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ABSTRACT. In this paper, we establish the Lp-estimate for a trilinear
pseudo-differential operator, where the symbol involved is given by the
product of two standard symbols from the Hömander class BS0

1,0. The
study of this operator is motivated by C. Muscalu’s analysis on the flag
paraproducts that is used to investigate the trilinear Fourier multiplier
operator with flag singularities in [11].

1. INTRODUCTION

For n ≥ 1, we denote by M(Rn) the set of all bounded symbols m ∈ L∞(Rn),
smooth away from the origin and satisfying the classical Marcinkiewcz-Mikhlin-
Hörmander condition

|∂αm(ξ)| ≲
1
|ξ|α

for every ξ ∈ Rn \ {0} and sufficiently many multi-indices α. Denote by Tm the
n-linear operator

Tm(f1, . . . , fn)(x) :=
∫

Rn
m(ξ)f̂1(ξ1) · · · f̂n(ξn)e

2πi(ξ1+···+ξn)·x dξ,

where ξ = (ξ1, . . . , ξn) ∈ Rn and f1, . . . , fn are Schwartz functions on R, de-
noted by S(R). From the classical Coifman-Meyer theorem, we know Tm ex-
tends to a bounded n-linear operator from Lp1(R) × · · · × Lpn(R) to Lr (R) for
1 < p1, . . . , pn ≤ ∞ and 1/p1+· · ·+1/pn = 1/r > 0. In fact, this property holds
for the high dimensions when fi ∈ Lpi(Rd), i = 1, . . . , n and m ∈M(Rnd) (see
[4,7,9]). The case p ≥ 1 was proved by Coifman and Meyer [4], and was extended
to p < 1 by Grafakos and Torres [7] and Kenig and Stein [9]. Moreover, in the
multiparameter setting, the same boundedness property is true (see [12–14]; and
also [2] for a weaker restriction on the smoothness for the multiplier).
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For the corresponding pseudo-differential variant of the classical Coifman-
Meyer theorem, let the symbol σ(x, ξ) belong to the bilinear Hörmander symbol
class BS0

1,0; that is, σ satisfies the condition

(1.1) |∂ℓx ∂
α
ξ σ(x, ξ)| ≲

1
(1+ |ξ|)|α|

for any x ∈ R, ξ = (ξ1, . . . , ξn) ∈ Rn, and sufficiently many indices ℓ, α. We
have the following result.

Theorem 1.1. The operator

Tσ (f1, . . . , fn)(x) :=
∫

Rn
σ(x, ξ)f̂1(ξ1) · · ·fn(ξn)e

2πi(ξ1+···+ξn)·x dξ

is bounded from Lp1(R) × · · · × Lpn(R) to Lr (R) for 1 < p1, . . . , pn ≤ ∞ and
1/p1 + · · · + 1/pn = 1/r > 0, where f1, . . . , fn ∈ S(R) and σ satisfies (1.1).

For the proof of the above theorem, see [1] for the bilinear, high dimensional
case and [12] for the one-dimensional, n-linear case. This boundedness property
also holds in the multi-parameter setting (see [6]). Properties of multi-parameter
and multilinear pseudo-differential operators of Coifman-Meyer type have also
been studied in [8].

For the trilinear Coifman-Meyer type theorem, Muscalu [11] proved the fol-
lowing theorem where the multiplier involved is a product of two symbols and has
flag singularities. That is, form1,m2 ∈M(R2) satisfying

(1.2)

|∂αξ ∂
β
ηm1(ξ, η)| ≲

1
(|ξ| + |η|)α+β

,

|∂
β
η ∂

γ
ζm2(η, ζ)| ≲

1
(|η| + |ζ|)β+γ

,

for every ξ, η, ζ ∈ R and sufficiently many indices α, β and γ, we define

Tm1,m2(f1, f2, f3)(x)(1.3)

:=
∫

R3
m1(ξ, η)m2(η, ζ)f̂1(ξ)f̂2(η)f̂3(ζ)e

2πi(ξ+η+ζ)·x
dξ dηdζ,

where f1, f2, f3 ∈ S(R). Then, we have the following result.

Theorem 1.2 ([11]). The operator defined in (1.3) maps Lp1 × Lp2 × Lp3 → Lr

for 1 < p1, p2, p3 < ∞ with 1/p1 + 1/p2 + 1/p3 = 1/r and 0 < r < ∞. In
addition, Tm1,m2 also maps L∞×Lp×Lq → Ls , Lp×L∞×Lq → Ls , L∞×Lt×L∞ → Lt

for every 1 < p,q, t < ∞ and 1/p + 1/q = 1/s.

Moreover, for the above theorem, the estimates like L∞ × L∞ × Lt → Lt or
L∞×L∞×L∞ → L∞ are false; these can be checked if we set f2 to be identically 1.
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Our main purpose is to consider a pseudo-differential operator correspond-
ing to the above theorem; that is, let a(x, ξ, η), b(x, η, ζ) ∈ BS0

1,0 be symbols
satisfying the conditions

(1.4)

|∂ℓx ∂
α
ξ ∂

β
ηa(x, ξ, η)| ≲

1
(1+ |ξ| + |η|)α+β

,

|∂ℓx ∂
β
η ∂

γ
ζb(x,η, ζ)| ≲

1
(1+ |η| + |ζ|)β+γ

,

and for every x, ξ, η, ζ ∈ R and sufficiently many indices α, β and γ, define the
operator

Tab(f , g,h)(x)(1.5)

:=
∫

R3
a(x, ξ, η)b(x,η, ζ)f̂(ξ)ĝ(η)ĥ(ζ)e2πix(ξ+η+ζ)

dξ dηdζ.

It is easy to see that the symbol a(x, ξ, η)·b(x,η, ζ) satisfies a less restrictive
condition than the condition (1.1) for the symbol σ in Theorem 1.1. The main
result of this paper is the following theorem.

Theorem 1.3. The operator Tab defined as (1.5) is bounded from Lp1×Lp2×Lp3

to Lr for 1 < p1, p2, p3 < ∞ with 1/p1 + 1/p2 + 1/p3 = 1/r and 0 < r < ∞. In
addition, Tab also maps L∞×Lp×Lq → Ls , Lp×L∞×Lq → Ls , L∞×Lt×L∞ → Lt

for every 1 < p,q, t < ∞ and 1/p + 1/q = 1/s.

The proof of Theorem 1.3 involves reducing the trilinear pseudo-differential
operator with a flag symbol to a localized version, and taking advantage of the flag
paraproducts from Muscalu’s work [11] on the Lp-estimates for the Fourier multi-
pliers with symbols of flag singularity. Specifically, we need to prove Theorem 1.3,
which is an equivalent localized version of Theorem 1.3 (see Muscalu and Schlag
[12] for the one-parameter case, and [6] for the multi-parameter setting). More-
over, the key to proving the localized result is that conditions (1.4) allow us only
to consider the dyadic intervals with lengths at most 1 in the flag paraproducts.

More precisely, in Section 3 we will show that our main theorem can be re-
duced to an estimate for a localized operator

T
0,0
ab (f , g,h)(x)

=

(∫

R3
a0(ξ, η)b0(η, ζ)f̂ (ξ)ĝ(η)ĥ(ζ)e

2πix(ξ+η+ζ)
dξ dηdζ

)
ϕ0(x),

where ϕ0(x) is a Schwartz function supported near the origin, and a0, b0 satisfy
a stronger decay condition than the classical Hörmander-Mikhlin condition.

