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Abstract

Let Ω ⊂ R4 be a smooth oriented bounded domain, H 2
0 (Ω) be the Sobolev space, and λ(Ω) =

inf
u∈H 2

0 (Ω),‖u‖22=1 ‖�u‖22 be the first eigenvalue of the bi-Laplacian operator �2. Then for any α:

0 � α < λ(Ω), we have

sup
u∈H 2

0 (Ω),‖�u‖22=1

∫
Ω

e32π
2u2(1+α‖u‖22) dx < +∞

and the above supremum is infinity when α � λ(Ω). This strengthens Adams’ inequality in dimension 4
[D. Adams, A sharp inequality of J. Moser for high order derivatives, Ann. of Math. 128 (1988) 365–398]
where he proved the above inequality holds for α = 0. Moreover, we prove that for sufficiently small α an
extremal function for the above inequality exists. As a special case of our results, we thus show that there
exists u∗ ∈ H 2

0 (Ω) ∩ C4(Ω) with ‖�u∗‖22 = 1 such that

∫
Ω

e32π
2u∗2

dx = sup
u∈H 2

0 (Ω),
∫
Ω |�u|2 dx=1

∫
Ω

e32π
2u2 dx.
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This establishes the existence of an extremal function of the original Adams inequality in dimension 4.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction and main results

Sharp geometric inequalities and their extremal functions play an important role both in anal-
ysis and geometry. The investigation on the sharp constant for Moser–Trudinger’s inequality
dated back to 1960s to 70s. In 1971, J. Moser [30] sharpened the result of Pohozaev [34] and

Trudinger [41] and found the largest positive constant β0 = nω
1

n−1
n−1, where ωn−1 is the area of the

surface of the unit n-ball, such that if Ω is an open subset of Euclidean space R
n (n � 2) with

finite Lebesgue measure, then there is a constant C0 depending only on n such that

1

|Ω|
∫
Ω

exp
(
β
∣∣f (x)

∣∣ n
n−1

)
dx � C0

for any β � β0, any f in the Sobolev space W
1,n
0 (Ω), provided ||∇f ||Ln(Ω) � 1. Moser also

proved that if β exceeds β0, then the above inequality cannot hold with uniform C0 independent
of f .

In 1986, Carleson and Chang [7] proved that the following supremum

sup
f ∈W

1,n
0 (Ω), ||∇f ||Ln(Ω)�1

{
1

|Ω|
∫
Ω

exp
(
nω

1
n−1
n−1

∣∣f (x)
∣∣ n

n−1
)
dx

}

has extremals for the case when Ω is a ball in R
n for n � 2. Carleson and Chang proved the exis-

tence of extremals by reduction to a one-dimensional problem using a symmetrization argument.
Much work has been done since then, and we refer the reader to the sharp Moser–Onofri type in-
equality with extremal function for Paneitz operators on high dimensional spheres by Becker [4],
Carlen and Loss [6], a sharp Moser inequality with mean value zero on domains in R

2 by Chang
and Yang [8] (see a recent extension to high dimension by Leckband [20]), the work on existence
of extremal functions by Flucher [16] on smooth domains in R

n when n = 2, by Lin [27] for
the case n > 2, and a Moser type inequality related to the mean field equation by Ding, Jost, Li
and Wang [13,14], and more recently on existence of extremal functions on Riemannian man-
ifolds by Y.X. Li [21] and Yang [43], and by Lu and Yang [29] for functions with mean value
zero, and on unbounded domains by Ruf in R

2 [35]. We should also mention that Tian and Zhu
[40] proved a Moser–Trudinger type inequality for almost plurisubharmonic functions on any
Kahler–Einstein manifolds with positive scalar curvature which generalizes the stronger version
of the Moser–Onofri inequality on S2 and also refines a weaker inequality found earlier by Tian
in [39].

Research on finding the sharp constants for higher order Moser’s inequality started by the
work of D. Adams [1]. To state Adams’ result, we use the symbol ∇mu, m is a positive integer,
to denote the mth order gradient for u ∈ Cm, the class of mth order differentiable functions:
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∇mu =
{

�
m
2 u for m even,

∇�
m−1
2 u for m odd,

where ∇ is the usual gradient operator and � is the Laplacian. We use ||∇mu||p to denote the
Lp norm (1 � p � ∞) of the function |∇mu|, the usual Euclidean length of the vector ∇mu. We
also use W

k,p

0 (Ω) to denote the Sobolev space which is a completion of C∞
0 (Ω) under the norm

of ||u||Lp(Ω) + ||∇ku||Lp(Ω). Then Adams proved the following

Theorem A. Let Ω be an open and bounded set in R
n. If m is a positive integer less

than n, then there exists a constant C0 = C(n,m) > 0 such that for any u ∈ W
m, n

m

0 (Ω) and
||∇mu||

L
n
m (Ω)

� 1, then

1

|Ω|
∫
Ω

exp
(
β
∣∣u(x)

∣∣ n
n−m

)
dx � C0

for all β � β(n,m) where

β(n,m) =

⎧⎪⎨
⎪⎩

n
wn−1

[πn/22mΓ ( m+1
2 )

Γ ( n−m+1
2 )

] n
n−m when m is odd,

n
wn−1

[πn/22mΓ ( m
2 )

Γ ( n−m
2 )

] n
n−m when m is even.

Furthermore, for any β > β(n,m), the integral can be made as large as possible.

Note that β(n,1) coincides with Moser’s value of β0 and β(2m,m) = 22mπmΓ (m + 1) for
both odd and even m. We are particularly interested in the case n = 4 and m = 2 in this paper
where β(4,2) = 32π2.

We remark here that both Moser and Carleson–Chang’s works rely on a rearrangement ar-
gument. In order to adapt this symmetrization principle of Moser, one needs to establish the
Lp-norm preserving properties of the high order gradient functions∇mu, which is still not known
to be true in general for m � 2. What Adams did was to represent the function u in terms of its
gradient function ∇mu using a convolution operator. Then he used the O’Neil’s idea [33] of rear-
rangement of convolution of two functions together with the idea which originally goes back to
Garcia. Such an argument avoids in dealing with the issue of L

n
m norm preserving of the gradient

of the rearranged function. This idea has also been developed to derive the sharp constants for
Adams’ inequality involving higher order derivatives on Riemannian manifolds without bound-
ary by Fontana [17] and more recently in the subelliptic setting to derive the sharp Moser’s
inequality on the Heisenberg group and CR sphere by Cohn and Lu (see [10] and [11]).

It has remained an open question whether Adams’ inequality has an extremal function,
namely, whether the following supremum

sup

u∈W
m, n

m
0 (Ω), ||∇mu||

L
n
m (Ω)

�1

1

|Ω|
∫
Ω

exp
(
β
∣∣u(x)

∣∣ n
n−m

)
dx

can be attained. Unlike in the Moser’s inequality with first order derivatives, we are unable to
adapt Carleson and Chang’s idea [7] of symmetrization to establish the existence of extremal
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functions for inequalities involving high order derivatives. It is still a rather difficult problem
to answer the above question in the most generality. Nevertheless, one of the main purposes
of this paper is to address this issue and provide an affirmative answer in an important and
particularly interesting case when n = 4 and m = 2, where considerable attention has been paid
to the geometric analysis on fourth order differential operators on four manifolds (e.g., see the
survey article [9] and many references therein). As it has been pointed out earlier that the sharp
Moser–Onofri inequality and existence of extremal functions on high dimensional spheres S

n for
high order derivatives were derived by Beckner using deep Fourier analysis techniques [4], see
also Carlen and Loss [6] using elegant competing symmetry method, and the Beckner–Onofri
inequality on CR sphere by Branson, Fontana and Morpurgo [5].

To state our results, let Ω ⊂ R
n denote a smooth oriented bounded domain, H 2

0 (Ω) denote
the Sobolev space which is a completion of space of smooth functions with compact support
under the Dirichlet norm ‖u‖H 2

0 (Ω) = ‖�u‖2, where ‖ · ‖2 denotes the usual L2(Ω)-norm. Then
Adams’ inequality in the case of n = 4 and m = 2 can be stated as

sup
‖�u‖2�1

∫
Ω

eγu2 dx < +∞ for all γ � 32π2. (1.1)

This inequality is optimal in the sense that the corresponding supremum is infinite for any growth
eγu2 with γ > 32π2.

The first aim of this paper is to strengthen the Adams inequality (1.1). Let

λ(Ω) = inf
u∈H 2

0 (Ω),u 	≡0

‖�u‖22
‖u‖22

(1.2)

be the first eigenvalue of the bi-Laplacian operator �2. By a direct method of variation, one can
show that λ(Ω) > 0. In this paper we show that replacing the best constant 32π2 by 32π2(1 +
α‖u‖22) for any α: 0 � α < λ(Ω), (1.1) is still valid. More precisely, we prove

Theorem 1.1. Let Ω ⊂ R
4 be a smooth oriented bounded domain, λ(Ω) be defined by (1.2).

Then for any α with 0� α < λ(Ω), we have

sup
u∈H 2

0 (Ω),‖�u‖22=1

∫
Ω

e32π
2u2(1+α‖u‖22) dx < +∞. (1.3)

The inequality is sharp in the sense that for any growth e32π
2u2(1+α‖u‖22) with α � λ(Ω) the

supremum is infinite.

The special case of Theorem 1.1 when α = 0 is exactly Adams’ original inequality (1.1).
We remark here that one can obtain a weaker version of the Adams inequality (1.1) for any
γ < 32π2 by using a sharp representation formula of the function u in terms of its higher order
gradient ∇mu and combining with Hedberg’s idea [19]. However, this argument does not lead
to the sharpest constant γ = 32π2. Nevertheless, our argument of proving inequality (1.3) only
requires to know that the weaker version of the inequality (1.1) holds. Namely, as long as we can
show that (1.1) holds for any γ < 32π2, we can derive the strengthened Adams inequality (1.3)
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for all 0� α < λ(Ω). Thus, our method in this paper also provides an alternative way of deriving
Adams’ result for α = 0 when n = 4 and m = 2.

Next, we can further generalize Theorem 1.1 to the growth e32π
2u2q(‖u‖22) for some appropriate

polynomial q(t) defined on R with q(0) = 1, namely

Theorem 1.1∗. Let Ω ⊂ R
4 be a smooth oriented bounded domain, λ(Ω) be defined by (1.2),

and q(t) = 1+a1t +a2t
2+· · ·+akt

k (k � 1) be a polynomial of order k in R. If 0� a1 < λ(Ω),
0� a2 � λ(Ω)a1, . . . , 0 � ak � λ(Ω)ak−1, then there holds

sup
u∈H 2

0 (Ω),‖�u‖22=1

∫
Ω

e32π
2u2q(‖u‖22) dx < +∞.

