
Journal of Functional Analysis 258 (2010) 2817–2833

www.elsevier.com/locate/jfa

On the uniqueness of a solution of a two-phase free
boundary problem

Guozhen Lu 1, Peiyong Wang ∗

Department of Mathematics, Wayne State University, Detroit, MI 48202, United States

Received 29 July 2009; accepted 21 August 2009

Available online 1 September 2009

Communicated by C. Kenig

Abstract

In this paper, we study the uniqueness problem of a two-phase elliptic free boundary problem arising
from the phase transition problem subject to given boundary data. We show that in general the comparison
principle between the sub- and super-solutions does not hold, and there is no uniqueness of either a viscosity
solution or a minimizer of this free boundary problem by constructing counter-examples in various cases
in any dimension. In one-dimension, a bifurcation phenomenon presents and the uniqueness problem has
been completely analyzed. In fact, the critical case signifies the change from uniqueness to non-uniqueness
of a solution of the free boundary problem. Non-uniqueness of a solution of the free boundary problem
suggests different physical stationary states caused by different processes, such as melting of ice or so-
lidification of water, even with the same prescribed boundary data. However, we prove that a uniqueness
theorem is true for the initial–boundary value problem of an ε-evolutionary problem which is the smoothed
two-phase parabolic free boundary problem.
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

The two-phase free boundary problem about phase transition has been under study for a long
time. The free boundary problem for the Laplace equation has been studied extensively by Caf-
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farelli, in [5–7], and by others, e.g. [1], in the 1980s. In [5–7], Caffarelli proved the existence
and regularity of a solution, together with the regularity of its free boundary, given the boundary
data. His main tools are the method of variable radii and a boundary Harnack inequality across
the free boundary. His results and methods have influenced many researchers working in the
subject and been generalized in many directions including to fully non-linear elliptic partial dif-
ferential equations [10–13], etc., and to the parabolic heat equation [2–4], etc. On the other hand,
Caffarelli, Jerison and Kenig proved some new monotonicity theorems where the boundedness,
instead of the monotonicity, of the ‘monotone’ function holds so that the regularity of a weak so-
lution of the Prandtl–Batchelor equation, the inhomogeneous two-phase free boundary problem
for the Laplacian, follows (see [8]). Nevertheless, the uniqueness of a solution of the two-phase
free boundary problem even for the Laplace equation with given boundary data is, however, un-
touched. This paper provides an attempt to answer the uniqueness question about a solution of
the two-phase free boundary problem for the Laplace equation. Contrary to initially believed by
the authors, the uniqueness of a viscosity solution or a minimizer is in general false. Instead, we
have found an interesting bifurcation phenomenon about the uniqueness of a solution of the free
boundary problem in 1D. On the other hand, we have proved uniqueness of a viscosity solution
of an ε-evolutionary problem holds. This evidence together with the counter-examples in the
stationary case lead us to believe the non-uniqueness arises from evolutions with different initial
states and is inevitable even if more stringent topological or boundary conditions are imposed.

We start out with introduction of concepts and notations. Suppose Ω is a bounded domain
in Rn with sufficiently smooth boundary, say C1 boundary. Let σ ∈ C(∂Ω) and g : [0,∞) →
(0,∞), where g is strictly increasing Lipschitz continuous function with polynomial growth
at ∞. Note g(0) > 0. Typical examples of such functions g are g(s) = √

s2 + 1 and g(s) = s +1.
For a continuous function u : Ω → �, we define Ω+(u) = {x ∈ Ω: u(x) > 0}, Ω−(u) =

Ω\Ω+(u), and F (u) = ∂Ω+(u)∩Ω which is called the free boundary of u. Ω+(u) and Ω−(u)

are the positive and negative phases. A free boundary point x0 ∈ F (u) is said to be regular if
there is a ball Bρ ⊂ Ω+(u) or Bρ ⊂ Ω−(u) that touches F (u) at x0. If this is the case, we denote
by ν the radial direction at the tangent point x0 that points inward of Ω+(u).

