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a b s t r a c t

Let Ω ⊂ R
2 be a smooth bounded domain, and q(x) be a polynomial with q(0) �= 0. Then

under some hypothesis on q(x), there holds

sup∫
Ω |∇u|2dx=1,

∫
Ω udx=0

∫
Ω

e
2πu2

q(0)
q(

∫
Ω u2dx)dx < +∞.

A sufficient condition will be given to assure that the above inequality does not hold.

Furthermore, the existence of the extremal functions will be derived.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction and main results

Let Ω ⊂ R
2 be a smooth bounded domain, H1

0 (Ω) be the completion of C∞
0 (Ω) under the norm ‖u‖H1

0
(Ω) =

(
∫

Ω
|∇u|2dx)1/2, and H1(Ω) be the completion of C∞(Ω) under the norm ‖u‖H1(Ω) = (

∫
Ω
(|u|2 + |∇u|2)dx)1/2. We state a

special case of the Moser–Pohozaev–Trudinger inequality for functions with a mean value of zero.

Theorem A (Chang–Yang [1]). Suppose Ω is a smooth bounded domain in R
2. There exists a constant cΩ such that for all

u ∈ H1(Ω) with
∫

Ω
|∇u|2dx = 1 and

∫
Ω
udx = 0 we have

∫
Ω
e2πu2dx ≤ cΩ . If we replace 2π with any positive β , the

integral is still finite, but if β > 2π it can be made arbitrarily large by the appropriate choice of u.

This should be compared with the following original Moser–Pohozaev–Trudinger inequality in dimension two.

Theorem B (Pohozaev, Trudinger, Moser, [2–4]). Suppose Ω is a smooth bounded domain in R
2. There exists a constant C such

that if u ∈ H1
0 (Ω) such that

∫
Ω

|∇u|2dx = 1, then∫
Ω

e4πu2dx ≤ C |Ω|.

If 4π is replaced by any α > 4π , the integral on the left hand is still finite, but can be made arbitrarily large by an appropriate
choice of u.
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In this note, we will establish a new Moser–Pohozaev–Trudinger inequality which is an extension of Theorem A. Let us
introduce some notations before we state ourmain results. The first nonzero Neumann eigenvalue of the Laplacian operator
reads

λ = inf
u∈H1(Ω),

∫
Ω u2dx=1,

∫
Ω udx=0

∫
Ω

|∇u|2dx. (1.1)

The basic variation principle together with the regularity theory for elliptic equations implies that λ can be attained by some
smooth function u0 satisfying{−
u0 = λu0 in Ω

‖u0‖2
2 = 1,

∂u0

∂ν
|∂Ω = 0,

(1.2)

where ν denotes the outward normal vector on ∂Ω . Let

q(t) = a0 + a1t + · · · + akt
k (1.3)

be a polynomial of degree kwith nonnegative coefficients a0, a1, . . . , ak. We denote the derivative of q(t) by q′(t).
We state our main results as follows:

Theorem 1. Let q(t) and λ be defined by (1.1) and (1.3). Suppose q(0) > 0, 0 ≤ a1 < λa0, 0 ≤ a2 ≤ λa1, . . . , 0 ≤ ak ≤ λak−1.
Then we have

sup
u∈H1(Ω),

∫
Ω |∇u|2dx=1,

∫
Ω udx=0

∫
Ω

e
2πu2

q(0)
q(

∫
Ω u2dx)dx < +∞.

Theorem 2. Let q(t) and λ be defined by (1.1) and (1.3). Suppose q(0) > 0, a1 ≥ λa0, a2 ≥ 0, . . . , ak ≥ 0, then

sup
u∈H1(Ω),

∫
Ω |∇u|2dx=1,

∫
Ω udx=0

∫
Ω

e
2πu2

q(0)
q(

∫
Ω u2dx)dx = +∞.

Theorem 3. There exists ε0 > 0 such that if 0 ≤ q′(0) < ε0, then there exists an extremal function for the inequality in
Theorem 1.

The proof of Theorems 1 and 3 is based on blow-up analysis, and the proof of Theorem 2 is based on test function
computations. Earlier contributions in this direction similar to Theorems1 and2 are due toAdimurthi–Druet [5]when q(t) =
1 + a1t for functions with boundary value zero. We should point out that the blow-up occurs on the boundary ∂Ω in our
case, and therefore it is more difficult to deal with. For the existence of extremal functions for Moser–Pohozaev–Trudinger
inequalities for functions with boundary value zero, we should mention Carleson–Chang [6], Flucher [7], Lin [8], Li [9] when
q(0) = 1.

