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The main purpose of this paper is to establish a number of results concerning bounded-
ness of multi-linear Calder6n-Zygmund operators with kernels of mild regularity. Let T be
a multilinear Calderén-Zygmund operator of type w(t) with w being nondecreasing and

Communicated by Enzo Mitidieri ® € Dini(1), but without assuming w to be concave. We obtain the end-point weak-type

estimates for multilinear operator T. The multiple-weighted norm inequalities for multilin-

4M25§2" 0 ear operato'r T {and multili'near commutators of T vyith BMO functions are also establj;hed.
42B25 As applications, multiple-weighted norm estimates for para-products and bilinear
47G30 pseudo-differential operators with mild regularity and their commutators are obtained.
35505 Moreover, some boundedness properties of the multilinear operators are also estab-
46E30 lished on variable exponent Lebesgue spaces.

) Our results improve most of the earlier ones in the literature by removing the assump-
;\j[el}lllvtvi(l)i’:;r Calderén—Zygmund operator tion of concavity of w(t) and weakening the assumption of € Dini(1/2) to w € Dini(1).
Commutator © 2014 Elsevier Ltd. All rights reserved.
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Multilinear pseudo-differential operators
Multiple weights

Variable exponent Lebesgue spaces

1. Introduction and main results

The multilinear Calderén-Zygmund theory was first studied by Coifman and Meyer in [ 1-3]. This theory was then further
investigated by many authors in the last few decades, see for example [4-9], for the theory of multilinear Calder6n-Zygmund
operators with kernels satisfying the standard estimates. Recently, there are a number of studies concerning multilinear
singular integrals which possess rough associated kernels so that they do not belong to the standard Calder6n-Zygmund
classes. See, for example [10-14] and the references therein. We also mention that the [P estimates for multi-linear and
multi-parameter Coifman-Meyer Fourier multipliers have been established in [15-18].

Recently, Lerner et al. [7] developed a multiple-weight theory that adapts to the multilinear Calder6n-Zygmund opera-
tors. They established the multiple-weighted norm inequalities for the multilinear Calder6n-Zygmund operators and their
commutators.

In 2009, Maldonado and Naibo [13] established the weighted norm inequalities, with the Muckenhoupt weights, for the
bilinear Calder6n-Zygmund operators of type w(t), and applied them to the study of para-products and bilinear pseudo-
differential operators with mild regularity.
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Motivated by [5,7,13], we will consider the m-linear Calder6n-Zygmund operators of type w(t) and their commutators,
and give some applications to the para-products and the bilinear pseudo-differential operators with mild regularity. In
addition, some boundedness properties of the multilinear operators involved on variable exponent Lebesgue spaces are also
obtained.

We now give the definition of the multilinear Calderén-Zygmund operators of type w(t).

Throughout this paper, we always assume that w(t) : [0, c0) — [0, c0) is anondecreasing function with0 < w(1) < oo.
For a > 0, we say that w € Dini(a), if

1 a
@(t)
|®|pinia) 52/ ; dt < o0
0

Obviously, Dini(a;) C Dini(a,) provided 0 < a; < ay, and, if w € Dini(1) then

here and in what follows, X ~ Y means there is a constant C > 0 such that C™'Y < X < CY.

Definition 1.1. A locally integrable function K(x, ¥, ..., Ym), defined away from the diagonalx = y; = -+ = yp in
(RM™*1 is called an m-linear Calderén-Zygmund kernel of type w(t), if there exists a constant A > 0 such that
K@Yy < A (1.1)
(Ix =yl + -+ Ix = ym)™
forall (x, y1, ..., Ym) € (R"™ 1 with x # y; for somej € {1, 2, ..., m}, and
K Y10 oy V) — KK Y1s e Ym)] < A w( x =X ) (12)
(Ix=yal+ -+ x=ymD™ \Ix—=y1l + -+ [x — ym]

whenever [x — x| < 1 max;<j<m |x — yj|, and

KX, Y15 Vi oo Ym) — K& y1, oo Vi Ym)

A lyj — ¥l
< a)( i Y, ) (13)
(Ix =yl +- -+ xX=yaD™ \|IX=y1l+ -+ X = Yl

whenever |y; — y]f| < % MaXi<i<m |X — Yil-
Wesay T : .7(R") x --- x .Z(R") — .#/(R") is an m-linear operator with an m-linear Calder6n-Zygmund kernel of type
C()(t), K(X7y17 cee ’ym)v lf

Moo )@ = [ KOS IR0 SOy
(]R”)m
whenever x ¢ ﬂjmzl suppfiandeachfj e C*(R"), j=1,...,m.

If T can be extended to a bounded multilinear operator from L9 (R") x --- x LI (R") to [%*°(R") for some 1 < q,
qis - .., qm < cowith1/q;+- - -4+1/q, = 1/q,0r, from L9 (R") x - - - x LI (R") to L' (R™) forsome 1 < qq, .. ., g < 0o with
1/q1+---+1/qm = 1,thenT is called an m-linear Calderén-Zygmund operator of type w(t), abbreviated to m-linear w-CZO.

Obviously, when w(t) = t° for some ¢ > 0, the m-linear w-CZO is exactly the multilinear Calderén-Zygmund operator
studied by Grafakos and Torres in [5]. The linear Calderén-Zygmund operator of type w(t) was studied by Yabuta [19]. The
bilinear case in this form was considered by Maldonado and Naibo in [13].

In what follows, the letter C always stands for a constant independent of the main parameter and not necessarily the
same at each occurrence. A cube Q in R" always means a cube whose sides are parallel to the coordinate axes and denote
its side length by £(Q). For some t > 0, the notation tQ stands for the cube with the same center as Q and with side length
£(tQ) = t{(Q). For1<p < 00, let p’ be the conjugate index of p, that is, 1/p 4+ 1/p’ = 1. And we will occasionally use the
notations f = (fi, ..., fn), T(F) = T(f1, ..., fm), dy = dy;---dyn and (x,y) = (X, y1, ..., ym) for simplicity. For a set E
and a positive integer I, we will use the notation (E)! = E x - - - x E sometimes.

————

I

1.1. Boundedness of m-linear w-CZO

Our first result on multilinear operators with multilinear Calderé6n-Zygmund kernel of type w is the following end-point
weak-type estimates on the product of Lebesgue spaces.
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Theorem 1.1. Let w € Dini(1) and T be an m-linear operator with an m-linear Calderén-Zygmund kernel of type w(t), K (x,

Y1, ..., Ym). Suppose that forsome 1 < qq, ..., qm < coand some 0 < q < oo with
1 1 1
= — e —
q q1 qm

T maps L9 (R™) x - - - x LIm(R") into L9*°(R™). Then T can be extended to a bounded operator from L' (R") x - - - x L'(R") into
L1/™° (R™). Moreover, there is a constant Cinn,olpinic1) (that depends only on the parameters indicated) such that
”T”L1 X x 1= [1/m,00 =< Cm,n,\wIDini(D (A + ”T”qu ><»~><Lqm—>Lq*°C)!

where A is the constant appearing in (1.1)-(1.3).

Remark 1.1. When w(t) = t° for some ¢ > 0, Theorem 1.1 was proved in [5]. For the bilinear case, Theorem 1.1 was
proved in [13] when w is concave and w € Dini(1/2). Comparing our Theorem 1.1 with Theorem 6.1 of [ 13], we remove the
hypothesis that w is concave and reduce the condition @ € Dini(1/2) to a weaker condition @ € Dini(1).

Recently, Pérez and Torres [ 14] introduced the minimal regularity conditions, so-called the bilinear geometric Hormander
conditions (BGHC), on the kernels of bilinear operators. They showed that the BGHC is sufficient for the existence of end-
point estimates of the bilinear Calderén-Zygmund operators. Instead of (1.3), they considered the following condition

C w(|y1—yﬁl+|yz—y’2|>
—yil + Ix = y2 )0 X —y1| + |x — yal

IK(x, y1,¥2) — KX, ¥7,¥5)| < T (1.4)

whenever |y; — y}| < %|x —yiland [y, — ¥l < %|x — ¥3|. They verified that @ € Dini(1) together with condition (1.4)
implies the BGHC. Obviously, if K satisfies (1.4) then it also satisfies (1.3).

Remark 1.2. Though some ideas of the proof of Theorem 1.1 are from [5,13,14], there are some substantial differences and
modifications in our arguments. For instance, the concavity of w, which implies the doubling property of w, is needed in [13],
while in Theorem 1.1 we do not require w to be concave. In addition, the Marcinkiewicz function is a basic tool in studying
the weak-type estimates for the multilinear Calder6n-Zygmund operators, see [5,11] for example, and we make no use of
it in the proof of Theorem 1.1. Moreover, our (1.3) is a weaker assumption than (1.4), and our estimates appear to be more
delicate and complicated.

To state the weighted norm inequalities for the multilinear Calderdn-Zygmund operators of type w(t), we first recall the
definition of multiple-weights introduced by Lerner et al. [7].

Definition 1.2. Let P = P1,...,pm)and 1/p=1/py+---+ 1/pupwith1 < py,...,pn < 00.Given w = (wy, ..., Wy)
with each w; being nonnegative measurable, set

L " p/pj
Vi = 11:! w;' .
We say that w satisfies the Az condition and write w € A;, if
1 1/p m 1 - 1/p;
Sgp (@ /Q v,;)(x)dx) ]1:! <@ A w;j(x) 1dx> < 00,

. NV . -
where the supremum is taken over all cubes Q C R, and the term (g7 o wj ()" dx) """ is understood as (infq w;)”"
whenp; = 1.