The free boundary problem of phase transition we consider is formulated in a PDE form as

⎧⎪⎨
⎪⎩

�u = 0 in Ω+(u) ∪ Ω−(u),

u+
ν = g(u−

ν ) along F (u),

u = σ on ∂Ω,

where u ∈ C(Ω̄), or variationally as minimizing the functional

J (u) =
∫
Ω

|∇u|2 + λ2(u) dx,

where u ∈ W 1,2(Ω) ∩ C(Ω̄) such that limx∈Ω→a u(x) = σ(a) for every a ∈ ∂Ω ,

λ2(u) =
{

λ2
1 if u � 0,

λ2
2 if u > 0,

and λ2
2 − λ2

1 > 0.
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We define a viscosity solution of the free boundary problem as follows.

Definition 1.1. A continuous function u is called a viscosity sub-solution of the elliptic two-
phase free boundary problem, if it verifies the following conditions.

1. �u � 0 in Ω+(u) ∪ Ω−(u) in the viscosity sense.
2. ∀x0 ∈ F (u) := ∂Ω ∩ Ω , if there exists a ball Bρ ⊂ Ω+(u) that touches F (u) at x0, then

there exists β > 0 such that

u(x) � α〈x − x0, ν〉+ − β〈x − x0, ν〉− + ◦(|x − x0|
)

for all x near x0, where α = g(β) and ν is the radial direction of ∂Bρ at x0 pointing
to Ω+(u).

A continuous function v is a viscosity super-solution of the elliptic two-phase free boundary
problem in Ω , if it verifies the following conditions.

1. �v � 0 in Ω+(v) ∪ Ω−(v) in the viscosity sense.
2. ∀x0 ∈ F (v) := ∂Ω+(v)∩Ω , if there exists a ball Bρ ⊂ Ω−(v) that touches F (v) at x0, then

there exists β > 0 such that

v(x) � α〈x − x0, ν〉+ − β〈x − x0, ν〉− + ◦(|x − x0|
)

for all x near x0, where α = g(β) and ν is the radial direction of ∂Bρ at x0 pointing
to Ω+(v).

A continuous function u is a viscosity solution of the elliptic two-phase free boundary prob-
lem if it is both a viscosity sub-solution and viscosity super-solution.

Remark 1.1. According to Caffarelli’s theory [5–7], a viscosity solution of the free boundary
problem is indeed an as classical as possible solution of the free boundary problem. In particular,
the set of singular free boundary points is of (n − 1)-Hausdorff measure 0. Nevertheless, in
the following we still adopt the term “viscosity solutions” instead of “classical solutions” to
distinguish them from minimizers.

Contrary to the properties of viscosity solutions of the Dirichlet problem for the Laplace
equation, the following facts about a viscosity solution of the free boundary problem deserve
mentioning.

That u is a viscosity solution does not imply −u is also a viscosity solution.
That u is a viscosity solution does not imply u + C is also a viscosity solution for a con-

stant C.
That u and v are both viscosity solutions does not imply u + v or u − v is also a viscosity

solution.

The uniqueness problem about the phase transition is formulated either in a PDE way as “Is
there a unique viscosity solution of the free boundary problem, given a continuous boundary
date σ ?” or variationally as “Is there a unique minimizer of the functional J (u), given a con-
tinuous boundary data σ ?” This paper answers these questions with counter-examples. On the
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Fig. 1. The basic picture.

other hand, a uniqueness theorem of an evolutionary problem is proved. We propose a plausible
explanation of non-uniqueness in the elliptic problem. However, many detailed questions about
non-uniqueness in the elliptic free boundary problem are still open. Some of them are summa-
rized in the last section.

We organize the paper in the following order. In the next three sections, we provide counter-
examples to the uniqueness question in various cases in 1D and multi-dimensions, followed by a
section devoted to the 1D bifurcation phenomenon. In the last section, we prove the uniqueness
theorem for the ε-evolutionary problem. We conclude the paper with a list of open questions
about uniqueness in the elliptic case.

2. Counter-examples in 1D

In this section, we provide counter-examples to the uniqueness problem in 1D of various kinds
of free boundaries and boundary data.

