗ = (b1, . . . , bm), them-linear commutator
of T with b⃗ is defined by

Tb⃗(f1, . . . , fm) =

m
j=1

T j
b⃗
(f⃗ )

where

T j
b⃗
(f⃗ ) = bjT (f1, . . . , fj, . . . , fm) − T (f1, . . . , bjfj, . . . , fm).

We will use the notation b⃗ ∈ BMOm stands for bj ∈ BMO(Rn) for j = 1, . . . ,m, and denote by ∥b⃗∥BMOm = max1≤j≤m
∥bj∥BMO(Rn).

Theorem 1.3. Let T be an m-linear ω-CZO and Tb⃗ be the m-linear commutator of T with b⃗ ∈ BMOm. Let w⃗ ∈ AP⃗ with 1/p =

1/p1 + · · · + 1/pm and 1 < pj < ∞, j = 1, . . . ,m. If ω satisfies 1

0

ω(t)
t


1 + log

1
t


dt < ∞, (1.5)

then there exists a constant C > 0 such thatTb⃗(f⃗ )Lp(νw⃗)
≤ C∥b⃗∥BMOm

m
j=1

∥fj∥Lpj (wj)
.

It is easy to check that if ω satisfies (1.5), then ω ∈ Dini(1) and
∞
k=1

k · ω(2−k) ≈

 1

0

ω(t)
t


1 + log

1
t


dt < ∞.

We remark that, since the commutator has more singularity, the more regular conditions imposed on the kernel is
reasonable. In addition, although condition (1.5) is stronger than theDini(1) condition, a standard Calderón–Zygmundkernel
is also a Calderón–Zygmund kernel of type ω(t) with ω satisfying (1.5) in the linear case, so does in the multilinear case.

For the multiple-weighted weak-type estimate, we have the following result.

Theorem 1.4. Let T be an m-linear ω-CZO with ω satisfying (1.5) and Tb⃗ be the m-linear commutator of T with b⃗ ∈ BMOm. If
w⃗ ∈ A(1,...,1), then there exists a constant C > 0 depending on ∥b⃗∥BMOm such that

νw⃗


x ∈ Rn

:
Tb⃗(f⃗ )(x) > λm

≤ C
m
j=1


Rn

Φ


|fj(x)|

λ


wj(x)dx

1/m

here and in the sequel, Φ(t) = t(1 + log+ t).
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Remark 1.4. For the linear commutator of the Calderón–Zygmund operator of type ω(t) with b ∈ BMO(Rn), see [20,21].
Lerner et al. [7] proved that the conclusions of Theorems 1.3 and 1.4 hold when ω(t) = tε for some ε > 0.

The remainder of this paper will be organized as follows. In Section 2, we will apply the main results to the para-
products associatedwithω-molecules and the bilinear pseudo-differential operatorswithmild regularity. In Section 3, some
boundedness properties of the multilinear operators involved on variable exponent Lebesgue spaces are given. In Section 4,
we recall some basic definitions and known results needed. The remaining sections are devoted to proving the theorems of
this paper.

2. Applications

In this section, we will apply the results stated above to the para-products associated with ω-molecules and the bilinear
pseudo-differential operators with mild regularity.

2.1. Para-products with mild regularity

For v ∈ Z and κ = (k1, . . . , kn) ∈ Zn, let Pvκ be the dyadic cube

Pvκ :=

(x1, . . . , xn) ∈ Rn

: ki ≤ 2vxi < ki + 1, i = 1, . . . , n

.

The lower left-corner of P := Pvκ is xP = xvκ := 2−vκ and the Lebesgue measure of P is |P| = 2−vn. We set

D =

Pvκ : v ∈ Z, κ ∈ Zn

as the collection of all dyadic cubes.

Definition 2.1 ([13]). Let ω : [0, ∞) → [0, ∞) be a nondecreasing and concave function. An ω-molecule associated to a
dyadic cube P = Pvκ is a function φP = φvκ : Rn

→ C such that, for some A0 > 0 and N > n, it satisfies the decay condition

|φP(x)| ≤
A02vn/2

(1 + 2v|x − xP |)N
, x ∈ Rn, (2.1)

and the mild regularity condition

|φP(x) − φP(y)| ≤ A02vn/2ω(2v
|x − y|)


1

(1 + 2v|x − xP |)N
+

1
(1 + 2v|y − xP |)N


(2.2)

for all x, y ∈ Rn.

Definition 2.2 ([13]). Given three families of ω-molecules {φ
j
Q }Q∈D , j = 1, 2, 3, the para-product Π(f , g) associated to

these families is defined by

Π(f , g) =


Q∈D

|Q |
−1/2f , φ1

Q


g, φ2

Q


φ3
Q , f , g ∈ S (Rn). (2.3)

The term para-product was coined by Bony in [22], which has been studied extensively and has experienced remarkable
development in recent years. Operators of the form (2.3) have been studied by many authors. Some developments on para-
products and their applications can be found in [23,18,24,25,13,15,16], and references therein.

In [23], it is showed that para-products associated to smooth molecules can be realized as bilinear Calderón–Zygmund
operators. In [13], some sufficient conditions on ω were given so that the para-products built from ω-molecules can be
realized as bilinear ω-CZOs.

As applications of the results stated in Section 1, we consider the multiple-weighted norm inequalities of para-products
associated to ω-molecules and the multilinear commutator with BMO functions. Our results can be stated as follows.

Theorem 2.1. Let ω be concave with ω ∈ Dini(1), and {φ
j
Q }Q∈D , j = 1, 2, 3, be three families of ω-molecules with decay

N > 10n and such that at least two of them, say j = 1, 2, enjoy the following cancellation property
Rn

φ
j
Q (x)dx = 0, Q ∈ D, j = 1, 2.

Let P⃗ = (p1, p2) with 1/p = 1/p1 + 1/p2, and w⃗ ∈ AP⃗ .

(1) If 1 < p1, p2 < ∞, thenΠ(f1, f2)

Lp(νw⃗)

≤ C∥f1∥Lp1 (w1)∥f2∥Lp2 (w2).
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(2) If 1 ≤ p1, p2 < ∞ and at least one of the pj = 1, thenΠ(f1, f2)

Lp,∞(νw⃗)

≤ C∥f1∥Lp1 (w1)∥f2∥Lp2 (w2).

Remark 2.1. Theorem 2.1 improves the corresponding result of [13] in two aspects. Firstly, we reduce the condition
ω ∈ Dini(1/2) to ω ∈ Dini(1), which is weaker than the former one. Secondly, we extend the weights from the Muck-
enhoupt Ap class to the multiple-weight class AP⃗ .

Let b⃗ = (b1, b2) ∈ BMO2, we define the commutators of the para-product Π with b⃗ by

Πb⃗(f1, f2)(x) =

b1(x)Π(f1, f2)(x) − Π(b1f1, f2)(x)


+

b2(x)Π(f1, f2)(x) − Π(f1, b2f2)(x)


.

Theorem 2.2. Under the assumption of Theorem 2.1, if, in addition, we assume that ω satisfies (1.5) and 1 < p1, p2 < ∞, then
there exists a constant C > 0 such thatΠb⃗(f1, f2)


Lp(νw⃗)

≤ C∥b⃗∥BMO2∥f1∥Lp1 (w1)∥f2∥Lp2 (w2).

Theorem 2.3. Let ω and φ
j
Q be the same as in Theorem 2.1 and ω satisfy (1.5). If w⃗ ∈ A(1,1), then there exists a constant C > 0

depending on ∥b⃗∥BMO2 such that

νw⃗


x ∈ Rn

:
Πb⃗(f1, f2)(x)

 > λ2
≤ C

2
j=1


Rn

Φ


|fj(x)|

λ


wj(x)dx

1/2

.

2.2. Bilinear pseudo-differential operators with mild regularity

Letm ∈ R, 0 ≤ δ, ρ ≤ 1 and α, β, γ ∈ Zn
+
. A bilinear pseudo-differential operator Tσ with a bilinear symbol σ(x, ξ , η),

a priori defined from S (Rn) × S (Rn) → S ′(Rn), is given by

Tσ (f1, f2)(x) =


Rn


Rn

eix·(ξ+η)σ(x, ξ , η)f̂1(ξ)f̂2(η)dξdη.

We say that a symbol σ(x, ξ , η) belongs to the bilinear Hörmander class BSmρ,δ if∂α
x ∂

β

ξ ∂γ
η σ(x, ξ , η)

 ≤ Cα,β(1 + |ξ | + |η|)m+δ|α|−ρ(|β|+|γ |), x, ξ , η ∈ Rn

for all multi-indices α, β and γ and some constant Cα,β .
For Ω : [0, ∞) → [0, ∞), m ∈ R and 0 ≤ ρ ≤ 1, we say that a symbol σ ∈ BSmρ,ω,Ω if∂α

ξ ∂β
η σ(x, ξ , η)

 ≤ Cα,β(1 + |ξ | + |η|)m−ρ(|α|+|β|) (2.4)

and ∂α
ξ ∂β

η


σ(x + h, ξ , η) − σ(x, ξ , η)

 ≤ Cα,βω(|h|)Ω(|ξ | + |η|)(1 + |ξ | + |η|)m−ρ(|α|+|β|) (2.5)

for all x, ξ , η ∈ Rn. Obviously, BSmρ,0 ⊂ BSmρ,ω,Ω .
The study of bilinear pseudo-differential operators grew from the early works of Coifman andMeyer [1–3]. In 1978, Coif-

man and Meyer [3] considered a bilinear pseudo-differential operator with symbol σ ∈ BS01,ω,1 and ω ∈ Dini(2) in unweig-
hted Lebesgue spaces. In 2009, Maldonado and Naibo [13] studied the weighted norm inequalities for pseudo-differential
operator with associated symbol σ(x, ξ , η) ∈ BS01,ω,Ω (see Theorem 1.1 in [13]).

The purpose of this subsection is to apply the results stated in Section 1 to the bilinear pseudo-differential operators
with associated symbol σ ∈ BS01,ω,Ω . We obtain themultiple-weighted norm inequalities for the bilinear pseudo-differential
operators and their commutators. Our results can be stated as follows.