Before we end the introduction, we remark that a similar Moser–Pohozaev–Trudinger inequality for functions with
boundary value zero can be established by the same idea. We only state but omit the proof of the following results in this
note:

Theorem 4. Let q(t) be defined by (1.3), and λ1 be defined by

λ1 = inf
u∈H1

0
(Ω),

∫
Ω u2dx=1

∫
Ω

|∇u|2dx. (1.4)

Suppose q(0) > 0, 0 ≤ a1 < λ1a0, 0 ≤ a2 ≤ λ1a1, . . . , 0 ≤ ak ≤ λ1ak−1. Then we have

sup
u∈H1

0
(Ω),

∫
Ω |∇u|2dx=1

∫
Ω

e
4πu2

q(0)
q(

∫
Ω u2dx)dx < +∞.

Theorem 5. Let q(t) and λ1 be defined by (1.3) and (1.4). Suppose q(0) > 0, a1 ≥ λ1a0, a2 ≥ 0, . . . , ak ≥ 0, then

sup
u∈H1

0
(Ω),

∫
Ω |∇u|2dx=1

∫
Ω

e
4πu2

q(0)
q(

∫
Ω u2dx)dx = +∞.

Theorem 6. There exists ε0 > 0 such that if 0 ≤ q′(0) < ε0, then there exists a extremal function for the inequality in Theorem 4.

A similar Moser–Pohozaev–Trudinger inequality holds on Riemannianmanifolds with or without boundary. Themethod
in this note can be adapted to prove results in those settings.
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The organization of this paper is as follows:We give the proof of Theorems 1 and 3 in Section 2 and the proof of Theorem2
is given in Section 3. In Section 4, we state some recent theorems derived in [10] for Adams’ inequalities for bi-laplacian and
extremal functions in dimension four which are considerably more difficult to prove.

2. Proof of Theorems 1 and 3

This section contributes to the proof of Theorem 1. Without loss of generality, we assume q(0) = 1, i.e., q(x) =
1 + a1x + · · · + akx

k, where 0 ≤ a1 < λ, 0 ≤ a2 ≤ λa1, . . . , 0 ≤ ak ≤ λak−1. Our aim is to prove

sup
u∈H1(Ω),

∫
Ω |∇u|2dx=1,

∫
Ω udx=0

∫
Ω

e2πu2q(
∫
Ω u2dx)dx < +∞.

Since the proof is very long, we will divide it into several steps.

Step 1. For any ε > 0 there exists a uε ∈ H1(Ω) ∩ C∞(Ω) such that
∫

Ω
|∇uε |2dx = 1,

∫
Ω
uεdx = 0, and the supremum

Λε = sup
u∈H1(Ω),

∫
Ω |∇u|2dx=1,

∫
Ω udx=0

∫
Ω

e(2π−ε)u2q(
∫
Ω u2dx)dx

can be attained by uε . The Euler–Lagrange equation is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
uε = βε

λε

uεe
αεu

2
ε + γεuε − με

λε

in Ω

∂uε

∂ν
|∂Ω = 0, ‖∇uε‖2 = 1

αε = (2π − ε)q

(∫
Ω

u2
εdx

)

βε = q
(∫

Ω
u2

εdx
)

q
(∫

Ω
u2

εdx
) + q′ (∫

Ω
u2

εdx
) ∫

Ω
u2

εdx

γε = q′ (∫
Ω
u2

εdx
)

q
(∫

Ω
u2

εdx
) + q′ (∫

Ω
u2

εdx
) ∫

Ω
u2

εdx

λε =
∫

Ω

u2
εe

αεu
2
εdx

με = βε

|Ω|
∫

Ω

uεe
αεu

2
εdx

(2.1)

Proof. Choosing uj ∈ H1(Ω) such that
∫

Ω
|∇uj|2dx = 1,

∫
Ω
ujdx = 0, and

lim
j→+∞

∫
Ω

e
(2π−ε)u2

j
q

(∫
Ω u2

j
dx

)
dx = Λε.

Since {uj} is bounded in H1(Ω), passing to a subsequence (still denoted by uj), we have for some uε ,

uj ⇀ uε weakly in H1(Ω),

uj → uε strongly in L2(Ω).