From now on, we will use the following notations. For 0 < p < oo and w € A, denote by I?(w) the collection of all
functions f satisfying

1/p
If ey = (/ lf(x)l"w(X)dX> < o0.
]Rn
And, denote by [7"*°(w) the weak space with norm
1
I sy 2= sup tw(fx € B": [F ] > 11) r,
t>

where w(E) := fE w(x)dx for a measurable set E C R".
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Our next theorem concerns the multiple-weighted norm inequalities and weak-type estimates.
Theorem 1.2. Let T be an m-linear w-CZ0 with w € Dini(1). Let P= (P15 -+, pm)With1/p = 1/p1+---+1/pm, and 0 € As.
(D If1<pj<ooforallj=1,...,m,then

m
1Ty =€ 1_! 05 -
=

(2)If1<pj<ooforallj=1,...,m, and at least one of the p; = 1, then

m
[T ey = CT Ty
j=1

Remark 1.3. When w € Dini(1/2) and w is concave, the first part of Theorem 1.2 was proved in [ 13, Theorem 6.8] form = 2
and vy = W1 = Wy € Amin(py,py)- 50, the first part of Theorem 1.2 improves the corresponding result in [13] in two aspects.
Firstly, we reduce the condition @ € Dini(1/2) to a weaker condition @ € Dini(1) and remove the hypothesis that w is
concave. Secondly, we extend the weights from the classical A, class to the A class. Moreover, when w(t) = t* for some
& > 0, Theorem 1.2 was proved in [7].

1.2. Commutators of m-linear w-CZO

Let T be an m-linear operator, given a collection of locally integrable functions b= (b1, ..., bn),the m-linear commutator
of T with b is defined by

T(fre ) = Y T
j=1
where

TE) =BT Fro e fioesfi) = T Bifis o fin).

We will use the notation b € BMO™ stands for b; € BMOR") forj = 1,..., m, and denote by ||B||BMOm = MaXi<j<m
l1b; l| mon)-

Theorem 1.3. Let T be an m-linear w-CZO and T, be the m-linear commutator of T with b € BMO™. Let i) € Ap with 1/p =
1/p1+---+1/ppand1 < pj < oo, j=1,..., mIf w satisfies

1a)(t)< 1)
f— 1+log— ) dt < o0, (1.5)
o t t

then there exists a constant C > 0 such that

m
1750, = CBllsoe [T U510
j=1

It is easy to check that if w satisfies (1.5), then w € Dini(1) and

(o] 1 t 1
Zk-a)(Z‘k)%/ m<1+log—>dt<oo.
i o t t

We remark that, since the commutator has more singularity, the more regular conditions imposed on the kernel is
reasonable. In addition, although condition (1.5) is stronger than the Dini(1) condition, a standard Calderén-Zygmund kernel
is also a Calder6n-Zygmund kernel of type w(t) with w satisfying (1.5) in the linear case, so does in the multilinear case.

For the multiple-weighted weak-type estimate, we have the following result.

Theorem 1.4. Let T be an m-linear w-CZ0 with w satisfying (1.5) and T;, be the m-linear commutator of T with b € BMO™. If

w € Aq,...,1), then there exists a constant C > 0 depending on ||B||BMom such that
. m (x 1/m
vi([x e R": |T;(H | > A™}) < c]_[ (/ cb(mi)')wj(x)dx)
j=1 \JE!

here and in the sequel, @ (t) = t(1 + log™ t).
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Remark 1.4. For the linear commutator of the Calder6n-Zygmund operator of type w(t) with b € BMO(R"), see [20,21].
Lerner et al. [7] proved that the conclusions of Theorems 1.3 and 1.4 hold when w(t) = t® for some ¢ > 0.

The remainder of this paper will be organized as follows. In Section 2, we will apply the main results to the para-
products associated with w-molecules and the bilinear pseudo-differential operators with mild regularity. In Section 3, some
boundedness properties of the multilinear operators involved on variable exponent Lebesgue spaces are given. In Section 4,
we recall some basic definitions and known results needed. The remaining sections are devoted to proving the theorems of
this paper.

2. Applications

In this section, we will apply the results stated above to the para-products associated with w-molecules and the bilinear
pseudo-differential operators with mild regularity.

2.1. Para-products with mild regularity

Forv € Zand k = (kq, ..., k,) € Z", let P, be the dyadic cube
Poe i={(x1,....x) €R" 1 ks <2'x; <ki+1,i=1,...,n}.
The lower left-corner of P := P, is Xp = X, := 27"¢ and the Lebesgue measure of P is |P| = 27"". We set
D={Py:veZ kel

as the collection of all dyadic cubes.

Definition 2.1 ([13]). Let w : [0, c0) — [0, 0o) be a nondecreasing and concave function. An w-molecule associated to a
dyadic cube P = P, is a function ¢p = ¢, : R" — C such that, for some Ay > 0and N > n, it satisfies the decay condition

21/
lpp ()| < m, x e R", (2.1)
and the mild regularity condition
1 1
16p(X) — bp (V)] < A2 (2" |x — y]) [(1 o g o XPDN] (2.2)

forallx,y € R".

Definition 2.2 (/13]). Given three families of w-molecules {(ZJ’(Al}Q6 o, j = 1,2, 3, the para-product I1(f, g) associated to
these families is defined by

(.8 =Y 117", ¢ ). ¢3)b. f g € 7®. (2.3)

QeD

The term para-product was coined by Bony in [22], which has been studied extensively and has experienced remarkable
development in recent years. Operators of the form (2.3) have been studied by many authors. Some developments on para-
products and their applications can be found in [23,18,24,25,13,15,16], and references therein.

In [23], it is showed that para-products associated to smooth molecules can be realized as bilinear Calder6n-Zygmund
operators. In [13], some sufficient conditions on w were given so that the para-products built from w-molecules can be
realized as bilinear w-CZ0s.

As applications of the results stated in Section 1, we consider the multiple-weighted norm inequalities of para-products
associated to w-molecules and the multilinear commutator with BMO functions. Our results can be stated as follows.

Theorem 2.1. Let w be concave with @ € Dini(1), and {q}]é}qe@,j = 1,2, 3, be three families of w-molecules with decay
N > 10n and such that at least two of them, say j = 1, 2, enjoy the following cancellation property

f¢{2(><)dx:0, Qed, j=1,2
RTI

Let P = (p1, p2) with 1/p = 1/p1 + 1/p,, and W € A;.
(1) If 1 < p1, p2 < 00, then
Hn(fl’fZ)HLP(va,) = C”fl”Lpl (wl)”fZHLpZ(wz)-
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(2) If 1 < p1, p2 < oo and at least one of the p; = 1, then
||H(f1!f2)||bp700(vﬂj) < Cllfilleer wp 2 122 g -

Remark 2.1. Theorem 2.1 improves the corresponding result of [13] in two aspects. Firstly, we reduce the condition
® € Dini(1/2) to w € Dini(1), which is weaker than the former one. Secondly, we extend the weights from the Muck-
enhoupt A, class to the multiple-weight class A.

Leth = (b1, by) € BMO?, we define the commutators of the para-product /7 with b by
IT;(f1, f2) %) = [b1 (T (fi, f2) (%) — T (b1f1, f2)X) | + [b2 )T (f1, f2) (%) — TT(f1, bofo) (%)].

Theorem 2.2. Under the assumption of Theorem 2.1, if, in addition, we assume that w satisfies (1.5) and 1 < p1, p, < 00, then
there exists a constant C > 0 such that

| 75 (f1. f) ||Lp(%) < CIIbllgmoz If1llp1 wy) 1211222 () -

Theorem 2.3. Let w and q}’Q be the same as in Theorem 2.1 and w satisfy (1.5). If W € A1, then there exists a constant C > 0
depending on ||B||BM02 such that

2 - 1/2
s ((xeR": M| > 22}) <[] (/ <D<|fj§j{)|>wj(x)dx> :
j=1 R

2.2. Bilinear pseudo-differential operators with mild regularity

Letm e€R, 0<4,p <lande, B,y € Z.Abilinear pseudo-differential operator T, with a bilinear symbol o (x, &, 1),
a priori defined from .7 (R") x .#(R") — .#’(R"), is given by

To (fi, ) (%) = f / X Eo (x, &, My E)f () dEdn.
R JRn
We say that a symbol o (x, &, 1) belongs to the bilinear Hérmander class BS s if

020807 o (x, £, )| < Cap(1 + |E] + g™ Holel=p WDy & e R

for all multi-indices «, 8 and y and some constant Cy g.
For £2 : [0, 00) — [0,00), m € Rand 0 < p < 1, we say thata symbol o € BS,'O"’w’Q if

¢80 (x, &, m)| < Cap(1 +[E] + [ (IHIED 2.4)
and

|0£0) (0 (x + h. €. ) — o (x. &, )| = Caper(NDRCIE] + ) (1 + [§] + )"~ (2.5)

forallx, &, n € R". Obviously, BS7!, C BS , 5.