If a1 � λ(Ω), and a2, . . . , ak are arbitrary real numbers, then the supremum corresponding to
the growth e32π

2u2q(‖u‖22) is infinite.

It is easy to see that Theorem 1.1 is a special case of Theorem 1.1∗ when q(t) = 1+ αt .
Having obtained the sharpened version of the Adams inequality (1.3), we are naturally led

to investigate the existence of extremal functions such that the supremum (1.3) is attained. This
question is rather difficult and requires considerable efforts to accomplish when dealing with
inequalities involving the high order derivatives.

The second aim of this paper is to show the existence of extremal function for the Adams
inequality (1.1) in dimension four. We will prove

Theorem 1.2. Let Ω ⊂ R
4 be a smooth oriented bounded domain. There exists u∗ ∈ H 2

0 (Ω) ∩
C4(Ω) with ‖�u∗‖22 = 1 such that

∫
Ω

e32π
2u∗2

dx = sup
u∈H 2

0 (Ω),‖�u‖2�1

∫
Ω

e32π
2u2 dx.

In fact, we will prove the following more general result.

Theorem 1.2∗. Let Ω ⊂ R
4 be a smooth oriented bounded domain, λ(Ω) be defined by (1.2),

and q(t) = 1 + a1t + a2t
2 + · · · + akt

k (k � 1) be a polynomial of order k in R. If 0 � a1 <

λ(Ω), 0 � a2 � λ(Ω)a1, . . . , 0 � ak � λ(Ω)ak−1, then there exists a strictly positive constant
ε0 < λ(Ω) depending only on Ω such that when 0 � a1 � ε0, 0 � a2 � λ(Ω)a1, . . . , and 0 �
am � λ(Ω)am−1, we can find u∗ ∈ H 2

0 (Ω) ∩ C4(Ω) such that ‖�u∗‖22 = 1 and

∫
Ω

e32π
2u∗2q(‖u∗‖22) dx = sup

u∈H 2
0 (Ω),

∫
Ω |�u|2 dx�1

∫
Ω

e32π
2u2q(‖u‖22) dx.

As a corollary of Theorem 1.2∗, we have thus also shown the existence of extremal function
of inequality (1.3) for sufficiently small α > 0.

The following remarks are in order. First of all, to prove Theorems 1.1 and 1.2, we only need
to prove Theorems 1.1∗ and 1.2∗. Second, the proof of the second part of Theorem 1.1 (also



1140 G. Lu, Y. Yang / Advances in Mathematics 220 (2009) 1135–1170

Theorem 1.1∗) is based on the test function computations, while the first part is based on blow-
up analysis. More precisely, using a Lions’ type lemma, we can find uε ∈ H 2

0 (Ω) ∩ C4(Ω) such
that

∫
Ω

|�uε |2 dx = 1, and

∫
Ω

e(32π2−ε)u2ε (1+α‖uε‖22) dx = sup
u∈H 2

0 (Ω),‖�u‖2=1

∫
Ω

e(32π2−ε)u2(1+α‖u‖22) dx

for any ε > 0. Denote αε = (32π2 − ε)(1 + α‖uε‖22), βε = (1 + α‖uε‖22)/(1 + 2α‖uε‖22), γε =
α/(1+ 2α‖uε‖22), λε = ∫

Ω
u2εe

αεu
2
ε dx. Then the Euler–Lagrange equation of uε is

⎧⎪⎨
⎪⎩

�2uε = βε

λε

uεe
αεu

2
ε + γεuε in Ω,

uε = ∂uε

∂ν
= 0 on ∂Ω.

Write cε = uε(xε) = maxx∈Ω |uε |. Without loss of generality we assume cε → +∞ (namely
blow-up occurs) and xε → p ∈ Ω . Using the Pohozaev identity and elliptic estimates, we will
exclude the scenario of the boundary blow-up. We also prove that cεuε converges to some Green
function weakly in H 2

0 (Ω), which immediately leads to Theorem 1.1 (Theorem 1.1∗). Third,
for the proof of Theorem 1.2 (Theorem 1.2∗), we will derive an upper bound of the functional∫
Ω

e32π
2u2 dx under the assumption that blow-up occurs by using a certain type of capacitary

estimate, and then construct a sequence of functions to reach a contradiction. This leads to the
existence of extremal function. Fourth, as we have pointed out earlier, throughout the paper
we will not require the best Adams inequality (the best constant is 32π2), but only require the
subcritical Adams inequality, i.e.

sup
‖�u‖2�1

∫
Ω

eγu2 dx < +∞ for all γ < 32π2.

This is interesting in its own right. Fifth, we also caution the reader that αε is not necessarily
approaching to 32π2 or bounded above by 32π2 when ε → 0. Thus, we cannot have the uniform
boundedness with respect to ε > 0 of the integral

∫
Ω

eαεu
2
ε dx in advance, which is obviously

uniformly bounded for the case q(t) ≡ 1 in Theorem 1.1∗ (i.e., α = 0 in Theorem 1.1), when we
calculate the upper bound using the capacity estimates. This in turn creates considerably more
difficulty in the proof of Theorem 1.2∗. Sixth, an analogous case of Theorem 1.1 for first order
derivatives in dimension two has been studied by Adimurthi and O. Druet in [2] using blow-up
analysis, and existence of extremal function was considered in [43] in this case. A version of
Theorem 1.2 on four dimensional Riemannian manifolds without boundary was recently consid-
ered by Y.X. Li and C. Ndiaye in [22] and existence of extremal functions was derived in [22].
Our results in this paper on bounded, open and orientable domains Ω in R

4 can be generalized
to the case on Riemannian manifolds of dimension four with boundary. We would also like to
mention that blow-up techniques have been already employed by numerous authors in a relevant
but quite different setting in dealing with Sobolev inequalities instead of Moser–Trudinger type
ones. We refer the interested reader to the works in [3,15,24,26,36–38], etc.

The rest of the paper is arranged as follows. In Section 2, we construct test functions to prove
the second part of Theorem 1.1 (Theorem 1.1∗). In Section 3, we give the existence of maximizers
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of subcritical functionals. In Section 4, we analyze the asymptotic behavior of those maximizers.
In Section 5, we obtain an upper bound of the critical functional under the assumption that blow-
up occurs in the interior of Ω . We exclude the boundary bubble in Section 6 and finish the proof
of Theorem 1.1∗. In Section 7, we construct test functions to conclude the existence of extremals,
and thus give the proof of Theorem 1.2∗.

2. Proof of the second part of Theorem 1.1∗

The main purpose of this section is to prove the second part of Theorem 1.1∗ by constructing
test functions. Let q(t) = 1 + a1t + · · · + akt

k be the polynomial given in the assumption of
Theorem 1.1∗. We need to prove that for a1 � λ(Ω) and arbitrary a2, . . . , ak , there holds

sup
u∈H 2

0 (Ω),‖�u‖22�1

∫
Ω

e32π
2u2q(‖u‖22) dx = +∞. (2.1)

Let u0 ∈ H 2
0 (Ω) ∩ C4(Ω) be an eigenfunction of bi-Laplacian operator �2 satisfying

⎧⎨
⎩

�2u0 = λ(Ω)u0 in Ω,

‖u0‖2 = 1, u0 = ∂u0

∂ν
= 0 on ∂Ω.

(2.2)

The solvability of this equation is based on the direct method of variation. Without loss of gen-
erality we assume the unit ball B � Ω and u0 > C0 in B for some positive C0, otherwise we
consider −u0 instead of u0 and a ball in Ω with radius r and centered at some point x0. Let

uε =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
1

32π2 log
1
ε

− |x|2√
8π2ε log 1

ε

+ 1√
8π2 log 1

ε

, |x| � ε
1
4 ,

1√
2π2 log 1

ε

log 1
|x| , ε

1
4 < |x| � 1,

ζε, |x| > 1,

where ζε is a smooth function satisfying ζε |∂B = ζε |∂Ω = 0, ∂ζε

∂ν
|∂B = 1√

2π2 log 1
ε

, ∂ζε

∂ν
|∂Ω = 0, and

ζε , ∇ζε , �ζε are all O( 1√
log 1

ε

). One can check that uε ∈ H 2
0 (Ω), and

‖uε‖22 = O

(
1/ log

1

ε

)
, ‖�uε‖22 = 1+ O

(
1/ log

1

ε

)
.

Let vε = uε + tεu0 with tε → 0, t2ε log
1
ε

→ +∞ and t2ε (log 1
ε
)1/2 → 0. Then we have

‖vε‖22 = ‖uε‖22 + t2ε ‖u0‖22 + 2tε

∫
Ω

uεu0 dx

= t2ε + 2tε

∫
Ω

uεu0 dx + O

(
1/ log

1

ε

)
,
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‖�vε‖22 = ‖�uε‖22 + t2ε ‖�u0‖22 + 2tε

∫
Ω

�uε�u0 dx

= 1+ 2λ(Ω)tε

∫
Ω

uεu0 dx + λ(Ω)t2ε + O

(
1/ log

1

ε

)
.

A straightforward calculation shows

1

‖�vε‖22
q

( ‖vε‖22
‖�vε‖22

)
= 1+ (

a1 − λ(Ω)
)(

t2ε + 2tε

∫
Ω

uεu0 dx

)

+ o

(
tε

/(
log

1

ε

)1/2)
.

Noting that
∫
Ω

|uε |dx = O(1/
√
log 1

ε
), we have tε

∫
Ω

uεu0 dx = o(t2ε ). Hence for a1 � λ(Ω),

1

‖�vε‖22
q

( ‖vε‖22
‖�vε‖22

)
� 1+ o

(
tε

/(
log

1

ε

)1/2)
.

Since uε �
√

1
32π2 log

1
ε
on Bε1/4 , we obtain

∫
Ω

e
32π2 v2ε

‖�vε‖22
q(

‖vε‖22
‖�vε‖22

)

dx �
∫

B
ε1/4

1

ε
e
tε

√
log 1

ε
(8

√
2πu0+o(1))

dx

= e
tε

√
log 1

ε
(8

√
2πu0(0)+o(1))

.

By our assumption u0(0) > C0 in B,

∫
Ω

e
32π2 v2ε

‖�vε‖22
q(

‖vε‖22
‖�vε‖22

)

dx → +∞

as ε → 0. We get the desired result (2.1).