Obviously
∫

Ω
uεdx = 0, and uj → uε a.e. in Ω . A contradiction argument together with Theorem A implies that uε �≡ 0.

We first claim a Lions’ type result [11]: there holds for any 0 < r < 1/(1 − ‖∇uε‖2
2),

lim sup
j→+∞

∫
Ω

e
2πru2

j dx < +∞. (2.2)

Notice that ‖∇(uj − uε)‖2
2 → 1 − ‖∇uε‖2

2 as j → +∞, the claim is an easy consequence of Theorem A and the inequality

ab ≤ γ a2 + 1
4γ

b2 for any γ > 0.

Since 0 ≤ a1 < λ, 0 ≤ a2 ≤ λa1, . . . , 0 ≤ ak ≤ λak−1, a direct calculation shows

q

(∫
Ω

u2
εdx

)
(1 − ‖∇uε‖2) = 1 + a1‖uε‖2

2 + · · · + ak‖uε‖2k
2 − ‖∇uε‖2

2

− a1‖uε‖2
2‖∇uε‖2

2 − · · · − ak‖uε‖2k
2 ‖∇uε‖2

2

< 1 − ak‖uε‖2k
2 ‖∇uε‖2

2. (2.3)
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Hence

q

(∫
Ω

u2
j dx

)
(1 − ‖∇uε‖2) → q

(∫
Ω

u2
εdx

)
(1 − ‖∇uε‖2) < 1 as j → +∞.

Again we have by our claim (2.2) that e
(2π−ε)u2

j
q(

∫
Ω u2

j
dx)

is bounded in Lr(Ω) for some r > 1 provided that j is sufficiently
large. Therefore

e
(2π−ε)u2

j
q

(∫
Ω u2

j
dx

)
→ e(2π−ε)u2εq(

∫
Ω u2εdx) in L1(Ω) as j → +∞,

and the conclusion of Step 1 follows immediately. �

Step 2. Energy concentration phenomenon of the maximizers uε : Precisely speaking, uε ⇀ 0weakly in H1(Ω), uε → 0 strongly
in L2(Ω), |∇uε |2dx ⇀ δp in sense of measure, where δp is the Dirac measure at p, and p lies on the boundary ∂Ω . Furthermore,
αε → 2π , βε → 1 and γε → q′(0).

Proof. On one hand, we have by Step 1,∫
Ω

eαεu
2
εdx = sup∫

Ω |∇u|2dx=1,
∫
Ω udx=0

∫
Ω

e(2π−ε)u2q(
∫
Ω u2dx)dx

≤ sup∫
Ω |∇u|2dx=1,

∫
Ω udx=0

∫
Ω

e2πu2q(
∫
Ω u2dx)dx. (2.4)

One the other hand, we have for any uwith
∫

Ω
|∇u|2dx = 1 and

∫
Ω
udx = 0,∫

Ω

e2πu2q(
∫
Ω u2dx)dx ≤ lim inf

ε→0

∫
Ω

e(2π−ε)u2q(
∫
Ω u2dx)dx

≤ lim inf
ε→0

∫
Ω

e(2π−ε)u2εq(
∫
Ω u2εdx)dx.

Hence we obtain

lim
ε→0

∫
Ω

eαεu
2
εdx = sup∫

Ω |∇u|2dx=1,
∫
Ω udx=0

∫
Ω

e2πu2q(
∫
Ω u2dx)dx. (2.5)

Using the inequality et ≤ 1 + tet , one has∫
Ω

eαεu
2
εdx ≤ |Ω| + αελε. (2.6)

The Poincare inequality implies that αε is bounded, which together with (2.5) and (2.6) gives

lim inf
ε→0

λε > 0. (2.7)

By the inequality tet
2 ≤ e + t2et

2
, there exists a constant c such that

|με/λε | ≤ c. (2.8)

Let cε = |uε |(xε) = maxΩ |uε |. If cε is bounded, by (2.7), (2.8), the boundedness of βε and γε , and the standard elliptic
estimates (see for example [12], Chapter 9) with respect to (2.1), Theorem 1 holds. Hence we may assume without loss of
generality that

xε → p ∈ Ω, cε = uε(xε) → +∞ (2.9)

as ε → 0. Here and in the sequel, we do not distinguish sequence and subsequence, the reader can understand it from the
context.