The study of bilinear pseudo- cflfferentlal operators grew from the early works of Coifman and Meyer [1-3]. In 1978, Coif-
man and Meyer [3] considered a bilinear pseudo-differential operator with symbol o € BS .1 a0d @ € Dini(2) in unweig-
hted Lebesgue spaces. In 2009, Maldonado and Naibo [13] studied the weighted norm 1nequallt1es for pseudo-differential
operator with associated symbol o (x, £, 1) € BSOw (see Theorem 1.1 in [13]).

The purpose of this subsection is to apply thé fesults stated in Section 1 to the bilinear pseudo-differential operators
with associated symbol o € BS o+ We obtain the multiple-weighted norm inequalities for the bilinear pseudo-differential
operators and their commutators Our results can be stated as follows.

Theorem 2.4. Let a € (0, 1), w be concave with w € Dini(a/2), and £2 : [0, co) — [0, oo) be nondecreasing such that

sup o' 79U R2(1/t) < oo. (2.6)

O<t<1
Suppose that P= (p1,p2) with 1/p = 1/p1 + 1/py and v, € As. If 0 € BS?’(D’Q with |«| + |B| < 4n + 4, then the following
boundedness properties hold:
(1) If 1 < pq, p2 < o0, then
ITo (F1, P gy < Cllfller ) 12122 () -
(2) If 1 < p1, p2 < oo and at least one of the p; = 1, then

”Ta (flafZ) ”lP'oo(v,;J = C”fl ||Lp1 (wq) ||f2 ||Lp2 (wo)
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Remark 2.2. The first part of Theorem 2.4 when v,, = w; = w; € Amin(p,,p,) and the second part when Uy = W1 = Wy € A
and p; = p, = 1 were obtained in Theorem 1.1 of [13].

Leth = (b1, by) € BMO?, the commutator of the bilinear pseudo-differential operator T, with b= (by, by) is defined by
T2 (f1, £2) (%) = [b1(OT, (1, £2) %) — Ty (if1, ) (O] + [b2() T, (f1, o) X) — T (f1, bafo) (¥)].-

Theorem 2.5. Under the assumption of Theorem 2.4, if, in addition, we assume that w°(t) satisfies (1.5)and 1 < p1, p2 < 09,
then there exists a constant C > 0 such that

B -
T2 (1, f2) ||Lp(%) < ClIbllgmoz If1llee1 wy) 1211222 ) -

Theorem 2.6. Let a, w and §2 be the same as in Theorem 2.4, and, in addition, we assume that w° (t) satisfies (1.5).If o € BS ,
with |a| + |B| < 4n+ 4and w € A1), then, there exists a constant C > 0, depending on ||B||BMO2, such that

5 2 : (0| v
Vs ([x eR": TP, ) ()| > & ]) <c[] (/R qb( - )wj(x)dx> .
=1

3. On variable exponent Lebesgue spaces

In this section, we will study the boundedness properties of m-linear w-CZOs, the para-products and the bilinear pseudo-
differential operators with mild regularity and their commutators on variable exponent Lebesgue spaces. We first recall
some definitions and notations.

Definition 3.1. Letp(-) : R" — [1, 0o) be a measurable function. The variable exponent Lebesgue space, [P (R"), is defined
by

p(x)
PORY) = {f measurable : / <[f(;)|> dx < oo for some constant A > O}.
]Rﬂ

It is well known that the set [?®)(R") becomes a Banach space with respect to the norm

p(x)
||f|ILp<-)<Rn):inf{A>0:/ ('f(;‘)') ix < 1}'
Rn

Denote by #2(R") the set of all measurable functions p(-) : R"™ — [1, 0co) such that

1 <p_:=essinfp(x) and p,; = esssupp(x) < oo,
XeRM xeRN

and by #(R™) the set of all p(-) € 2(R") such that the Hardy-Littlewood maximal operator M is bounded on [P (R™).

The theory of function spaces with variable exponent has been intensely investigated in the past twenty years since
some elementary properties were established by Kovacik and Rakosnik in [26]. In 2003, Diening and RdZicka [27] studied
the Calder6n-Zygmund operators on variable exponent Lebesgue spaces and gave some applications to problems related
to fluid dynamics. In 2006, by applying the theory of weighted norm inequalities and extrapolation, Cruz-Uribe et al. [28]
showed that many classical operators in harmonic analysis are bounded on the variable exponent Lebesgue space. For more
information on function spaces with variable exponent, we refer to [29,30].

For the m-linear w-CZO0 and its commutator, we have the following results.

Theorem 3.1. Let T be an m-linear w-CZ0 with w € Dini(1). If p(-), p1(-), ..., pm(-) € Z(R") so that
11 T 1
p()  pi() Pm()
Then there exists a positive constant C such that

m
HT(f) HLP(-)(]RH) <C H ”fj”LPj(-)(Rn)-
]:

(3.1)

Theorem 3.2. Let T be an m-linear w-CZO with w satisfying (1.5) and T; be the m-linear commutator of T with b € BMO™ If
(), p1(¢), ..., Dm(-) € B(R™M) so that (3.1) holds. Then there exists a constant C > 0 such that

m
“ TE(f) ”Lp(-)(RH) = C 1—[ ”f}”Lpf(')(]R")'
j=1
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For the para-product defined by (2.3) and its commutator, the similar boundedness properties also hold.

Theorem 3.3. Let w, {¢{2}Q€@, j=1,2,3,and N be the same as in Theorem 2.1.If p(-), p1(-), p2(-) € B(R") so that
11
p)  pi()  pa()’
then there exists a constant C > 0 such that

177, £ | gy < CIil1 Gy W2 20 -

Theorem 3.4. Let w, {¢1{2 }oen, j =1, 2, 3,and N be the same as in Theorem 2.1 and, in addition, we assume that w satisfies (1.5).
If p(+), p1(-), p2(-) € #(R") so that (3.2) holds, then there exists a constant C > 0 such that

1751 ) [ o ny < CI im0 ey Wl o2 gy -

For the bilinear pseudo-differential operators with mild regularity stated above and their commutators, there hold the
following results.

Theorem 3.5. Let a, w and $2 be the same as in Theorem 2.4. Suppose that o € BS?’w,Q with |a| + |B] <4n+4.1f p(-), p1(-),
p2(-) € Z(R") so that (3.2) holds, then there exists a constant C > 0 such that

”Ta (f]afZ) HLp(-)(Rn) = C”fl ||1_P1(-)(Rn) ||f2 ”Lp2(')(]R")'

Theorem 3.6. Let a, w and £2 be the same as in Theorem 2.4 and, in addition, we assume that w°(t) satisfies (1.5). Suppose that
o€ BS?&Q with || 4+ |B| < 4n+4.If p(-), p1(-), p2(-) € Z(R") so that (3.2) holds, then there exists a constant C > 0 such
that

1721 22 o g < CUFillior g 12 o -
We will prove Theorems 3.1-3.6 in the last section.
4. Notations and preliminaries
4.1. Sharp maximal function and A, weights

Let f be a locally integral function. For a cube Q, denote by fo = ﬁ f Q f(y)dy. The sharp maximal function of Fefferman
and Stein [31] is defined by

Mﬁ(f)(x)—suplﬂf* |f(V)—C|dYNSUP*/|f(V) faldy.
Qax ¢ Q3x |Q|

Let M be the usual Hardy-Littlewood maximal operator, for 0 < § < oo, we define the maximal functions My and M § by

My(F) = [MAFIH] and ME(F) = [ME(IF )]

Let w be a nonnegative locally integrable function defined in R". We say that w € A, 1 < p < oo, if there is a constant
C > 0 such that for any cube Q, there has

1 17p/d )P‘l
<|Q|/ wed )<|Q|/“’(") ) =¢

We say that w € A if there is a constant C > 0 such that Mw(x) < Cw(x) almost everywhere. And we defined Ay, =
Upzl Ap. See [32] or [33] for more information about the Muckenhoupt weight class A,.

12

The following relationships between M§ and M; to be used is a version of the classical ones due to Fefferman and
Stein [31], see also [7] page 1228.

Lemma4.1. (1) Let 0 < p, § < oo and w € An. Then there exists a constant C > 0 (depending on the A, constant of w) such
that

f [Ms(F) (0] wx)dx < C / [M(F) (0] w)dx,
R R"

for every function f such that the left-hand side is finite.
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(2) Let 0 < § < coand w € Ax. If ¢ : (0, 00) — (0, 00) is doubling, then there exists a constant C > 0 (depending on the
A constant of w and the doubling condition of ¢) such that

supg(Mw({y € R": Ms(HO) > 4}) = Csupgu(ly € R : Mi(H©) > 2}),

for every function f such that the left-hand side is finite.

4.2. Some facts of the Orlicz spaces

We need some basic facts from the theory of Orlicz spaces. For more information about Orlicz spaces, we refer to [34].

A function ¥ defined on [0, co) is called a Young function, if ¥ is a continuous, increasing and convex function with
¥ (0) = 0and ¥ (t) — oo ast — oc. The Orlicz space Ly (R") is defined to be the set of all measurable functions f such
that for some A > 0,

/ W<V(X)|>dx<oo
R A

The space Ly (R") is a Banach space when endowed with the Luxemburg norm

Wlle = Ifl, = inf{x -0 :f w <[f(;)|)dx < 1}.
Rn

The ¥-average of a function f on a cube Q is defined by

F00l
||f||wa—mf{)~>0 |Q|/ ( ) _1}.

The following generalized Jensen’s inequality holds (see (2.10) in [7]).