3. Extremals for the subcritical Adams inequality

In this section we mainly prove for any ε > 0 the existence of maximizers of subcritical
functionals ∫

Ω

e(32π2−ε)u2q(‖u‖22) dx (3.1)
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defined on space of functions satisfying u ∈ H 2
0 (Ω) and ‖�u‖2 � 1. Noting that

(32π2 − ε)q(‖u‖22) is not necessarily less than the critical exponent 32π2, the existence of
such maximizers is nontrivial.

We begin with proving the following Lions’ type [28] concentration compactness result.

Proposition 3.1. Let {uε}ε>0 ⊂ H 2
0 (Ω) be a sequence of functions such that ‖�uε‖2 = 1 and

uε ⇀ u0 weakly in H 2
0 (Ω). Then for any p < 1/(1− ‖�u0‖22),

lim sup
ε→0

∫
Ω

e32π
2pu2ε dx < +∞.

Proof. If u0 = 0, then nothing need to be proved because of the Adams inequality (1.1). If
u0 	= 0, then one can see that ∥∥�(uε − u0)

∥∥2
2 → 1− ‖�u0‖22 < 1.

Hence we have for p < 1/(1− ‖�u0‖22)∫
Ω

e32π
2pu2ε dx �

∫
Ω

e32π
2p(1+δ)(uε−u0)

2+32π2p(1+1/δ)u20 dx

�
(∫

Ω

e
32π2 (uε−u0)2

‖�(uε−u0)‖22 dx

)1/r(∫
Ω

e32π
2p′u20 dx

)1/s

for some δ > 0 and p′ > p provided that ε is sufficiently small, where 1/r + 1/s = 1. By the
Orlicz imbedding, eu20 is bounded in Ls(Ω) for any s > 1. The Adams inequality (1.1) implies

lim sup
ε→0

∫
Ω

e32π
2pu2ε dx < +∞. �

It is interesting to note that this concentration compactness estimate does not follow from the
Adams inequality (1.1) and it is stronger than (1.1) when ‖�u0‖22 	= 0. It is also remarkable that
only the subcritical Adams inequality is required in the proof of Proposition 3.1, namely

sup
u∈H 2

0 (Ω),‖�u‖2�1

∫
Ω

eγu2 dx < +∞ for all γ < 32π2. (3.2)

Next we prove the existence of maximizers for subcritical functionals (3.1).

Proposition 3.2. Assume the assumptions of q(t) in Theorem 1.1′ are satisfied. Then for any
ε > 0, there exists uε ∈ H 2

0 (Ω) ∩ C4(Ω) such that
∫
Ω

|�uε |2 dx = 1, and∫
Ω

e(32π2−ε)u2εq(‖uε‖22) dx = sup
u∈H 2

0 (Ω),‖�u‖2�1

∫
Ω

e(32π2−ε)u2q(‖u‖22) dx.

Here 32π2 − ε can be replaced by any sequence ρε ↑ 32π2 as ε ↓ 0.
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Proof. We first note that the supremum is invariant if one replaces the condition ‖�u‖2 � 1 by
‖�u‖2 = 1. Hence, for any fixed ε > 0, we can choose a maximizing sequence {uj } ⊂ H 2

0 (Ω)

such that
∫
Ω

|�uj |2 dx = 1, and∫
Ω

e
(32π2−ε)u2j q(‖uj ‖22) dx → sup

u∈H 2
0 (Ω),‖�u‖2�1

∫
Ω

e(32π2−ε)u2q(‖u‖22) dx (3.3)

as j → +∞. Since {uj } is bounded in H 2
0 (Ω), we have

uj ⇀ uε weakly in H 2
0 (Ω),

uj → uε strongly in L2(Ω),

uj → uε a.e. in Ω.

Hence

fj = e
(32π2−ε)u2j q(‖uj ‖22) → fε = e(32π2−ε)u2εq(‖uε‖22) a.e. in Ω.

Suppose uε = 0, then 1+ α‖uj‖22 → 1. The subcritical Adams inequality (3.2) implies that

∫
Ω

e
(32π2− ε

4 )u2j dx < +∞ for all j.

Thus fj is bounded in Ls(Ω) for some s > 1 and fj → 1 in L1(Ω). Here s depends only on ε.
Passing to the limit j → +∞ in (3.3), one has

|Ω| = sup
u∈H 2

0 (Ω),‖�u‖2=1

∫
Ω

e(32π2−ε)u2q(‖u‖22) dx,

which is impossible. Therefore uε 	= 0. By Proposition 3.1, we have for any p < 1/(1−‖�uε‖22)

lim sup
j→+∞

∫
Ω

e
32π2pu2j dx < +∞. (3.4)

By our assumption on q(t), 0 � a1 < λ(Ω), 0 � a2 � λ(Ω)a1, . . . , 0 � ak � λ(Ω)ak−1, there
holds for any u ∈ H 2

0 (Ω) with ‖u‖2 	= 0,

q
(‖u‖22

)(
1− ‖�u‖22

) = 1+ a1‖u‖22 + · · · + ak‖u‖2k2 − ‖�u‖22
− a1‖u‖22‖�u‖22 − · · · − ak‖u‖2k2 ‖�u‖22

< 1− ak‖u‖2k2 ‖�u‖22. (3.5)

This leads to

q
(‖uj‖22

) → q
(‖uε‖22

)
<

1

1− ‖∇uε‖22
. (3.6)
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Combining (3.4) and (3.6), we conclude that fj is bounded in Lr(Ω) for some r > 1. It follows
that fi → fε strongly in L1(Ω). We get the desired result immediately. �

In the rest of the paper, we would mostly analyze the asymptotic behavior of maximizers uε

described in Proposition 3.2. To do this, we consider the corresponding Euler–Lagrange equation
of uε , namely ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�2uε = βε

λε

uεe
αεu

2
ε + γεuε in Ω,

‖�uε‖2 = 1, uε = ∂uε

∂ν
= 0 on ∂Ω,

αε = (32π2 − ε)q
(‖uε‖22

)
,

βε = q(‖uε‖22)
q(‖uε‖22) + q ′(‖uε‖22)

∫
Ω

u2ε dx
,

γε = q ′(‖uε‖22)
q(‖uε‖22) + q ′(‖uε‖22)

∫
Ω

u2ε dx
,

λε =
∫
Ω

u2εe
αεu

2
ε dx.

(3.7)

Here and in the sequel we denote the derivative of q(t) by q ′(t). It is of significance to estimates
the constants appeared in (3.7). Firstly, we have the following

Lemma 3.3. αε , βε and γε are all bounded sequences. Moreover αε has positive lower bound if
all coefficients a1, . . . , ak of q(t) are nonnegative.

Proof. Since uε ∈ H 2
0 (Ω) satisfies ‖�uε‖ = 1, we have ‖uε‖2 � C by the elliptic estimate

(see [18] for example). Then the desired result is an easy consequence of the definitions of αε ,
βε and γε . �

Secondly, we have the following property of λε .

Lemma 3.4. There holds lim infε→0 λε > 0.

Proof. Using the inequality et � 1+ tet for t � 0, we obtain∫
Ω

eαεu
2
ε dx � |Ω| + αελε. (3.8)

By Proposition 3.2, one gets for any ε > 0∫
Ω

eαεu
2
ε dx � sup

u∈H 2
0 (Ω),‖�u‖2=1

∫
Ω

e32π
2u2q(‖u‖22) dx.

On the other hand, for any fixed u ∈ H 2
0 (Ω) with ‖�u‖2 = 1, Fatou’s Lemma together with

Proposition 3.2 implies
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∫
Ω

e32π
2u2q(‖u‖22) dx � lim

ε→0

∫
Ω

e(32π2−ε)u2q(‖u‖22) dx � lim
ε→0

∫
Ω

eαεu
2
ε dx.

Combining the above two inequalities, we have

lim
ε→0

∫
Ω

eαεu
2
ε dx = sup

u∈H 2
0 (Ω),‖�u‖22=1

∫
Ω

e2πu2q(‖u‖22) dx, (3.9)

which together with the inequality (3.8) and Lemma 3.3 gives the desired result. �
4. Asymptotic behavior of extremals for subcritical functionals

We will analyze in this section the asymptotic behavior of uε . We will prove the uniqueness
of the blow-up point, and understand the behavior of uε near the blow-up point and away from
the blow-up point.

The crucial tool to study the regularity of high order equations is the Green representation
formula. Recall that the Green function G(x,y) for �2 under the Dirichlet condition is defined
by

�2G(x,y) = δx(y) in Ω, G(x, y) = ∂G(x, y)

∂ν
= 0 on ∂Ω. (4.1)

All functions u ∈ H 2
0 (Ω) ∩ C4(Ω) satisfying �2u = f can be represented by

u(x) =
∫
Ω

G(x,y)f (y) dy.

Several useful estimates of G(x,y) are listed here for future reference, see for example [12],
namely there exists C > 0 such that for all x, y ∈ Ω , x 	= y, we have

∣∣G(x,y)
∣∣ � C log

(
2+ 1

|x − y|
)

,
∣∣∇ iG(x, y)

∣∣ � C|x − y|−i , i � 1. (4.2)

Denote cε = |uε |(xε) = maxΩ |uε |. If cε is bounded, then applying the standard regularity
theory to (3.7) we obtain uε → u∗ in C4(Ω) for some u∗ ∈ H 2

0 (Ω) ∩ C4(Ω) with ‖�u∗‖2 = 1.
This together with (3.9) leads to the conclusions of both Theorem 1.1∗ and Theorem 1.2∗.

Without loss of generality we assume there exists some point p ∈ Ω such that

xε → p, cε = uε(xε) = max
Ω

uε → +∞ as ε → 0, (4.3)

for otherwise we consider −uε instead. We call p as the blow-up point. Here and in the sequel,
we do not distinguish sequence and subsequence, the reader can understand it from the context.

Since uε is bounded in H 2
0 (Ω), we may assume uε ⇀ u0 weakly in H 2

0 (Ω), and uε → u0
strongly in Ls(Ω) for any s > 1. Suppose u0 	= 0, then ‖�u0‖2 	= 0. We have by (3.5)

q
(‖uε‖

) → q
(‖u0‖) <

1

1− ‖�u0‖22
,
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which together with Proposition 3.1 implies that eαεu
2
ε is bounded in Lr(Ω) for some r > 1

provided that ε is sufficiently small. Applying the standard regularity theory to Eq. (3.7), one
gets cε is bounded and a contradiction with (4.3). Hence

⎧⎨
⎩

uε ⇀ 0 weakly in H 2
0 (Ω),

uε → 0 strongly in Ls(Ω), ∀s > 1,

αε → 32π2, βε → 1, γε → a1.