We start with the basic picture. Take Ω = (a, b), and the boundary data σ(a) = 0 and
σ(b) > 0, where a is taken so that a < c := b − σ(b)

g(0)
. Recall that g : [0,∞) → (0,∞) is the

function that prescribes the free boundary condition.
Define u : Ω → R by u(x) = x−a

b−a
σ (b), and v : Ω → R by

v(x) =
{

0 if x ∈ [a, c],
g(0)(x − c) if x ∈ (c, b].

Then u is harmonic on Ω with no free boundary point. Thus it is a viscosity solution of
the free boundary problem. v has exactly one free boundary point c at which v+

ν = g(0) and
v−
ν = 0. So the free boundary condition v+

ν = g(v−
ν ) is verified at the free boundary point c.

Therefore v is also a viscosity solution and v = u on ∂Ω . u and v are two viscosity solutions
of the free boundary problem with equal boundary condition. Fig. 1 illustrates the counter-
example.

We now modify the basic picture to obtain a counter-example in which both u and v have
free boundary points. In fact, we glue two pieces of the basic picture with the roles of u and v

switched in the two cases. More precisely, let Ω = (a, b) ∪ (b, c), σ(a) > 0, σ(b) = 0, and
σ(c) > 0, where d := a + σ(a)

g(0)
< b < e := c− σ(x)

g(0)
by taking a small enough and c large enough.

Define u,v : Ω → R by

u(x) =

⎧⎪⎨
⎪⎩

−g(0)(x − d) if x ∈ [a, d],
0 if x ∈ (d, b],
x−b
c−b

σ (c) if x ∈ (b, c],
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Fig. 2. Both with free boundary.
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Fig. 3. With changing sign.
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Fig. 4. Impossible pictures.

and

v(x) =

⎧⎪⎨
⎪⎩

x−b
a−b

σ (a) if x ∈ [a, b],
0 if x ∈ (b, e],
g(0)(x − e) if x ∈ (e, c].

Then u and v have both exactly one free boundary point, namely d and e respectively, at which
the free boundary condition is readily verified. So u and v are two different viscosity solutions
satisfying the same boundary condition which have free boundary points. See Fig. 2.

At last, we give counter-examples in case the boundary data change sign. We simply attach a
viscosity solution to the two distinct viscosity solutions obtained in the preceding case.

Take Ω = (a, b) ∪ (b, c) ∪ (c, f ), σ(a) > 0, σ(b) = 0, σ(c) > 0, σ(f ) < 0, and take d , e,
and g as in the previous case so that the free boundary condition is verified. So u and v are distinct
viscosity solutions of the free boundary problem with the same boundary data as illustrated in
Fig. 3.

On the other hand, the pictures in Fig. 4 are impossible due to the monotonicity of the free
boundary condition u+

ν = g(u−
ν ), where Ω = (a, b).
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Fig. 5. Minimum principle fails.

The picture of two viscosity solutions on the left is impossible as u+
ν (c) < v+

ν (d),
u−

ν (c) > v−
ν (d), u+

ν (c) = g(u−
ν (c)), v+

ν (d) = g(v−
ν (d)), and g is strictly increasing. For simi-

lar reasons, the picture of two viscosity solutions on the right is not possible, either.
Another counter-example is worth mentioning. If σ(a) > 0, σ(b) > 0, and b − a >

σ(a)
g(0)

+
σ(b)
g(0)

, then we have the counter-example in Fig. 5.
In words,

u(x) = b − x

b − a
σ(a) + x − a

b − a
σ(b), for x ∈ [a, b],

and

v(x) =
⎧⎨
⎩

g(0)(c − x) if a � x < c,

0 if c � x < d,

g(0)(x − d) if d � x � b,

where c = a + σ(a)
g(0)

and d = b − σ(b)
g(0)

. Notice that d > c as b − a >
σ(a)
g(0)

+ σ(b)
g(0)

.
On account of this counter-example, the minimum principle does not hold if σ > 0 on ∂Ω .
The following two sections give counter-examples in multi-dimensions. Using these counter-

examples and attach more annuli or shells in the same way as in 1D, we may have counter-
examples of various cases as above. In fact, we can construct counter-examples in any dimension
in this way. One should be convinced that the non-uniqueness is a physical phenomenon instead
of a problem arising from mathematical modeling.