Since ‖∇uε‖2
2 = 1 and

∫
Ω
uεdx = 0, we have by Poincare inequality that uε is bounded in H1(Ω). Hence wemay assume

uε ⇀ u0 weakly in H1(Ω), and uε → u0 strongly in L2(Ω). Suppose u0 �= 0, then the fact
∫

Ω
u0dx = 0 leads to ‖∇u0‖2

2 �= 0.
Similar to (2.3), we have

q

(∫
Ω

u2
εdx

)
→ q

(∫
Ω

u2
0dx

)
<

1

1 − ‖∇u0‖2
2

,
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which togetherwith (2.2) implies that eαεu
2
ε is bounded in Lr(Ω) for some r > 1provided that ε is sufficiently small. Applying

the standard elliptic estimates to Eq. (2.1), one gets cε is bounded, and a contradiction. Hence u0 = 0, andwhence αε → 2π ,
βε → 1 and γε → q′(0).

To prove the rest of Step 2, we consider two cases.

Case 1. p lies in the interior of Ω .
Pick r > 0 such that Br(p), the ball centered at p with radius r , is contained in the interior of Ω . Take a cut-off function

φ ∈ C1
0 (Br(p)) satisfying φ ≡ 1 on Br/2(p), and

lim sup
ε→0

∫
Ω

|∇(φuε)|2dx < 1 + η (2.10)

for some 0 < η < 1/2. The existence of such φ is based on the facts
∫

Ω
|∇uε |2dx = 1 and

∫
Ω
u2

εdx → 0. Note that αε → 2π ,

we have by the classical Moser–Pohozaev–Trudinger inequality (Theorem B), eαεu
2
ε is bounded in Lr(Br/2(p)) for some r > 1.

Applying the interior elliptic estimates to (2.1), we obtain the boundedness of uε in C1(Br/2(p)), which contradicts (2.9).
Hence this case can not occur.

Case 2. p ∈ ∂Ω .
Assume |∇uε |2dx ⇀ μ in sense of measure. Note that

∫
Ω

|∇uε |2dx = 1, if μ �= δp, there exists r > 0 such that

lim
ε→0

∫
Br (p)∩Ω

|∇uε |2dx = μ(Br(p) ∩ Ω) < 1.

Theorem A together with
∫

Ω
|uε |dx → 0 gives eαεu

2
ε is bounded in Ls(U) for some s > 1 for sufficiently small ε, where U is

some neighborhood of p such that ∂U is smooth, and Br/2(p)∩∂Ω ⊂ U∩∂Ω ⊂ Br(p)∩∂Ω . Then, note that ∂uε/∂ν|∂Ω = 0,
applying the boundary elliptic estimates to (2.1) we have the uniform boundedness of uε near p, which contradicts (2.9).
Hence μ = δp. �

Step 3. The blow-up behavior of uε near p.

Take an isothermal coordinate system (U, φ) near p such that φ(p) = 0, φ : U ∩ ∂Ω → ∂R
2+ ∩ B1 and φ : U →

B
+
1 = {y = (y1, y2) : y21 + y22 ≤ 1, y2 ≥ 0}. In such coordinates, the original metric g = dx21 + dx22 has the representation

g = e2f (y)(dy21 + dy22) with f (0) = 0. Define a sequence of functions

ũε(y) =
{
uε ◦ φ−1(y1, y2) for y2 ≥ 0

uε ◦ φ−1(y1, −y2) for y2 < 0,

on B1. Let r
2
ε = λε

βε c
2
ε
e−αε c

2
ε . By Hölder inequality and Moser–Pohozaev–Trudinger inequality, we have r2ε e

βc2ε → 0 for any

fixed β < 2π , particularly rε → 0. Denote Uε = {y ∈ R
2 : φ(xε) + rεy ∈ B1}. Let ψε(y) = ũ(φ(xε) + rεy)/cε and

ϕε(y) = cε(ũε(φ(xε) + rεy) − cε), y ∈ Uε .

Given R > 0, we have on BR,⎧⎨
⎩− 
y ψε = 1

c2ε
ψεe

αε(u2ε−c2ε ) + r2ε γεψε − r2ε
με

cελε

− 
y ϕε = ψεe
αεϕε(1+ψε) + cεr

2
ε γεuε − cεr

2
ε με/λε.

Notice that ϕε(0) = sup
BR

ϕε = 0, applying Harnack inequality and the elliptic estimates to the above equations, we have

ψε → 1 in C1(BR/2), and ϕε → ϕ in C1(BR/4) with⎧⎪⎪⎨
⎪⎪⎩



R2 ϕ = −e4πϕ in BR/4

ϕ(0) = 0 = supϕ∫
BR/4

e4πϕdx ≤ 2.