(4.4)

In the rest of this section we focus on the case p ∈ Ω , and leave the case p ∈ ∂Ω to Section 6.
When p ∈ Ω , we claim a Lions type energy concentration result, i.e.

|�uε |2 dx ⇀ δp in sense of measure, (4.5)

where δp is the usual Dirac measure supported at p. Suppose (4.5) is not true. Noting that
‖�uε‖2 = 1, we can find r > 0 and η > 0 such that

lim sup
ε→0

∫
Br(p)

|�uε |2 dx � 1− η.

Sobolev imbedding theorem together with (4.4) leads to ∇uε → 0 strongly in L2(Ω). Hence for
any cut-off function φ ∈ C2

0(Br(p)) with 0 � φ � 1 on Br(p) and φ ≡ 1 on Br/2(p), there holds

limsup
ε→0

∫
Br(p)

∣∣�(φuε)
∣∣2 dx � 1− η.

The Adams inequality (1.1) together with (4.4) implies that eαεφ
2u2ε is bounded in L

2
2−η (Ω),

and thus eαεu
2
ε is bounded in L

2
2−η (Br/2(p)) provided that ε is sufficiently small. Applying the

standard regularity theory to (3.7), we have uε is bounded in C1(Br/4(p)). This contradicts our
assumption (4.3). Hence we conclude (4.5). In fact we have proved that there is no other blow-up
point if p lies in the interior of Ω due to the fact that ‖�uε‖2 = 1.

To proceed, we introduce the following quantities

bε = λε

/∫
Ω

|uε |eαεu
2
ε dx, τ = lim

ε→0

cε

bε

, σ = lim
ε→0

∫
Ω

uεe
αεu

2
ε dx∫

Ω
|uε |eαεu2ε dx

. (4.6)

By the definition of λε (see (3.7)), we have τ � 1 or τ = +∞. Obviously |σ | � 1. We will prove
σ = 1 at the end of this section.

Let r4ε = λε

βεc2ε
e−αεc

2
ε and Ωε = {x ∈ R

4: xε + rεx ∈ Ω}. We claim that rε converges to zero

rapidly. Indeed we have for any γ : 0 < γ < 32π2,

r4ε c2ε e
γ c2ε = 1

βε

e(γ−αε)c
2
ε

∫
Ω

u2εe
αεu

2
ε dx � 1

βε

∫
Ω

u2εe
γ u2ε dx → 0. (4.7)
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Here we have used the Hölder inequality and (4.4). In particular rε → 0 and Ωε → R
4 as ε → 0.

To understand the asymptotic behavior of uε near the blow-up point p, we define two sequences
of functions on Ωε , namely

ψε(x) = uε(xε + rεx)

cε

, ϕε(x) = bε

(
uε(xε + rεx) − cε

)
. (4.8)

Firstly the asymptotic behavior of ψε will be considered by proving the following

Lemma 4.1. ψε(x) → 1 in C4
loc(R

4).

Proof. Obviously, |ψε | � 1. Since for any fixed R > 0, x ∈ BR(0),

∣∣�2ψε(x)
∣∣ =

∣∣∣∣r4ε
(

βε

λε

ψε(x)eαεu
2
ε (xε+rεx) + γεψε

)∣∣∣∣ � 1

c2ε
+ r4ε γε → 0,

and ∫
BR(0)

|�ψε |2 dx = 1

c2ε

∫
BRrε (xε )

|�uε |2(y) dy → 0. (4.9)

The standard regularity theory and (4.9) giveψε → ψ in C4
loc(R

4) with �ψ(x) = 0 in R4. Noting
that ψε(0) = 1, one gets by using the Liouville Theorem ψ ≡ 1 in R

4. �
Now we investigate the convergence of ϕε .

Lemma 4.2. Let τ be defined in (4.6). Then ϕε → ϕ in C4
loc(R

4), where

ϕ(x) =
{ 1

16π2τ
log 1

1+ π√
6
|x|2 , x ∈ R

4 if τ < +∞,

0, x ∈ R
4 if τ < +∞.

Proof. Using the Green representation formula and the estimates (4.2), we have for i = 1, 2 and
x ∈ BR(0)

∣∣∇ iϕε(x)
∣∣ = bεr

i
ε

∣∣∣∣
∫
Ω

∇ i
xG(xε + rεx, y)�2uε(y) dy

∣∣∣∣

� Cbεr
i
ε

(∫
Ω

βε

λε
|uε(y)|eαεu

2
ε (y)

|xε + rεx − y|i dy +
∫
Ω

γε |uε(y)|
|xε + rεx − y|i dy

)

� Cbεr
i
ε

( ∫
B2R(xε)

βε

λε
|uε(y)|eαεu

2
ε (y)

|xε + rεx − y|i dy +
∫
Ω

γε |uε(y)|
|xε + rεx − y|i dy

+
∫

Ω\B2R(xε)

βε

λε
|uε(y)|eαεu

2
ε (y)

|xε + rεx − y|i dy

)
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� C

(
bε

cε

∫
B2R(0)

dz

|x − z|i + ri
εγεbεcε

∫
Ω

dy

|xε + rεx − y|i + 1

Ri

)

� C(R). (4.10)

Here we have used (4.7). Note that ϕε satisfies the following equation:

�2ϕε(x) = bε

cε

ψε(x)e
αε

cε
bε

(1+ψε(x))ϕε(x) + γεbεcεr
4
ε ψε(x), x ∈ Ωε. (4.11)

Because of (4.10), applying the standard regularity theory to (4.11), we have ϕε → ϕ in C4
loc(R

4).
If τ = limε→0 cε/bε < +∞, then one can see from (4.11) and Lemma 4.1 that ϕ satisfies

�2ϕ(x) = 1

τ
e64π

2τϕ(x), ϕ(x) � ϕ(0) = 0,
∫
R4

e64π
2τϕ(x) dx < +∞. (4.12)

To understand ϕ further, we calculate

�ϕε(x) = bεr
2
ε

∫
Ω

�xG(xε + rεx, y)

(
βε

λε

uε(y)eαεu
2
ε (y) + γεuε(y)

)
dy

and for any R > 0,

∫
BR(0)

|�ϕε |dx � Cbεr
2
ε

∫
Ω

βε

λε

∣∣uε(y)
∣∣eαεu

2
ε (y)

( ∫
BR(0)

dx

|xε + rεx − y|2
)

dy

+ Cbεγεr
2
ε

∫
Ω

∣∣uε(y)
∣∣( ∫

BR(0)

dx

|xε + rεx − y|2
)

dy

� CR2.

Hence, for any R > 0, we have
∫
BR(0) |�ϕ|dx � CR2, which together with (4.12) and results of

[25,42] gives that

ϕ(x) = 1

16π2τ
log

1

1+ π√
6
|x|2 , x ∈ R

4. (4.13)

If τ = +∞, we have by (4.10), |�ϕ(x)| � CR−2 for all x ∈ BR(0). Letting R → +∞ we
know that ϕ is a harmonic function in R

4. Noting that ϕ(x) � ϕ(0) = 0, Liouville Theorem leads
to ϕ ≡ 0. �

Next we consider the asymptotic behavior of uε away from the blow-up point p. We first have
the following
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Lemma 4.3. bεuε is bounded in H
2,r
0 (Ω) for any 1 < r < 2. In particular there exists a constant

C depending only on Ω , λ(Ω) and α0 such that ‖bεuε‖H
2,r
0 (Ω)

� C uniformly for a1 ∈ [0, α0]
with α0 < λ(Ω), where a1 = q ′(0).

Proof. Let vε be a solution of the following equation:⎧⎪⎨
⎪⎩

�2vε(x) = βε

λε

bεuε(x)eαεu
2
ε (x) in Ω,

vε = ∂vε

∂ν
= 0 on ∂Ω.

(4.14)

By the Green representation formula, we calculate for i = 1, 2,

∣∣∇ ivε(x)
∣∣ � C

∫
Ω

|x − y|−i βε

λε

bε

∣∣uε(y)
∣∣eαεu

2
ε (y) dy.

For any 1< r < 2, we have by Hölder inequality and definition of bε (see (4.6) above),

∣∣∇ ivε(x)
∣∣r � C

∫
Ω

|x − y|−ir βε

λε

bε

∣∣uε(y)
∣∣eαεu

2
ε (y) dy.

Hence Fubini’s Theorem implies ‖∇ivε‖r � C, i = 1,2, whence

‖vε‖H
2,r
0

� C. (4.15)

Denote wε = bεuε − vε . Then, by (3.7) and (4.14), wε satisfies⎧⎨
⎩

�2wε(x) = γεwε + γεvε in Ω,

wε = ∂wε

∂ν
= 0 on ∂Ω.

(4.16)

Noting that γε → a1 < λ(Ω), testing (4.16) by wε , we have by the definition of λ(Ω) and the
Hölder inequality,

∫
Ω

|�wε |2 dx = γε

∫
Ω

w2
ε dx + γε

∫
Ω

vεwε dx

� γε

λ(Ω)

∫
Ω

|�wε |2 dx + γε√
λ(Ω)

‖vε‖2‖�wε‖2,

which together with (4.15) gives ‖�wε‖2 � C for sufficiently small ε. This constant C depends
only on Ω , λ(Ω) and α0. Hence ‖wε‖H 2

0 (Ω) � C, which together with (4.15) and Sobolev imbed-

ding Theorem implies that bεuε is bounded in H
2,r
0 for any 1 < r < 2. �

Secondly we will prove that cεuε converges to some Green function. Noting that both bε

and σ are defined in (4.6), we will prove the following
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Lemma 4.4. bεuε ⇀ Ga1(·,p) weakly in H
2,r
0 (Ω) for any 1 < r < 2 with

⎧⎨
⎩

�2Ga1 = σδp + a1Ga1 in Ω,

Ga1 = ∂Ga1

∂ν
= 0 on ∂Ω.

(4.17)

Furthermore, bεuε → Ga1(·,p) in C4
loc(Ω \ {p}). Also we have

Ga1 = − σ

8π2
log |x − p| + Ap + ψ(x), (4.18)

where Ap is a constant depending on p and α, ψ ∈ C3(Ω) and ψ(p) = 0.

Proof. By Lemma 4.3, there exists some function Ga1(·,p) ∈ H
2,s
0 such that bεuε ⇀ Ga1(·,p)

weakly in H
2,s
0 (Ω) for any 1 < s < 2. For any fixed r > 0, by (4.5), eαεu

2
ε is bounded in Ls(Ω \

Br(p)) for some s > 1. This is based on the subcritical Adams inequality and a cut-off function
argument. By the standard regularity theory bεuε → G in C4

loc(Ω \ {p}). It is easy to see form
(3.7) that bεuε satisfies⎧⎨

⎩�2(bεuε) = βε

λε

bεuεe
αεu

2
ε + γεbεuε in Ω,

bεuε = ∂(bεuε)/∂ν = 0 on ∂Ω.