In Section 4, we will decompose the operator T 0,0
ab to some operators of differ-

ent forms. Among these operators, some of them could be reduced to the classical
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pseudo-differential operators in Theorem 1.1, and the others could be written as
flag paraproducts, which are used in the proof of Theorem 1.2, in the form of

(T1(f , g,h) ·ϕ0)(x) =
∑

I∈I

1
|I|1/2

〈f ,φ1
I 〉〈B

1
I (g,h),φ

2
I 〉φ

3
Iϕ0,

where

B1
I (g,h) =

∑

J∈J, |ω3
J |≤|w

2
I |

1
|J|1/2

〈g,φ1
J〉〈h,φ

2
J〉φ

3
J ,

but with dyadic intervals having lengths at most 1. Then, by taking advantage
of the flag paraproducts mentioned above, we will be able to prove the desired
estimate for the localized version of our theorem in Section 5.

We end this introduction by briefly describing some recent works related to
the results in this paper. In our recent paper [10], we study the bi-parameter
pseudo-differential variant of Theorem 1.3. In order to study such a bi-parameter
pseudo-differential operator, usually a bi-parameter version of Theorem 1.2 has to
be established first. However, such a result is hard to prove when the multipliers
there have bi-parameter flag singularities involved. Fortunately, it turns out that
we can strengthen the conditions on the bi-parameter trilinear multipliers and get
a Hölder-type estimate for such strengthened bi-parameter trilinear multipliers.
The Lp-estimates for these bi-parameter trilinear multipliers will be sufficient in
the study of bi-parameter trilinear pseudo-differential operators of flag symbols.
That is, let m3,m4 ∈ BM0(R2n ×R2n) be smooth symbols that satisfy

|∂α1

ξ1
∂α2

ξ2
∂
β1
η1 ∂

β2
η2m3(ξ, η)|(1.6)

≲
1

(1+ |ξ1| + |η1|)|α1|+|β1|

1
(1+ |ξ2| + |η2|)|α2|+|β2|

,

|∂
β1
η1 ∂

β2
η2 ∂

γ1

ζ1
∂
γ2

ζ2
m4(η, ζ)|(1.7)

≲
1

(1+ |η1| + |ζ1|)|β1|+|γ1|

1
(1+ |η2| + |ζ2|)|β2|+|γ2|

,

for every ξ = (ξ1, ξ2), η = (η1, η2), ζ = (ζ1, ζ2) ∈ Rn × Rn and all multi-
indices α = (α1, α2), β = (β1, β2) and γ = (γ1, γ2). Then, we can establish the
following Lp-estimates (see [10]).

Theorem 1.4. For f , g,h ∈ S(R2n), the bi-parameter operators

Tm3,m4(f , g,h)(x)

:=
∫

R6n
m3(ξ, η)m4(η, ζ)f̂ (ξ)ĝ(η)ĥ(ζ)e

2πi(ξ+η+ζ)·x
dξ dηdζ

map Lp1 ×Lp2 ×Lp3 → Lr for 1 < p1, p2, p3 < ∞ with 1/p1+1/p2+1/p3 = 1/r
and 0 < r < ∞.
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Actually, from the proof of the above theorem, we can get a more general result

without much difficulty. For ℓ,n ≥ 1, letm(ξ) ∈ C∞(Rℓ·2n), where ξ = (ξi)
ℓ
i=1

and ξi = (ξ
1
i , ξ

2
i ) ∈ R

n ×Rn. We saym ∈ BM0(Rℓ·2n) if

|∂
α1 ,α

′
1

ξ1
1 ,ξ

2
1
· · · ∂

αℓ ,α
′
ℓ

ξ1
l ,ξ

2
l
m(ξ)| ≲

1

(1+ |ξ1
1| + · · · + |ξ

1
ℓ|)

|α1|+···+|αℓ|

×
1

(1+ |ξ2
1| + · · · + |ξ

2
ℓ|)

|α′1|+·+|α
′
ℓ|

for every ξ ∈ Rℓ·2n and all multi-indices α1, α
′
1, . . . , αℓ, α

′
ℓ. Then, the following

result has been proved in [10].

Theorem 1.5. For integers n,ℓ ≥ 1, let

m(ξ) :=
∏

S⊆{1,...,ℓ}

mS(ξS),

where mS ∈ BM0(Rcard(S)·2n), the vector ξS ∈ Rcard(S)·2n is defined by ξS :=

(ξi)i∈S , where ξi ∈ R2n, and ξ is the vector ξ := (ξi)
ℓ
i=1. Every such symbol m can

define a ℓ-linear operator

T ℓm(f1, . . . , fℓ)(x) :=
∫

R2ℓn
m(ξ)f̂1(ξ1) · · · f̂ℓ(ξℓ)e

2πix(ξ1+···+ξℓ) dξ,

where f1, . . . , fℓ are Schwartz functions on R2n. Then, we also have that T ℓm maps
Lp1 × · · · × Lpℓ → Lp if 1 < p1, . . . , pℓ <∞ and 1/p1 + . . .1/pℓ = 1/p.

Now, we state the result for Lp-estimates for the corresponding bi-parameter
trilinear pseudo-differential operators proved in [10]. Let

Tab(f , g,h)(x)(1.8)

:=
∫

R6
a(x, ξ, η)b(x,η, ζ)f̂(ξ)ĝ(η)ĥ(ζ)e2πix(ξ+η+ζ)

dξ dηdζ,

where f , g,h ∈ S(R2), and the smooth symbols a,b ∈ BBS0
1,0 satisfy the follow-

ing conditions:

|∂ℓ1
x1
∂ℓ2
x2
∂α1

ξ1
∂α2

ξ2
∂
β1
η1 ∂

β2
η2a(x, ξ, η)|

≲
1

(1+ |ξ1| + |η1|)|α1|+|β1|

1
(1+ |ξ2| + |η2|)|α2|+|β2|

,

|∂ℓ1
x1
∂ℓ2
x2
∂
β1
η1 ∂

β2
η2 ∂

γ1

ζ1
∂
γ2

ζ2
b(x,η, ζ)|

≲
1

(1+ |η1| + |ζ1|)|β1|+|γ1|

1
(1+ |η2| + |ζ2|)|β2|+|γ2|

,
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for every x = (x1, x2), ξ = (ξ1, ξ2), η = (η1, η2), ζ = (ζ1, ζ2) ∈ R×R, and all
multi-indices ℓ = (ℓ1, ℓ2), α = (α1, α2), β = (β1, β2), and γ = (γ1, γ2). Our
result established in [10] is the following theorem.

Theorem 1.6. The operators Tab defined as (1.8) map Lp1 × Lp2 × Lp3 → Lr

for 1 < p1, p2, p3 < ∞ with 1/p1 + 1/p2 + 1/p3 = 1/r and 0 < r < ∞.
The main idea in proving Theorem 1.6 is to reduce the bi-parameter trilinear

pseudo-differential operator to a localized version. Then, by taking advantage of
the Lp-estimates of the bi-parameter trilinear multipliers satisfying (1.6)–(1.7), we
can establish Theorem 1.6. We refer the reader to [10] for more details.

2. NOTATION AND PRELIMINARIES

Let S(R) denote the Schwartz space of rapidly decreasing, C∞-functions in R.
Define the Fourier transform of a function f in S(R) as

F(f )(ξ) = f̂ (ξ) =

∫

R

f (x)e−2πix·ξ
dx

extended in the usual way to the space of tempered distribution S′(R), which is
the dual space of S(R).