In fact, we have ϕε → ϕ in C1
loc(R

2), where ϕ satisfies the following equation⎧⎪⎨
⎪⎩



R2 ϕ = −e4πϕ in R

2

ϕ(0) = 0 = supϕ∫
R2

e4πϕdx ≤ 2.

(2.11)

The uniqueness theorem in [13] implies that

ϕ(x) = − 1

2π
log

(
1 + π

2
|x|2

)
,

∫
R2

e4πϕdx = 2. (2.12)
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Denote U+
ε = {y ∈ R

2 : φ(xε) + rεy ∈ B
+
1 }, and U−

ε = {y ∈ R
2 : φ(xε) + rεy ∈ B

−
1 }. For any fixed R > 0, let

B
′
R = {y ∈ BR : φ(xε) + rεy ∈ B

+
1 }, and B

′′
R = {y ∈ BR : φ(xε) + rεy ∈ B

−
1 } we have∫

BR

e4πϕdy = lim
ε→0

∫
BR

1

βε

ψ2
ε e

αε(1+ψε)ϕεdy

= lim
ε→0

∫
BRrε (φ(xε ))

1

λε

ũ2
εe

αε ũ
2
εdy

≤ lim
ε→0

∫
B

+
Rrε

(φ(xε ))

1

λε

ũ2
εe

αε ũ
2
εdy + lim

ε→0

∫
B

−
Rrε

(φ(xε ))

1

λε

ũ2
εe

αε ũ
2
εdy.

This inequality together with
∫

U
1
λε
u2

εe
αεu

2
εdx ≤ 1 and (2.12) gives

lim
R→+∞ lim

ε→0

∫
B

+
Rrε

(φ(xε ))

1

λε

ũ2
εe

αε ũ
2
εdy = 1, (2.13)

lim
R→+∞ lim

ε→0

∫
B

−
Rrε

(φ(xε ))

1

λε

ũ2
εe

αε ũ
2
εdy = 1. (2.14)

Step 4. The asymptotic behavior of uε away from p. We have for any 1 < q < 2, cεuε ⇀ G weakly in H1,q(Ω), where
G ∈ C∞(Ω \ {p}) is a Green function satisfying the following

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−ΔG = δp + q′(0)G − 1

|Ω| in Ω

∂G

∂ν
= 0 on ∂Ω \ {p}∫

Ω

Gdx = 0.

(2.15)

Furthermore, ∀Ω̃ ⊂⊂ Ω \ {p}, cεuε → G in C∞(Ω̃).

Proof. Since the proof is similar to Lemma 4.9 in [14], only slight modification is needed, we omit the details. �

Step 5. Completion of the proof of Theorem 1.

By Step 4, we have cεuε → G strongly in L2(Ω). Hence

lim
ε→0

∫
Ω

eαεu
2
εdx ≤ lim sup

ε→0

e2π(a1‖cεuε‖2
2
+a2‖cεuε‖4

2
+···+ak‖cεuε‖2k

2
)

∫
Ω

e(2π−ε)u2εdx

≤ e2πq(
∫
Ω G2dx) sup∫

Ω |∇u|2dx=1,
∫
Ω udx=0

∫
Ω

e2πu2dx.

By Theorem A and (2.5), we have completed the proof of Theorem 1. �

Proof of Theorem 3. Combining Steps 3 and 4, we proceed as we did in the proof of Proposition 3.11 in [15]. We only give
the outline of the proof here. For more details we refer the reader to [14,15]. Under the assumption that cε → +∞ and
xε → p, we obtain

sup∫
Ω |∇u|2dx=1,

∫
Ω udx=0

∫
Ω

eαεu
2
εdx ≤ |Ω| + π

2
e1+2πAp , (2.16)

where

Ap = lim
x→p

(
G + 1

π
log |x − p|

)
.
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Let β = G(x) + 1
π
log |x − p| − Ap. Applying elliptic estimates to (2.15), we have β = O(|x − p|). Set r = |x − p| and