For any φ ∈ C∞(Ω), we have

∫
Ω

φ

(
βε

λε

bεuεe
αεu

2
ε + γεbεuε

)
dx =

∫
Ω

(
φ(x) − φ(p)

)βε

λε

bεuε(x)eαεu
2
ε (x) dx

+ φ(p)

∫
Ω

βε

λε

bεuεe
αεu

2
ε dx +

∫
Ω

φγεbεuε dx.

Lebesgue dominated convergence theorem implies that
∫
{x∈Ω: |uε |<1} e

αεu
2
ε dx → |Ω|. We have

by (3.9) that

∫
Ω

|uε |eαεu
2
ε dx �

∫
{x∈Ω: |uε |�1}

eαεu
2
ε dx → sup

u∈H 2
0 (Ω),‖�u‖2�1

∫
Ω

e32π
2u2q(‖u‖22) dx − |Ω|.

This leads to the fact that bε/λε is bounded. Hence we obtain by using Hölder inequality together
with (4.4) and that eαεu

2
ε is bounded in Ls(Ω \ Br(p)) for some s > 1,

lim
ε→0

∫
Ω\Br(p)

(
φ − φ(p)

)βε

λε

bεuεe
αεu

2
ε dx = 0.

Since
∫
Br (p)

1
λε

bε |uε |eαεu
2
ε dx � 1, βε → 1, and
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∣∣∣∣
∫

Br(p)

(
φ − φ(p)

)βε

λε

bεuεe
αεu

2
ε dx

∣∣∣∣ �
∫

Br (p)

∣∣φ − φ(0)
∣∣βε

λε

bε |uε |eαεu
2
ε dx.

We immediately have

lim
r→0

lim
ε→0

∫
Br(p)

(
φ − φ(p)

)βε

λε

bεuεe
αεu

2
ε dx = 0.

It is obvious that

lim
ε→0

∫
Ω

φγεbεuε dx = a1

∫
Ω

φGa1 dx, lim
ε→0

∫
Ω

βε

λε

bεuεe
αεu

2
ε dx = σ.

Combing all above estimates, we obtain

lim
ε→0

∫
Ω

φ

(
βε

λε

bεuεe
αεu

2
ε + γεbεuε

)
dx = σφ(p) + a1

∫
Ω

φGa1 dx.

This proves the first part of the lemma.
To prove the second part, we define a cut-off function η ∈ C4

0(Ω) such that 0 � η � 1, η ≡ 1
on Br(p) and η ≡ 0 on Ω \ B2r (p), where B2r (p) � Ω . Let

g(x) = Ga1(x,p) + σ

8π2
η(x) log |x − p|.

It can be checked that g is a solution of⎧⎨
⎩

�2g = f in Ω,

g = ∂g

∂ν
= 0 on ∂Ω

in a distributional sense, where

f (x) = − σ

8π2

(
�2η log |x − p| + 2∇�η∇ log |x − p| + 2�η� log |x − p|

+ 2�
(∇η∇ log |x − p|) + 2∇η∇� log |x − p|) + a1Ga1(x,p).

Noting that r is a fixed positive number, we can see from Lemma 4.3 that f ∈ Ls(Ω) for any
s > 1. Standard regularity theory implies that g ∈ C3(Ω). Let Ap = g(p) and

ψ(x) = g(x) − g(p) + σ

8π2
(1− η) log |x − p|.

We get the desired result. �
Nowwe are in a position to derive an upper bound of

∫
Ω

eαεu
2
ε dx by using a Pohozaev identity,

namely
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Lemma 4.5. (See [31,32].) Assume Ω ′ ⊂ R
4 is a smooth bounded domain. Let u ∈ C4(Ω ′) be a

solution of �2u = f (u) in Ω ′. Then we have for any y ∈ R4,

4
∫
Ω ′

F(u)dx =
∫

∂Ω ′
〈x − y, ν〉F(u)dω + 1

2

∫
∂Ω ′

v2〈x − y, ν〉dω + 2
∫

∂Ω ′

∂u

∂ν
v dω

+
∫

∂Ω ′

(
∂v

∂ν
〈x − y,∇u〉 + ∂u

∂ν
〈x − y,∇v〉 − 〈∇v,∇u〉〈x − y, ν〉

)
dω,

where F(u) = ∫ u

0 f (s) ds, −�u = v and ν(x) is the normal outward derivative of x on ∂Ω ′.

Choosing Ω ′ = Br(xε), y = xε , u = uε , f (uε) = βε

λε
uεe

αεu
2
ε + γεuε , noting that v = −�uε ,

F(uε) = βε

2αελε
eαεu

2
ε + 1

2γεu
2
ε , we obtain by Lemma 4.5,

∫
Br (xε)

eαεu
2
ε dx = −αελε

βεb2ε
γε

∫
Br (xε)

(bεuε)
2 dx + r

4

∫
∂Br (xε)

eαεu
2
ε dω

+ αελεγε

4βεb2ε
r

∫
∂Br (xε)

(bεuε)
2 dx + αελε

4βεb2ε
r

∫
∂Br (xε)

∣∣�(bεuε)
∣∣2 dω

− αελε

βεb2ε

∫
∂Br (xε)

∂(bεuε)

∂ν
�(bεuε) dω

− αελε

2βεb2ε
r

∫
∂Br (xε)

(
2
∂�(bεuε)

∂r

∂(bεuε)

∂r
− ∇�(bεuε)∇(bεuε)

)
dω.

(4.19)

By the representation of Ga1(·,p) (see Lemma 4.4), we have for any fixed r > 0

∫
Br (p)

G2
a1

dx = o(1),
∫

∂Br (p)

G2
a1

dω = o(1), r

∫
∂Br (p)

|�Ga1 |2 dx = σ 2

8π2
+ o(1),

∫
∂Br (p)

∂Ga1

∂r
�Ga1 dω = σ 2

16π2
+ o(1), r

∫
∂Br (p)

∂�Ga1

∂r

∂Ga1

∂r
dω = − σ 2

8π2
+ o(1),

r

∫
∂Br (p)

∇�Ga1∇Ga1 dω = − σ 2

8π2
+ o(1),

where o(1) → 0 as r → 0. Note that
∫
∂Br (xε)

eαεu
2
ε dω → |∂Br(p)| as ε → 0. Fixing r > 0 first

and letting ε → 0 in (4.19), then letting r → 0, we have by Lemma 4.4
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lim
r→0

lim
ε→0

∫
Br(xε)

eαεu
2
ε dx = σ 2 lim

ε→0

λε

b2ε
.

Since |�uε |2 dx ⇀ δp in sense of measure, we immediately have

lim
r→0

lim
ε→0

∫
Ω\Br(p)

eαεu
2
ε dx = |Ω|.

Combining these two identities we obtain

lim
ε→0

∫
Ω

eαεu
2
ε dx = |Ω| + σ 2 lim

ε→0

λε

b2ε
, (4.20)

provided that σ 	= 0 in case limε→0
λε

b2ε
= +∞. It is remarkable that we do not know whether or

not the limits in (4.20) are finite at this stage. Keeping in mind that |σ | � 1 (see (4.6) above), we
claim that σ 	= 0. For otherwise, if λε/b

2
ε → +∞, noting that Hölder inequality gives

λε

b2ε
= 1

λε

(∫
Ω

|uε |eαεu
2
ε dx

)2

� 1

λε

∫
Ω

u2εe
αεu

2
ε dx

∫
Ω

eαεu
2
ε dx =

∫
Ω

eαεu
2
ε dx, (4.21)

we can easily get a contradiction with (4.19) for sufficiently small ε; if λε/b
2
ε is bounded, σ = 0

leads to
∫
Ω

eαεu
2
ε dx → |Ω| because of (4.20). This contradicts (3.9) and confirms our claim. We

can further locate σ as follows.

Lemma 4.6. There holds σ = 1.

Proof. By Lemma 4.4, bεuε → Ga1 in C4
loc(Ω \ {p}), and Ga1 = − σ

8π2 log |x − p|. We have
known that σ 	= 0. Suppose σ < 0, then Ga1(x,p) � −C < 0 in Bρ(p) for some ρ > 0 and
positive constant C. Whence uε < 0 in Bρ(p) \ {p} for sufficiently small ε. On the other hand
we have by Lemma 4.2, uε > 0 in BRrε (xε) for any fixed R > 0 and sufficiently small ε. Note
that BRrε (xε) ⊂ Bρ(p) for sufficiently small ε > 0. We get a contradiction with the sign of uε

on BRrε (xε) \ {p}. Hence σ > 0. Then Ga1(x,p) � C1 > 0 in Br(p) \ {p} for some r > 0 and
positive constant C1. Whence uε > 0 in Br(p) \ {p} for sufficiently small ε > 0. Hence

∫
Bρ(p)

|uε |eαεu
2
ε dx =

∫
Bρ(p)

uεe
αεu

2
ε dx.

Since |�uε |2 dx ⇀ δp and uε → 0 in Ls(Ω) for all s > 1, Hölder inequality leads to
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lim
ε→0

∫
Ω\Br(p)

|uε |eαεu
2
ε dx = 0.

It can be easily derived from Lebesgue dominated convergence theorem and (3.9) that

lim
ε→0

∫
{x∈Ω: uε�1}

eαεu
2
ε dx = |Ω|, lim

ε→0

∫
{x∈Ω: uε>1}

eαεu
2
ε dx > 0.

Noting that uε → 0, a.e. in Ω , we have

lim
ε→0

∫
Br (p)

|uε |eαεu
2
ε dx � lim

ε→0

∫
{x∈Ω: uε>1}

eαεu
2
ε dx > 0.

By definition of σ , we calculate

σ = lim
ε→0

∫
Ω\Br(p)

uεe
αεu

2
ε dx + ∫

Br(p)
uεe

αεu
2
ε dx∫

Ω\Br(p)
|uε |eαεu2ε dx + ∫

Br(p)
|uε |eαεu2ε dx

= limε→0
∫
Br(p)

uεe
αεu

2
ε dx

limε→0
∫
Br(p)

uεe
αεu2ε dx

= 1. �

Thus Lemma 4.4 can be restated as

Lemma 4.7. bεuε ⇀ Ga1(·,p) weakly in H
2,r
0 (Ω) for any 1 < r < 2 with

⎧⎨
⎩

�2Ga1 = δp + a1Ga1 in Ω,

Ga1 = ∂Ga1

∂ν
= 0 on ∂Ω.