Theorem 2.4. Let a ∈ (0, 1), ω be concave with ω ∈ Dini(a/2), and Ω : [0, ∞) → [0, ∞) be nondecreasing such that

sup
0<t<1

ω1−a(t)Ω(1/t) < ∞. (2.6)

Suppose that P⃗ = (p1, p2) with 1/p = 1/p1 + 1/p2 and v⃗w ∈ AP⃗ . If σ ∈ BS01,ω,Ω with |α| + |β| ≤ 4n + 4, then the following
boundedness properties hold:
(1) If 1 < p1, p2 < ∞, then

∥Tσ (f1, f2)∥Lp(νw⃗) ≤ C∥f1∥Lp1 (w1)∥f2∥Lp2 (w2).

(2) If 1 ≤ p1, p2 < ∞ and at least one of the pj = 1, then

∥Tσ (f1, f2)∥Lp,∞(νw⃗) ≤ C∥f1∥Lp1 (w1)∥f2∥Lp2 (w2).
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Remark 2.2. The first part of Theorem2.4when v⃗w = w1 = w2 ∈ Amin(p1,p2) and the second part when v⃗w = w1 = w2 ∈ A1
and p1 = p2 = 1 were obtained in Theorem 1.1 of [13].

Let b⃗ = (b1, b2) ∈ BMO2, the commutator of the bilinear pseudo-differential operator Tσ with b⃗ = (b1, b2) is defined by

T b⃗
σ (f1, f2)(x) =


b1(x)Tσ (f1, f2)(x) − Tσ (b1f1, f2)(x)


+

b2(x)Tσ (f1, f2)(x) − Tσ (f1, b2f2)(x)


.

Theorem 2.5. Under the assumption of Theorem 2.4, if, in addition, we assume that ωa(t) satisfies (1.5) and 1 < p1, p2 < ∞,
then there exists a constant C > 0 such thatT b⃗

σ (f1, f2)

Lp(νw⃗)

≤ C∥b⃗∥BMO2∥f1∥Lp1 (w1)∥f2∥Lp2 (w2).

Theorem 2.6. Let a, ω andΩ be the same as in Theorem 2.4, and, in addition, we assume that ωa(t) satisfies (1.5). If σ ∈ BS01,ω,Ω

with |α| + |β| ≤ 4n + 4 and w⃗ ∈ A(1,1), then, there exists a constant C > 0, depending on ∥b⃗∥BMO2 , such that

νw⃗


x ∈ Rn

:
T b⃗

σ (f1, f2)(x)
 > λ2


≤ C

2
j=1


Rn

Φ


|fj(x)|

λ


wj(x)dx

1/2

.

3. On variable exponent Lebesgue spaces

In this section, wewill study the boundedness properties ofm-linearω-CZOs, the para-products and the bilinear pseudo-
differential operators with mild regularity and their commutators on variable exponent Lebesgue spaces. We first recall
some definitions and notations.

Definition 3.1. Let p(·) : Rn
→ [1, ∞) be ameasurable function. The variable exponent Lebesgue space, Lp(·)(Rn), is defined

by

Lp(·)(Rn) =


f measurable :


Rn


|f (x)|

λ

p(x)

dx < ∞ for some constant λ > 0

.

It is well known that the set Lp(·)(Rn) becomes a Banach space with respect to the norm

∥f ∥Lp(·)(Rn) = inf

λ > 0 :


Rn


|f (x)|

λ

p(x)

dx ≤ 1

.

Denote by P(Rn) the set of all measurable functions p(·) : Rn
→ [1, ∞) such that

1 < p− := ess inf
x∈Rn

p(x) and p+ := ess sup
x∈Rn

p(x) < ∞,

and by B(Rn) the set of all p(·) ∈ P(Rn) such that the Hardy–Littlewood maximal operatorM is bounded on Lp(·)(Rn).
The theory of function spaces with variable exponent has been intensely investigated in the past twenty years since

some elementary properties were established by Kováčik and Rákosník in [26]. In 2003, Diening and Růžička [27] studied
the Calderón–Zygmund operators on variable exponent Lebesgue spaces and gave some applications to problems related
to fluid dynamics. In 2006, by applying the theory of weighted norm inequalities and extrapolation, Cruz-Uribe et al. [28]
showed that many classical operators in harmonic analysis are bounded on the variable exponent Lebesgue space. For more
information on function spaces with variable exponent, we refer to [29,30].

For them-linear ω-CZO and its commutator, we have the following results.

Theorem 3.1. Let T be an m-linear ω-CZO with ω ∈ Dini(1). If p(·), p1(·), . . . , pm(·) ∈ B(Rn) so that

1
p(·)

=
1

p1(·)
+ · · · +

1
pm(·)

. (3.1)

Then there exists a positive constant C such thatT (f⃗ )

Lp(·)(Rn)

≤ C
m
j=1

∥fj∥Lpj(·)(Rn)
.

Theorem 3.2. Let T be an m-linear ω-CZO with ω satisfying (1.5) and Tb⃗ be the m-linear commutator of T with b⃗ ∈ BMOm. If
p(·), p1(·), . . . , pm(·) ∈ B(Rn) so that (3.1) holds. Then there exists a constant C > 0 such thatTb⃗(f⃗ )Lp(·)(Rn)

≤ C
m
j=1

∥fj∥Lpj(·)(Rn)
.
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For the para-product defined by (2.3) and its commutator, the similar boundedness properties also hold.

Theorem 3.3. Let ω, {φj
Q }Q∈D , j = 1, 2, 3, and N be the same as in Theorem 2.1. If p(·), p1(·), p2(·) ∈ B(Rn) so that

1
p(·)

=
1

p1(·)
+

1
p2(·)

, (3.2)

then there exists a constant C > 0 such thatΠ(f1, f2)

Lp(·)(Rn)

≤ C∥f1∥Lp1(·)(Rn)∥f2∥Lp2(·)(Rn).

Theorem 3.4. Let ω, {φj
Q }Q∈D , j = 1, 2, 3, andN be the same as in Theorem2.1 and, in addition,we assume that ω satisfies (1.5).

If p(·), p1(·), p2(·) ∈ B(Rn) so that (3.2) holds, then there exists a constant C > 0 such thatΠb⃗(f1, f2)

Lp(·)(Rn)

≤ C∥f1∥Lp1(·)(Rn)∥f2∥Lp2(·)(Rn).

For the bilinear pseudo-differential operators with mild regularity stated above and their commutators, there hold the
following results.

Theorem 3.5. Let a, ω and Ω be the same as in Theorem 2.4. Suppose that σ ∈ BS01,ω,Ω with |α| + |β| ≤ 4n + 4. If p(·), p1(·),
p2(·) ∈ B(Rn) so that (3.2) holds, then there exists a constant C > 0 such thatTσ (f1, f2)


Lp(·)(Rn)

≤ C∥f1∥Lp1(·)(Rn)∥f2∥Lp2(·)(Rn).

Theorem 3.6. Let a, ω and Ω be the same as in Theorem 2.4 and, in addition, we assume that ωa(t) satisfies (1.5). Suppose that
σ ∈ BS01,ω,Ω with |α| + |β| ≤ 4n + 4. If p(·), p1(·), p2(·) ∈ B(Rn) so that (3.2) holds, then there exists a constant C > 0 such
that T b⃗

σ (f1, f2)

Lp(·)(Rn)

≤ C∥f1∥Lp1(·)(Rn)∥f2∥Lp2(·)(Rn).

We will prove Theorems 3.1–3.6 in the last section.

4. Notations and preliminaries

4.1. Sharp maximal function and Ap weights

Let f be a locally integral function. For a cube Q , denote by fQ =
1

|Q |


Q f (y)dy. The sharp maximal function of Fefferman

and Stein [31] is defined by

M♯(f )(x) = sup
Q∋x

inf
c

1
|Q |


Q

|f (y) − c|dy ≈ sup
Q∋x

1
|Q |


Q

|f (y) − fQ |dy.

LetM be the usual Hardy–Littlewood maximal operator, for 0 < δ < ∞, we define the maximal functionsMδ andM♯
δ by

Mδ(f ) =

M(|f |δ)

1/δ
and M♯

δ (f ) =

M♯

|f |δ)

1/δ
.

Let w be a nonnegative locally integrable function defined in Rn. We say that w ∈ Ap, 1 < p < ∞, if there is a constant
C > 0 such that for any cube Q , there has

1
|Q |


Q

w(x)dx


1
|Q |


Q

w(x)1−p′

dx
p−1

≤ C .

We say that w ∈ A1 if there is a constant C > 0 such that Mw(x) ≤ Cw(x) almost everywhere. And we defined A∞ =
p≥1 Ap. See [32] or [33] for more information about the Muckenhoupt weight class Ap.
The following relationships between M♯

δ and Mδ to be used is a version of the classical ones due to Fefferman and
Stein [31], see also [7] page 1228.

Lemma 4.1. (1) Let 0 < p, δ < ∞ and w ∈ A∞. Then there exists a constant C > 0 (depending on the A∞ constant of w) such
that 

Rn


Mδ(f )(x)

p
w(x)dx ≤ C


Rn


M♯

δ (f )(x)
p

w(x)dx,

for every function f such that the left-hand side is finite.
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(2) Let 0 < δ < ∞ and w ∈ A∞. If ϕ : (0, ∞) → (0, ∞) is doubling, then there exists a constant C > 0 (depending on the
A∞ constant of w and the doubling condition of ϕ) such that

sup
λ>0

ϕ(λ)w


y ∈ Rn
: Mδ(f )(y) > λ


≤ C sup

λ>0
ϕ(λ)w


y ∈ Rn

: M♯
δ (f )(y) > λ


,

for every function f such that the left-hand side is finite.

4.2. Some facts of the Orlicz spaces

We need some basic facts from the theory of Orlicz spaces. For more information about Orlicz spaces, we refer to [34].
A function Ψ defined on [0, ∞) is called a Young function, if Ψ is a continuous, increasing and convex function with

Ψ (0) = 0 and Ψ (t) → ∞ as t → ∞. The Orlicz space LΨ (Rn) is defined to be the set of all measurable functions f such
that for some λ > 0,

Rn
Ψ


|f (x)|

λ


dx < ∞.