φε =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c + 1
c

(
− 1

2π
log

(
1 + π

2
r2

ε2

)
+ B

)
√
q

(
1

c2

∫
Ω
G2dx

) , r ≤ Rε,

G − ηβ√
c2q

(
1

c2

∫
Ω
G2dx

) , Rε ≤ r ≤ 2Rε,

G√
c2q

(
1

c2

∫
Ω
G2dx

) , r ≥ 2Rε,

(2.17)

where η ∈ C∞
0 (B2Rε(p)) is a cutoff function, η = 1 in BRε(p), ‖∇η‖L∞ = O( 1

Rε
), B, R and c are constants depending on ε to

be determined. The rest of the proof is almost the same as [14]. For sufficiently small positive q′(0), we can choose φε such
that

∫
Ω

|∇φε |2dx = 1 and∫
Ω

e2π(φε−∫
Ω φεdx)

2q(
∫
Ω(φε−∫

Ω φεdx)
2dx)dx > |Ω| + π

2
e1+2πAp ,

which together with (2.16) implies that blow-up can not occur, and the extremal function does exist. �

3. Proof of Theorem 2

In this section, we choose test functions to prove Theorem 2. Let λ be the first nonzero neumann eigenvalue defined
by (1.1), and u0 be the corresponding eigenfunction satisfying (1.2). By elliptic estimates, u0 ∈ C1(Ω). We first claim the
following:

Claim 3.1: u0 cannot be identically zero on the boundary ∂Ω .

Proof. Suppose not. Then u0 satisfies{−
u0 = λu0 in Ω

u0 = 0,
∂u0

∂ν
= 0 on ∂Ω.

(3.1)

Noting that Ω ⊂ R
2, according to Aviles ([16], Theorem 1), we know that Ω must be a ball, and u0 is symmetric in the ball.

It follows that u0 ≡ 0, which contradicts
∫

Ω
u2
0dx = 1. �

Once claim 3.1 is true, we can then adapt an argument similar to that of [5]. Without loss of generality we can assume
there exists p ∈ ∂Ω such that u0(p) > 0 for otherwise we consider −u0 instead of u0. Choose a neighborhood of p,
say U ⊂ Ω such that u0 ≥ u0(p)/2 in U. Choose an isothermal coordinate system (V, ψ) around p such that V ⊂ U,

ψ : V → B
+
δ = {y = (y1, y2) ∈ R

2 : y21 + y22 ≤ δ2, y2 ≥ 0}, ψ(p) = 0. In this coordinate system, the original metric

g = dx21 + dx22 can be represented by g = e2f (y)(dy21 + dy22), where f (y) is a smooth function with f (0) = 0.

On B
+
δ , we define a sequence of functions

mε(y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
1

2π
log

1

ε
, |y| ≤ δ

√
ε,√

2√
π log 1

ε

log
δ

|y| , δ
√

ε < |y| ≤ δ.

We set

uε =
{
mε ◦ ψ inψ−1(B+

δ ),

lεϕ inΣ \ ψ−1(B+
δ ),

where ϕ ∈ C∞
0 (Ω \ ψ−1(B+

δ )) and lε is a real number such that
∫

Ω
uεdx = 0.

It is not difficult to check that

lε = O

(
1/

(
log

1

ε

)1/2
)

, ‖∇uε‖2
2 = 1 + O

(
1/ log

1

ε

)
,

‖uε‖1 = O

(
1/

(
log

1

ε

)1/2
)

, ‖uε‖2
2 = O

(
1/ log

1

ε

)
.
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Setting vε = uε + tεu0 with tε → 0, t2ε log 1
ε

→ +∞ and t2ε
(
log 1

ε

)1/2 → 0. Then we have

‖vε‖2
2 = ‖uε‖2

2 + t2ε ‖u0‖2
2 + 2tε

∫
Ω

uεu0dx

= t2ε + 2tε

∫
Ω

uεu0dx + O

(
1/ log

1

ε

)
.

‖∇vε‖2
2 = ‖∇uε‖2

2 + t2ε ‖∇u0‖2
2 + 2tε

∫
Ω

∇uε∇u0dx

= 1 + 2λtε

∫
Ω

uεu0dx + λt2ε + O

(
1/ log

1

ε

)
.

1

‖∇vε‖2
2

q

( ‖vε‖2
2

‖∇vε‖2
2

)
= 1 + (q′(0) − λ)

(
t2ε + 2tε

∫
Ω

uεu0dx

)
+ o

(
tε/

(
log

1

ε

)1/2
)

.