Furthermore, bεuε → Ga1(·,p) in C4
loc(Ω \ {p}). Also we have

Ga1 = − 1

8π2
log |x − p| + Ap + ψ(x),

where Ap is a constant depending on p and a1, ψ ∈ C3(Ω) and ψ(p) = 0.

5. Neck analysis

In this section, we still assume uε blows up and the blow-up point p ∈ Ω . We will use capacity
estimates to calculate the limit of λε/b

2
ε , which together with (4.20) gives the supremum of the

functional
∫
Ω

e32π
2u2q(‖u‖22) dx under the assumption that uε blows up. The technique of capacity

estimates applied to this kind of problems was first used in [21] in dealing withMoser’s inequality
of first order derivatives.

Let χ(t) : (0,+∞) → R be a smooth function satisfying 0 � χ � 1, |χ ′(t)| � 5, |χ ′′(t)| � 10,
χ ≡ 1 when t � 4/3, and χ ≡ 0 when t � 5/3. Define a function gε on domain B2Rrε (xε) by
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gε(x) = uε(x) − χ

( |x − xε |
Rrε

)(
uε − cε − 1

bε

ϕ

(
x − xε

rε

))
,

where ϕ is given by Lemma 4.3. It is easy to check that gε satisfies the following boundary
conditions

⎧⎪⎪⎨
⎪⎪⎩

gε(x) = cε + 1

bε

ϕ

(
x − xε

rε

)
on ∂BRrε (xε), gε = uε on ∂B2Rrε (xε),

∂gε

∂ν
= 1

bεrε

∂ϕ

∂ν

(
x − xε

rε

)
on ∂BRrε (xε),

∂gε

∂ν
= ∂uε

∂ν
on ∂B2Rrε (xε),

(5.1)

where ν is the outward unit vector on the boundary of B2Rrε (xε) \ BRrε (xε). By Lemma 4.3, we
get on B2Rrε (xε)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

uε(x) = cε + 1

bε

ϕ

(
x − xε

rε

)
+ o

(
1

bε

)
,

rε∇uε(x) = 1

bε

∇ϕ

(
x − xε

rε

)
+ o

(
1

bε

)
,

r2ε �uε(x) = 1

bε

�ϕ

(
x − xε

rε

)
+ o

(
1

bε

)
.

Whence we obtain on B2Rrε (xε)

�(uε − gε) = o

(
1

bε

)
r−2
ε , r2ε |�uε | � C(R)b−1

ε

for some constant C(R) depending only on R. This immediately leads to

∫
B2Rrε (xε)\BRrε (xε)

∣∣�gε(x)
∣∣2 dx =

∫
B2Rrε (xε)\BRrε (xε)

∣∣�uε(x)
∣∣2 dx + o

(
1

b2ε

)
C(R). (5.2)

We also define a sequence of functions hε on Bδ(xε) by

hε(x) = uε − (
1− χ

(
2δ−1|x − xε |

))(
uε + 1

8π2bε

log |x − xε | − Ap

bε

)
.

One can check that hε satisfies the following boundary conditions

⎧⎪⎪⎨
⎪⎪⎩

hε(x) = 1

bε

(
1

8π2
log

1

δ
+ Ap

)
on ∂Bδ(xε), hε = uε on ∂Bδ/2(xε),

∂hε

∂ν
= − 1

8π2δbε

on ∂Bδ(xε),
∂hε

∂ν
= ∂uε

∂ν
on ∂Bδ/2(xε),

(5.3)

where ν denotes the outward unit vector on ∂(Bδ(xε) \ Bδ/2(xε)). According to Lemma 4.7, we
have for x ∈ Bδ(xε) \ Bδ/2(xε)
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

uε(x) = − 1

8π2bε

log |x − xε | + Ap + o(1)

bε

,

bε∇uε(x) = − 1

8π2

x − p

|x − p|2 + ∇ψ(x) + o(1),

bε�uε(x) = − 1

4π2|x − p|2 + �ψ(x) + o(1).

Here and in the sequel, o(1) → 0 as ε → 0 first and then δ → 0. A straightforward computation
shows

∫
Bδ(xε)\Bδ/2(xε)

∣∣�(uε − hε)
∣∣2 dx = o(1)

b2ε
.

This, together with the fact that |bε�uε | � C on Bδ(xε) \ Bδ/2(xε) for some constant C depend-
ing only on δ, gives

∫
Bδ(xε)\Bδ/2(xε)

|�hε |2 dx =
∫

Bδ(xε)\Bδ/2(xε)

|�uε |2 dx + o(1)

b2ε
. (5.4)

Define a sequence of functions

u�
ε(x) =

⎧⎨
⎩

gε(x), x ∈ B2Rrε (xε) \ BRrε (xε),

uε(x), x ∈ Bδ/2(xε) \ B2Rrε (xε),

hε, x ∈ Bδ(xε) \ Bδ/2(xε).

Combining (5.1)–(5.4), we conclude u�
ε ∈ H 2(Bδ(xε) \ BRrε (xε)) and satisfies boundary condi-

tions

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u�
ε(x) = 1

bε

(
1

8π2
log

1

δ
+ Ap

)
on ∂Bδ(xε),

u�
ε(x) = cε + 1

bε

ϕ

(
x − xε

rε

)
on ∂BRrε (xε),

∂u�
ε

∂ν
= − 1

8π2δbε

on ∂Bδ(xε),

∂u�
ε

∂ν
= 1

bεrε

∂ϕ

∂ν

(
x − xε

rε

)
on ∂BRrε (xε),

(5.5)

and energy identity

∫
Bδ(xε)\BRrε (xε)

∣∣�u�
ε(x)

∣∣2 dx =
∫

Bδ(xε)\BRrε (xε)

∣∣�uε(x)
∣∣2 dx + o(1)

b2ε
. (5.6)
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Now we start to derive the capacity estimates. Write for simplicity

iδ,R,ε = inf
∫

Bδ(xε)\BRrε (xε)

|�u|2 dx,

here the infimum takes through all functions belonging to H 2(Bδ(xε) \ BRrε (xε)) with the same
boundary conditions as u�, namely (5.5). Then, noting that ‖�uε‖2 = 1 and (5.6), we have by
Lemmas 4.3 and 4.7,

iδ,R,ε �
∫

Bδ(xε)\BRrε (xε)

|�u�|2 dx

=
∫

Bδ(xε)\BRrε (xε)

∣∣�uε(x)
∣∣2 dx + o(1)

b2ε

� 1−
∫

Ω\Bδ(xε)

∣∣�uε(x)
∣∣2 dx −

∫
BRrε (xε)

∣∣�uε(x)
∣∣2 dx + o(1)

b2ε

= 1− 1

b2ε

( ∫
Ω\Bδ(p)

|�Ga1 |2 dx +
∫

BR(0)

|�ϕ|2 dx

)
+ o(1)

b2ε
. (5.7)

It is known (see for example [22,23]) that the infimum iδ,R,ε can be attained by a bi-harmonic
function T which is defined in the annular domain Bδ(xε) \ BRrε (xε) with the same boundary
condition as u�. Moreover T takes the form

T (x) = A log |x − xε | + B|x − xε |2 + C 1

|x − xε |2 + D

for some constants A, B, C and D. Hence∫
Bδ(xε)\BRrε (xε)

|�T |2 dx = 8π2A2 log
δ

Rrε
+ 32π2A B

(
δ2 − R2r2ε

)

+ 32π2B2(δ4 − R4r4ε
)
. (5.8)

Substituting T (x) into the boundary conditions (5.5), one gets A, B, C and D by solving a linear
system, in particular

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A =
P1−P2+ Rrε (δ2−Rr2ε )

2(δ2+Rr2ε )
Q1+ δ(δ2−Rr2ε )

2(δ2+Rr2ε )
Q2

δ2−Rr2ε
δ2+Rr2ε

+log Rrε
δ

,

B =
2(P2−P1)−(Rrε+ 2R3r3ε

δ2−R2r2ε
log Rrε

δ
)Q1+(δ+ 2δ3

δ2−R2r2ε
log Rrε

δ
)Q2

4(δ2−R2r2ε )+4(δ2+R2r2ε ) log Rrε
δ

.

Here P1, P2, Q1 and Q2 are boundary values of T , precisely
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P1 = T |∂BRrε (xε) = cε + ϕ(R)

bε

, P2 = T |∂Bδ(xε) =
1

8π2 log
1
δ

+ Ap

bε

,

Q1 = −∂T
∂ν

|∂BRrε (xε) = ϕ′(R)

bεrε
, Q2 = ∂T

∂ν
|∂Bδ(xε) = − 1

8π2δbε

.

Noting that ϕ(x) is radially symmetric, we have denoted ϕ(x) by ϕ(|x|) without any confusion.
Now we can calculate the capacity iδ,R,ε , i.e. ‖�T ‖22 precisely. Our aim to calculate the capacity
is to derive the limit of λε/c

2
ε . Though we have no idea on whether or not λε/c

2
ε is bounded at

this stage, we can control its possible divergence speed, say

Lemma 5.1. We have 1
c2ε
log λε

βεc2ε
→ 0 as ε → 0.

Proof. For any fixed s > 0, by definition of λε , we have

λε

c2ε
�

∫
Ω

eαεu
2
ε dx � esc2ε

∫
Ω

e(αε−s)u2ε dx.

Noting that
∫
Ω

e(αε−s)u2ε dx → |Ω| and βε → 1, we immediately obtain

limsup
ε→0

1

c2ε
log

λε

βεc2ε
� s.

Letting s → 0, one has

limsup
ε→0

1

c2ε
log

λε

βεc2ε
� 0.

By βε → 1 and Lemma 3.4, there exists a constant κ > 0 such that λε

βεc2ε
� κ 1

c2ε
, whence

lim inf
ε→0

1

c2ε
log

λε

βεc2ε
� 0.

Hence we get the desired result. �
Remark 5.2. We caution the reader that when q(t) ≡ 1, λε/c

2
ε is certainly bounded due to the

Adams inequality. A serious difficulty in the case q(t) 	≡ 1 would arise when we aim to prove
that λε/c

2
ε is bounded.