Throughout the paper, we use A ≲ B to represent that there exists a universal
constant C > 1 so that A ≤ CB, and use the notation A ∼ B to denote that A ≲ B
and B ≲ A.

We call the intervals of the form [2kn,2k(n+1)] in R dyadic intervals, where
k,n ∈ Z. We denote by D the set of all such dyadic intervals.

Definition 2.1. For I ∈ D, we define the approximate cutoff function as

(2.1) χ̃I(x) :=
(

1+
dist(x, I)
|I|

)−100

.

Definition 2.2. Let I ⊆ R be an arbitrary interval. A smooth function ϕ is
said to be a bump adapted to I if and only if one has

|ϕ(ℓ)| ≤ CℓCM
1

|I|ℓ
1

(1+ |x − xI|/|I|)M

for every integerM ∈ N and sufficiently many derivatives ℓ ∈ N, where xI denotes
the center of I and |I| is the length of I.

If ϕI is a bump adapted to I, we say that |I|1/pϕI is an Lp-normalized bump
adapted to I, for 1 ≤ p ≤ ∞.

Definition 2.3. A sequence of L2-normalized bumps (ΦI)I∈D adapted to
dyadic intervals I ∈ D is called a non-lacunary sequence if and only if, for each
I ∈ D, there exists an interval ωI = ω|I| symmetric with respect to the origin so

that supp Φ̂I ⊆ωI and |ωI| ∼ |I|−1.
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Definition 2.4. A sequence of L2-normalized bumps (ΦI)I∈D adapted to
dyadic intervals I ∈ D is called a lacunary sequence if and only if, for each

I ∈ D, there exists an interval ωI = ω|I| so that supp Φ̂I ⊆ ωI , |ωI| ∼ |I|−1 ∼

dist(0,ωI), and 0 ∉ 5ωI .

Definition 2.5. Let I,J ⊆ D be two families of dyadic intervals with lengths

at most 1. Suppose that (φ
j
I )I∈I for j = 1,2,3 are three families of L2-normalized

bump functions such that the family (φ2
I )I∈I is non-lacunary while the families

(φ
j
I )I∈I for j ≠ 2 are both lacunary, and (φ

j
J)J∈J for j = 1,2,3 are three families

of L2-normalized bump functions, where at least two of the three are lacunary.
We define as in [11] the discrete model operators T1 and T1,k0 for a positive

integer k0 by

T1(f , g,h) =
∑

I∈I

1
|I|1/2

〈f ,φ1
I 〉〈B

1
I (g,h),φ

2
I 〉φ

3
I ,(2.2)

where

B1
I (g,h) =

∑

J∈J
|ω3

J |≤|w
2
I |

1
|J|1/2

〈g,φ1
J〉〈h,φ

2
J〉φ

3
J ;(2.3)

T1,k0(f , g,h) =
∑

I∈I

1
|I|1/2

〈f ,φ1
I 〉〈B

1
I,k0
(g,h),φ2

I 〉φ
3
I ,(2.4)

where

B1
I,k0
(g,h) =

∑

J∈J
2k0 |ω3

J |∼|w
2
I |

1
|J|1/2

〈g,φ1
J〉〈h,φ

2
J〉φ

3
J .(2.5)

3. REDUCTION TO A LOCALIZED VERSION

To prove the theorem, we proceed as follows. First, pick a sequence of smooth

functions (ϕn)n ∈ Z such that suppϕn ⊆ [n−1, n+1] and
∑

n∈Z

ϕn = 1. Then,
we can decompose the operator Tab in (1.5) as

Tab =
∑

n∈Z

Tnab,

where

Tnab(f , g,h)(x) := Tab(f , g,h)(x)ϕn(x).

Suppose we can prove the estimate

(3.1) ‖Tnab(f , g,h)‖r ≲ ‖f χ̃In‖p1 ‖gχ̃In ‖p2 ‖hχ̃In‖p3 ,

where In is the interval [n,n+ 1], and χ̃In is defined as in (2.1).
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Then, our main Theorem 1.3 can be proved by the following estimate:

‖Tab(f , g,h)‖r ≲
( ∑

n∈Z

∥∥Tnab(f , g,h)
∥∥r
r

)1/r

≲
( ∑

n∈Z

∥∥f χ̃In
∥∥r
p1

∥∥gχ̃In
∥∥r
p2

∥∥hχ̃In
∥∥r
p3

)1/r

≲
( ∑

n∈Z

∥∥f χ̃In
∥∥p1

p1

)1/p1
( ∑

n∈Z

∥∥gχ̃In
∥∥p2

p2

)1/p2
( ∑

n∈Z

∥∥hχ̃In
∥∥p3

p3

)1/p3

≲ ‖f‖p1 ‖g‖p2 ‖h‖p3 .

Thus, we only need to prove (3.1).
Consider that for a fixed n0 ∈ Z, we have

T
n0

ab(f , g,h)(x) =

∫

R3
a(x, ξ, η)ϕ̃n0(x)b(x,η, ζ)ϕ̃n0(x)ϕn0(x)

× f̂ (ξ)ĝ(η)ĥ(ζ)e2πix(ξ+η+ζ)
dξ dηdζ,

where ϕ̃n0 is a smooth function supported on the interval [n0 − 2, n0 + 2], and
equals 1 on the support of ϕn0 . Then, we rewrite the symbols a(x, ξ, η)ϕ̃n0(x)
and b(x,η, ζ)ϕ̃n0(x) by using Fourier series with respect to the x variable:

a(x, ξ, η)ϕ̃n0(x) =
∑

ℓ1∈Z

aℓ1
(ξ, η)e2πixℓ1 ,

b(x, η, ζ)ϕ̃n0(x) =
∑

ℓ2∈Z

bℓ2
(η, ζ)e2πixℓ2 ,

where by taking advantage of conditions (1.4), we can have

|∂
α,β
ξ,η aℓ1

(ξ, η)| ≲
1

(1+ |ℓ1|)M
1

(1+ |ξ| + |η|)α+β
,

|∂
β,γ
η,ζbℓ2

(η, ζ)| ≲
1

(1+ |ℓ2|)M
1

(1+ |η| + |ζ|)β+γ
,

for a large number M and sufficiently many indices α,β, γ. Note the decay in
ℓ1, ℓ2 means we only need to consider the case for ℓ1, ℓ2 = 0, which is given by

T
n0,0,0
ab (f , g,h)(x)

=

(∫

R3
a0(ξ, η)b0(η, ζ)f̂ (ξ)ĝ(η)ĥ(ζ)e

2πix(ξ+η+ζ)
dξ dηdζ

)
ϕn0(x),
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where symbols a0, b0 satisfy the following conditions:

(3.2)

|∂
α,β
ξ,η a0(ξ, η)| ≲

1
(1+ |ξ| + |η|)α+β

,

|∂
β,γ
η,ζb0(η, ζ)| ≲

1
(1+ |η| + |ζ|)β+γ

.

Using the translation invariance, we only need to prove the following localized
result for n0 = 0.

Theorem 3.1. The operator

T
0,0
ab (f , g,h)(x)

(3.3)

=

(∫

R3
a0(ξ, η)b0(η, ζ)f̂ (ξ)ĝ(η)ĥ(ζ)e

2πix(ξ+η+ζ)
dξ dηdζ

)
ϕ0(x)

has the boundedness property

‖T
0,0
ab (f , g,h)‖r ≲ ‖f χ̃I0‖p1 ‖gχ̃I0‖p2 ‖hχ̃I0‖p3

for 1 < p1, p2, p3 < ∞ and 1/p1 + 1/p2 + 1/p3 = 1/r , where ϕ0 is a smooth
function supported within [−1,1], and a0, b0 satisfy the conditions (3.2).