Lemma 4.2. If ¥, and ¥, are two Young functions with ¥1(t) < W,(t), for t > ty > 0, then there is a constant C > 0 such
that |[flle;.0 < Cliflley.q-

For Young functions @ (t) = t(1 + log™ t) and ¥ (t) = e' — 1, the corresponding averages will be denoted by

I-lle.q =1 llaogn.q and | -llw.q =1 lexpLaq-
The following inequality holds (see (2.13) in [7])

o] / If(x)g@)1dx < Clif llexpr. 1€lLaog1).0- (4.1)

Let Q C R" be a cube and b € BMO(R"), the generalized Holder inequality (4.1) together with John-Nirenberg’s
inequality implies that (see (2.14) in [7])

1
@/ Ib(x) — bo| If ®)|dx < ClIbllsmollf llqogL).0- (4.2)
Q

The maximal function related to Young function @ (t) = t(1 4 log™ t) is defined by
Miogry () (%) = sup [If lLaogry.q >
Q>3x

where the supremum is taken over all the cubes containing x.
4.3. Multilinear maximal functions and multiple weights

The following multilinear maximal functions that adapts to the multilinear Calderén-Zygmund theory are introduced by
Lerner et al. in [7].

Definition 4.1. For all locally integrable functionsf = (f1,...,fm) and x € R", the multilinear maximal functions .M and
M, are defined by

M(F) ) = supﬂ

stj 1 |Q|

/ 071y,

and

R 1 1/r
M (f)(x) = SUD]_[(M/QUS(yj)dej) , forr>1,

Q>3x
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the maximal functions related to Young function @ (t) = t(1 + log™ t) are defined by
m
; - 1
Miogry ) X) = sup [Ifill Laogr).q 1—[ */ i)l dy;
Q>3x i |Q| Q
and
N m
Migiogy () %) = sup [ | Iflliaogny.o
X i1
where the supremum is taken over all the cubes Q containing x.

Obviously, if r > 1, then the following pointwise estimates hold

M) ®) < CMgog1, (N < C Migogy (D) < "M () (3). (43)
The first two inequalities in (4.3) follows from
1
1l

and the last one follows from the generalized Jensen’s inequality (Lemma 4.2).
In [7], the characterizations of the multiple-weight class A in terms of the multilinear maximal function M are proved
in Theorems 3.3 and 3.7. We restate it as follows.

/ DIy < 1 litogb.a.
Q

Lemma 4.3 ([7]).Letl3 =@1,--->Pm), 1 <p1,...,0m<ocand1/p=1/p1+---+ 1/pn.

(W If1<p1,...,pm < 00, then M is bounded from L1 (wy) X - - - x [Pm (wp,) to [P (vy) ifand only if w = (w1, ..., wy) € As.
(2) If1 <pq,...,Ppm < 00, then M is bounded from IP1 (w1) X - - - x [Pm (wy,) to [P (vy) ifand only if W = (w1, ..., wy) €
Ap.

The characterization of the multiple-weight class A in terms of the Muckenhoupt weights, which will be used later, is
also established in Theorem 3.6 of [7].

Lemma 4.4 ([7]).Let w = (w1, ..., Wy), P= 1, ---spm)and 1/p=1/p1+---+1/ppwith1 < pq, ..., pm < 0. Then
W € Aj if and only if

1-p)

-] o
w; GAmpJ(, j=1,...,m,

Vi € Amp,

/

.. 1-p; . . 1
where the condition w; T e Apy in the case p; = 1is understood as w; /m e A
)

The following boundedness property of M; is contained in the proof of Theorem 3.18 of [7] page 1258.

Lemma4.5. Let P = ®1,---sPm)s 1 < Pp1y....pm < oc0and 1/p = 1/p1 + -+ + 1/pm. If W € A;, then there exists a
constant r > 1 such that, M, is bounded from [P1 (w{) X - -+ x [P™(wp,) to [P (vy).

4.4. Kolmogorov's inequality
Finally, we will also need the following Kolmogorov's inequality (see page 485 in [32] or (2.16) in [7]).

Lemma 4.6. Let 0 < p < q < 00, then there is a positive constant C = C, 4 such that for any measurable function f there has

QTP Ifllr@) < CIRITIf e ()-

5. Proof of Theorem 1.1

Proof. Set B = ||T |91 x...x1am - 1a.00- Fix A > 0 and consider functions f; € L'(R"),j = 1, ..., m. Without loss of generality,
we may assume that [|fj||;1gn) = 1for 1 <j < m. We need to show that there is a constant C = G, wlpini1) > O such that

Hx € R": |IT(f1, ..., fm) )| > A} < C(A+B)"/mA~"/m, (5.1)
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Let y be a positive number to be determined later. Applying the Calderén-Zygmund decomposition to each function f;
at height (y1)/™ to obtain a sequence of pairwise disjoint cubes {Qj,kj };?jf’:l and a decomposition

fi =gj+bj=gj+2bj,kj
kj
suchthatforallj=1,...,m,

(P1) supp(bj ) C Q.

(PZ)/ bj i, (x)dx = 0,

Rn

®3) / by, 09 dx < C(yi) /™|y .
Rn

®0) || =Y 1ayl = comm,

kj kj
(P5) lIbjll;1 @y = C,
(P6) lIgilliseny < Cya) ™ for1 <s < oc.

Let ¢ ; be the center of cube Q; x; and £(Q; ;) be its side length. Set ij‘kj = 8y/nQ; ) and 2 = Ukj ijkj forj=1,...,m,
and 2* = (J, £2/". And let

Ei={xeR":|T(g1,8,....8n)X)| > A1/2™}
Ez = {X € Rn \ Q* : |T(b17g25 .- !gm)(x)| > )"/Zm}
Es={xeR"\ 2" :|T(g1,bs,...,gn) ()| > A1/2™}

Eym ={x € R"\ 2% : |T(by, by, ..., bn)(x)| > 1/2™}.
It follows from property (P4) that

m m
12F <> 1271 <Y D IQugl < Ccyn ™
j=1

j=1 kj
By the L7 x ... x [9m — [9°° boundedness of T and property (P6), we have
Erl < "B A g% guny -~ 18l o ey
< Cquqfl/m)Lfvm.
Thus,
zm

X eR": [TO®| > A} < D |E| +C|27|
s=1
2m
< Y B[+ GBIy Cyn) M (5.2)
s=2

So, to complete the proof of Theorem 1.1, we need to give the appropriate estimates for each |E;|,2 < s < 2™, to guarantee
the validity of (5.1).
For the sake of clarity and showing the difference of the proof from the ones in the literature mentioned above, we split
the proof into two cases.
Case 1: the casem = 2.In this case, 27 = U,, Qiy,, 25 = Uy, @y, and 2% = 27 (J £2;,and dy = dy:dy,. There leaves
only the following three terms to be considered
[E2| = {x € R"\ 22 : [T(b1, &) (0] > 1/4}],
|Es| = {x € R"\ 227 : [T(g1, ba)(0)] > 1/4}],
|Esl = {x € R"\ 22 : [T (b1, by)(x)| > 1/4}].

We will show that
|Es| < CAyV2A~12 fors =2, 3, 4. (5.3)
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For the term |E;|, by Chebychev’s inequality and property (P2), we have

4
IR 3 I LTI
ky YR

Q%

4 -
==y [K (%, y1.y2) = KX, €14, 2) | b1k, 1) 82 (v2)dy | dx
)\, kl RH\Q* (RH)Z
4 -
< —lglee Y | b Ol K (x.y1.y2) = K(x, 14, y2)|dxdy. (5.4)
A o Jan, zn Jrm o

For fixed k;, denote by Q"],kl = (2"2/nQ1 k) \ 27'/nQuk,), i = 1,2, ..., to shorten the notations. Clearly we have
R"\ 2* CR"\ Qf, C UZ, 2}, Foranyy; € Qi andy, € R", since o is nondecreasing then it follows from (1.3) that

/ |K(x, y1.¥2) — K(x, €14, ¥2)|dx < A/ ! w( 1= >dx
B\ @+ - T Jemer (X=yil + k=320 \Ix —yi1l + [x = ya
= 1 —c
SAZ/ . w(b’l 1,k1|>dx
i Joi, (Xx=yil+ x =y Ix — y1l

o0

4 1

<AY o7 dx, (5.5)
= 2, (x=yil+ =y

where in the last step we use the facts that, forx € 2 ﬁqk] and y; € Qqx,,

1 i
V1 — Cipl < Eﬁz(Ql,lq) and |x —yi| > 27'/nl(Qy ).

Putting (5.5) into (5.4), and applying properties (P6), (P3) and (P4), we have

CAy /2 o » dx .
= S0 Y [ bl [ 3w d
Ql,kl R i=1

y
o 2, (x=yil+ =y

CAyl/z 0 . dy»
bl ) |b1,k (V1)|/ dxdy
A1/2 ZZ Qi ! Qil.lq RN (|X_y1| + |X_y2|)2"

IA

k1 i=1

CAy'/? > . 1
02 / by, 0] / 1y,
2172 Z Z Qg 1 2 [x — yq|"

IA

k1 i=1

CAV]/Z 00 By
WZZ“’(Z D) b1,k 1)

= - dxdy,
ki i=1 Q.ky 272 /nQy 1y 121=14/nQq i, |
CAV]/Z 00 By
< S 220 | by 0)ldys
k1 i=1 Q‘l,kl
S CAV]/Z)L—I/Z'

Similarly, we can obtain that |E3| < CAy /2A~1/2,
Now, let us consider |E,4|. For this term, our approach is much more different from the ones used by Grafakos and Torres [5]
and Maldonado and Naibo [13] (pages 241-242).