Recalling that r4ε = λε

βεc2ε
e−αεc

2
ε , one has

log
Rrε

δ
= log

R

δ
+

log λε

βεc2ε
− αεc

2
ε

4
. (5.9)

This together with Lemma 5.1 gives
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A = cε + ϕ(R)+2Rϕ′(R)+ 1
8π2

log δ−Ap− 1
16π2

+o(1)

bε

1+ log R
δ

+
log λε

βεc2ε
−αεc2ε

4 + o(1)

= O

(
1

cε

)
. (5.10)

Similarly we calculate

B =
−2cε +

αεc
2
ε+log λε

βεc2ε
16π2bε

+ O(
ϕ(R)
bε

)

δ2(log λε

βεc2ε
− αεc2ε + 4 log R

δ
) + o(1)

= 1

δ2
O

(
1

bε

)
. (5.11)

According to (5.10), a straightforward calculation shows

A2 = 16

α2
ε c

2
ε

(
1+ 2ϕ(R) + 4Rϕ′(R) + 1

4π2 log δ − 2Ap − 1
8π2

bεcε

+
2 log λε

βεc2ε
+ 8+ 8 log R

δ

αεc2ε
+ O

( log2 λε

βεc2ε

c4ε

)
+ o

(
1

bεcε

))
.

Multiplying (5.9) by 8π2A2, one has

8π2A2 log
δ

Rrε
= 32π2

αε

(
1+ 2ϕ(R) + 4Rϕ′(R) + 1

4π2 log δ − 2Ap − 1
8π2

bεcε

+
log λε

βεc2ε
+ 8+ 4 log R

δ

αεc2ε
+ O

( log2 λε

βεc2ε

c4ε

)
+ o

(
1

bεcε

))
. (5.12)

It follows from (5.10) and (5.11) that

32π2A B
(
R2
2 − R2

1

) = O

(
1

bεcε

)
, 32π2B2(R4

2 − R4
1

) = O

(
1

b2ε

)
. (5.13)

Integrating by parts, we have by Lemma 4.7

∫
Ω\Bδ(p)

|�Ga1 |2 dx = −
∫

∂Bδ(p)

�G
∂G

∂r
dω +

∫
∂Bδ(p)

G
∂�G

∂r
dω + a1

∫
Ω\Bδ(p)

G2
a1

dx

= − 1

16π2
− 1

8π2
log δ + Ap + a1‖Ga1‖22 + O(δ log δ). (5.14)

Note also that

αε = (
32π2 − ε

)
q
(‖uε‖22

) = (
32π2 − ε

)(
1+ a1‖Ga1‖22

b2ε
+ o

(
1

b2ε

))
. (5.15)

Inserting (5.12) and (5.13) into (5.8), then inserting (5.14), (5.15) and (5.8) into (5.7), we obtain
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32π2

32π2 − ε

(
1− a1‖Ga1‖22

b2ε
+ 2ϕ(R) + 4Rϕ′(R) + 1

4π2 log δ − 2Ap − 1
8π2

bεcε

+
log λε

βεc2ε
+ 8+ 4 log R

δ

αεc2ε
+ O

( log2 λε

βεc2ε

c4ε

)
+ O

(
1

b2ε

))

� 1−
∫
BR(0) |�ϕ|2 dx − 1

16π2 − 1
8π2 log δ + Ap + a1‖Ga1‖22 + O(δ log δ)

b2ε
.

Noting that 32π2

32π2−ε
> 1, we have

32π2

32π2 − ε

(
−a1‖Ga1‖22

b2ε
+ 2ϕ(R) + 4Rϕ′(R) + 1

4π2 log δ − 2Ap − 1
8π2

bεcε

+
log λε

βεc2ε
+ 8+ 4 log R

δ

αεc2ε
+ O

( log2 λε

βεc2ε

c4ε

)
+ O

(
1

b2ε

))

� −
∫
BR(0) |�ϕ|2 dx − 1

16π2 − 1
8π2 log δ + Ap + a1|Ga1‖22 + O(δ log δ)

b2ε
.

Using 32π2

32π2−ε
= 1+ O(ε) and multiplying both sides of the above inequality by αεc

2
ε , we obtain

(
1+ O(ε) + O

( log λε

βεc2ε

c2ε

))
log

λε

βεc2ε

� −αε

c2ε

b2ε

( ∫
BR(0)

|�ϕ|2 dx − 1

8π2
log δ

)

− 4 log
R

δ
− (

1+ O(ε)
)
αε

cε

bε

(
2ϕ(R) + 4Rϕ′(R) + 1

4π2
log δ

)
+ O

(
c2ε

b2ε

)
.

Since 1
c2ε
log λε

βεc2ε
→ 0 (Lemma 5.1) and log λε

βεc2ε
= log λε

βεb2ε
+ log b2ε

c2ε
, the above inequality

gives

log
λε

βεb2ε
� −(

1+ o(1)
)
αε

c2ε

b2ε

( ∫
BR(0)

|�ϕ|2 dx − 1

8π2
log δ

)

− (
1+ o(1)

)
αε

cε

bε

(
2ϕ(R) + 4Rϕ′(R) + 1

4π2
log δ

)

+ (
1+ o(1)

)
log

c2ε

b2ε
− (

4+ o(1)
)
log

R

δ
+ O

(
c2ε

b2ε

)
. (5.16)
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From (3.9) and (4.20) we know that limε→0 λε/b
2
ε > 0, whence log λε

βεb2ε
� −C0 for some con-

stant C0 > 0. We now claim that cε/bε is bounded. Suppose not, cε/bε → +∞. By Lemma 4.3,
ϕ ≡ 0 and (5.16) becomes

log
λε

βεb2ε
�

(
4+ o(1)

) c2ε

b2ε
log δ − (

8+ o(1)
) cε

bε

log δ

− (
4+ o(1)

)
log

R

δ
+ O

(
c2ε

b2ε

)
. (5.17)

When ε and δ are sufficiently small, the right-hand side of (5.17) is less than −2C0. This contra-
dicts with log λε

βεb2ε
� −C0. Hence our claim holds. In other words, τ = limε→0

cε

bε
is a positive

real number. Whence log λε

βεb2ε
is also bounded from above according to (5.16). Then it follows

from (5.16) that

log
λε

βεb2ε
�

(
4
c2ε

b2ε
− 8

cε

bε

+ 4+ o(1)

)
log δ − (

4+ o(1)
)
logR

− (
64π2 + o(1)

) cε

bε

(
ϕ(R) + 2Rϕ′(R)

) + O

(
c2ε

b2ε

)
. (5.18)

The power of (5.18) is evident. Noting that

4
c2ε

b2ε
− 8

cε

bε

+ 4+ o(1) → 4τ 2 − 8τ + 4= 4(τ − 1)2,

we conclude τ = 1 for otherwise we can reach a contradiction with (5.18) by taking ε and δ

sufficiently small. Therefore the convergence in Lemma 4.3 becomes

cε

(
uε(xε + rεx) − cε

) → ϕ(x) = 1

16π2
log

1

1+ π√
6
|x|2 in C4

loc

(
R
4).

Also bε can be replaced by cε in Lemma 4.7, in particular

cεuε → Ga1(·,p) in C4
loc

(
Ω \ {p}), cεuε → Ga1(·,p) in Ls(Ω), ∀s > 1.

Now we come back to (5.7). Now there holds

∫
Bδ(xε)\BRrε (xε)

|�T |2 dx � 1−
∫
BR(0) |�ϕ|2 dx + ∫

Ω\Bδ(p)
|�Ga1 |2 dx + o(1)

c2ε
. (5.19)

We estimate further the energy of
∫
Bδ(xε)\BRrε (xε)

|�T |2 dx. (5.12) can be re-estimated as follows:
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8π2A2 log
δ

Rrε
� 1+

log λε

βεc2ε
− log π4

36 − logR4 + log δ4 − 64π2Ap

αεc2ε

− a1‖Ga1‖22
c2ε

+ o

(
1

c2ε

)
. (5.20)

Also replacing the estimate (5.11) with

B = −2cε + (2+ o(1))cε

−αεδ2c2ε + o(c2ε )
= o

(
1

cε

)
1

δ2
,

we obtain instead of (5.13),

32π2A B
(
δ2 − R2r2ε

) = o

(
1

c2ε

)
, 32π2B2(δ4 − R4r4ε

) = o

(
1

c2ε

)
. (5.21)

A direct calculation shows

∣∣�ϕ(x)
∣∣2 = 1

96π2

(
1

(1+ π√
6
|x|2)2 + 2

(1+ π√
6
|x|2)3 + 1

(1+ π√
6
|x|2)4

)
.

We compute

∫
BR(0)

1

(1+ π√
6
|x|2)2 dx = 6 log

(
1+ π√

6
R2

)
− 6+ O

(
1

R2

)
,

∫
BR(0)

1

(1+ π√
6
|x|2)3 dx = 3+ O

(
1

R2

)
,

∫
BR(0)

1

(1+ π√
6
|x|2)4 dx = 1+ O

(
1

R4

)
.

Hence ∫
BR(0)

∣∣�ϕ(x)
∣∣2 dx = 1

16π2
log

(
1+ π√

6
R2

)
+ 1

96π2
+ O

(
1

R2

)
. (5.22)

Combining (5.19)–(5.22) and (5.14), we obtain

log
λε

βεc2ε
� log

π4

36
+ logR4 − log δ4 + 64π2Ap + αεa1‖Ga1‖22

− αε

16π2
log

(
1+ π√

6
R2

)
− αε

96π2
+ O

(
1

R2

)
+ O(δ log δ)

+ αε

16π2
+ αε

8π2
log δ − αεAp − αεa1‖Ga1‖22 + o(1)

= 5

3
+ 32π2Ap + log

π2

6
+ o(1) + O

(
1

R2

)
+ O(δ log δ).
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Letting ε → 0 first, then R → +∞ and finally δ → 0, we obtain

lim
ε→0

λε

c2ε
� π2

6
e
5
3+32π2Ap .

This together with (4.20) and Lemma 4.6 gives

sup
u∈H 2

0 (Ω),‖�u‖22�1

∫
Ω

e32π
2u2q(‖u‖22) dx = lim

ε→0

∫
Ω

eαεu
2
ε dx � π2

6
e
5
3+32π2Ap . (5.23)

It is remarkable that this supremum is estimated under the assumption that uε blows up and the
blow-up point p lies in the interior of Ω .

6. Nonexistence of boundary bubbles

The main goal of this section is to exclude boundary bubbles. Suppose without loss of gener-
ality cε = u(xε) = maxx∈Ω uε → +∞ and xε → p ∈ ∂Ω . As in the case p ∈ Ω , uε ⇀ 0 weakly
in H 2

0 (Ω) and strongly in H 1(Ω). Moreover we have

Lemma 6.1. There holds |�uε |2dx ⇀ δp in sense of measure.

Proof. Suppose not. There exists sufficiently small r > 0 such that

lim
ε→0

∫
Br(p)∩Ω

|�uε |2 dx = θ < 1.