3. A counter-example to the uniqueness of a viscosity solution in multi-dimensions

Similar to the 1D case, even in the simplest form of a two-phase free boundary problem
in multi-dimensions, the uniqueness of a viscosity solution is false, as shown by the following
example. Indeed, we consider the uniqueness of a viscosity solution of the following two-phase
free boundary problem.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�u+ = 0 in Ω+(u),

�u− = 0 in Ω−(u),(
u+

ν

)2 − (
u−

ν

)2 = 1 along F (u) := ∂Ω+(u) ∩ Ω,

u = σ on ∂Ω.

We take Ω = B1(0), the unit ball of Rn. Here we assume n > 2 for simplicity. The example
also works in dimension two with proper modification in the formula of the function constructed.
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Pick any value in (0,1) for a number s. We take a constant function σ(x) = n−2
s−sn−1 > 0 on ∂Ω .

Define a function u0 ∈ C(Ω̄) by

u0(x) ≡ n − 2

s − sn−1

on Ω̄ . Clearly u0 is a viscosity solution of the two-phase free boundary problem, as it does not
even have a free boundary.

The second function u1 ∈ C(Ω̄) is defined by the formula

u1(x) = a|x|2−n + b

with a = − sn−1

n−2 < 0 and b = s
n−2 > 0.

Then u1 = a + b = s−sn−1

n−2 on ∂Ω and u1 = as2−n + b = 0 on ∂Bs(0). Clearly �u1 = 0 in
B1\B̄s as u1 is basically the fundamental solution of the Laplacian.

Furthermore, along F (u1) = ∂Bs(0),

∂ru
+
1 = a(2 − n)s1−n = 1

while ∂ru
−
1 = 0. So the free boundary condition

(
∂ru

+
1

)2 − (
∂ru

−
1

)2 = 1

is verified in the classical sense and hence in the viscosity sense.
So, for the same boundary data σ ∈ C(∂Ω), one obtains two distinct viscosity solutions u0

and u1, for any s with 0 < s < 1, of the same two-phase free boundary problem.

4. A counter-example of the uniqueness of a minimizer in multi-dimensions

One might think though there are more than one viscosity solution of a two-phase free bound-
ary problem, there is probably only one minimizer of a corresponding variational problem. Well,
we give a counter-example to the uniqueness of a minimizer of the following simplest variational
problem. For simplicity, we assume again the dimension n > 2. A similar counter-example may
be constructed in two dimensions or in 1D.

Let Ω = B1, the unit ball of Rn as in the previous section. We take λ1 > 0 and λ2 > 0 such
that Λ = λ2

2 − λ2
1 > 0, but otherwise the values of λ1 and λ2 are free to pick.

Define h(s) = n−2
n

sn + sn−2 − 1, for s ∈ [0,1]. Then h(0) = −1 < 0 < n−2
n

= h(1). So there
exists an s0 ∈ (0,1) such that h(s0) = 0, i.e.

n − 2

n
sn

0 + sn−2
0 − 1 = 0.

Then

n − 2

n
= 1 − sn−2

0

sn
0

= s2−n
0 − 1

s2
0

.



2824 G. Lu, P. Wang / Journal of Functional Analysis 258 (2010) 2817–2833

Take Λ = (n−2)n

sn
0 (s2−n

0 −1)
> 0. It follows that (n−2)n

s2−n
0 −1

= Λsn
0 . This equality combined with n−2

n
=

s2−n
0 −1

s2
0

implies that

(n − 2)2

Λ
= sn−2

0

(
s2−n

0 − 1
)2

.

Now let g(s) = (n − 2)2 − Λsn−2(s2−n − 1)2, s ∈ (0,1]. For s ∈ (0,1), g′(s) =
−(n−2)Λsn−3(s2−n −1)2 +2(n−2)Λs−1(s2−n −1) = (n−2)Λs−1(s2−n −1)(1+ sn−2) > 0.
So g is an increasing function, and g(1) = (n − 2)2 > 0 and lims→0+ g(s) = −∞. In addition,

the choice of s0 implies that g(s0) = 0 as (n−2)2

Λ
= sn−2

0 (s2−n
0 − 1)2. So

g(s)

⎧⎨
⎩

< 0 for 0 < s < s0,

= 0 for s = s0,

> 0 for s0 < s < 1.