In addition, this estimate also holds for the cases where at most one pi = ∞ for
i = 1,2,3 or p1, p3 = ∞, 1 < p2 < ∞.

We are now ready to do some decompositions to the operator in (3.3).

4. REDUCTION OF THE LOCALIZED OPERATOR

In this section, we will mainly show that the problem can be reduced to some
operators or paraproducts with which we are familiar.

Let ϕ ∈ S(R) be a Schwartz function such that supp ϕ̂ ⊆ [−1,1] and
ϕ̂(ξ) = 1 on [− 1

2 ,
1
2]. Define ψ ∈ S(R) to be the Schwartz function satisfy-

ing
ψ̂(ξ) := ϕ̂(ξ/2)− ϕ̂(ξ),

and let ψ̂k(·) = ψ̂(·/2k) and Åψ−1(·) = ϕ̂(·). Note that 1 =
∑
k≥−1 ψ̂k, where

supp ψ̂ ⊆ [−2k+1,−2k−1] ∪ [2k−1,2k+1] for k ≥ 0. Then, for any m,n ∈ Z, we
use m ≫ n to denote m − n > 100, and m ≃ n to denote |m − n| ≤ 100.
Consider the decomposition

1(ξ, η, ζ) =
( ∑

k′1≥−1

∑

k′′1 ≥−1

ψ̂k′1(ξ)Åψk′′1 (η)
)

(4.1)

×
( ∑

k′2≥−1

∑

k′′2 ≥−1

ψ̂k′2(η)Åψk′′2 (ζ)
)
.
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Without loss of generality, we consider

( ∑

k′1≥−1

∑

k′′1 ≥−1

ψ̂k′1(ξ)Åψk′′1 (η)
)

(4.2)

=
∑

k′1≫k
′′
1 ≥−1

ψ̂k′1(ξ)Åψk′′1 (η)+
∑

−1≤k′1≪k
′′
1

ψ̂k′1(ξ)Åψk′′1 (η)

+
∑

k′1≃k
′′
1

k′1>100
or k′′1 >100

ψ̂k′1(ξ)Åψk′′1 (η)+
∑

k′1≃k
′′
1

k′1,k
′′
1 ≤100

ψ̂k′1(ξ)Åψk′′1 (η)

:= A+ B + C +D,

where the term D, containing a finite number of terms, can be written out specif-
ically as D = ϕ̂(ξ)ϕ̂(η)+Others.

To estimate C, note that, in this case, actually both k′1 and k′′1 are at least 1.
Suppose k′1 > 100; then, we have

∑

k′1≃k
′′
1

k′1>100

ψ̂k′1(ξ)Åψk′′1 (η) =
∑

k>100

ψ̂k(ξ)̂̃ψk(η),

and then

C =
∑

k>100

ψ̂k(ξ)̂̃ψk(η)+
∑

k>100

̂̃ψk(ξ)ψ̂k(η),

where

supp̂̃ψk ⊆ [−2k+101,−2k−101]∪ [2k−101,2k+101].

Estimates for A and B are quite similar:

A =
∑

k′1

( ∑

−1≤k′′1 <k
′
1−100

Åψk′′1 (η)
)
ψ̂k′1(ξ) =

∑

k≥100

ψ̂k(ξ)ϕ̂k(η),

B =
∑

k′′1

( ∑

−1≤k′1<k
′′
1 −100

ψ̂k′1(ξ)
)
Åψk′′1 (η) =

∑

k≥100

ϕ̂k(ξ)ψ̂k(η),

where ϕk is a Schwartz function with supp ϕ̂k ⊆ [−2k−100,2k+100]. For k ≥ 0,
we refer to the families like (ψk)k as Ψ -type functions, whose Fourier transforms
have almost disjoint supports for different scales; and we refer to the families like
(ϕk)k as Φ-type functions, whose Fourier transforms have overlapping supports
for different scales. In the rest of this paper, for convenience we do not distinguish
between ψk and ψ̃k, since they are of the same type and have comparative scales
for the supports of their Fourier transforms, and we always use ψk to represent
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such Ψ -type functions. Similarly, we always useϕk to represent a Φ-type function.
With such notation, we can write (4.2) as

( ∑

k′1≥−1

ψ̂k′1(ξ)
)( ∑

k′′1 ≥−1

Åψk′′1 (η)
)

(4.3)

=
∑

k≥100

ψ̂k(ξ)ϕ̂k(η)+
∑

k≥100

ϕ̂k(ξ)ψ̂k(η)+
∑

k>100

ψ̂k(ξ)ψ̂k(η)+D.

Later from the proof, we will see in (4.3) that the three summations work simi-
larly, since what we really need is at least one lacunary family in each summation.
Moreover, all the functions in D play the same role as ϕ̂(ξ)ϕ̂(η), which means
we actually can replace (4.3) by an equivalent version, which is

(4.4)
∑

k≥0

φ̂1
k(ξ)φ̂

2
k(η)+ ϕ̂(ξ)ϕ̂(η),

where at least one of the families (φ̂1
k(ξ))k and (φ̂2

k(ξ))k is Ψ -type.
Now, in dealing with (4.1), it is equivalent to consider

1(ξ, η, ζ) =
( ∑

k′1≥−1

∑

k′′1 ≥−1

ψ̂k′1(ξ)Åψk′′1 (η)
)( ∑

k′2≥−1

∑

k′′2 ≥−1

ψ̂k′2(η)Åψk′′2 (ζ)
)

≈
(∑

k1

φ̂1
k1
(ξ)φ̂2

k1
(η)+ ϕ̂(ξ)ϕ̂(η)

)(∑

k2

φ̂1
k2
(η)φ̂2

k2
(ζ)+ ϕ̂(η)ϕ̂(ζ)

)

=
(∑

k1

φ̂1
k1
(ξ)φ̂2

k1
(η)

∑

k2

φ̂1
k2
(η)φ̂2

k2
(ζ)

)
+
(∑

k1

φ̂1
k1
(ξ)φ̂2

k1
(η)

)
ϕ̂(η)ϕ̂(ζ)

+
(∑

k2

φ̂1
k2
(η)φ̂2

k2
(ζ)

)
ϕ̂(ξ)ϕ̂(η)+ ϕ̂(ξ)ϕ̂(η)ϕ̂(η)ϕ̂(ζ)

:= E + F +G+H,

where, for convenience, the symbol ≈ is used to show the equivalence; we will
simply treat 1(ξ, η, ζ) = E + F +G +H in the rest of the paper.

Then, using the above and (3.3), we can decompose the localized operator as

T
0,0
ab (f , g,h)(x)

(4.5)

=

(∫

R3
a0(ξ, η)b0(η, ζ)f̂ (ξ)ĝ(η)ĥ(ζ)e

2πix(ξ+η+ζ)
dξ dηdζ

)
ϕ0(x)

=

(∫

R3
a0(ξ, η)b0(η, ζ)(E + F +G +H)f̂ (ξ)ĝ(η)ĥ(ζ)

× e2πix(ξ+η+ζ)
dξ dηdζ

)
ϕ0(x)

:= T E,0,0ab + T F,0,0ab + TG,0,0ab + TH,0,0ab .
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4.1. Estimates for TH,0,0ab . Recall

TH,0,0ab (f , g,h)(x) =

(∫

R3
a0(ξ, η)b0(η, ζ)ϕ̂(ξ)ϕ̂(η)ϕ̂(η)ϕ̂(ζ)

× f̂ (ξ)ĝ(η)ĥ(ζ)e2πix(ξ+η+ζ)
dξ dηdζ

)
ϕ0(x),

and note thatmH(ξ, η, ζ) := a0(ξ, η)b0(η, ζ)ϕ̂(ξ)ϕ̂(η)ϕ̂(η)φ̂(ζ) satisfies the
condition

|∂αξ ∂
β
η ∂

γ
ζmH(ξ, η, ζ)| ≲

1
(1+ |ξ| + |η| + |ζ|)α+β+γ

for sufficiently many indices α,β, γ. Then, our desired localized estimate follows

from Theorem 1.1, since we find that the operator TH,0,0ab is just the localized
operator used in the proof of Theorem 1.1 (see [6, 12]).