The space LΨ (Rn) is a Banach space when endowed with the Luxemburg norm

∥f ∥Ψ = ∥f ∥LΨ = inf

λ > 0 :


Rn

Ψ


|f (x)|

λ


dx ≤ 1


.

The Ψ -average of a function f on a cube Q is defined by

∥f ∥Ψ ,Q = inf

λ > 0 :

1
|Q |


Q

Ψ


|f (x)|

λ


dx ≤ 1


.

The following generalized Jensen’s inequality holds (see (2.10) in [7]).

Lemma 4.2. If Ψ1 and Ψ2 are two Young functions with Ψ1(t) ≤ Ψ2(t), for t ≥ t0 > 0, then there is a constant C > 0 such
that ∥f ∥Ψ1,Q ≤ C∥f ∥Ψ2,Q .

For Young functions Φ(t) = t(1 + log+ t) and Ψ (t) = et − 1, the corresponding averages will be denoted by

∥ · ∥Φ,Q = ∥ · ∥L(log L),Q and ∥ · ∥Ψ ,Q = ∥ · ∥exp L,Q .

The following inequality holds (see (2.13) in [7])

1
|Q |


Q

|f (x)g(x)|dx ≤ C∥f ∥exp L,Q∥g∥L(log L),Q . (4.1)

Let Q ⊂ Rn be a cube and b ∈ BMO(Rn), the generalized Hölder inequality (4.1) together with John–Nirenberg’s
inequality implies that (see (2.14) in [7])

1
|Q |


Q

|b(x) − bQ | |f (x)|dx ≤ C∥b∥BMO∥f ∥L(log L),Q . (4.2)

The maximal function related to Young function Φ(t) = t(1 + log+ t) is defined by

ML(log L)(f )(x) = sup
Q∋x

∥f ∥L(log L),Q ,

where the supremum is taken over all the cubes containing x.

4.3. Multilinear maximal functions and multiple weights

The followingmultilinear maximal functions that adapts to themultilinear Calderón–Zygmund theory are introduced by
Lerner et al. in [7].

Definition 4.1. For all locally integrable functions f⃗ = (f1, . . . , fm) and x ∈ Rn, the multilinear maximal functions M and
Mr are defined by

M(f⃗ )(x) = sup
Q∋x

m
j=1

1
|Q |


Q

|fj(yj)|dyj,

and

Mr(f⃗ )(x) = sup
Q∋x

m
j=1


1

|Q |


Q

|fj(yj)|rdyj

1/r

, for r > 1,
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the maximal functions related to Young function Φ(t) = t(1 + log+ t) are defined by

Mi
L(log L)(f⃗ )(x) = sup

Q∋x
∥fi∥L(log L),Q

m
j≠i

1
|Q |


Q

|fj(yj)|dyj

and

ML(log L)(f⃗ )(x) = sup
Q∋x

m
j=1

∥fj∥L(log L),Q ,

where the supremum is taken over all the cubes Q containing x.

Obviously, if r > 1, then the following pointwise estimates hold

M(f⃗ )(x) ≤ CMi
L(log L)(f⃗ )(x) ≤ C ′ML(log L)(f⃗ )(x) ≤ C ′′Mr(f⃗ )(x). (4.3)

The first two inequalities in (4.3) follows from

1
|Q |


Q

|fj(yj)|dyj ≤ ∥fj∥L(log L),Q ,

and the last one follows from the generalized Jensen’s inequality (Lemma 4.2).
In [7], the characterizations of the multiple-weight class AP⃗ in terms of the multilinear maximal function M are proved

in Theorems 3.3 and 3.7. We restate it as follows.

Lemma 4.3 ([7]). Let P⃗ = (p1, . . . , pm), 1 ≤ p1, . . . , pm < ∞ and 1/p = 1/p1 + · · · + 1/pm.

(1) If 1 < p1, . . . , pm < ∞, thenM is bounded from Lp1(w1)×· · ·×Lpm(wm) to Lp(νw⃗) if and only if w⃗ = (w1, . . . , wm) ∈ AP⃗ .
(2) If 1 ≤ p1, . . . , pm < ∞, then M is bounded from Lp1(w1)×· · ·× Lpm(wm) to Lp,∞(νw⃗) if and only if w⃗ = (w1, . . . , wm) ∈

AP⃗ .

The characterization of the multiple-weight class AP⃗ in terms of the Muckenhoupt weights, which will be used later, is
also established in Theorem 3.6 of [7].

Lemma 4.4 ([7]). Let w⃗ = (w1, . . . , wm), P⃗ = (p1, . . . , pm) and 1/p = 1/p1 + · · · + 1/pm with 1 ≤ p1, . . . , pm < ∞. Then
w⃗ ∈ AP⃗ if and only if

w
1−p′

j
j ∈ Amp′

j
, j = 1, . . . ,m,

νw⃗ ∈ Amp,

where the condition w
1−p′

j
j ∈ Amp′

j
in the case pj = 1 is understood as w

1/m
j ∈ A1.

The following boundedness property of Mr is contained in the proof of Theorem 3.18 of [7] page 1258.

Lemma 4.5. Let P⃗ = (p1, . . . , pm), 1 < p1, . . . , pm < ∞ and 1/p = 1/p1 + · · · + 1/pm. If w⃗ ∈ AP⃗ , then there exists a
constant r > 1 such that, Mr is bounded from Lp1(w1) × · · · × Lpm(wm) to Lp(νw⃗).

4.4. Kolmogorov’s inequality

Finally, we will also need the following Kolmogorov’s inequality (see page 485 in [32] or (2.16) in [7]).

Lemma 4.6. Let 0 < p < q < ∞, then there is a positive constant C = Cp,q such that for any measurable function f there has

|Q |
−1/p

∥f ∥Lp(Q ) ≤ C |Q |
−1/q

∥f ∥Lq,∞(Q ).

5. Proof of Theorem 1.1

Proof. Set B = ∥T∥Lq1×···×Lqm→Lq,∞ . Fix λ > 0 and consider functions fj ∈ L1(Rn), j = 1, . . . ,m. Without loss of generality,
we may assume that ∥fj∥L1(Rn) = 1 for 1 ≤ j ≤ m. We need to show that there is a constant C = Cm,n,|ω|Dini(1) > 0 such that

|{x ∈ Rn
: |T (f1, . . . , fm)(x)| > λ}| ≤ C(A + B)1/mλ−1/m. (5.1)



102 G. Lu, P. Zhang / Nonlinear Analysis 107 (2014) 92–117

Let γ be a positive number to be determined later. Applying the Calderón–Zygmund decomposition to each function fj
at height (γ λ)1/m to obtain a sequence of pairwise disjoint cubes {Qj,kj}

∞

kj=1 and a decomposition

fj = gj + bj = gj +

kj

bj,kj

such that for all j = 1, . . . ,m,

(P1) supp(bj,kj) ⊂ Qj,kj ,

(P2)


Rn
bj,kj(x)dx = 0,

(P3)


Rn
|bj,kj(x)|dx ≤ C(γ λ)1/m|Qj,kj |,

(P4)


kj

Qj,kj

 =


kj

|Qj,kj | ≤ C(γ λ)−1/m,

(P5) ∥bj∥L1(Rn) ≤ C,

(P6) ∥gj∥Ls(Rn) ≤ C(γ λ)1/(ms′) for 1 ≤ s ≤ ∞.

Let cj,kj be the center of cube Qj,kj and ℓ(Qj,kj) be its side length. Set Q ∗

j,kj
= 8

√
nQj,kj and Ω∗

j =


kj
Q ∗

j,kj
for j = 1, . . . ,m,

and Ω∗
=
m

j=1 Ω∗

j . And let

E1 = {x ∈ Rn
: |T (g1, g2, . . . , gm)(x)| > λ/2m

}

E2 = {x ∈ Rn
\ Ω∗

: |T (b1, g2, . . . , gm)(x)| > λ/2m
}

E3 = {x ∈ Rn
\ Ω∗

: |T (g1, b2, . . . , gm)(x)| > λ/2m
}

. . .

E2m = {x ∈ Rn
\ Ω∗

: |T (b1, b2, . . . , bm)(x)| > λ/2m
}.

It follows from property (P4) that

|Ω∗
| ≤

m
j=1

|Ω∗

j | ≤ C
m
j=1


kj

|Qj,kj | ≤ C(γ λ)−1/m.

By the Lq1 × · · · × Lqm → Lq,∞ boundedness of T and property (P6), we have

|E1| ≤ (2mB)qλ−q
∥g1∥

q
Lq1 (Rn)

· · · ∥gm∥
q
Lqm (Rn)

≤ CBqγ q−1/mλ−1/m.

Thus,

|{x ∈ Rn
: |T (f⃗ )(x)| > λ}| ≤

2m
s=1

|Es| + C |Ω∗
|

≤

2m
s=2

|Es| + CBqγ q−1/mλ−1/m
+ C(γ λ)−1/m. (5.2)

So, to complete the proof of Theorem1.1,weneed to give the appropriate estimates for each |Es|, 2 ≤ s ≤ 2m, to guarantee
the validity of (5.1).

For the sake of clarity and showing the difference of the proof from the ones in the literature mentioned above, we split
the proof into two cases.

Case 1: the case m = 2. In this case,Ω∗

1 =


k1
Q ∗

1,k1
,Ω∗

2 =


k2
Q ∗

2,k2
andΩ∗

= Ω∗

1


Ω∗

2 , and dy⃗ = dy1dy2. There leaves
only the following three terms to be considered

|E2| = |{x ∈ Rn
\ Ω∗

: |T (b1, g2)(x)| > λ/4}|,
|E3| = |{x ∈ Rn

\ Ω∗
: |T (g1, b2)(x)| > λ/4}|,

|E4| = |{x ∈ Rn
\ Ω∗

: |T (b1, b2)(x)| > λ/4}|.