By Chebychev’s inequality and properties (P1) and (P2), we have

4
n / |T (b, b2) (x)|dx
RM\ 2%

4 -
i [ e K e b1 00 b0l
A k1.,k RM\§2* Qz,kz Ql,kl

|Ea]

IA

IA

4 —
X Z/ / (/ ‘K(X’yl’yZ) —K(x, C1J<17-VZ)|dX>|b1,k1 2] |b2,k2(y2)|d_V~
kyky Y Quky Y Qiky \YRMN2*
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Let 2}, be as above. For any fixed k, denote by 25 , = (2"%/nQyx,) \ 2""'\/nQux,), h=1,2,....Then
(’@a,kl ﬂ QQ,/Q)'
Forany (y1,¥2) € Qix, x Qu,, similar to (5.5), we have
1 Y1 — 1kl
K(x,y1,y2) —K(x, ¢1,,¥2) dst/ w( = )dx
/Rn\m| 132 e (IX=y1l 4+ 1% = y2)2 " \|x = yi] + [x = y2|

1
= AZZ‘”Q )f TR (55)

=1 i=1 2}, N25,,

(@

R\ 2* cR"\ (@7, J @) c U

h=1i=1

Note that, for any x € Qil,kl N Qg,kz and (y1,y2) € Qi X Qa,, there has

X —y1] 2 27 /n(Qiiy) and  |x —y,| & 2"/ne(Qa ),
then, for any (y1, ¥2) € Q1.k, X Qa,, the following holds
/ 1 2 k] N2 Ky

dx
2, N2, K=yl +Ix — Y22 (2i+]\/ﬁe(Ql,k1 I 2h+1\/ﬁK(Q2!k2))2"
= e}f(l, k]; h, kz). (57)

22

Forany (y1,¥2) € Qi x, X Qa,, it follows from (5.6) and (5.7) that

o0
[ KOy — Kyl = CA Y 02 DGk ko). (58)
R\ 2%

h,i=1

Then, by (5.8) and property (P3) one has

Bl < / / ( 0270, ky: h, kz>)|b1kl(y1>||b2k2(yz>|dy
Q ky JQky \hi=1

k] kZ

CAy Zw(z N 1Qik Q0 (Z H(i, ks h, ’<2)>

i=1 k1,ky

CAy Zw(z b Z/ /Qz (Z Je(i, ky; h, kz))dy

kq,ky

IA

Applying (5.7) again and noting that for any fixed k, the sequence {Qg‘, Ky }he 1 is pairwise disjoint, it follows from property
(P4) that

) . 00 1 .
oy oeny [ [ (X ] )

; Iqu:z Qi Yk, hg; 2, nep, (x=—yil+Ix— y2D)?
S : 1

< CAy Y w7 / / ([ ndx)dfl
igl: "12];2 Q“‘l Qlkz Qi].k] (|X - yl' + |X - Y2|)2
S : 1

< CAy ) w27 / f ( / dy )dxdy
Z Z Qi %: 2k, (X —y1l + X —ya)2n 2 !

1 kq

1
CA 27" dxd
= VZ‘”( )Z/Qm/g (Rn<|x—y1|+|x—yz|)2" yz)”l
LN

/ ndxdy1
Q1, kq 1/ |X—y |

K1

1
<cay Y w2 / / U g
Z Z Q1,ky 2i+2ﬁQ]<k1 |21\/HQ1,I<1 |
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IA

CAy Zw(z Ny Qi

’(]

IA

CAy V20712,

It is easy to see that the constants C’s involved depend only on m, n and |@|pini(1)- S0, (5.3) is proven. Set y = (A+ B)~!,
it follows from (5.2) and (5.3) that

4
(xR T )] > M) < Y IE| + By 272 4 Cyiy™12
s=2

< CA+B)"1712,
which is the desired result. The proof of the case m = 2 is completed.

Case 2: the case m > 3. We need to estimate |E;| for 2 < s < 2™. Suppose that for some 1 < [ < m we have [ bad functions
and m — [ good functions appearing in T(hy, ..., hy), where h; € {g;, b;}. For matters of simplicity, we assume that the bad

functions appear at the entries 1, ..., [, and denote the corresponding term by |E5( )| to distinguish it from the other terms.
That is, we will consider

EQ) = |{x e R"\ 2 : |T(b1, ..., b1, Gs1. ... 8n) )| > 1/2"}|,

and the other terms can be estimated similarly. We will show
EP| < CAy (ya)m. (5.9)

Recall that supp(b1 ;) C Q.k, and ci g, is the center of Q; 4. Denote by [T,_; Qr, = Quiy X ++ X Quig and J, = (1,
Y2, - .., ym) for simplicity. Then it follows from properties (P2) and (P6) that, for any x € R" \ £2*,

K(x, y)]'[br b ) 1'[ g () dy

IT(b1, ..., b, &1, -, 8] = ‘
Ko, @®nm r=I+1

|K(x.5) — K(x, y*)|1"[|br b 0 H g (v)|dy

IA
=
%\
z
3

44444 ki r=I+1
< Cyn)'w Z / K (x.5) — K(x, y*>|]"[|brkrcyr)|dy
This together with Chebychev’s inequality gives
1 2"
EP| < — IT(b1, ..., b1, &1, - - » Gm) (X)]dX
)\. R”\Q*
< < A)’"*"/ (Z/ Kex3) — Kx g | T (y)|d*)d
= - m X, yY) — KX, Y« rk- Yr)|dy |Jax
A B2\ J @ =i

]

[ ]1brs 0)1dy
r=1

H |br s, ¥ ( / . *|1<<x,9) — 1<<x,9*)|dx)d§.

r=1Qkr r=1

IA
>0
—_
S
>
v
%\;
2
E]
N
%\;
Z
Q
H
=
=
x
<
N
=
=
x
<
*
~
&
SN———"

,,,,,

IA
>N
<
5
S
%\
Vs
:\

Let 2, = (2fr+2ﬁQ,,,(,) \ (2”“\/5@.,“) forr=1,...,landi; = 1,2,....Then
e e U-Uh N-Nek) = U (0%)
=1 i1,....i1=1 “\r=

For any (y1,...,Y)) € ]_[r:1 Qrk, and any Vi1, ..., Ym) € (RM™!, applying (1.3) and the fact that w is nondecreasing,
similar to (5.5) and (5.6), we have

- - 1 —cC
/ |K(x,y) - K(x,y*)|dx < A/ - mnw('{: 1’k1|>dx
e (L e-yl) \E k-l
=1 j=1




106 G. Lu, P. Zhang / Nonlinear Analysis 107 (2014) 92-117

00
<A Z / 1 w(|y1 Cl,k1|>dx
i m X — y1l

1seenii=1 2, kr (Z |x — y] )

00
: 1
<A Y w@™ .
i1,...,ij1=1 ﬂ'r=1 err,kr (Z |x — y]|)
=1

Then,

1
1 -
|Es(l)| < 7(y)h) = Z Z w2~ 11)/ ’/ 1_[|br,k,(yr)|</l . mmndX)dy
k=1 @) ITT Qe ri Mi=1 2/, (Z |x—yj|)
=1

=< 7()’)») o Z Z (2™ 11)/ 1_[|brkr0’r)|
..... kyiq,....ii=1 kr e
1
x :/z ir (/ nym—1 D E——— ) JEE --dym>dx}dyl - dy
rov 2t AR (L -y
=1
=

r=1 Q:.kr r=1

CA  mi > , !

—nm Yy a)(Z‘”)/ 1"[|brkr(yr>|{f

A ii=1 ]_[l mr l‘grkr (i |X_y]|)
=1

On the other hand, similar to (5.7), for any (y1, ...,y € ]_[lr:1 Qr k., there has

1 r, kr
dx ~
/ﬂl Qir ! nl ! i nl
r=1°rkr (Z |X — yr|> (Z 21r+1ﬁz(Qr,l<r))
r=1 r=1

Then by (5.10) and the property (P3), we have

ﬂ Qr kr

0
|E”

IA

(22 1vae@us,)
r=1

mgrkr
Ay Z Z w2 '1)]_[|Qrkr{ —= )n,}

,,,,, kyiq,....ii=1 1 (Z 21}4-1\/53(@ kr)
r=1

IA

9
r,kr

[
Q
2
™
N
&
™

, { , p” }dy1 -e-dy
K1,yeeskyin,..ij=1 [Ti=1 Qr iy (Z 2,‘,_+]\/E£(Qr’kr))
r=1

Applying (5.10) again, we can see that |E5(')| is dominated by

vz Sl
14 Z Z @ Mmoo |/, 2r, (t |X_Yr|)
r=1

dyzdy
o 5 EL o (B, 22 el
y'Z;]w Z Q”“[ mlf=1=‘@lrr,l<r Zkl M=z Qs (i )’ i

mdx]dylu-dy,

_Yr

nldx}dy1 - dy).