4.2. Estimates for T F,0,0ab + TG,0,0ab . Recall

F =
(∑

k1

φ̂1
k1
(ξ)φ̂2

k1
(η)

)
ϕ̂(η)ϕ̂(ζ),

where at least one of the families (φ̂1
k1
)k1 and (φ̂2

k1
)k1 is Ψ -type.

When (φ̂2
k1
)k1 is Ψ -type, note that, to make

∑
k1
φ̂2
k1
(η)ϕ̂(η) ≠ 0, k1 will

have an upper bound for the summation (say k1 ≤ 100). Then, the desired

estimate under this situation can be done in the same way as in TH,0,0ab , since only
a finite number of terms are involved.

When (φ̂2
k1
)k1 is Φ-type, we must have (φ̂1

k1
)k1 is Ψ -type. Recall

T
F,0,0
ab (f , g,h)(x) =

(∑

k1

∫

R3
a0(ξ, η)φ̂

1
k1
(ξ)φ̂2

k1
(η)b0(η, ζ)ϕ̂(η)ϕ̂(ζ)(4.6)

× f̂ (ξ)ĝ(η)ĥ(ζ)e2πix(ξ+η+ζ)
dξ dηdζ

)
ϕ0(x).

Then, we can use Fourier series to write

a0(ξ, η)φ̂
1
k1
(ξ)φ̂2

k1
(η) =

∑

n1,n2∈Z

Ck1
n1,n2

e2πin1ξ/2k1
e2πin2η/2k1

,

where the Fourier coefficients Ck1
n1,n2 are given by

Ck1
n1,n2

=
1

22k1

∫

R2
a0(ξ, η)φ̂

1
k1
(ξ)φ̂2

k1
(η)e−2πin1ξ/2k1

e−2πin2η/2k1
.
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By the decay condition (3.2) and the advantage that (φ̂1
k1
)k1 is Ψ -type, we can get

the following by integration by parts sufficiently many times:

|Ck1
n1,n2

| ≲
1

(1+ |n1| + |n2|)M
.

Note that, by the decay in n1, n2, we need only consider the case when n1, n2 = 0
(see [12] and the proof in Section 5 for more details), and similar things can be
done for b0(η, ζ)ϕ̂(η)ϕ̂(ζ). Then, we can use Hölder’s inequality and take
advantage of the fact that ϕ is a bump function adapted to [−1,1] to prove the
localized result for (4.6), that is,
∥∥∥∥
(∑

k1

∫

R3
φ̂1
k1
(ξ)φ̂2

k1
(η)ϕ̂(η)ϕ̂(ζ)f̂ (ξ)ĝ(η)ĥ(ζ)e2πix(ξ+η+ζ)

dξ dηdζ

)
ϕ0(x)

∥∥∥∥
r

≈

∥∥∥∥
(∑

k1

∫

R3
φ̂1
k1
(ξ)ϕ̂(η)ϕ̂(ζ)f̂ (ξ)ĝ(η)ĥ(ζ)e2πix(ξ+η+ζ)

dξ dηdζ

)
ϕ0(x)

∥∥∥∥
r

=
∥∥∥
(∑

k1

φ1
k1
∗ f

)
(x)ϕ0(x)(ϕ ∗ g)(x)ϕ̃0(x)(ϕ ∗ h)(x)ϕ̃0(x)

∥∥∥
r

≲
∥∥∥
(∑

k1

φ1
k1
∗ f

)
(x)ϕ0(x)

∥∥∥
p1
‖(ϕ ∗ g)(x)ϕ̃0(x)‖p2 ‖(ϕ ∗ h)(x)ϕ̃0(x)‖p3

≲ ‖f χ̃I0‖p1 ‖gχ̃I0‖p2 ‖hχ̃I0‖p3 ,

where we take φ̃0 to be 1 on suppφ0 and supported in a slightly larger interval
containing suppφ0. The last inequality is true since (ϕk1)k1 is Ψ -type. Also, we

can simply write
∑
k1
φ̂2
k1
(η)ϕ̂(η) = ϕ̂(η) in the above, since k1 is positive.

4.3. Estimates for T E,0,0ab Recall

E =
( ∑

k1≥0

φ̂1
k1
(ξ)φ̂2

k1
(η)

)( ∑

k2≥0

φ̂1
k2
(η)φ̂2

k2
(ζ)

)
,

where at least one of the families (φ̂1
k1
)k1 and (φ̂2

k1
)k1 is Ψ -type, and at least one

of the families (φ̂1
k2
)k2 and (φ̂2

k2
)k2 is Ψ -type.

Also, we consider the corresponding localized operator

T E,0,0ab (f , g,h)(x)

=

(∫

R3

(∑

k1

φ̂1
k1
(ξ)φ̂2

k1
(η)

)
a0(ξ, η)

(∑

k2

φ̂1
k2
(η)φ̂2

k2
(ζ)b0(η, ζ)

)

× f̂ (ξ)ĝ(η)ĥ(ζ)e2πix(ξ+η+ζ)
dξ dηdζ

)
ϕ0(x).
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By using Fourier series as before, we only need to consider the following operator:

(∫

R3

(∑

k1

φ̂1
k1
(ξ)φ̂2

k1
(η)

)(∑

k2

φ̂1
k2
(η)φ̂2

k2
(ζ)

)

× f̂ (ξ)ĝ(η)ĥ(ζ)e2πix(ξ+η+ζ)
dξ dηdζ

)
ϕ0(x).

As usual, we consider three cases of E,

E =
( ∑

k1≫k2

+
∑

k1≪k2

+
∑

k1≃k2

)
(φ̂1

k1
(ξ)φ̂2

k1
(η))(φ̂1

k2
(η)φ̂2

k2
(ζ)) := I + J +K,

and decompose

T E,0,0ab := T I,0,0ab + T J,0,0ab + TK,0,0ab .

Note that K is actually a symbol in BS0
1,0, since k is positive. That is,

TK,0,0ab (f , g,h)(x)

=

(∫

R3
mK(ξ, η, ζ)f̂ (ξ)ĝ(η)ĥ(ζ)e

2πix(ξ+η+ζ)
dξ dηdζ

)
ϕ0(x),

where mK(ξ, η, ζ) satisfies the condition as (3.2). Thus, the desired localized
estimate follows from the proof of Theorem 1.1, just as TH,0,0ab .

Since T I,0,0ab and T J,0,0ab are similar, we define T Iab by the following equality:

T Iab(f , g,h)(x) ·ϕ0(x) =: T I,0,0ab (f , g,h)(x)(4.7)

=

(∫

R3

(∑

k1

φ̂1
k1
(ξ)φ̂2

k1
(η)

)(∑

k2

φ̂1
k2
(η)φ̂2

k2
(ζ)

)

× f̂ (ξ)ĝ(η)ĥ(ζ)e2πix(ξ+η+ζ)
dξ dηdζ

)
ϕ0(x).