We will show that

|Es| ≤ CAγ 1/2λ−1/2 for s = 2, 3, 4. (5.3)
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For the term |E2|, by Chebychev’s inequality and property (P2), we have

|E2| ≤
4
λ


k1


Rn\Ω∗

|T (b1,k1 , g2)(x)|dx

≤
4
λ


k1


Rn\Ω∗


(Rn)2


K(x, y1, y2) − K(x, c1,k1 , y2)


b1,k1(y1)g2(y2)dy⃗

dx
≤

4
λ

∥g2∥L∞

k1


Q1,k1

|b1,k1(y1)|


Rn


Rn\Ω∗

K(x, y1, y2) − K(x, c1,k1 , y2)
dxdy⃗. (5.4)

For fixed k1, denote by Qi
1,k1

= (2i+2√nQ1,k1) \ (2i+1√nQ1,k1), i = 1, 2, . . . , to shorten the notations. Clearly we have
Rn

\ Ω∗
⊂ Rn

\ Q ∗

1,k1
⊂


∞

i=1 Qi
1,k1

. For any y1 ∈ Q1,k1 and y2 ∈ Rn, since ω is nondecreasing then it follows from (1.3) that
Rn\Ω∗

K(x, y1, y2) − K(x, c1,k1 , y2)
dx ≤ A


Rn\Ω∗

1
(|x − y1| + |x − y2|)2n

ω


|y1 − c1,k1 |

|x − y1| + |x − y2|


dx

≤ A
∞
i=1


Qi

1,k1

1
(|x − y1| + |x − y2|)2n

ω


|y1 − c1,k1 |
|x − y1|


dx

≤ A
∞
i=1

ω(2−i)


Qi

1,k1

1
(|x − y1| + |x − y2|)2n

dx, (5.5)

where in the last step we use the facts that, for x ∈ Qi
1,k1

and y1 ∈ Q1,k1 ,

|y1 − c1,k1 | ≤
1
2

√
nℓ(Q1,k1) and |x − y1| ≥ 2i−1√nℓ(Q1,k1).

Putting (5.5) into (5.4), and applying properties (P6), (P3) and (P4), we have

|E2| ≤
CAγ 1/2

λ1/2


k1


Q1,k1

|b1,k1(y1)|


Rn

∞
i=1

ω(2−i)


Qi

1,k1

dx
(|x − y1| + |x − y2|)2n

dy⃗

≤
CAγ 1/2

λ1/2


k1

∞
i=1

ω(2−i)


Q1,k1

|b1,k1(y1)|


Qi
1,k1


Rn

dy2
(|x − y1| + |x − y2|)2n

dxdy1

≤
CAγ 1/2

λ1/2


k1

∞
i=1

ω(2−i)


Q1,k1

|b1,k1(y1)|


Qi
1,k1

1
|x − y1|n

dxdy1

≤
CAγ 1/2

λ1/2


k1

∞
i=1

ω(2−i)


Q1,k1

|b1,k1(y1)|

2i+2√nQ1,k1

1
|2i−1

√
nQ1,k1 |

dxdy1

≤
CAγ 1/2

λ1/2


k1

∞
i=1

ω(2−i)


Q1,k1

|b1,k1(y1)|dy1

≤ CAγ 1/2λ−1/2.

Similarly, we can obtain that |E3| ≤ CAγ 1/2λ−1/2.
Now, let us consider |E4|. For this term, our approach ismuchmore different from the ones used byGrafakos and Torres [5]

and Maldonado and Naibo [13] (pages 241–242).
By Chebychev’s inequality and properties (P1) and (P2), we have

|E4| ≤
4
λ


Rn\Ω∗

T (b1, b2

(x)
dx

≤
4
λ


k1,k2


Rn\Ω∗


Q2,k2


Q1,k1

K(x, y1, y2) − K(x, c1,k1 , y2)
|b1,k1(y1)| |b2,k2(y2)|dy⃗dx

≤
4
λ


k1,k2


Q2,k2


Q1,k1


Rn\Ω∗

K(x, y1, y2) − K(x, c1,k1 , y2)
dx|b1,k1(y1)| |b2,k2(y2)|dy⃗.
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Let Qi
1,k1

be as above. For any fixed k2 denote by Qh
2,k2

= (2h+2√nQ2,k2) \ (2h+1√nQ2,k2), h = 1, 2, . . . . Then

Rn
\ Ω∗

⊂ Rn
\

Q ∗

1,k1


Q ∗

2,k2


⊂

∞
h=1

∞
i=1


Qi

1,k1


Qh

2,k2


.

For any (y1, y2) ∈ Q1,k1 × Q2,k2 , similar to (5.5), we have
Rn\Ω∗

K(x, y1, y2) − K(x, c1,k1 , y2)
dx ≤ A


Rn\Ω∗

1
(|x − y1| + |x − y2|)2n

ω


|y1 − c1,k1 |

|x − y1| + |x − y2|


dx

≤ A
∞
h=1

∞
i=1

ω(2−i)


Qi

1,k1


Qh

2,k2

1
(|x − y1| + |x − y2|)2n

dx. (5.6)

Note that, for any x ∈ Qi
1,k1


Qh

2,k2
and (y1, y2) ∈ Q1,k1 × Q2,k2 , there has

|x − y1| ≈ 2i+1√nℓ(Q1,k1) and |x − y2| ≈ 2h+1√nℓ(Q2,k2),

then, for any (y1, y2) ∈ Q1,k1 × Q2,k2 , the following holds
Qi

1,k1


Qh

2,k2

1
(|x − y1| + |x − y2|)2n

dx ≈
|Qi

1,k1


Qh

2,k2
|

2i+1
√
nℓ(Q1,k1) + 2h+1

√
nℓ(Q2,k2)

2n
:= H(i, k1; h, k2). (5.7)

For any (y1, y2) ∈ Q1,k1 × Q2,k2 , it follows from (5.6) and (5.7) that
Rn\Ω∗

K(x, y1, y2) − K(x, c1,k1 , y2)
dx ≤ CA

∞
h,i=1

ω(2−i)H(i, k1; h, k2). (5.8)

Then, by (5.8) and property (P3) one has

|E4| ≤
CA
λ


k1,k2


Q2,k2


Q1,k1

 ∞
h,i=1

ω(2−i)H(i, k1; h, k2)


|b1,k1(y1)| |b2,k2(y2)|dy⃗

≤ CAγ

∞
i=1

ω(2−i)

k1,k2

|Q1,k1 | |Q2,k2 |

 ∞
h=1

H(i, k1; h, k2)


= CAγ

∞
i=1

ω(2−i)

k1,k2


Q1,k1


Q2,k2

 ∞
h=1

H(i, k1; h, k2)

dy⃗.

Applying (5.7) again and noting that for any fixed k2 the sequence {Qh
2,k2

}
∞

h=1 is pairwise disjoint, it follows from property
(P4) that

|E4| ≤ CAγ

∞
i=1

ω(2−i)

k1,k2


Q1,k1


Q2,k2

 ∞
h=1


Qi

1,k1


Qh

2,k2

1
(|x − y1| + |x − y2|)2n

dx

dy⃗

≤ CAγ

∞
i=1

ω(2−i)

k1,k2


Q1,k1


Q2,k2


Qi

1,k1

1
(|x − y1| + |x − y2|)2n

dx

dy⃗

≤ CAγ

∞
i=1

ω(2−i)

k1


Q1,k1


Qi

1,k1


k2


Q2,k2

1
(|x − y1| + |x − y2|)2n

dy2


dxdy1

≤ CAγ

∞
i=1

ω(2−i)

k1


Q1,k1


Qi

1,k1


Rn

1
(|x − y1| + |x − y2|)2n

dy2


dxdy1

≤ CAγ

∞
i=1

ω(2−i)

k1


Q1,k1


Qi

1,k1

1
|x − y1|n

dxdy1

≤ CAγ

∞
i=1

ω(2−i)

k1


Q1,k1


2i+2√nQ1,k1

1
|2i

√
nQ1,k1 |

dxdy1
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≤ CAγ

∞
i=1

ω(2−i)

k1

|Q1,k1 |

≤ CAγ 1/2λ−1/2.

It is easy to see that the constants C ’s involved depend only onm, n and |ω|Dini(1). So, (5.3) is proven. Set γ = (A + B)−1,
it follows from (5.2) and (5.3) that

|{x ∈ Rn
: |T (f1, f2)(x)| > λ}| ≤

4
s=2

|Es| + CBqγ q−1/2λ−1/2
+ C(γ λ)−1/2

≤ C(A + B)1/2λ−1/2,

which is the desired result. The proof of the casem = 2 is completed.
Case 2: the case m ≥ 3.We need to estimate |Es| for 2 ≤ s ≤ 2m. Suppose that for some 1 ≤ l ≤ mwe have l bad functions

andm − l good functions appearing in T (h1, . . . , hm), where hj ∈ {gj, bj}. For matters of simplicity, we assume that the bad
functions appear at the entries 1, . . . , l, and denote the corresponding term by |E(l)

s | to distinguish it from the other terms.
That is, we will consider

|E(l)
s | =

x ∈ Rn
\ Ω∗

: |T (b1, . . . , bl, gl+1, . . . , gm)(x)| > λ/2m,
and the other terms can be estimated similarly. We will show

|E(l)
s | ≤ CAγ (γ λ)−1/m. (5.9)

Recall that supp(b1,k1) ⊂ Q1,k1 and c1,k1 is the center of Q1,k1 . Denote by
l

r=1 Qr,kr = Q1,k1 × · · · × Ql,kl and y⃗∗ = (c1,k1 ,
y2, . . . , ym) for simplicity. Then it follows from properties (P2) and (P6) that, for any x ∈ Rn

\ Ω∗,

|T (b1, . . . , bl, gl+1, . . . , gm)(x)| ≤


k1,...,kl


(Rn)m

K(x, y⃗)
l

r=1

br,kr (yr)
m

r=l+1

gr(yr)dy⃗


≤


k1,...,kl


(Rn)m

K(x, y⃗) − K(x, y⃗∗)
 l
r=1

|br,kr (yr)|
m

r=l+1

|gr(yr)|dy⃗

≤ C(γ λ)
m−l
m


k1,...,kl


(Rn)m

K(x, y⃗) − K(x, y⃗∗)
 l
r=1

|br,kr (yr)|dy⃗.