1
—(w\) e Z Z w2 ll)/]_[ﬁ_lQr.krl_[wnkr(er{ —= )nl}dyl...dy,

(5.10)
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Since for any fixed r, the family {Q: , },_; is a sequence of pairwise disjoint cubes, then for any x € ﬂ'r:1 Qiﬁkr andy, €
Qi k, there has

1
Sy = > [ (D
l_lr 2 Qrkr Z |X s ) ko, ki—1 125 @k ko Y QK

,dJ’l> dy, - --dyi4

(3 m)

1
Z / / 71‘1.)/1 dyZ"’dyl—l
kg Y T2y Qi \JRT "
e — ¥l

(&

IA

IA

1
C Y [ e
kg O TIZh Qi (ZIX—.M)
r=1

1
<. 'EC / dyz
% 0, (K= Y1l + X = 2"
C ! d
= y
e (X —yil + [x —ya)2n 2
C
< —.
[x —y1|"

Thus

EP| < cAy w2 / {/ ndx}dyl
,Zl[ 1 Z Q, kq ﬁ =1 Q;”k |X — V1 |
CAV ZCU(Z zl) Z/ { / n }d.Vl (511)
Q kq =1 |X_y |

kq NI Y0

A

IA

On the other hand, noting that for any fixed r the sequence {.,z Y= is also pairwise disjoint, then for any y1 € Qy ;.

there has
dx: / dx)
iy ZulArIQ |x_y1|n 1= 1(? ,1:2,k |X—J/1|”
- 1
(N er, )ﬂ(Ux, 1=sz,) X =yl

Wil—1=

/ ——dx
~ 1IN el |X—}’1|"
i L :
i 1,<1m;22k |X—)’1|"

1

i i ndx
2, m(U,?z":1 322%,(2) |x — y1l

1
< / LN
o't |x =y

1,kq

Mg

i

I A

I/\
I/\

Putting the above estimate into (5.11) and applying property (P4), we have

1
EP| < cAy § w(2” '1)§ / (/ dx)dy1
’ i1=1 Qikq 21 |x—yq|"

1,kq

1
CAy ) w2 / ( / %dX)dm
”Z Z Qi 2172 gy, 1218/0Qu kg |

A

IA
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< CAy Y o)) Q|

i1=1 k1
< CAy(ya)~'m

This shows that (5.9) holds.
Now, we have proved that each |E| satisfies |E;| < CAy (yA)~/™. So, by (5.2) we have

[ € R T(fr, o ) ®)] > M| < CAy ()™ CBTy VMM - C(yay 1.
Sety = (A+ B)~!, then (5.1) follows. The proof of Theorem 1.1 is finished. O
Remark 5.1. We would like to note that although there makes no use of the Marcinkiewicz function in the proof of Theo-
rem 6.1 in [13], the authors introduce a new operator M]‘”l instead (see [13] page 240), which is similar to the Marcinkiewicz

function and plays a similar role in the proof. In the prdof of Theorem 1.1, we do not use the Marcinkiewicz function and
Mj“’l Our approach is more direct and the estimates are more delicate and complicated.

6. Proof of Theorem 1.2

To prove Theorem 1.2, we first establish the following pointwise estimates on the sharp maximal function Mg acting on
T(f) in terms of the multilinear maximal function M.

Theorem 6.1. Let T be an m-linear w-CZ0 with w € Dini(1) and 0 < § < 1/m. Then for allf in any product space [P1(R") x
e x IPmRMwith1 <pj<ooforj=1,...,m,

M} (T(H)(x) < CMP) ().

Proof. For a fixed point x and a cube Q > x. Due to the fact | la]” —|b |’| < |a—b|" for 0 < r < 1, it suffices to prove that,
for0 <§ < 1/m,

1 _ 1/8 _
(ﬁ]/“GX@_{Pﬂ> < CMP) ), (6.1)
Q

where the constant c is to be determined later.
For each j, we decompose f; =ij + £, wherefjO = fixq+ and Q* = 8,/nQ. Then

[Ts0 = [T6 00 +5°00)
j=1 j=1
= Y Ron-fimom
aq,...,am€{0,00}
=[50+ FT 00 Fom ),
Jj=1 (@1 5eer0tm) €
where £ = {(«1, ..., an) : thereis atleast one ; # 0}. Then we can write
TH@ =TE. ... DD+ Y. TE ... M@, (6.2)

Since T is an m-linear w-CZO with w € Dini(1), then it follows from Theorem 1.1 that T maps L' (R") x - - - x LI(R") into
L'/mo°(RM), Applying Kolmogorov’s inequality (Lemma 4.6) with p = & and g = 1/m, we have

1 1/8
<|Q|/(;|T(f10’...,f,2)(2)|5dz> < CIQI*l/mHT(f]q,..,fn?)||L1/mm(Rn)

IA

m
Q™™ T TRl gy

j=1

LSS |
C —_— {(2)|d
< gm/@ 15(2)ldz

CMEF)(x). (6.3)

IA
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To estimate the remaining terms in (6.2), we choose

c= 3 TELEm.

and it suffices to show that, for any z € Q, the following estimates hold

YoTE M@ = TE M) < CME) ). (6.4)
(@1,.ees am)eL
We consider first the case when oy = - - - = @, = 0o. For any z € Q, there has

ITE, @ =TES, . 2O S/(. . IK(ZJ’)—1<(X,9)I1_[U§°°(Vj)|dff
RN Q* m

j=1

< 2/ K, 5) — Koo ) [ 1 0p)1dy
k=1 Y (2" j=1

where 2, = 2¥3/nQ) \ 2¥2/nQ) fork=1,2,....
Noting that, for x, z € Q and any (y1, ..., ¥m) € (2)™, there has

Iz —yil = 25/n0Q) and |z —x| < V/nl(Q),

and recalling that w is nondecreasing, and applying (1.2), we have

. —k
2—x | _ co@™

w .
mn m — |2k m
J:

K(z,y) — K(x,¥)| <

Then
TG, @ —TE, . )| = cZwa )[w |2,<[Q|m]_[lf o)1
—k (v .
sCZw(z )]‘[|2,<+3 T s g BODI
< Clolpiniay M) (%)

What remains to be considered are the terms in (6.4) such thatoj, = - =, =0for1 <l < m.Set g = {j1,...,Jji}
then oj = oo for j & ¢. Thus

TG famy @) — TE . M ()]
< f K@) — K I ] 17 0pldy
RMH™ j=1

< [ TT1°0n] K@) — K [T = 0p)1dy
( *)I jeg (RH\Q*)m—I i¢g
f T Z [ wed - ke []uoid. (6:6)
@' jeg (2! i3
Since for x, z € Q and any y; € 2, withj & g, there has |z — y;| > 2k/nf(Q), then, similar to (6.5), we have
- - A |z — x|
Kz, y) —Kx, )| = — —o| =
(Xre-wl)" \Ti-ul
N=1 j=1

- A w( |z — x| )
_<Z|Z_J’j|)mn 21z =l

i 99
—k
< Cw(2 )'
|2I<ﬁQ|m
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This together with (6.6) gives
ITE . famy@) = TE L fam (]
<c / oS 0™ £ )|
1_[ J Z (2m-1 |2ka|m 1_[ J

Jefr’ i€4

<Y o —r ( /Lf(v)ld>< / lf°°(y)|d>
ka Izkal’“ 11;[ PN e

= CZO)(Z k)(l_[ 2k+3[Q| 2k+3[Q m‘(y}‘ﬂd}’j)

Jj=1
< C|60|Dini(1)«M(f)(X)-
So, (6.4) is proven and then (6.1) follows from (6.2) to (6.4). This concludes the proof. O

Recently, Grafakos et al. [24] proved the following result in the context of RD-spaces, which serves as an analog of the
classical Fefferman-Stein inequalities (see Lemma 4.11 in [24]). Here, we rewrite their result as follows.

Lemma 6.1 ([24]). Let 0 < pg < oo and w € Aw. Then for any p with pg < p < oo there exists a constant C (depending on n,
p and the A, constant of w) such that for all f € LI]OC(R”) with Mf € [P0-°°(w), we have

IM() @y < CIM*(F) ), if po <P
and

IM(F)lp-oe @y < CIM*(F)lip-couys  if Po < P.

Now, by Theorem 6.1, Lemma 6.1 and Theorem 1.1, we can get the following result. Since the argument is almost the
same as the proof of Proposition 4.13 in [24], we omit the proof.

Theorem 6.2. Let T be an m-linear w-CZO with w € Dini(1), p € [1/m, 0o) and w € A.. Then there exists a constant C > 0
such that

17O sy = CIME gy > 1/m
and

[Ty =< CIME oy P = 1/m
hold for all bounded functionsf with compact support.

Proof of Theorem 1.2. For the same reason as in the proof of Corollary 3.9 in[7], it is enough to prove Theorem 1.2 is valid for
fis .- ., fin being bounded functions with compact supports. By Lemma 4.4, for i € Aj there has v; € A. Then Theorem 1.2
follows from Theorem 6.2 and the weighted boundedness of M with multiple-weights (Lemma 4.3). O

7. Proofs of Theorems 1.3 and 1.4

To prove Theorems 1.3 and 1.4, we first establish the pointwise estimates on sharp maximal function acting on the
multilinear commutator T;,.

Theorem 7.1. Let T be an m-linear w-CZ0 with w satisfying (1.5) and T be the m-linear commutator of T with b e BMO™
Assume that 0 < § < e and 0 < § < 1/m. Then, there exists a constant C > 0, depending on § and &, such that

ME(T5) @) = ClBllawon (M. (T()) (0 + Miosny )

for all m—tuplesf = (f1, ..., fm) of bounded measurable functions with compact supports.