From [11, 12], we know T Iab can be written by using paraproducts, which is the
following lemma.

Lemma 4.1. Define T Iab as in (4.7); then, we can write

T Iab(f , g,h)(x) = T1(f , g,h)(x)+
M−1∑

ℓ=1

∞∑

k0=100

(2−k0)ℓTℓ,k0
(f , g,h)(x)

+

∞∑

k0=100

(2−k0)MTM,k0(f , g,h)(x),
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where

T1(f , g,h) =
∑

I∈I

1
|I|1/2

〈f ,φ1
I 〉〈B

1
I (g,h),φ

2
I 〉φ

3
I

with

B1
I (g,h) =

∑

J∈J
|ω3

J |≤|w
2
I |

1
|J|1/2

〈g,φ1
J〉〈h,φ

2
J〉φ

3
J ,

and

Tℓ,k0
(f , g,h) =

∑

I∈I

1
|I|1/2

〈f ,φ1
I 〉〈B

ℓ
I,k0
(g,h),φ2

I 〉φ
3
I

with

BℓI,k0
(g,h) =

∑

J∈J
2k0 |ω3

J |∼|w
2
I |

1
|J|1/2

〈g,φ1
J〉〈h,φ

2
J〉φ

3
J .

In the above, note the following:

(a) T1(f , g,h) and B1
I (g,h) are defined as (2.2) and (2.3) in definition (2.5).

(b) For each ℓ, Tℓ(f , g,h) and BℓI (g,h) are of the type (2.4) and (2.5) in
definition 2.5; ℓ here is actually involved in the families (φ2

I )I and (φ2
J)J ,

but it would not affect our proof since it does not change the types of those
functions.

(c) M is a large positive integer, and the multiplier mM,k0(ξ, η, ζ) in TM,k0

satisfies the condition

(4.8) |∂αξ ∂
β
η ∂

γ
ζmM,k0(ξ, η, ζ)| ≲ (2

k0)α+β+γ
1

(1+ |ξ| + |η| + |ζ|)α+β+γ

for sufficiently many indices α,β, γ.
(d) All of the dyadic intervals in T1 and Tℓ,k0

have lengths at most 1 for all
k0 ≥ 100, 1 ≤ ℓ ≤ M − 1.

Proof. Here, we follow closely the work [11], where the Fourier expansions

of φ̂2
k1
(η) are used to get the desired forms of paraproducts. The only two state-

ments we need to show are that all the dyadic intervals there have lengths at most
one, and that one can obtain a decay number 1 in the denominator from (4.8).
Actually, both of these follow from the fact that k1, k2 ≥ 0. ❐

So far, we have reduced Theorem 3.1 to the estimate of the operator T I,0,0ab .
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5. PROOF OF THEOREM 3.1

In this section, by using the decomposition in Lemma 4.1, we are able to prove

the localized estimate for T I,0,0ab , which will complete the proof of Theorem 3.1.

5.1. Estimates for
∑∞
k0=100(2

−k0)MTM,k0(f , g,h)(x). For this part, note
that the condition (4.8) is almost the classical case. Then, by repeating the work
in [6, 12], we will see that this condition can provide an estimate

‖TM,k0(f , g,h)ϕ0(x)‖r ≲ C210k0‖f χ̃I0‖p1 ‖gχ̃I0‖p2 ‖hχ̃I0‖p3 ,

which is accepted since we can choose M large enough.

5.2. Estimates for T1(f , g,h)(x). Using the fact that |I| ≤ 1, we can split

T1(f , g,h)(x) =
∑

I⊆5I0

1
|I|1/2

〈f ,φ1
I 〉〈B

1
I (g,h),φ

2
I 〉φ

3
I(5.1)

+
∑

I⊆(5I0)c

1
|I|1/2

〈f ,φ1
I 〉〈B

1
I (g,h),φ

2
I 〉φ

3
I

= I + II.

For Part I, we do the decompositions

f =
∑
n1

fχIn1
, g =

∑
n2

gχIn2
, h =

∑
n3

hχIn3

first, where Ini = [ni, ni + 1], i = 1,2,3, ni ∈ Z. Then, we can write

T1(f , g,h)(x) =
∑
n1

∑
n2

∑
n3

T1(fχIn1
, gχIn2

, hχIn3
)(x).

When |n1|, |n2|, |n3| ≤ 10, the desired estimate follows from Theorem 1.2:

∥∥∥
∑

|n1|≤10

∑

|n2|≤10

∑

|n3|≤10

T1(fχIn1
, gχIn2

, hχIn3
)(x) ·ϕ0(x)

∥∥∥
r

≲
∥∥∥

∑

|n1|≤10

fχIn1

∥∥∥
p1

∥∥∥
∑

|n2|≤10

gχIn2

∥∥∥
p2

∥∥∥
∑

|n3|≤10

hχIn3

∥∥∥
p3

≲ ‖f χ̃I0‖p1 ‖gχ̃I0‖p2 ‖hχ̃I0‖p3 ,

where the last inequality holds from χ[−11,11] ≲ χ̃I0(x).
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When |n1|, |n2|, |n3| > 10, we write

‖T1(fχIn1
, gχIn2

, hχIn3
)(x) ·ϕ0(x)‖r

=

∥∥∥∥
∑

I∈I

∑

J∈J
|ω3

J |≤|ω
2
I |

1
|I|1/2

1
|J|1/2

〈fχIn1
,φ1

I 〉

× 〈gχIn2
,φ1

J〉〈hχIn3
,φ3

J〉〈φ
2
I ,φ

3
J〉φ

3
I (x)ϕ0(x)

∥∥∥∥
r
.

Then, we use Hölder’s inequality to get

(5.2)
∥∥∥∥

1
|I|1/2

1
|J|1/2

〈fχIn1
,φ1

I 〉〈gχIn2
,φ1

J〉

× 〈hχIn3
,φ3

J〉〈φ
2
I ,φ

3
J〉φ

3
I (x)ϕ0(x)

∥∥∥∥
r

≲
1
|I|2

1
|J|2

(
1+

dist(In1 , I)

|I|

)−M1

(‖fχIn1
‖p1 |I|

(p1−1)/p1)

×

(
1+

dist(In2 , J)

|J|

)−N1

(‖gχIn2
‖p2 |J|

(p2−1)/p2)

×

(
1+

dist(In3 , J)

|J|

)−N2

(‖hχIn3
‖p3 |J|

(p3−1)/p3)|I|1/r

×

∫

R

(
1+

dist(x, I)
|I|

)−M2 (
1+

dist(x, J)
|J|

)−N3

dx

≲
1
|I|

(
|I|

|J|

)1/p2+1/p3
(

1+
dist(In1 , I)

|I|

)−M1

×

(
1+

dist(In2 , J)

|J|

)−N1
(

1+
dist(In3 , J)

|J|

)−N2

×

∫

R

(
1+

dist(x, I)
|I|

)−M2 (
1+

dist(x, J)
|J|

)−N3

dx

× ‖fχIn1
‖p1 ‖gχIn2

‖p2 ‖hχIn3
‖p3 ,

where Mj , Nj are sufficiently large integers, and φ
j
I ,φ

j
J are L2-normalized bump

functions adapted to I, J for j = 1,2,3.
We first consider the case when dist(I, J) ≤ 3. Recall we have the restriction

that |ω3
J| ≤ |ω

2
I |, which implies that |I|/|J| ≲ 1. By using the subadditivity of

‖ · ‖rr , we have that
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∥∥T1(fχIn1
, gχIn2