We have for q′(0) ≥ λ

1

‖∇vε‖2
2

q

( ‖vε‖2
2

‖∇vε‖2
2

)
≥ 1 + o

(
tε/

(
log

1

ε

)1/2
)

.

Note that on ψ−1(B+
δ
√

ε
),

2π
v2

ε

‖∇vε‖2
2

q

( ‖vε‖2
2

‖∇vε‖2
2

)
≥ 2π

(
t2ε u

2
0 + 1

2π
log

1

ε
+ 2tε

(
1

2π
log

1

ε

)1/2

u0

) (
1 + o

(
tε/

(
log

1

ε

)1/2
))

≥ log
1

ε
+ tε

(
log

1

ε

)1/2 (√
8πu0 + o(1)

)
.

Hence

∫
Ω

e
2π

v2ε

‖∇vε‖2
2

q(
‖vε‖2

2

‖∇vε‖2
2

)

dx ≥
∫

ψ−1(B+
δ
√

ε
)

1

ε
e
tε

√
log 1

ε (
√
8πu0+o(1))

dx

≥ C(δ)e
tε

√
log 1

ε (
√
2πu0(p)+o(1))

for some positive constant C(δ). Since u0(p) > 0, then
∫

Ω
e
2π

v2ε

‖∇vε‖2
2

q(
‖vε‖2

2

‖∇vε‖2
2

)

dx → +∞ as ε → 0. This completes the proof
of Theorem 2. �

4. Adams’ inequalities for bi-Laplacian and extremal functions in dimension four

This section reports some recent results on high order Moser’s inequalities derived in [10], namely the Adams’
inequalities. We refer the reader to [10] for proofs and more details.

Research on finding the sharp constants for higher order Moser’s inequality started by the work of Adams [17]. To state
Adams’ result, we use the symbol ∇mu, m is a positive integer, to denote the m−th order gradient for u ∈ Cm, the class of
m−th order differentiable functions:

∇mu =
{


m
2 u form even

∇ 
m−1
2 u for m odd.

where ∇ is the usual gradient operator and 
 is the Laplacian. We use ‖∇mu‖p to denote the Lp norm (1 ≤ p ≤ ∞) of the

function |∇mu|, the usual Euclidean length of the vector ∇mu. We also use W
k,p
0 (Ω) to denote the Sobolev space which is a

completion of C∞
0 (Ω) under the norm of ‖u‖Lp(Ω) + ‖∇ku‖Lp(Ω). Then Adams proved the following

Theorem A. Let Ω be an open and bounded set in R
n. If m is a positive integer less than n, then there exists a constant

C0 = C(n,m) > 0 such that for any u ∈ W
m, n

m
0 (Ω) and ‖∇mu‖

L
n
m (Ω)

≤ 1, then

1

|Ω|
∫

Ω

exp(β|u(x)| n
n−m )dx ≤ C0
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for all β ≤ β(n,m) where

β(n,m) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n

wn−1

[
πn/22mΓ (m+1

2
)

Γ ( n−m+1
2

)

] n
n−m

when m is odd

n

wn−1

[
πn/22mΓ (m

2
)

Γ ( n−m
2

)

] n
n−m

when m is even.

Furthermore, for any β > β(n,m), the integral can be made as large as possible.

Note that β(n, 1) coincides with Moser’s value of β0 and β(2m,m) = 22mπmΓ (m+ 1) for both odd and evenm. We are
particularly interested in the case n = 4 andm = 2 in this paper where β(4, 2) = 32π2.

It has remained an open question whether Adams’ inequality has an extremal function, namely, whether the following
supremum

sup

u∈W
m, n

m
0

(Ω),‖∇mu‖
L
n
m (Ω)

≤1

1

|Ω|
∫

Ω

exp(β|u(x)| n
n−m )dx

canbe attained. Unlike in theMoser’s inequalitywith first order derivatives,we are unable to adapt Carleson–Chang’s idea [6]
of symmetrization to establish the existence of extremal functions for inequalities involving high order derivatives. It is still
a rather difficult problem to answer the above question in the most generality. Nevertheless, one of the main purposes
of this paper is to address this issue and provide an affirmative answer in an important and particularly interesting case
when n = 4 and m = 2, where considerable attention has been paid to the geometric analysis on fourth order differential
operators on four manifolds (e.g., see the survey article [18]) and many references therein).