This together with Chebychev’s inequality gives

|E(l)
s | ≤

2m

λ


Rn\Ω∗

|T (b1, . . . , bl, gl+1, . . . , gm)(x)|dx

≤
C
λ

(γ λ)
m−l
m


Rn\Ω∗

 
k1,...,kl


(Rn)m

K(x, y⃗) − K(x, y⃗∗)
 l
r=1

|br,kr (yr)|dy⃗

dx

≤
C
λ

(γ λ)
m−l
m


k1,...,kl


(Rn)m


Rn\Ω∗

K(x, y⃗) − K(x, y⃗∗)
dx l

r=1

|br,kr (yr)|dy⃗

≤
C
λ

(γ λ)
m−l
m


k1,...,kl


(Rn)m−l


l

r=1 Qr,kr

l
r=1

|br,kr (yr)|


Rn\Ω∗

K(x, y⃗) − K(x, y⃗∗)
dxdy⃗.

Let Q
ir
r,kr = (2ir+2√nQr,kr ) \ (2ir+1√nQr,kr ) for r = 1, . . . , l and ir = 1, 2, . . . . Then

Rn
\ Ω∗

⊂

∞
i1=1

· · ·

∞
il=1


Q

i1
1,k1


· · ·


Q

il
l,kl


=

∞
i1,...,il=1

 l
r=1

Q
ir
r,kr


.

For any (y1, . . . , yl) ∈
l

r=1 Qr,kr and any (yl+1, . . . , ym) ∈ (Rn)m−l, applying (1.3) and the fact that ω is nondecreasing,
similar to (5.5) and (5.6), we have

Rn\Ω∗

K(x, y⃗) − K(x, y⃗∗)
dx ≤ A


Rn\Ω∗

1 m
j=1

|x − yj|
mn ω


|y1 − c1,k1 |
m
j=1

|x − yj|


dx
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≤ A
∞

i1,...,il=1


l

r=1 Q
ir
r,kr

1 m
j=1

|x − yj|
mn ω


|y1 − c1,k1 |
|x − y1|


dx

≤ A
∞

i1,...,il=1

ω(2−i1)


l

r=1 Q
ir
r,kr

1 m
j=1

|x − yj|
mn dx.

Then,

|E(l)
s | ≤

CA
λ

(γ λ)
m−l
m


k1,...,kl

∞
i1,...,il=1

ω(2−i1)


(Rn)m−l


l

r=1 Qr,kr

l
r=1

|br,kr (yr)|


l

r=1 Q
ir
r,kr

1 m
j=1

|x − yj|
mn dx


dy⃗

≤
CA
λ

(γ λ)
m−l
m


k1,...,kl

∞
i1,...,il=1

ω(2−i1)


l

r=1 Qr,kr

l
r=1

|br,kr (yr)|

×


l

r=1 Q
ir
r,kr


(Rn)m−l

1 m
j=1

|x − yj|
mn dyl+1 · · · dym


dx


dy1 · · · dyl

≤
CA
λ

(γ λ)
m−l
m


k1,...,kl

∞
i1,...,il=1

ω(2−i1)


l

r=1 Qr,kr

l
r=1

|br,kr (yr)|


l

r=1 Q
ir
r,kr

1 l
j=1

|x − yj|
nl dx


dy1 · · · dyl.

On the other hand, similar to (5.7), for any (y1, . . . , yl) ∈
l

r=1 Qr,kr , there has


l

r=1 Q
ir
r,kr

1 l
r=1

|x − yr |
nl dx ≈

 l
r=1

Q
ir
r,kr

 l
r=1

2ir+1
√
nℓ(Qr,kr )

nl . (5.10)

Then by (5.10) and the property (P3), we have

|E(l)
s | ≤

CA
λ

(γ λ)
m−l
m


k1,...,kl

∞
i1,...,il=1

ω(2−i1)


l

r=1 Qr,kr

l
r=1

|br,kr (yr)|

  l
r=1

Q
ir
r,kr

 l
r=1

2ir+1
√
nℓ(Qr,kr )

nl

dy1 · · · dyl

≤ CAγ


k1,...,kl

∞
i1,...,il=1

ω(2−i1)

l
r=1

|Qr,kr |

  l
r=1

Q
ir
r,kr

 l
r=1

2ir+1
√
nℓ(Qr,kr )

nl


= CAγ


k1,...,kl

∞
i1,...,il=1

ω(2−i1)


l

r=1 Qr,kr

  l
r=1

Q
ir
r,kr

 l
r=1

2ir+1
√
nℓ(Qr,kr )

nl

dy1 · · · dyl.

Applying (5.10) again, we can see that |E(l)
s | is dominated by

Aγ


k1,...,kl

∞
i1,...,il=1

ω(2−i1)


l

r=1 Qr,kr


l

r=1 Q
ir
r,kr

1 l
r=1

|x − yr |
nl dx


dy1 · · · dyl

= Aγ

∞
i1,...,il=1

ω(2−i1)

k1


Q1,k1


l

r=1 Q
ir
r,kr

 
k2,...,kl


l

r=2 Qr,kr

dy2 · · · dyl l
r=1

|x − yr |
nl

dx


dy1.
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Since for any fixed r , the family {Qr,kr }
∞

kr=1 is a sequence of pairwise disjoint cubes, then for any x ∈
l

r=1 Q
ir
r,kr and y1 ∈

Q1,k1 , there has


k2,...,kl


l

r=2 Qr,kr

1 l
r=1

|x − yr |
nl dy2 · · · dyl =


k2,...,kl−1


l−1

r=2 Qr,kr


kl


Ql,kl

1 l
r=1

|x − yr |
nl dyl


dy2 · · · dyl−1

≤


k2,...,kl−1


l−1

r=2 Qr,kr


Rn

1 l
r=1

|x − yr |
nl dyl


dy2 · · · dyl−1

≤ C


k2,...,kl−1


l−1

r=2 Qr,kr

1 l−1
r=1

|x − yr |
n(l−1)

dy2 · · · dyl−1

≤ · · · ≤ C

k2


Q2,k2

1
(|x − y1| + |x − y2|)2n

dy2

≤ C


Rn

1
(|x − y1| + |x − y2|)2n

dy2

≤
C

|x − y1|n
.

Thus

|E(l)
s | ≤ CAγ

∞
i1,...,il=1

ω(2−i1)

k1


Q1,k1


l

r=1 Q
ir
r,kr

1
|x − y1|n

dx

dy1

≤ CAγ

∞
i1

ω(2−i1)

k1


Q1,k1

 ∞
i2,...,il=1


l

r=1 Q
ir
r,kr

1
|x − y1|n

dx

dy1. (5.11)

On the other hand, noting that for any fixed r the sequence {Q
ir
r,kr }

∞

ir=1 is also pairwise disjoint, then for any y1 ∈ Q1,k1 ,
there has

∞
i2,...,il=1


l

r=1 Q
ir
r,kr

1
|x − y1|n

dx =

∞
i2,...,il−1=1

 ∞
il=1


l

r=1 Q
ir
r,kr

1
|x − y1|n

dx


=

∞
i2,...,il−1=1

l−1
r=1 Q

ir
r,kr


∞
il=1 Q

il
l,kl

 1
|x − y1|n

dx


≤

∞
i2,...,il−1=1


l−1

r=1 Q
ir
r,kr

1
|x − y1|n

dx

≤ · · · ≤

∞
i2=1


Q

i1
1,k1


Q

i2
2,k2

1
|x − y1|n

dx

=


Q

i1
1,k1


∞
i2=1 Q

i2
2,k2

 1
|x − y1|n

dx

≤


Q

i1
1,k1

1
|x − y1|n

dx.

Putting the above estimate into (5.11) and applying property (P4), we have

|E(l)
s | ≤ CAγ

∞
i1=1

ω(2−i1)

k1


Q1,k1


Q

i1
1,k1

1
|x − y1|n

dx

dy1

≤ CAγ

∞
i1=1

ω(2−i1)

k1


Q1,k1


2i1+2√nQ1,k1

1
|2i1

√
nQ1,k1 |

dx

dy1



108 G. Lu, P. Zhang / Nonlinear Analysis 107 (2014) 92–117

≤ CAγ

∞
i1=1

ω(2−i1)

k1

|Q1,k1 |

≤ CAγ (γ λ)−1/m.

This shows that (5.9) holds.
Now, we have proved that each |Es| satisfies |Es| ≤ CAγ (γ λ)−1/m. So, by (5.2) we have

|{x ∈ Rn
: |T (f1, . . . , fm)(x)| > λ}| ≤ CAγ (γ λ)−1/m

+ CBqγ q−1/mλ−1/m
+ C(γ λ)−1/m.

Set γ = (A + B)−1, then (5.1) follows. The proof of Theorem 1.1 is finished. �

Remark 5.1. We would like to note that although there makes no use of the Marcinkiewicz function in the proof of Theo-
rem 6.1 in [13], the authors introduce a new operator Mω

j,l instead (see [13] page 240), which is similar to theMarcinkiewicz
function and plays a similar role in the proof. In the proof of Theorem 1.1, we do not use the Marcinkiewicz function and
Mω

j,l. Our approach is more direct and the estimates are more delicate and complicated.

6. Proof of Theorem 1.2

To prove Theorem 1.2, we first establish the following pointwise estimates on the sharp maximal function M♯
δ acting on

T (f⃗ ) in terms of the multilinear maximal function M.

Theorem 6.1. Let T be an m-linear ω-CZO with ω ∈ Dini(1) and 0 < δ < 1/m. Then for all f⃗ in any product space Lp1(Rn) ×

· · · × Lpm(Rn) with 1 ≤ pj < ∞ for j = 1, . . . ,m,

M♯
δ


T (f⃗ )


(x) ≤ CM(f⃗ )(x).