, hχIn3
)(x) ·ϕ0(x)

∥∥r
r ≲

≲
∑

i,j≥0

∑

I⊆5I0, J⊆9I0
|I|=2−i, |J|=2−j

(
1
|I|

(
1+

dist(In1 , I)

|I|

)−M1

×

(
1+

dist(In2 , J)

|J|

)−N1
(

1+
dist(In3 , J)

|J|

)−N2

×

∫

R

(
1+

dist(x, I)
|I|

)−M2
(

1+
dist(x, J)
|J|

)−N3

dx

× ‖fχIn1
‖p1 ‖gχIn2

‖p2 ‖hχIn3
‖p3

)r

≲
∑

i,j≥0

∑

I⊆5I0, J⊆9I0
|I|=2−i, |J|=2−j

(
2i(1+ 2i(|n1| − 6))−M1(1+ 2j(|n2| − 9))−N1

× (1+ 2j(|n3| − 9))−N2(‖fχIn1
‖p1 ‖gχIn2

‖p2 ‖hχIn3
‖p3)

)r

≲
(
(|n1| − 6)−M1(|n2| − 9)−N1(|n3| − 9)−N2

× ‖fχIn1
‖p1 ‖gχIn2

‖p2 ‖hχIn3
‖p3

)r
.

Observe that, for large enough integers M1, N1, N2, we have

χIn1
(|n1| − 6)−M1/2 ≲ χ̃I0 ,

χIn2
(|n2| − 9)−N1/2 ≲ χ̃I0 ,

χIn3
(|n3| − 9)−N2/2 ≲ χ̃I0 .

Thus,
∥∥∥

∑

|n1|>10

∑

|n2|>10

∑

|n3|>10

T1(fχIn1
, gχIn2

, hχIn3
)(x) ·ϕ0(x)

∥∥∥r
r

≲
∑

|n1|>10

∑

|n2|>10

∑

|n3|>10

(
(|n1| − 6)−M1(|n2| − 9)−N1(|n3| − 9)−N2

× ‖fχIn1
‖p1 ‖gχIn2

‖p2 ‖hχIn3
‖p3

)r

≲
∑

|n1|>10

∑

|n2|>10

∑

|n3|>10

(
(|n1| − 6)−M1/2(|n2| − 9)−N1/2(|n3| − 9)−N2/2

× ‖f χ̃I0‖p1 ‖gχ̃I0‖p2 ‖hχ̃I0‖p3

)r

≲ (‖f χ̃I0‖p1 ‖gχ̃I0‖p2 ‖hχ̃I0‖p3)
r .

For the other possibility, that is, when dist(I, J) > 3, we consider whether
J is close to In2 or In3 . Without loss of generality, we assume dist(J, In2) ≤ 2,
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dist(J, In3) > 2, and other cases will follow in the similar way. Using the notation
Jm = [m,m+ 1],m ∈ Z, and (5.2), we can get

∥∥T1(fχIn1
, gχIn2

, hχIn3
)(x) ·ϕ0(x)

∥∥r
r

≲
∑

i,j≥0

∑

I⊆5I0
|I|=2−i

∑

|m|>3

∑

J⊆Jm, |J|=2−j

dist(J,In2 )≤2
dist(J,In3 )>2

(
1
|I|

(
1+

dist(In1 , I)

|I|

)−M1

×

(
1+

dist(In2 , J)

|J|

)−N1
(

1+
dist(In3 , J)

|J|

)−N2

×

∫

R

(
1+

dist(x, I)
|I|

)−M2
(

1+
dist(x, J)
|J|

)−N3

dx

× ‖fχIn1
‖p1 ‖gχIn2

‖p2 ‖hχIn3
‖p3

)r

≲
∑

i,j≥0

∑

I⊆5I0
|I|=2−i

∑

|m|>3

∑

J⊆Jm|J|=2−j

dist(J,In2 )≤2
dist(J,In3 )>2

(
2i(1+ 2i(|n1| − 6)−M1)

× (1+ 2j(|m −n3|))
−N2 |m|−N0‖fχIn1

‖p1 ‖gχIn2
‖p2 ‖hχIn3

‖p3

)r

≲
∑

i,j≥0

∑

I⊆5I0
|I|=2−i

∑

|m|>3

∑

J⊆Jm|J|=2−j

dist(J,In2 )≤2
dist(J,In3 )>2

(
2i(1+ 2i(|n1| − 6))−M1

× (1+ 2j(|m −n3|))
−N2 |n2|

−N0‖fχIn1
‖p1 ‖gχIn2

‖p2 ‖hχIn3
‖p3

)r
,

where N0 =min{M2, N3} is sufficiently large and we use m ∼ n2.
Now, we take the sum over n1, n2, n3, and get

∥∥∥
∑

|n1|>10

∑

|n2|>10

∑

|n3|>10

T1(fχIn1
, gχIn2

, hχIn3
)(x) ·ϕ0(x)

∥∥∥r
r

≲
∑

|n1|>10

∑

|n2|>10

∑

|n3|>10

(
(|n1| − 6)−M1/2|n2|

−N0(|n3| − 3)−N2/2

× ‖fχIn1
‖p1 ‖gχIn2

‖p2 ‖hχIn3
‖p3

)r

≲
∑

|n1|>10

∑

|n2|>10

∑

|n3|>10

(
(|n1| − 6)−M1/4|n2|

−N0/2(|n3| − 3)−N2/4

× ‖f χ̃I0‖p1 ‖gχ̃I0‖p2

∥∥hχ̃I0
∥∥
p3

)r

≲
(
‖f χ̃I0‖p1 ‖gχ̃I0‖p2

∥∥hχ̃I0
∥∥
p3
)r .
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Other possible choices of n1, n2, and n3 will be treated in different ways.
Among these cases, when |n1| > 10, we can do much as we did above, to get our
desired estimate directly, by considering whether J is close to I or not. Note in
this case we are free to take summation over J, since we have a decay on i and
j ≤ i.

When, however, |n1| ≤ 10 (say, |n1|, |n2| ≤ 10, |n3| ≥ 10), the situation
is different. In this situation, the term (1 + dist(In1 , I)/|I|)

−M1 in (5.2) would
not give us a decay factor, which means we will have trouble when taking the
summation over dyadic intervals I. Actually, the decay factors from other terms
are with respect to j, which cannot help since i > j. Recall our desired estimate
in this case:

∥∥∥
∑

|n1|, |n2|≤10

∑

|n3|>10

T1(fχIn1
, gχIn2

, hχIn3
)(x) ·ϕ0(x)

∥∥∥
r
≲

≲ ‖f χ̃I0‖p1 ‖gχ̃I0‖p2 ‖hχ̃I0‖p3 .

Suppose that from the proof of Theorem 1.2 (see [11,12]) we can get an additional
decay with respect to n3, such as 1/|n3|

M for sufficiently positive integer M ; then,
we only need to apply Theorem 1.2 to get

∥∥∥
∑

|n1|, |n2|≤10

∑

|n3|>10

T1(fχIn1
, gχIn2

, hχIn3
)(x) ·ϕ0(x)

∥∥∥
r

≲
1

|n3|M
‖fχIn1

‖p1 ‖gχIn2
‖p2 ‖hχIn3

‖p3

≲ ‖f χ̃I0‖p1 ‖gχ̃I0‖p2 ‖hχ̃I0‖p3 .