Define f (s) = (n−2)n

s2−n−1
+ λ2

2 − Λsn, where 0 � s < 1. For 0 < s < 1, f ′(s) = ns1−n

(s2−n−1)2 g(s).
So f attains its absolute minimum at s = s0, according to our analysis of the function g. Note
that f (0) = λ2

2 − (n − 2)n and lims→1− f (s) = +∞.
We minimize the functional

J (u) =
∫
Ω

|∇u|2 + λ2(u) dx,

with u = 1 on ∂Ω , where λ2(s) = λ2
2, if s > 0, and λ2(s) = λ2

1, if s � 0.
If there were only one minimizer u under the condition u = 1 on ∂Ω , then u must be radial

as all the rotation of u around the origin are minimizers of the same boundary data.
Now suppose u(x) = 0 for |x| = s for some s ∈ [0,1]. As a result of the maximum principle

of harmonic functions, u(x) = 0 for all x ∈ Bs . Therefore, for some s ∈ [0,1], u(x) > 0 and
�u = 0 in s < |x| < 1, while u(x) = 0 in |x| � s. This forces u to take the form

u(x) = a|x|2−n + b.

The boundary data give conditions on a and b, i.e.

{
a + b = 1,

as2−n + b = 0.

So a = 1
1−s2−n < 0 and b = s2−n

s2−n−1
� 0. And ∇u = a(2 − n)r1−nx̂, where x̂ = x

|x| .
If we denote the measure of the unit ball by σ = |B1|, then

∫
B\Bs

|∇u|2 dx =
1∫

s

a2(n − 2)2ρ1−n dρ nσ = a2(n − 2)nσ
(
s2−n − 1

) = (n − 2)n

s2−n − 1
σ
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and

λ2
2|B\Bs | + λ2

1|Bs | = λ2
2σ − Λsnσ.

Therefore

J (u) = (n − 2)n

s2−n − 1
σ + λ2

2σ − Λsnσ = f (s)σ.

The minimizer u0 of J (u) should be the one corresponding to s = s0 ∈ (0,1). Then J (u0) =
f (s0)σ = (n−2)n

s2−n
0 −1

σ + λ2
2σ − Λsn

0 σ .

On the other hand, if we define u1(x) ≡ 1 in Ω̄ . In this case, J (u1) = λ2
2σ .

Then

J (u0) − J (u1) =
(

(n − 2)n

s2−n
0 − 1

− Λsn
0

)
σ = 0

as a result of (n−2)n

s2−n
0 −1

= Λsn
0 . So both u0 and u1 are minimizers of the functional J (u) with the

equal boundary data. Of course, as 0 < s0 < 1, they are distinct minimizers, under the assumption
there is a unique minimizer. We are done.

5. A bifurcation phenomenon in 1D

In 1D, an open set is the disjoint union of at most countably many open intervals. Thus in 1D,
we write Ω = ⋃

j∈Λ Ij , where Ij = (aj , bj ) is an interval.

Lemma 5.1 (Maximum–minimum principle for the free boundary problem). Let Ω be a bounded
domain in Rn, and u a continuous viscosity solution of the two-phase free boundary problem
in Ω .

(a) sup
Ω

u = max
∂Ω

u

holds, while infΩ u may be smaller than min∂Ω u.
(b) If, in addition, min∂Ω u � 0, then

inf
Ω

u = min
∂Ω

u

holds.

Proof. Both (a) and (b) follow from a simple argument by contradiction and the maximum–
minimum principle for the Laplacian in either phase. �

Now we show, in 1D, a bifurcation phenomenon. We may restrict to every component Ij =
(aj , bj ) of Ω . We also omit the subscript j .