Proof. By linearity it is sufficient to consider the commutator with only one symbol, that is, for b=be BMO(R™), we will
consider the operator

Ty(fi, ..o, f) %) = DT (f1, . .., f) ®) — T(bf1, ..., fm) (%),
Fix x € R", for any cube Q centered at x, set Q* = 8,/nQ.Then forany z € Q

Ty(F) @) = (b2) — bo=)T(F)(2) — T((b — bo:)fi, - - -, fun) @).
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Since 0 < § < 1, then for any number c, there has

1/8 N 5 1/6
<|Q| f\lTb(f)(z)l—lcl\ dz) < <|Q|/](b(z) bo)T(F)(@)| dz)

1/5
<|Q| f\T (b—bQ*)fl,...,fm)(z)—c\“dz>
=1+IL

Forany 1 < q < ¢/§, by Holder’s and John-Nirenberg’s inequalities, we obtain

s 1/(8q) s 1/(5q)
I b(z) — b+ qd T 9d
= <|Q|/' ® = borl Z) <|Q|/' hel z)

C||b||BMOMaq(T(f))(X)
ClibllsmoM: (T(F)) ().

To estimate II, we use the similar decomposition to the ones in the proof of Theorem 6.1. For each j, we decompose f; as
fi ZJ}O + £ withj;0 = fixo*, j =1, ..., m. As in the proof of Theorem 6.1, we write

IA

IA

l_[ﬁcynzl_[fﬁ(ij Z FN 1) 3 ).
j=1 j=1

where £ = {(a1, ..., o) : thereis at least one o # 0}.
Set

c= Y T(b—bofi". .. i),

Then we have

1/8
< C(i/\T((b—ba*)ff’, ---,fﬁ)(z)\ﬁdz)
QI Jo

1 s N\ 1/8
> (@/’T((b‘bfl*)fa“-~~’fr‘rf'”)<2>—T((b—bqaff‘,...,f:,fm)oc)!az)
Q

Noting that 0 < 8 < 1/m, by Kolmogorov's inequality (Lemma 4.6), and applying the L' x - - - x L' to L'/™* boundedness
of T, (4.2) and (4.3), we get

Ml < |Q|m I7(® = b2 ) | meora
< |Q|m ||(b bQ )fl ”]_1 (RM) 1_[ ”f ”Ll(]Rn)

b _b * d d

= |Q|/| @) = bo- | (@) z] | |Q|fm(z)| z

IA

Cllbllwolfi oo+ | | - | @
j=2 |Q | Q*

IA

ClIbllsmo M, gog 1) (F) ()
< ClibllamoMigogr (F) ().

Forll,,..., , we consider the term Il
from Holder s mequallty that

A

o first. Set 2, = (2%3./nQ) \ (2¢2,/nQ) as above. Since 0 < § < 1, it follows

,,,,,

C
oo, .00 = @/U((b—bq*)ffx’,..-,frﬁo)(Z)—T((b—bq*)ff’o,...,frﬁo)(x)|d2
Q
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c R ) m )
< — K(z, — K(x, b — b 201y 1dY ) d
~ 1Ql L(/GR,.\Q*)J (2.9) = K(x. 9)|Iby1) = b 'E'ﬁ ] y) z

C[(& . ) m ]
< Kz 5) — K& )| 1by) = bo| TT1fi)1d7 )dz.
= |Q|/Q<,;/@k)m| @.3) = K3 ) = bor [ 1501 y) ;

j=1
Then, by (6.5) one has

C 0 - b(y1) — bos| m _})
01 z : 2 k _ (v dv )d
= Q] /Q<k=1 ©@ (opm  12k/nQ|m [1650p1dy )dz

j=1

3
2
!

IA

y - Ib(y1) — box| lfi )| 1 .
; LL)( ) (2k+3 /nQ)m |2k+3\/ﬁQ|m Jl:! U;(V;)I y

> 1
CY w2 (7
= [2k+3./nQ | 243 /g

IA

[b(y1) — bo+| lfl(Vl)|d}’1)

U 1
(U g o g 5095)

j=2

Recalling that |byk+3 mq — bo+| < Ck||bl|mo. then by (4.2) we have
1

[2k+3./nQ | 243 /g

<! Ib(y:) — b i) ldys + 22— bl
T —— —_— k+3 e —
T 2k3,/nQ| 243 /mQ ! 23 /g LU ! |2k+3,/nQ | 2k+3 /g

[by1) — bo+| lfi(y1)1dy:

[f1 1) |dys

n Ck||blsmo
|2"+3\/EQ| 243 /g

< C(k+ DIbllamollf1log Ly, 24+3 /g -
Since w satisfying (1.5), then it follows from (7.1), (7.2) and (4.3) that

< ClIblismo If1ll Laogry,24+3 yma fiy)1dy,

llec....c0 < ClIblamoM]ogry D@ Y (k+ D27

k=1

< CIbllsmoMiogty () ().
From (7.1) to (7.3), there holds the following inequality, which will be used later,

00 m
_ [b(y1) — bo+| lfi(y1)] - =
(27" i ldy < Clibllpmo-M A ).
; (2k+3 Jmg)m |2k+3\/ﬁQ|m jl:! 1\V] BMOM[(logL)

Now, let us consider the terms Il,,

.....

(7.1)

(7.2)

(7.3)

(7.4)

am Such that at least one ; = 0 and one o; = oo. Without loss of generality, we

assume thataj, = --- = aj; = Oforsome 1 <[ < mand set ¢ := {ji, ..., ji} as before, then o; = oo forj ¢ g. For any

z € Q, similar to (6.6) and applying (6.7) and (7.4), we have
IT((b—bo)fi", ... f2m) (@) — T((b — bo)fy™", ..., f2m)(x)]

= /< )ll_llfj"%)lz /( ) K@) = K, 3)| 1by1) = bos| [ T 1 0)1dy
Q =1 /(2"

jeg k= ¢4

" (o |b(y1) — b-| )
C .0 : 2 k A N 00 (1, d
< /(Q*),l_[lf] (VJ)|;a)( ) Py o [T opidy

jeg k= J€8

> Ib(1) — box| i (v1)] 12 ,
<C) w2™ 1f; ;)1 dy
k; @sgmom  [253y/nQm ,1:! T

< CIbllamo Mgt () ().
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Then, it follows from Holder's inequality that

C
Hoy,.am < @/!T((b—bq*)f{”,-.-,f,;‘f’”)(Z)—T((b—bq*)f“’,..-,f,ﬁ"”)(X)!dZ
Q

IA

ClIbllBmoMiiogL) ).

Combining the above estimates we get the desired result. The proof is completed. O
Remark 7.1. For the linear case, the condition w satisfying (1.5) is also needed, see [20,21], for details.

Theorem 7.2. Let T be an m-linear w-CZ0 with w satisfying (1.5) and T;, be the m-linear commutator of T with b € BMO™. If
p > 0and w € A, then there exists a constant C > 0, depending on the A, constant of w, such that

/.

sup
t>0

() 0[P w®dx < B2 on / [Megos )0 w0 () dx
Rn

and

w({y e R": [T;(H(W)| > t™}) < sup w({y € R": Migogry(H @) > t"})

t>0 (p(l/t)

for allf = (f1, ..., fm) bounded with compact supports.

1
(1/0)

Proof. By Theorems 7.1 and 6.1, we can get Theorem 7.2. Since the ideas are almost the same as the ones of the proof of
Theorem 3.19 in [7], we omit the details. O

Now, we are in a position to prove Theorems 1.3 and 1.4.

Proof of Theorem 1.3. It is enough to prove that Theorem 1.3 is valid for f1, . . ., f,, being bounded functions with compact
supports. Since W € Ap then by Lemma 4.4 one has v € As. It follows from the first part of Theorem 7.2 that
|75 HLp(%) < ClIbllgmom || Mraogr) () ”Lp(%)-

By (4.3) and Lemma 4.5, for some r > 1,

m

I e,y = ClBllawon [ 46D, ) < ClBllawon 1‘1[ 22 -
j=

So complete the proof of Theorem 1.3. O

To prove Theorem 1.4, we need the following result due to Lerner et al. [7].

Lemma 7.1. Let w € Ag 1). Then there exists a constant C such that

,,,,,

) e . m If; (0| v
vi({x € R": Moy (H®) > ™)) < ]| o = Jwlodx)
j=1 \JRI

Proof of Theorem 1.4. Applying Theorem 7.2 and Lemma 7.1 and making use of the same arguments as the ones in the
proof of Theorem 3.16 in [7], we can obtain Theorem 1.4. Here we omit the proof. [0

8. Proofs of Theorems 2.1-2.6
8.1. Proofs of Theorems 2.1-2.3
To prove Theorems 2.1-2.3, we first recall the following result obtained in [13].

Lemma 8.1 ([13, Theorem 5.3]). Assume that w is concave and w € Dini(1/2). Let {qﬁ’é}QE@, j = 1,2, 3, be three families of
w-molecules with decay N > 10n and such that at least two of them have cancellation property. Then, the para-product IT has
a bilinear Calderén-Zygmund kernel of type 6 (t) with

0(t) = AdAyo(Cyt), t >0,

for some constants Ay and Cy (hence, 0 € Dini(1/2)). Moreover, IT has the mapping property
2(R") x [>(R") — LY(R").