Proof. For a fixed point x and a cube Q ∋ x. Due to the fact
 |a |

r
−|b |

r
 ≤ |a − b|r for 0 < r < 1, it suffices to prove that,

for 0 < δ < 1/m,
1

|Q |


Q

T (f⃗ )(z) − c
δdz1/δ

≤ CM(f⃗ )(x), (6.1)

where the constant c is to be determined later.
For each j, we decompose fj = f 0j + f ∞

j , where f 0j = fjχQ∗ and Q ∗
= 8

√
nQ . Then

m
j=1

fj(yj) =

m
j=1


f 0j (yj) + f ∞

j (yj)


=


α1,...,αm∈{0,∞}

f α1
1 (y1) · · · f αm

m (ym)

=

m
j=1

f 0j (yj) +


(α1,...,αm)∈I

f α1
1 (y1) · · · f αm

m (ym),

where I = {(α1, . . . , αm) : there is at least one αj ≠ 0}. Then we can write

T (f⃗ )(z) = T (f 01 , . . . , f 0m)(z) +


(α1,...,αm)∈I

T (f α1
1 , . . . , f αm

m )(z). (6.2)

Since T is anm-linear ω-CZO with ω ∈ Dini(1), then it follows from Theorem 1.1 that T maps L1(Rn) × · · · × L1(Rn) into
L1/m,∞(Rn). Applying Kolmogorov’s inequality (Lemma 4.6) with p = δ and q = 1/m, we have

1
|Q |


Q

T (f 01 , . . . , f 0m)(z)
δdz1/δ

≤ C |Q |
−1/m

T (f 01 , . . . , f 0m)

L1/m,∞(Rn)

≤ C |Q |
−1/m

m
j=1

∥f 0j ∥L1(Rn)

≤ C
m
j=1

1
|Q ∗|


Q∗

|fj(z)|dz

≤ CM(f⃗ )(x). (6.3)
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To estimate the remaining terms in (6.2), we choose

c =


(α1,...,αm)∈I

T (f α1
1 , . . . , f αm

m )(x),

and it suffices to show that, for any z ∈ Q , the following estimates hold
(α1,...,αm)∈I

T (f α1
1 , . . . , f αm

m )(z) − T (f α1
1 , . . . , f αm

m )(x)
 ≤ CM(f⃗ )(x). (6.4)

We consider first the case when α1 = · · · = αm = ∞. For any z ∈ Q , there hasT (f ∞

1 , . . . , f ∞

m )(z) − T (f ∞

1 , . . . , f ∞

m )(x)
 ≤


(Rn\Q∗)m

|K(z, y⃗) − K(x, y⃗)|
m
j=1

|f ∞

j (yj)|dy⃗

≤

∞
k=1


(Qk)m

|K(z, y⃗) − K(x, y⃗)|
m
j=1

|f ∞

j (yj)|dy⃗

where Qk = (2k+3√nQ ) \ (2k+2√nQ ) for k = 1, 2, . . . .
Noting that, for x, z ∈ Q and any (y1, . . . , ym) ∈ (Qk)

m, there has

|z − yj| ≥ 2k√nℓ(Q ) and |z − x| ≤
√
nℓ(Q ),

and recalling that ω is nondecreasing, and applying (1.2), we have

|K(z, y⃗) − K(x, y⃗)| ≤
A m

j=1
|z − yj|

mn ω

 |z − x|
m
j=1

|z − yj|

 ≤
Cω(2−k)

|2k
√
nQ |m

. (6.5)

ThenT (f ∞

1 , . . . , f ∞

m )(z) − T (f ∞

1 , . . . , f ∞

m )(x)
 ≤ C

∞
k=1

ω(2−k)


(Qk)m

1
|2k

√
nQ |m

m
j=1

|f ∞

j (yj)|dy⃗

≤ C
∞
k=1

ω(2−k)

m
j=1

1
|2k+3

√
nQ |


2k+3√nQ

|fj(yj)|dyj

≤ C |ω|Dini(1)M(f⃗ )(x).

What remains to be considered are the terms in (6.4) such that αj1 = · · · = αjl = 0 for 1 ≤ l < m. Set J := {j1, . . . , jl}
then αj = ∞ for j ∉ J. ThusT (f α1

1 , . . . , f αm
m )(z) − T (f α1

1 , . . . , f αm
m )(x)


≤


(Rn)m

|K(z, y⃗) − K(x, y⃗)|
m
j=1

|f
αj
j (yj)|dy⃗

≤


(Q∗)l


j∈J

|f 0j (yj)|


(Rn\Q∗)m−l
|K(z, y⃗) − K(x, y⃗)|


j∉J

|f ∞

j (yj)|dy⃗

≤


(Q∗)l


j∈J

|f 0j (yj)|
∞
k=1


(Qk)m−l

|K(z, y⃗) − K(x, y⃗)|

j∉J

|f ∞

j (yj)|dy⃗. (6.6)

Since for x, z ∈ Q and any yj ∈ Qk with j ∉ J, there has |z − yj| ≥ 2k√nℓ(Q ), then, similar to (6.5), we have

|K(z, y⃗) − K(x, y⃗)| ≤
A m

j=1
|z − yj|

mn ω


|z − x|

m
j=1

|z − yj|



≤
A

j∉J

|z − yj|
mn ω


|z − x|

j∉J

|z − yj|



≤
Cω(2−k)

|2k
√
nQ |m

. (6.7)
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This together with (6.6) givesT (f α1
1 , . . . , f αm

m )(z) − T (f α1
1 , . . . , f αm

m )(x)


≤ C


(Q∗)l


j∈J

|f 0j (yj)|
∞
k=1

ω(2−k)


(Qk)m−l

1
|2k

√
nQ |m


j∉J

|f ∞

j (yj)|dy⃗

≤ C
∞
k=1

ω(2−k)
1

|2k
√
nQ |m


j∈J


Q∗

|f 0j (yj)|dyj


j∉J


2k+3√nQ

|f ∞

j (yj)|dyj



≤ C
∞
k=1

ω(2−k)

 m
j=1

1
|2k+3

√
nQ |


2k+3√nQ

|fj(yj)|dyj


≤ C |ω|Dini(1)M(f⃗ )(x).

So, (6.4) is proven and then (6.1) follows from (6.2) to (6.4). This concludes the proof. �

Recently, Grafakos et al. [24] proved the following result in the context of RD-spaces, which serves as an analog of the
classical Fefferman–Stein inequalities (see Lemma 4.11 in [24]). Here, we rewrite their result as follows.

Lemma 6.1 ([24]). Let 0 < p0 < ∞ and w ∈ A∞. Then for any p with p0 ≤ p < ∞ there exists a constant C (depending on n,
p and the A∞ constant of w) such that for all f ∈ L1loc(R

n) with Mf ∈ Lp0,∞(w), we have

∥M(f )∥Lp(w) ≤ C∥M♯(f )∥Lp(w), if p0 < p

and

∥M(f )∥Lp,∞(w) ≤ C∥M♯(f )∥Lp,∞(w), if p0 ≤ p.

Now, by Theorem 6.1, Lemma 6.1 and Theorem 1.1, we can get the following result. Since the argument is almost the
same as the proof of Proposition 4.13 in [24], we omit the proof.

Theorem 6.2. Let T be an m-linear ω-CZO with ω ∈ Dini(1), p ∈ [1/m, ∞) and w ∈ A∞. Then there exists a constant C > 0
such thatT (f⃗ )


Lp(w)

≤ C
M(f⃗ )


Lp(w)

, if p > 1/m

and T (f⃗ )

Lp,∞(w)

≤ C
M(f⃗ )


Lp,∞(w)

, if p ≥ 1/m

hold for all bounded functions f⃗ with compact support.

Proof of Theorem 1.2. For the same reason as in the proof of Corollary 3.9 in [7], it is enough to prove Theorem1.2 is valid for
f1, . . . , fm being bounded functions with compact supports. By Lemma 4.4, for w⃗ ∈ AP⃗ there has νw⃗ ∈ A∞. Then Theorem 1.2
follows from Theorem 6.2 and the weighted boundedness of M with multiple-weights (Lemma 4.3). �

7. Proofs of Theorems 1.3 and 1.4

To prove Theorems 1.3 and 1.4, we first establish the pointwise estimates on sharp maximal function acting on the
multilinear commutator Tb⃗.

Theorem 7.1. Let T be an m-linear ω-CZO with ω satisfying (1.5) and Tb⃗ be the m-linear commutator of T with b⃗ ∈ BMOm.
Assume that 0 < δ < ε and 0 < δ < 1/m. Then, there exists a constant C > 0, depending on δ and ε, such that

M♯
δ


Tb⃗(f⃗ )


(x) ≤ C∥b⃗∥BMOm


Mε


T (f⃗ )


(x) + ML(log L)(f⃗ )(x)


for all m-tuples f⃗ = (f1, . . . , fm) of bounded measurable functions with compact supports.

Proof. By linearity it is sufficient to consider the commutator with only one symbol, that is, for b⃗ = b ∈ BMO(Rn), we will
consider the operator

Tb(f1, . . . , fm)(x) = b(x)T (f1, . . . , fm)(x) − T (bf1, . . . , fm)(x).

Fix x ∈ Rn, for any cube Q centered at x, set Q ∗
= 8

√
nQ . Then for any z ∈ Q

Tb(f⃗ )(z) =

b(z) − bQ∗


T (f⃗ )(z) − T


(b − bQ∗)f1, . . . , fm


(z).
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Since 0 < δ < 1, then for any number c , there has
1

|Q |


Q

 |Tb(f⃗ )(z)| − |c|
δdz1/δ

≤


C

|Q |


Q

(b(z) − bQ∗)T (f⃗ )(z)
δdz1/δ

+


C

|Q |


Q

T(b − bQ∗)f1, . . . , fm

(z) − c

δdz1/δ

:= I + II.

For any 1 < q < ε/δ, by Hölder’s and John–Nirenberg’s inequalities, we obtain

I ≤ C


1
|Q |


Q

|b(z) − bQ∗ |
δq′

dz
1/(δq′) 1

|Q |


Q

|T (f⃗ )(z)|δqdz
1/(δq)

≤ C∥b∥BMOMδq

T (f⃗ )


(x)

≤ C∥b∥BMOMε


T (f⃗ )


(x).

To estimate II, we use the similar decomposition to the ones in the proof of Theorem 6.1. For each j, we decompose fj as
fj = f 0j + f ∞

j with f 0j = fjχQ∗ , j = 1, . . . ,m. As in the proof of Theorem 6.1, we write

m
j=1

fj(yj) =

m
j=1

f 0j (yj) +


(α1,...,αm)∈I

f α1
1 (y1) · · · f αm

m (ym),

where I = {(α1, . . . , αm) : there is at least one αj ≠ 0}.
Set

c =


(α1,...,αm)∈I

T

(b − bQ∗)f α1

1 , . . . , f αm
m


(x).