Now, we will see how to get such a decay 1/|n3|
M . As before, we consider two

possible cases, dist(I, J) ≤ 3 and dist(I, J) > 3.
When dist(I, J) > 3, as before consider the integral

∫

R

(
1+

dist(x, I)
|I|

)−M2 (
1+

dist(x, J)
|J|

)−N3

dx.

We can get a decay about |m|−M for J ⊆ Jm,m ∈ Z, and see whether Jm is close
to n3 or not. As before, by considering whether J is close to In3 or not, we will
get an additional decay 1/|n3|

M .
When dist(I, J) ≤ 3, as before we have that J is near the origin J ⊆ 9I0. In

this case, our desired decay comes from the size and energy estimates used in the
proof of Theorem 1.2 (see [11, 12]). Those size and energy terms corresponding
to the function hχn3

would be defined based on the inner product terms like

|〈hχIn3
,φ2

J〉|. Now, since J is close to the origin, such an inner product will

provide a decay about 1/|n3|
M . (Or, one can see the proof of Lemma 2.13 or

Section 8.11 in [12] to see that clearly we can actually get such a decay factor
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for the size estimate.) This means we can get an additional decay from the re-
sult of Theorem 1.2, since the boundedness there is based on the size and energy
estimates.

So far, we have proved Part I of (5.1).
For Part II, using the intervals In = [n,n+ 1], Jm = [m,m+ 1],m,n ∈ Z,

we can write

∥∥T1(f , g,h)(x) ·ϕ0(x)
∥∥r
r

=

∥∥∥∥
∑

I⊆(5I0)c

∑

J∈J
|ω3

J |≤|ω
2
I |

1
|I|1/2

1
|J|1/2

〈f ,φ1
I 〉〈g,φ

1
J〉〈h,φ

3
J〉〈φ

2
I ,φ

3
J〉φ

3
I (x)ϕ0(x)

∥∥∥∥
r

r

≲
∑

|n|≥5

∑

m∈Z

∑

I⊆In

∑

J⊆Jm
|ω3

J |≤|ω
2
I |

∥∥∥∥
1

|I|1/2
1

|J|1/2
〈f ,φ1

I 〉〈g,φ
1
J〉〈h,φ

3
J〉

× 〈φ2
I ,φ

3
J〉φ

3
I (x)ϕ0(x)

∥∥∥∥
r

r
.

We will use Hölder’s inequality and take advantage of the decay factors as before
to write the above as

(5.3)
∑

|n|≥5

∑

m∈Z

∑

i,j≥0

∑

I⊆In, J⊆Jm
|I|=2−i, |J|=2−j

∥∥∥∥∥
1

|I|1/2
1

|J|1/2
〈f ,φ1

I 〉〈g,φ
1
J〉

× 〈h,φ3
J〉〈φ

2
I ,φ

3
J〉φ

3
I (x)ϕ0(x)

∥∥∥∥
r

r

≲
∑

|n|≥5

∑

m∈Z

∑

i,j≥0

∑

I⊆In, J⊆Jm
|I|=2−i , |J|=2−j

(
1
|I|2

1
|J|2

(‖f χ̃In‖p1 |I|
(p1−1)/p1)

× (‖gχ̃Jm‖p2 |J|
(p2−1)/p2)(‖hχ̃Jm‖p3 |J|

(p3−1)/p3)|I|1/r
(

1+
dist(I, I0)
|I|

)−M3

×

∫

R

(
1+

dist(x, I)
|I|

)−M2
(

1+
dist(x, J)
|J|

)−N3

dx

)r

≲
∑

|n|≥5

∑

m∈Z

∑

i,j≥0

∑

I⊆In, J⊆Jm
|I|=2−i, |J|=2−j

(
2i(1+ 2i(|n| − 2))−M3‖f χ̃In‖p1 ‖gχ̃Jm‖p2

× ‖hχ̃Jm‖p3

∫

R

(
1+

dist(x, I)
|I|

)−M2
(

1+
dist(x, J)
|J|

)−N3

dx

)r
,

where again Mj , Nj are sufficiently large integers. Then, we consider two possible
cases, dist(In, Jm) ≤ 5 and dist(In, Jm) > 5.
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When dist(In, Jm) ≤ 5, we use the same technique as before:

(|n| − 2)−M/12|χ̃In| ≲ |χ̃I0 | and |χ̃In | ∼ |χ̃Jm |,

for M sufficiently large. Note here that the decay factor for i actually implies
a decay for the summation over dyadic intervals J, since i ≥ j. Then, we can
estimate (5.3) by

≲
∑

|n|≥5

((|n− 2|−M3/2)‖f χ̃In‖p1 ‖gχ̃Jm‖p2 ‖hχ̃Jm‖p3)
r

≲
∑

|n|≥5

((|n− 2|−M3/4)‖f χ̃0‖p1 ‖gχ̃0‖p2 ‖hχ̃0‖p3)
r

≲ (‖f χ̃I0‖p1 ‖gχ̃I0‖p2 ‖hχ̃I0‖p3)
r ,

which is the desired estimate.
When dist(In, Jm) > 5, we need to take advantage of the integral in (5.3).

That is,

∫

R

(
1+

dist(x, I)
|I|

)−M2 (
1+

dist(x, J)
|J|

)−N3

dx ≲ |n−m|−L,

where L = min{M2, N3} is large enough. Now, (5.3) can be written by

≲
∑

|n|≥5

∑

|m−n|>5

∑

i,j≥0

∑

I⊆In, J⊆Jm
|I|=2−i , |J|=2−j

(2i(1+ 2i(|n| − 2))−M3

× ‖f χ̃In‖p1 ‖gχ̃Jm‖p2 ‖hχ̃Jm‖p3 |m−n|−L)r

≲
∑

|n|≥5

((|n− 2|−M3/2)‖f χ̃In‖p1 ‖gχ̃Jn‖p2 ‖hχ̃Jn‖p3)
r

≲ (‖f χ̃I0‖p1 ‖gχ̃I0‖p2 ‖hχ̃I0‖p3)
r ,

where, as before, the decay factor for i allows us to take the summation over dyadic
intervals J, since i ≥ j.

We are now done with Part II, which means we have proved the desired esti-
mate for T1(f , g,h)(x).

5.3. Estimates for
∑∞
k0=100(2

−k0)ℓTℓ,k0
(f , g,h)(x). There is nothing new

in this case, since it will be almost the same as what we did for T1(f , g,h)(x).
Note that, for Tℓ,k0

(f , g,h)(x), the only difference is that we have

|I|−1 ∼ |ω2
I | ∼ 2k0 |J|−1 ∼ |ω3|J

instead of |I|−1 ∼ |ω2
I | ≥ |J|−1 ∼ |ω3

J| in T1(f , g,h)(x). That is, given
|I| = 2−i, |J| = 2−j , we will have i − k0 = j ≥ 0, k0 ≥ 100. Recall we only
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need i ≥ j in the proof for T1(f , g,h)(x), and the method obviously works
for Tℓ,k0

(f , g,h)(x) in the setting i − k0 = j ≥ 0, k0 ≥ 100, which will give
us a bound uniformly with respect to k0. Then, we will be able to take the
summation over k0 by using ℓ ≥ 1. In this way, we can get the estimate for∑∞
k0=100(2

−k0)ℓTℓ,k0
(f , g,h)(x).

So far, we have proved the desired localized estimate for the operator

T
E,0,0
ab (f , g,h)(x)

in (4.5), which means Theorem 3.1 has been proved. Then, from this localized
result, we can conclude that Theorem 1.3 is true.
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