First assume σ(a) > 0 and σ(b) > 0. An obvious solution is the one without any free bound-
ary point, namely u(x) = b−x

b−a
σ (a) + x−a

b−a
σ (b), x ∈ I . If b − a � σ(a)+σ(b)

g(0)
, then there cannot
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Fig. 6. Picture for c < d .

be a free boundary point for a solution. So the affine function just found is the only viscosity
solution of the free boundary problem. Otherwise, assume c is the least value in (a, b) at which
a viscosity solution u = 0 and d is the largest value in (a, b) at which u = 0. Then u is a vis-
cosity solution of the two-phase free boundary problem in (c, d) with zero boundary data. The
maximum–minimum principle implies that u = 0 on (c, d). So there is only one more viscos-
ity solution of the free boundary problem on (a, b) other than the affine solution, namely the
solution v defined by

v(x) =
⎧⎨
⎩

g(0)(c − x) if a � x < c,

0 if c � x < d,

g(0)(x − d) if d � x � b,

where c = a + σ(a)
g(0)

and d = b − σ(b)
g(0)

.
If σ(a)σ (b) < 0, say σ(a) < 0 and σ(b) > 0, then u has at least one free boundary point. (Just

keep in mind that there might not even be a viscosity solution u if (a, b) is too short with respect
to σ(b).) Suppose there exist two (or more) points x1 and x2 such that u(x1) = u(x2) = 0. Then
the maximum–minimum principle implies u = 0 on [x1, x2].

Define c := inf{x ∈ (a, b): u(x) = 0} and d := sup{x ∈ (a, b): u(x) = 0}. Clearly u(c) =
u(d) = 0.

Step 1. We claim c = d .

Suppose c < d . We then have the picture in Fig. 6.
At the free boundary point c, u+

ν = 0 and u−
ν = −σ(a)

c−a
. Then 0 = g(−σ(a)

c−a
) > g(0) > 0, which

is impossible. So c = d .

Step 2. u is unique.

Suppose there are two viscosity solutions u and v, and u = v on ∂Ω , as shown in Fig. 7.
Without loss of generality, we assume c < d .

At c, u+
ν = g(u−

ν ) where u+
ν = σ(b)

b−c
and u−

ν = −σ(a)
c−a

.

At d , v+
ν = g(v−

ν ) where v+
ν = σ(b)

b−d
and v−

ν = −σ(a)
d−a

.
Note u+

ν < v+
ν and u−

ν > v−
ν , while the monotonicity of g implies that u+

ν = g(u−
ν ) >

g(v−
ν ) = v+

ν , which is a contradiction. So u is unique if σ(a)σ (b) < 0.
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a b

u

σ(b)

Fig. 8. The unique solution when (a, b) is short.

The critical case, σ(a)σ (b) = 0.
If σ(a) = σ(b) = 0, then u = 0 everywhere. Otherwise, we may assume σ(a) = 0 and

σ(b) > 0.
If σ(b)

b−a
> g(0), then there cannot be any free boundary point. The only viscosity solution is

u(x) = x−a
b−a

σ (b) as shown in Fig. 8.

If σ(b)
b−a

= g(0), still there is no free boundary point strictly between a and b. The unique
viscosity solution is u(x) = g(0)(x − a).

If σ(b)
b−a

< g(0), we have seen the counter-example in Section 2 that declines the uniqueness of
a viscosity solution. In fact, let u(x) = x−a

b−a
σ (b) for x ∈ [a, b] and v be the function defined by

v(x) =
{

0 if x ∈ [a, c],
g(0)(x − c) if x ∈ (c, b],

where c = b − σ(b)
g(0)

. Both u and v are viscosity solutions of the free boundary problem on [a, b].
We show that v is stable under perturbations of boundary data from below, and the perturba-
tions of boundary data from above cause two perturbed solutions which converge to u and v

respectively.
Indeed, as σ(b)

b−a
< g(0), ∃!c such that a < c < b and σ(b)

b−c
= g(0).

Let σε(a) = −ε and σε(b) → σ(b) as ε → 0+. Let uε be the unique solution of the free
boundary problem with uε = σε on the boundary. The uε has a unique free boundary point cε .
Obviously, cε > c. So it is easy to see that uε converges to v uniformly on [a, b], as ε → 0.