Then we have

II ≤ C


1
|Q |


Q

T(b − bQ∗)f 01 , . . . , f 0m

(z)
δdz1/δ

+ C


(α1,...,αm)∈I


1

|Q |


Q

T(b − bQ∗)f α1
1 , . . . , f αm

m


(z) − T


(b − bQ∗)f α1

1 , . . . , f αm
m


(x)
δdz1/δ

:= II0 +


(α1,...,αm)∈I

IIα1,...,αm .

Noting that 0 < δ < 1/m, by Kolmogorov’s inequality (Lemma 4.6), and applying the L1×· · ·×L1 to L1/m,∞ boundedness
of T , (4.2) and (4.3), we get

II0 ≤
C

|Q |m

T(b − bQ∗)f 01 , . . . , f 0m


L1/m,∞(Q )

≤
C

|Q |m

(b − bQ∗)f 01

L1(Rn)

m
j=2

∥f 0j ∥L1(Rn)

≤
C

|Q |


Q

|b(z) − bQ∗ | |f1(z)|dz
m
j=2

1
|Q |


Q

|fj(z)|dz

≤ C∥b∥BMO∥f1∥L(log L),Q∗

m
j=2

1
|Q ∗|


Q∗

|fj(z)|dz

≤ C∥b∥BMOM1
L(log L)(f⃗ )(x)

≤ C∥b∥BMOML(log L)(f⃗ )(x).

For IIα1,...,αm , we consider the term II∞,...,∞ first. Set Qk = (2k+3√nQ ) \ (2k+2√nQ ) as above. Since 0 < δ < 1, it follows
from Hölder’s inequality that

II∞,...,∞ ≤
C

|Q |


Q

T(b − bQ∗)f ∞

1 , . . . , f ∞

m


(z) − T


(b − bQ∗)f ∞

1 , . . . , f ∞

m


(x)
dz
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≤
C

|Q |


Q


(Rn\Q∗)m

K(z, y⃗) − K(x, y⃗)
|b(y1) − bQ∗ |

m
j=1

|f ∞

j (yj)|dy⃗

dz

≤
C

|Q |


Q

 ∞
k=1


(Qk)m

K(z, y⃗) − K(x, y⃗)
 |b(y1) − bQ∗ |

m
j=1

|fj(yj)|dy⃗

dz.

Then, by (6.5) one has

II∞,...,∞ ≤
C

|Q |


Q

 ∞
k=1

ω(2−k)


(Qk)m

|b(y1) − bQ∗ |

|2k
√
nQ |m

m
j=1

|fj(yj)|dy⃗

dz

≤ C
∞
k=1

ω(2−k)


(2k+3√nQ )m

|b(y1) − bQ∗ | |f1(y1)|
|2k+3

√
nQ |m

m
j=2

|fj(yj)|dy⃗

≤ C
∞
k=1

ω(2−k)


1

|2k+3
√
nQ |


2k+3√nQ

|b(y1) − bQ∗ | |f1(y1)|dy1



×

 m
j=2

1
|2k+3

√
nQ |


2k+3√nQ

|fj(yj)|dyj


. (7.1)

Recalling that |b2k+3√nQ − bQ∗ | ≤ Ck∥b∥BMO, then by (4.2) we have

1
|2k+3

√
nQ |


2k+3√nQ

|b(y1) − bQ∗ | |f1(y1)|dy1

≤
1

|2k+3
√
nQ |


2k+3√nQ

|b(y1) − b2k+3√nQ | |f1(y1)|dy1 +
|b2k+3√nQ − bQ∗ |

|2k+3
√
nQ |


2k+3√nQ

|f1(y1)|dy1

≤ C∥b∥BMO∥f1∥L(log L),2k+3√nQ +
Ck∥b∥BMO

|2k+3
√
nQ |


2k+3√nQ

|f1(y1)|dy1

≤ C(k + 1)∥b∥BMO∥f1∥L(log L),2k+3√nQ . (7.2)

Since ω satisfying (1.5), then it follows from (7.1), (7.2) and (4.3) that

II∞,...,∞ ≤ C∥b∥BMOM1
L(log L)(f⃗ )(x)

∞
k=1

(k + 1)ω(2−k)

≤ C∥b∥BMOML(log L)(f⃗ )(x). (7.3)

From (7.1) to (7.3), there holds the following inequality, which will be used later,

∞
k=1

ω(2−k)


(2k+3√nQ )m

|b(y1) − bQ∗ | |f1(y1)|
|2k+3

√
nQ |m

m
j=2

|fj(yj)|dy⃗ ≤ C∥b∥BMOML(log L)(f⃗ )(x). (7.4)

Now, let us consider the terms IIα1,...,αm such that at least one αj = 0 and one αi = ∞. Without loss of generality, we
assume that αj1 = · · · = αjl = 0 for some 1 ≤ l < m and set J := {j1, . . . , jl} as before, then αj = ∞ for j ∉ J. For any
z ∈ Q , similar to (6.6) and applying (6.7) and (7.4), we haveT(b − bQ∗)f α1

1 , . . . , f αm
m


(z) − T


(b − bQ∗)f α1

1 , . . . , f αm
m


(x)


≤


(Q∗)l


j∈J

|f 0j (yj)|
∞
k=1


(Qk)m−l

|K(z, y⃗) − K(x, y⃗)| |b(y1) − bQ∗ |


j∉J

|f ∞

j (yj)|dy⃗

≤ C


(Q∗)l


j∈J

|f 0j (yj)|
∞
k=1

ω(2−k)


(Qk)m−l

|b(y1) − bQ∗ |

|2k
√
nQ |m


j∉J

|f ∞

j (yj)|dy⃗

≤ C
∞
k=1

ω(2−k)


(2k+3√nQ )m

|b(y1) − bQ∗ | |f1(y1)|
|2k+3

√
nQ |m

m
j=2

|fj(yj)|dy⃗

≤ C∥b∥BMOML(log L)(f⃗ )(x).
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Then, it follows from Hölder’s inequality that

IIα1,...,αm ≤
C

|Q |


Q

T(b − bQ∗)f α1
1 , . . . , f αm

m


(z) − T


(b − bQ∗)f α1

1 , . . . , f αm
m


(x)
dz

≤ C∥b∥BMOML(log L)(f⃗ )(x).

Combining the above estimates we get the desired result. The proof is completed. �

Remark 7.1. For the linear case, the condition ω satisfying (1.5) is also needed, see [20,21], for details.

Theorem 7.2. Let T be an m-linear ω-CZO with ω satisfying (1.5) and Tb⃗ be the m-linear commutator of T with b⃗ ∈ BMOm. If
p > 0 and w ∈ A∞ then there exists a constant C > 0, depending on the A∞ constant of w, such that

Rn

Tb⃗(f⃗ )(x)pw(x)dx ≤ C∥b⃗∥p
BMOm


Rn


ML(log L)(f⃗ )(x)

p
w(x)dx

and

sup
t>0

1
Φ(1/t)

w


y ∈ Rn
: |Tb⃗(f⃗ )(y)| > tm


≤ sup

t>0

1
Φ(1/t)

w


y ∈ Rn
: ML(log L)(f⃗ )(y) > tm


for all f⃗ = (f1, . . . , fm) bounded with compact supports.

Proof. By Theorems 7.1 and 6.1, we can get Theorem 7.2. Since the ideas are almost the same as the ones of the proof of
Theorem 3.19 in [7], we omit the details. �

Now, we are in a position to prove Theorems 1.3 and 1.4.

Proof of Theorem 1.3. It is enough to prove that Theorem 1.3 is valid for f1, . . . , fm being bounded functions with compact
supports. Since w⃗ ∈ AP⃗ then by Lemma 4.4 one has νw⃗ ∈ A∞. It follows from the first part of Theorem 7.2 thatTb⃗(f⃗ )Lp(νw⃗)

≤ C∥b⃗∥BMOm
ML(log L)(f⃗ )


Lp(νw⃗)

.

By (4.3) and Lemma 4.5, for some r > 1,Tb⃗(f⃗ )Lp(νw⃗)
≤ C∥b⃗∥BMOm

Mr(f⃗ )

Lp(νw⃗)

≤ C∥b⃗∥BMOm

m
j=1

∥fj∥Lpj (wj)
.

So complete the proof of Theorem 1.3. �

To prove Theorem 1.4, we need the following result due to Lerner et al. [7].

Lemma 7.1. Let w⃗ ∈ A(1,...,1). Then there exists a constant C such that

νw⃗


x ∈ Rn

: Mi
L(log L)(f⃗ )(x) > tm


≤ C

m
j=1


Rn

Φ


|fj(x)|

t


wj(x)dx

1/m

.

Proof of Theorem 1.4. Applying Theorem 7.2 and Lemma 7.1 and making use of the same arguments as the ones in the
proof of Theorem 3.16 in [7], we can obtain Theorem 1.4. Here we omit the proof. �

8. Proofs of Theorems 2.1–2.6

8.1. Proofs of Theorems 2.1–2.3

To prove Theorems 2.1–2.3, we first recall the following result obtained in [13].

Lemma 8.1 ([13, Theorem 5.3]). Assume that ω is concave and ω ∈ Dini(1/2). Let {φ
j
Q }Q∈D , j = 1, 2, 3, be three families of

ω-molecules with decay N > 10n and such that at least two of them have cancellation property. Then, the para-product Π has
a bilinear Calderón–Zygmund kernel of type θ(t) with

θ(t) = A3
0ANω(CN t), t > 0,

for some constants AN and CN (hence, θ ∈ Dini(1/2)). Moreover, Π has the mapping property

L2(Rn) × L2(Rn) → L1(Rn).

In particular, Π is a bilinear Calderón–Zygmund operator of type θ(t).
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We checked the proof of Lemma 8.1 (see the proof of Theorem 5.3 in [13] pp. 235–237) carefully and found that the
condition ω ∈ Dini(1/2) has no use for proving that Π having a bilinear Calderón–Zygmund kernel of type θ(t), and in the
proof ofΠ mapping L2(Rn)×L2(Rn) into L1(Rn), only the conditionω ∈ Dini(1) is needed. For the sake of clarity, we restate
Theorem 5.3 of [13] into the following two lemmas.

Lemma 8.2. Assume that ω is concave, and let {φ
j
Q }Q∈D , j = 1, 2, 3, be three families of ω-molecules with decay N > 10n and

such that at least two of them have cancellation property. Then, the para-product Π has a bilinear Calderón–Zygmund kernel of
type θ(t) with

θ(t) = A3
0An,Nω(CN t), t > 0.