Choosing a cut-off function η ∈ C4(Ω) such that 0 � η � 1, η ≡ 1 on Ω ∩ Br/2(p), η ≡ 0 on
Ω \ Br(p), |∇η| � 4/r . Since uε → 0 weakly in H 2

0 (Ω) and strongly in H 1(Ω), whence

lim
ε→0

∫
Br(p)∩Ω

∣∣�(ηuε)
∣∣2 dx = θ.

This together with (3.7) implies that ηuε is a weak solution of �2(ηuε) = f̃ε for some f̃ε which
is bounded in Lr(Ω) for some r > 1. Thus regularity theory implies ηuε is bounded in C3(Ω),
in particular, cε is bounded. This is a contradiction and we get the desired result. �

Lemma 6.1 implies that if there is a blow-up point on the boundary ∂Ω , then this is the unique
blow-up point in Ω . Let bε be defined in (4.6). Comparing with Lemma 4.4, we have

Lemma 6.2. bεuε ⇀ 0 weakly in H
2,q
0 (Ω) for all 1 < q < 2.

Proof. By the same proof of Lemma 4.3 we have bεuε is bounded in H
2,q
0 (Ω) for any 1 < q < 2.

Hence there exists F ∈ H
2,q
0 such that bεuε → F weakly in H

2,q
0 (Ω) and strongly in H 1

0 (Ω).
Using the same method in the proof of Lemma 4.4 we conclude that F satisfies �2F = a1F

in Ω . Regularity theory gives F ∈ C3(Ω). Since a1 < λ(Ω), we obtain F ≡ 0. �



G. Lu, Y. Yang / Advances in Mathematics 220 (2009) 1135–1170 1165

Applying the Pohozaev identity (Lemma 4.5) to Eq. (3.7) on the domain Ω ∩ Bδ(p), we have
by the same way to drive (4.20) that

lim
ε→0

∫
Ω

eαεu
2
ε dx = |Ω|.

This is impossible according to (3.9). Therefore we exclude the boundary bubble, i.e., p cannot
lie on ∂Ω .

Getting back to Section 5, we have in fact proved the following:

Proposition 6.3. Let cε , xε , p and Ap be as before. If blow-up occurs, i.e. cε → +∞, then the
blow-up point p must lie in the interior of Ω , and the supremum

sup
u∈H 2

0 (Ω),‖�u‖2=1

∫
Ω

e32π
2u2q(‖u‖22) dx � π2

6
e
5
3+32π2Ap .

We end up this section with proving Theorem 1.1∗.

Proof of Theorem 1.1∗. If there exists an extremal function u0 such that∫
Ω

e32π
2u20q(‖u0‖22) dx = sup

u∈H 2
0 (Ω),‖�u‖22�1

∫
Ω

e32π
2u2q(‖u‖22) dx,

then Theorem 1.1∗ already holds. Otherwise, in case blow-up occurs, Theorem 1.1∗ is an easy
consequence of Proposition 6.3. �
7. Proof of Theorem 1.2∗

In this section we shall construct functions φε ∈ H 2
0 (Ω) such that ‖�φε‖22 = 1 and

∫
Ω

e32π
2φ2

ε q(‖φε‖22) dx > |Ω| + π2

6
e
5
3+32π2Ap

provided that a1 � 0 is sufficiently small, where q(t) satisfies the assumptions in Theorem 1.2∗
and Ap is defined by (4.22). Since ai � 0 (i = 1,2, . . . , k), we only need to require

∫
Ω

e32π
2φ2

ε (1+a1‖φε‖22) dx > |Ω| + π2

6
e
5
3+32π2Ap . (7.1)

This together with Proposition 6.3 and regularity theory leads to the conclusion of Theorem 1.2∗.
Denote r = |x − p|. Recall that Ga1(x,p) = − 1

8π2 log r + Ap + ψ(x). We write

φε =
⎧⎨
⎩ c + a− 1

16π2
log(1+ π√

6
r2

ε2
)

c
+ Ap+ψ

c
+ b

c
r2, r � Rε,

1
c
Ga1, r > Rε,

(7.2)
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where a, b, c are constants to be determined later. We choose R = log 1
ε
. To ensure φε ∈ H 2

0 (Ω),
we require

lim
r→Rε−0

φε = lim
r→Rε+0

φε, lim
r→Rε−0

∇φε = lim
r→Rε+0

∇φε.

That is exactly ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a = −c2 +
log(1+ π√

6
R2)

16π2
− log(Rε)

8π2
+ bR2ε2,

b = − 1

16π2R2ε2(1+ π√
6
R2)

.

(7.3)

To ensure ‖�φε‖22 = 1, we calculate

∫
BRε(p)

|�φε |2 dx =
∫

BRε(p)

(
− 1

16π2c

8π√
6
ε2 + 2π2

3 r2

(ε2 + π√
6
r2)2

+ �ψ

c
+ 8b

c

)2

dx

= 1

96π2c2

(
6 log

(
1+ π√

6
R2

)
+ 1+ O

(
1

log2 ε

))
. (7.4)

Recalling that �2Ga1(x,p) = αGa1(x,p) in Ω \ BRε(p) and integrating by parts, we have

∫
Ω\BRε(p)

|�φε |2 dx = 1

c2

∫
Ω\BRε(p)

|�Ga1 |2 dx

= 1

c2

(
a1

∫
Ω\BRε(p)

G2
a1

dx +
∫

∂BRε(p)

Ga1

∂

∂ν
�Ga1 dω

−
∫

∂BRε(p)

�Ga1

∂Ga1

∂ν
dω

)

= log 1
R2ε2

+ 16π2Ap − 1

16π2c2
+ a1

‖Ga1‖22
c2

+ O

(
ε log2 ε

c2

)
. (7.5)

Putting (7.4) and (7.5) together, we have

‖�φε‖22 =
log π√

6ε2
+ 16π2Ap − 5

6

16π2c2
+ a1

‖Ga1‖22
c2

+ O

(
ε log2 ε

c2

)
.

Let ‖�φε‖22 = 1, then we have

c2 =
log π√

6ε2

16π2
+ Ap − 5

96π2
+ a1‖Ga1‖22 + O

(
1

log2 ε

)
.
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By (7.2) and (7.3), we calculate on BRε(p),

32π2φ2
ε

(
1+ α‖φε‖22

)
� log

π2

6ε4
+ 32π2Ap + 5

3

(
1+ 2a1‖Ga1‖22

) − 64π2a21‖Ga1‖42
c2

−
(
1+ a1‖Ga1‖22

c2

)
log

(
1+ πr2√

6ε2

)4

+ O

(
1

log2 ε

)
.

Hence

∫
BRε(p)

e32π
2φ2

ε (1+a1‖φε‖22) dx = π2

6ε4
e
5
3+32π2Ap+ 10a1‖Ga1 ‖22

3c2
− 64π2a21‖Ga1 ‖42

c2

×
∫

BRε(p)

(
1+ πr2√

6ε2

)−4− 4a1‖Ga1 ‖22
c2

dx

= π2

6ε4
e
5
3+32π2Ap+ 10a1‖Ga1 ‖22

3c2
− 64π2a21‖Ga1 ‖42

c2

× ε4
(
1− 10a1‖Ga1‖22

3c2
+ O

(
1

log2 ε

))

= π2

6
e
5
3+32π2Ap

(
1− 64π2a21‖Ga1‖42

c2
+ O

(
1

log2 ε

))
.

On the other hand,

∫
Ω\BRε(p)

e32π
2φ2

ε (1+a1‖φε‖22) dx �
∫

Ω\BRε(p)

(
1+ 32π2φ2

ε

(
1+ a1‖φε‖22

))
dx

= |Ω| + 32π2 ‖Ga1‖22
c2

+ O

(
1

log2 ε

)
.

Combing the above two integral estimates, we obtain

∫
Ω

e32π
2φ2

ε (1+a1‖φε‖22) dx � 32π2 ‖Ga1‖22
c2

− 64π4a21‖Ga1‖42
6c2

e
5
3+32π2Ap

+ |Ω| + π2

6
e
5
3+32π2Ap + O

(
1

log2 ε

)
. (7.6)

Noting that c2 = O(log ε), we have obtained the desired estimate when a1 = 0. While in the case
a1 	= 0 it is rather difficult to determine the sign of

32π2 ‖Ga1‖22
c2

− 64π4a21‖Ga1‖42
6c2

e
5
3+32π2Ap + O

(
1

log2 ε

)
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because both ‖Ga1‖2 and Ap depend on a1. However we claim the following

Proposition 7.1. There exists a constant C depending only on Ω , λ(Ω) and α0: 0 < α0 < λ(Ω)

such that

Ap � C, ‖Ga1‖22 � C for all a1 ∈ [0, α0].

Proof. By Lemma 4.4, bεuε is bounded in H
1,q
0 (∀1 < q < 2) uniformly for a1 ∈ [0, α0] with

α0 < λ(Ω). Hence Ga1 is uniformly bounded in L2(Ω). Employing the Green function G(x,y)

defined by (4.1), in particular

⎧⎨
⎩

�2G(·,p) = δp in Ω,

G(·,p) = ∂G(·,p)

∂ν
= 0 on ∂Ω,

we define a function wa1(x) = Ga1(x) − G(x,p) on Ω \ {p}. Then wa1(x) is a distributional
solution of the equation ⎧⎨

⎩
�2wa1 = a1Ga1 in Ω,

wa1 = ∂wa1

∂ν
= 0 on ∂Ω.

(7.7)

Using the Green representation formula and the Hölder inequality, we have for all x ∈ Ω ,

∣∣wa1(x)
∣∣ =

∣∣∣∣
∫
Ω

G(x,y)a1Ga1(y) dy

∣∣∣∣ � sup
x∈Ω

∥∥G(x, ·)∥∥2‖a1Ga1‖2 � C (7.8)

for some constant C depending only on Ω , λ(Ω) and α0. Let

R(x, y) = G(x,y) + 1

8π2
log |x − y|.

It is known that supx∈Ω R(x, x) is a real number depending only on Ω , see [31] for example.
This together with (7.8) gives

Ap = lim
x→p

(
Ga1(x,p) + 1

8π2
log |x − p|

)

= lim
x→p

(
wa1(x) + G(x,p) + 1

8π2
log |x − p|

)
� sup

x∈Ω

wa1(x) + sup
p∈Ω

R(p,p) � C

for some constant C depending only on Ω , λ(Ω) and α0. Hence we conclude the proposi-
tion. �

Therefore we have by (7.6) and Proposition 7.1,
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∫
Ω

e32π
2φ2

ε (1+a1‖φε‖22) dx > |Ω| + π2

6
e
5
3+32π2Ap,

provided that a1 and ε are sufficiently small, i.e. (7.1) holds. This completes the proof of Theo-
rem 1.2∗.
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