In particular, IT is a bilinear Calderén-Zygmund operator of type 6 (t).
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We checked the proof of Lemma 8.1 (see the proof of Theorem 5.3 in [13] pp. 235-237) carefully and found that the
condition w € Dini(1/2) has no use for proving that /T having a bilinear Calderén-Zygmund kernel of type 6(t), and in the
proof of IT mapping L?(R™) x L?(R") into L' (R"), only the condition & € Dini(1) is needed. For the sake of clarity, we restate
Theorem 5.3 of [13] into the following two lemmas.

Lemma 8.2. Assume that w is concave, and let {¢’é}Qe,@, j =1, 2, 3, be three families of w-molecules with decay N > 10n and
such that at least two of them have cancellation property. Then, the para-product IT has a bilinear Calderén-Zygmund kernel of
type O(t) with

0(t) = AjAano(Cyt), t> 0.

Lemma 8.3. Assume that w is concave and w € Dini(1). Let {q&’é}QE@, j = 1,2, 3, be three families of w-molecules such that
at least two of them enjoy cancellation property. Then IT is bounded from L?>(R") x L*(R") into L' (R").

Proof of Theorems 2.1-2.3. By Lemmas 8.2 and 8.3 we see that under the assumption of Theorem 2.1, the para-product I7
is a bilinear Calder6n-Zygmund operator of type 6 (t) with

0(t) = AdA, no(Cyt), t > 0.
If o € Dini(1) (or, w satisfies (1.5)), then so does 6(t). Thus, Theorems 2.1-2.3 follow from Theorems 1.2-1.4,
respectively. O

8.2. Proofs of Theorems 2.4-2.6

To prove Theorems 2.4-2.6, it suffices to show that the bilinear pseudo-differential operator T, stated above is a bilinear
Calderén-Zygmund operator of type 6 (t) with 6(t) = w®(t). To do this, we first give the following remark.

Remark 8.1. In Definition 1.1, we assume that an m-linear Calderén-Zygmund kernel of type w satisfies (1.2) and (1.3)
whenever |[x — x| < % maxi<j<m |x — ;| and |y; — yj| < % maxi<j<m |X — y;jl, respectively. We note that the constant % is not
the essential attribute to ensure the validity of Theorems 1.1-1.4. More precisely, if we replace the constant % by a constant
T € (0, 1) then Theorems 1.1-1.4 are also true.

It is known that the bilinear pseudo-differential operator T,, stated above has the following kernel representation

To(f,8)(x) = /R /R K% y1,y)f 0 1)g2)dydy>,  f.g € S (RY),
where
‘K(X5.V1s.VZ) :&(val — X, )2 —X) = / / O'(X, 57 n)efs(_ﬁfx)e*ﬂ(yz*)‘)dé:dn'
R JR?
From Theorem 4.1 of [13], the following estimates hold for the associated kernel.

Lemma 8.4. Let a € (0, 1), w and §2 be the same as in Theorem 2.4, and, set 6(t) = w®(t).If 0 € BS?ywyQ with |a| + |B| <
2n + 2, then the associated kernel KX of T, satisfies (1.1) and (1.3) with w being replaced by 6, and

A lx — x|
| K (%, y1,¥2) — KX, y1,¥2)| < 9( )
o2 I =yl + =y Uk — il + [ — s

whenever |x — x| < % max{|x — y1[, |x — y2|}.
This shows that the associated kernel of T, is an m-linear Calderdn-Zygmund kernel of type 6 with 6(t) = »“(t) and

T = % In addition, the following boundedness property of T, is valid, see Theorem 4.3 in [13].

Lemma 8.5. Let a € (0, 1), w and §2 be the same as in Theorem 2.4.If o € BS?_w_!2 with |a| + | 8| < 4n+ 4, then T, is bounded
from [P1(R") x [P2(R") into [P(R") forsome 1 < p,q < ocoand 1 < p < cowith 1/p = 1/p1+ 1/p,. Moreover, T, is a bilinear
Calderén-Zygmund operator of type 6 (t) = w®(t).

Proof of Theorems 2.4-2.6. Note that if w’(t) € Dini(a/2) (or, w(t) satisfies (1.5)), then 6(t) € Dini(1/2) C Dini(1) (or,
6(t) satisfies (1.5)). By Lemma 8.5, Theorems 2.4-2.6 follow from Theorems 1.2-1.4, respectively. O

9. Proofs of Theorems 3.1-3.6

We do some preparations for the proof of the theorems. Now, we recall some facts on variable exponent Lebesgue spaces.
The first one is the generalized Holder’s inequality, see Lemma 3.2.20 in [30] or Corollary 2.30 in [29].
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Lemma 9.1. Let r(-), p(-), q(-) € 2(R™) so that 1/r(x) = 1/p(x) + 1/q(x). Then, for any f € [P (R") and g € 9O (R"), there
has

Ifgllre @my < 2If llpe) amy 1€ 11 a0 ny -
®R™)

When p(-) = 1, the constant 2 in the previous inequality can be replaced by 1 + 1/p_ — 1/p,, see Kovacik and
Rakosnik [26] for details. By the induction argument, we can generalize Lemma 9.1 to three or more exponents.
Lemma 9.2. Let q(-), q1(-), ..., qm(-) € Z(R") so that
1 1
@ w0 g
Then any f; € LYO(R"), j =1, ..., m, there has

-1
”fl o 'fm”LLI(')(]Rﬂ) =< 2m ”fl ”L‘h(‘)(Rn) e ”fm”LQm(‘)(R")-

The next one is an extrapolation theorem originally due to Cruz-Uribe et al. [28]. Here, we use the following form, see
Theorem 7.2.1in [30].

Lemma 9.3. Given a family  of ordered pairs of measurable functions, suppose for some fixed 0 < py < oo, every (f,g) € F
and every w € Ay,

/ [f @) P wx)dx < Co/ lg(X) 1P w(x)dx.
R" R"

Let p(-) € Z(R") withpy < p_.If (p(~)/p0)/ € #(R"), then there exists a constant C > 0 such that for all (f,g) € ¥,
Uf lpo ey < ClIg o -
The following result was proved by Diening in [35].

Lemma 94. Let p(-) € #(R"). Then the following conditions are equivalent:
(i) p() € ZR"),
(i) p'(-) € BRY),
(iii) p(-)/po € B(R") for some 1 < pg < p—,
/

(iv) (p()/po) € #(R™) forsome 1 < po < p_.

We also need the following density property, see Theorem 3.4.12 in [30].
Lemma 9.5. If p(-) € Z(R"), then C{°(R") is dense in [P (R™).

Now, we have all the ingredients to prove Theorems 3.1-3.6.

Proof of Theorem 3.1. Since p(-) € #(R") then, by Lemma 9.4, there exists a po with 1 < py < p_ such that (p(-) / po)/ €
2(R™). On the other hand, by Theorem 6.2 we see that, for this py and any w € Ay,

/ ITE | wedx < € / [MP) 0] wdx
RTK

RN

holds for all m—tuplesf = (f1, ..., fn) of bounded functions with compact support.
Apply Lemma 9.3 to the pair (T(f), M(f)) and obtain

”TO?) ||LP(4>(R") = C”‘M(F) ”LP(-)(Rn)' (9.1)

By Definition 4.1, it is easy to see that

ME)(0) < l_[M()j-)(x) forx € R".
=1

J
This, together with (9.1) and the generalized Hélder’s inequality (Lemma 9.2), yields

m m
ITO g < CTTIME 0 g < CT TG0 @)
j=1 j=1

where in the last inequality, we make use of the L) (R") boundedness of the Hardy-Littlewood maximal operator M since
pi(-) € #(R").
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Now, we have showed that Theorem 3.1 is valid for all bounded functions fi, . .., f;, with compact support. Lemma 9.5
concludes the proof of Theorem 3.1. O
Proof of Theorem 3.2. By Lemma 9.5 it suffices to prove Theorem 3.2 for all bounded functions fi, ..., fi, with compact
support.

By Lemma 9.4, there exists a po with 1 < py < p_ such that (p(-)/po)/ € #(R") since p(-) € #(R"). It follows from
Theorem 7.2 that, for this pg and any w € A4,

/.

holds for all bounded functions f1, .. ., [m with compact support.
Applying Lemma 9.3 to the pair (Tg(f), Moz (f)), we get

T, 0[P wixde < € / [ Moozt 0] w(x)dx
Rn

|| TE (f) || PO (RM) =<C || ML(log L) (f) || PO (R1) (92)
Recall the pointwise equivalence Mj g 1) (g) (X) ~ M 2(g)(x) for any locally integrable function g (see (21) in [36]) and
N m m
GRS | (SUP 1fillaog L),Q) = [ [Mutoer ) ).
j=1 Q3 j=1
then, by (9.2) and Lemma 9.2 there has

<C

T (D) || ey ons < C
” b(f) ”LP()(R) LPO) (RM)

m m
[ ] Migosty () [Tm@
j=1 j=1

PO) (RM)

m
< [T 150 )
j=1

where in the last inequality, we make use of the %) (R") boundedness of M twice. O

Now, Theorem 3.3 (Theorem 3.4) is a direct consequence of Theorem 3.1 (Theorem 3.2) together with Lemmas 8.2 and
8.3. And, Theorem 3.5 (Theorem 3.6) is a direct consequence of Theorem 3.1 (Theorem 3.2) together with Lemma 8.5.
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