To state our results, let Ω ⊂ R
n denote a smooth oriented bounded domain, H2

0 (Ω) denote the Sobolev space which is
completion of space of smooth functions with compact support under the Dirichlet norm ‖u‖H2

0
(Ω) = ‖Δu‖2, where ‖ · ‖2

denotes the usual L2(Ω)-norm. Then Adams’ inequality in the case of n = 4 andm = 2 can be stated as

sup
‖Δu‖2≤1

∫
Ω

eγ u2dx < +∞ for all γ ≤ 32π2. (4.1)

This inequality is optimal in the sense that the corresponding supremum is infinite for any growth eγ u2 with γ > 32π2.
Then we have strengthened in [10] the Adams inequality (4.1). Let

λ(Ω) = inf
u∈H2

0
(Ω),u�≡0

‖Δu‖2
2

‖u‖2
2

(4.2)

be the first eigenvalue of the bi-Laplacian operator Δ2. By a direct method of variation, one can show that λ(Ω) > 0. In [10]
we have shown that replacing the best constant 32π2 by 32π2(1 + α‖u‖2

2) for any α: 0 ≤ α < λ(Ω), (4.1) is still valid.
More precisely, we proved in [10]

Theorem 4.1. Let Ω ⊂ R
4 be a smooth oriented bounded domain, λ(Ω) be defined by (4.2). Then for anyα with 0 ≤ α < λ(Ω),

we have

sup
u∈H2

0
(Ω),‖Δu‖2

2
=1

∫
Ω

e32π
2u2(1+α‖u‖2

2
)dx < +∞. (4.3)

The inequality is sharp in the sense that for any growth e32π
2u2(1+α‖u‖2

2
) with α ≥ λ(Ω) the supremum is infinite.

The special case of Theorem 4.1 when α = 0 is exactly Adams’ original inequality (4.1).

Next, we can further generalize Theorem 4.1 to the growth e32π
2u2q(‖u‖2

2
) for some appropriate polynomial q(t) defined

on R with q(0) = 1, namely

Theorem 4.1*. Let Ω ⊂ R
4 be a smooth oriented bounded domain, λ(Ω) be defined by (4.2), and q(t) = 1 + a1t + a2t

2 +
· · · + akt

k(k ≥ 1) be a polynomial of order k in R. If 0 ≤ a1 < λ(Ω), 0 ≤ a2 ≤ λ(Ω)a1, . . . , 0 ≤ ak ≤ λ(Ω)ak−1, then there
holds

sup
u∈H2

0
(Ω),‖Δu‖2

2
=1

∫
Ω

e32π
2u2q(‖u‖2

2
)dx < +∞.

If a1 ≥ λ(Ω), and a2, . . . , ak are arbitrary real numbers, then the supremum corresponding to the growth e32π
2u2q(‖u‖2

2
) is infinite.
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It is easy to see that Theorem 4.1 is a special case of Theorem 4.1* when q(t) = 1+αt . We have shown in [10] the existence
of extremal function for the Adams inequality (4.1) in dimension four.

Theorem 4.2. Let Ω ⊂ R
4 be a smooth oriented bounded domain. There exists u∗ ∈ H2

0 (Ω) ∩ C4(Ω) with ‖Δu∗‖2
2 = 1 such

that ∫
Ω

e32π
2u∗2

dx = sup
u∈H2

0
(Ω),‖Δu‖2≤1

∫
Ω

e32π
2u2dx.

In fact, we have proved the following more general result.

Theorem 4.2*. Let Ω ⊂ R
4 be a smooth oriented bounded domain, λ(Ω) be defined by (4.2), and q(t) = 1 + a1t + a2t

2 +
· · · + akt

k(k ≥ 1) be a polynomial of order k in R. If 0 ≤ a1 < λ(Ω), 0 ≤ a2 ≤ λ(Ω)a1, . . . , 0 ≤ ak ≤ λ(Ω)ak−1, then there
exists a strictly positive constant ε0 < λ(Ω) depending only on Ω such that when 0 ≤ a1 ≤ ε0, 0 ≤ a2 ≤ λ(Ω)a1, . . ., and
0 ≤ am ≤ λ(Ω)am−1, we can find u∗ ∈ H2

0 (Ω) ∩ C4(Ω) such that ‖Δu∗‖2
2 = 1 and∫

Ω

e32π
2u∗2q(‖u∗‖2

2
)dx = sup

u∈H2
0
(Ω),

∫
Ω |Δu|2dx≤1

∫
Ω

e32π
2u2q(‖u‖2

2
)dx.
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