Lemma 8.3. Assume that ω is concave and ω ∈ Dini(1). Let {φ
j
Q }Q∈D , j = 1, 2, 3, be three families of ω-molecules such that

at least two of them enjoy cancellation property. Then Π is bounded from L2(Rn) × L2(Rn) into L1(Rn).

Proof of Theorems 2.1–2.3. By Lemmas 8.2 and 8.3 we see that under the assumption of Theorem 2.1, the para-product Π

is a bilinear Calderón–Zygmund operator of type θ(t) with

θ(t) = A3
0An,Nω(CN t), t > 0.

If ω ∈ Dini(1) (or, ω satisfies (1.5)), then so does θ(t). Thus, Theorems 2.1–2.3 follow from Theorems 1.2–1.4,
respectively. �

8.2. Proofs of Theorems 2.4–2.6

To prove Theorems 2.4–2.6, it suffices to show that the bilinear pseudo-differential operator Tσ stated above is a bilinear
Calderón–Zygmund operator of type θ(t) with θ(t) = ωa(t). To do this, we first give the following remark.

Remark 8.1. In Definition 1.1, we assume that an m-linear Calderón–Zygmund kernel of type ω satisfies (1.2) and (1.3)
whenever |x− x′

| ≤
1
2 max1≤j≤m |x− yj| and |yi − y′

i| ≤
1
2 max1≤j≤m |x− yj|, respectively. We note that the constant 1

2 is not
the essential attribute to ensure the validity of Theorems 1.1–1.4. More precisely, if we replace the constant 1

2 by a constant
τ ∈ (0, 1) then Theorems 1.1–1.4 are also true.

It is known that the bilinear pseudo-differential operator Tσ stated above has the following kernel representation

Tσ (f , g)(x) =


Rn


Rn

K(x, y1, y2)f (y1)g(y2)dy1dy2, f , g ∈ S (Rn),

where

K(x, y1, y2) = σ̂ (x, y1 − x, y2 − x) =


Rn


Rn

σ(x, ξ , η)e−ξ(y1−x)e−η(y2−x)dξdη.

From Theorem 4.1 of [13], the following estimates hold for the associated kernel.

Lemma 8.4. Let a ∈ (0, 1), ω and Ω be the same as in Theorem 2.4, and, set θ(t) = ωa(t). If σ ∈ BS01,ω,Ω with |α| + |β| ≤

2n + 2, then the associated kernel K of Tσ satisfies (1.1) and (1.3) with ω being replaced by θ , and

|K(x, y1, y2) − K(x′, y1, y2)| ≤
A

(|x − y1| + |x − y2|)2n
θ


|x − x′

|

|x − y1| + |x − y2|


whenever |x − x′

| ≤
1
3 max{|x − y1|, |x − y2|}.

This shows that the associated kernel of Tσ is an m-linear Calderón–Zygmund kernel of type θ with θ(t) = ωa(t) and
τ =

1
3 . In addition, the following boundedness property of Tσ is valid, see Theorem 4.3 in [13].

Lemma 8.5. Let a ∈ (0, 1), ω andΩ be the same as in Theorem 2.4. If σ ∈ BS01,ω,Ω with |α|+ |β| ≤ 4n+4, then Tσ is bounded
from Lp1(Rn)× Lp2(Rn) into Lp(Rn) for some 1 < p, q < ∞ and 1 ≤ p < ∞with 1/p = 1/p1 +1/p2. Moreover, Tσ is a bilinear
Calderón–Zygmund operator of type θ(t) = ωa(t).

Proof of Theorems 2.4–2.6. Note that if ωa(t) ∈ Dini(a/2) (or, ωa(t) satisfies (1.5)), then θ(t) ∈ Dini(1/2) ⊂ Dini(1) (or,
θ(t) satisfies (1.5)). By Lemma 8.5, Theorems 2.4–2.6 follow from Theorems 1.2–1.4, respectively. �

9. Proofs of Theorems 3.1–3.6

Wedo some preparations for the proof of the theorems. Now,we recall some facts on variable exponent Lebesgue spaces.
The first one is the generalized Hölder’s inequality, see Lemma 3.2.20 in [30] or Corollary 2.30 in [29].
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Lemma 9.1. Let r(·), p(·), q(·) ∈ P(Rn) so that 1/r(x) = 1/p(x)+1/q(x). Then, for any f ∈ Lp(·)(Rn) and g ∈ Lq(·)(Rn), there
has

∥fg∥Lr(·)(Rn) ≤ 2∥f ∥Lp(·)(Rn)∥g∥Lq(·)(Rn).

When p(·) ≡ 1, the constant 2 in the previous inequality can be replaced by 1 + 1/p− − 1/p+, see Kováčik and
Rákosník [26] for details. By the induction argument, we can generalize Lemma 9.1 to three or more exponents.

Lemma 9.2. Let q(·), q1(·), . . . , qm(·) ∈ P(Rn) so that

1
q(x)

=
1

q1(x)
+ · · · +

1
qm(x)

.

Then any fj ∈ Lqj(·)(Rn), j = 1, . . . ,m, there has

∥f1 · · · fm∥Lq(·)(Rn) ≤ 2m−1
∥f1∥Lq1(·)(Rn) · · · ∥fm∥Lqm(·)(Rn).

The next one is an extrapolation theorem originally due to Cruz-Uribe et al. [28]. Here, we use the following form, see
Theorem 7.2.1 in [30].

Lemma 9.3. Given a family F of ordered pairs of measurable functions, suppose for some fixed 0 < p0 < ∞, every (f , g) ∈ F
and every ω ∈ A1,

Rn
|f (x)|p0ω(x)dx ≤ C0


Rn

|g(x)|p0ω(x)dx.

Let p(·) ∈ P(Rn) with p0 ≤ p−. If

p(·)/p0

′
∈ B(Rn), then there exists a constant C > 0 such that for all (f , g) ∈ F ,

∥f ∥Lp(·)(Rn) ≤ C∥g∥Lp(·)(Rn).

The following result was proved by Diening in [35].

Lemma 9.4. Let p(·) ∈ P(Rn). Then the following conditions are equivalent:
(i) p(·) ∈ B(Rn),
(ii) p′(·) ∈ B(Rn),
(iii) p(·)/p0 ∈ B(Rn) for some 1 < p0 < p−,
(iv)


p(·)/p0

′
∈ B(Rn) for some 1 < p0 < p−.

We also need the following density property, see Theorem 3.4.12 in [30].

Lemma 9.5. If p(·) ∈ P(Rn), then C∞

0 (Rn) is dense in Lp(·)(Rn).

Now, we have all the ingredients to prove Theorems 3.1–3.6.

Proof of Theorem 3.1. Since p(·) ∈ B(Rn) then, by Lemma 9.4, there exists a p0 with 1 < p0 < p− such that

p(·)/p0

′
∈

B(Rn). On the other hand, by Theorem 6.2 we see that, for this p0 and any w ∈ A1,
Rn

T (f⃗ )(x)
p0w(x)dx ≤ C


Rn


M(f⃗ )(x)

p0
w(x)dx

holds for all m-tuples f⃗ = (f1, . . . , fm) of bounded functions with compact support.
Apply Lemma 9.3 to the pair


T (f⃗ ), M(f⃗ )


and obtainT (f⃗ )


Lp(·)(Rn)

≤ C
M(f⃗ )


Lp(·)(Rn)

. (9.1)

By Definition 4.1, it is easy to see that

M(f⃗ )(x) ≤

m
j=1

M(fj)(x) for x ∈ Rn.

This, together with (9.1) and the generalized Hölder’s inequality (Lemma 9.2), yieldsT (f⃗ )

Lp(·)(Rn)

≤ C
m
j=1

∥M(fj)∥Lpj(·)(Rn)
≤ C

m
j=1

∥fj∥Lpj(·)(Rn)
,

where in the last inequality, we make use of the Lpj(·)(Rn) boundedness of the Hardy–Littlewood maximal operatorM since
pj(·) ∈ B(Rn).
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Now, we have showed that Theorem 3.1 is valid for all bounded functions f1, . . . , fm with compact support. Lemma 9.5
concludes the proof of Theorem 3.1. �

Proof of Theorem 3.2. By Lemma 9.5 it suffices to prove Theorem 3.2 for all bounded functions f1, . . . , fm with compact
support.

By Lemma 9.4, there exists a p0 with 1 < p0 < p− such that

p(·)/p0

′
∈ B(Rn) since p(·) ∈ B(Rn). It follows from

Theorem 7.2 that, for this p0 and any w ∈ A1,
Rn

Tb⃗(f⃗ )(x)p0w(x)dx ≤ C


Rn


ML(log L)(f⃗ )(x)

p0
w(x)dx

holds for all bounded functions f1, . . . , fm with compact support.
Applying Lemma 9.3 to the pair


Tb⃗(f⃗ ), ML(log L)(f⃗ )


, we getTb⃗(f⃗ )Lp(·)(Rn)

≤ C
ML(log L)(f⃗ )


Lp(·)(Rn)

. (9.2)

Recall the pointwise equivalenceML(log L)(g)(x) ≈ M2(g)(x) for any locally integrable function g (see (21) in [36]) and

ML(log L)(f⃗ )(x) ≤

m
j=1


sup
Q∋x

∥fj∥L(log L),Q


=

m
j=1

ML(log L)(fj)(x),

then, by (9.2) and Lemma 9.2 there hasTb⃗(f⃗ )Lp(·)(Rn)
≤ C

 m
j=1

ML(log L)(fj)

Lp(·)(Rn)

≤ C
 m

j=1

M2(fj)

Lp(·)(Rn)

≤ C
m
j=1

∥fj∥Lpj(·)(Rn)

where in the last inequality, we make use of the Lpj(·)(Rn) boundedness ofM twice. �

Now, Theorem 3.3 (Theorem 3.4) is a direct consequence of Theorem 3.1 (Theorem 3.2) together with Lemmas 8.2 and
8.3. And, Theorem 3.5 (Theorem 3.6) is a direct consequence of Theorem 3.1 (Theorem 3.2) together with Lemma 8.5.
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