Let σε(a) = ε and σε(b) → σ(b) as ε → 0+. Then there are two solutions of the free bound-
ary with boundary data σε . Let uε

1 be the solution without a free boundary and uε
2 the solution

with a free boundary. Clearly, uε
1 → u as uε

1(x) = b−x
b−a

ε + x−a
b−a

σ ε(b). Also,

uε
2(x) =

⎧⎨
⎩

g(0)(cε − x) if a � x < cε,

0 if cε � x < dε,

g(0)(x − dε) if dε � x � b,
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where cε = a + ε
g(0)

and dε = b − σε(b)
g(0)

. Clearly, cε → a and dε → c as ε → 0. So uε
2 → u

uniformly.
In case σ(a) < 0 and σ(b) < 0, the maximum–minimum principle implies supΩ u < 0. So a

solution has only one phase. Therefore there is only one viscosity solution u(x) = b−x
b−a

σ (a) +
x−a
b−a

σ (b), x ∈ (a, b).

6. Uniqueness for the ε-evolutionary problem

Heuristically, the elliptic free boundary problem describes the limiting stationary state of the
corresponding evolutionary free boundary problem. Unlike the elliptic free boundary problem,
the evolutionary problem seems to enjoy the uniqueness of a viscosity solution with prescribed
initial–boundary data. In fact, if we smooth the free boundary condition in a very small scale,
we can prove the uniqueness of a viscosity solution of the smoothed parabolic ε-evolutionary
problem.

In the following, we prove the uniqueness of a viscosity solution of the following ε-
evolutionary problem,

⎧⎨
⎩

Hεw = wt − Lw + βε(w) = 0 in Ω × �T ,

w(x, t) = σ(x) on ∂Ω × �T ,

w(x,0) = w0(x) on Ω̄,

where Lw = F(∇w,D2w) is a degenerate linear or non-linear elliptic operator such that
F(p,On×n) = 0 such as the Laplacian or p-Laplacian, βε(w) = 1

ε
β(w

ε
), β : � → [0,∞) is

a compactly supported around origin, smooth non-negative function with β(0) > 0, Ω is a
bounded domain in �n, �T = (0, T ) with T possibly being infinity, and the compatibility con-
dition σ = w0 on ∂Ω is verified. Here the partial differential equation is verified in the viscosity
sense, namely if a smooth function ϕ satisfies ϕ � w (or ϕ � w) in a neighborhood of (x0, t0)

and ϕ(x0, t0) = w(x0, t0), which is usually denoted by w ≺(x0,t0) ϕ, then Hεϕ(x0, t0) � 0 (or
Hεϕ(x0, t0) � 0). The parabolic sub- and super-jets P 2,−w(x0, t0) and P 2,+ are defined by

P 2,−w(x0, t0) = {(
ϕt (x0, t0),∇ϕ(x0, t0),D

2ϕ(x0, t0)
) ∣∣ ϕ ≺(x0,t0) w

}
(6.1)

and

P 2,+w(x0, t0) = {(
ϕt (x0, t0),∇ϕ(x0, t0),D

2ϕ(x0, t0)
) ∣∣ w ≺(x0,t0) ϕ

}
. (6.2)

The “closures” of the semi-jets are defined by

P̄ 2,−w(x0, t0) = {
(b,p,X) ∈ � × �n × Sn×n

∣∣ ∃(xk, tk, bk,pk,Xk) (6.3)

∈ Ω × �T × � × �n × Sn×n such that (bk,pk,Xk) ∈ P 2,−w(xk, tk) (6.4)

and (xk, tk, bk,pk,Xk) → (x0, t0, b,p,X)
}

(6.5)

and

P̄ 2,+w(x0, t0) = {
(b,p,X) ∈ � × �n × Sn×n

∣∣ ∃(xk, tk, bk,pk,Xk) (6.6)
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∈ Ω × �T × � × �n × Sn×n such that (bk,pk,Xk) ∈ P 2,+w(xk, tk) (6.7)

and (xk, tk, bk,pk,Xk) → (x0, t0, b,p,X)
}
, (6.8)

where Sn×n is the set of symmetric n × n matrices.
We also require σ and w0 to be continuous on ∂Ω and Ω̄ respectively.
Note that w �→ −Lw + βε(w) is not a proper elliptic operator in the sense of Crandall–Ishii–

Lions.
As there is no confusion, we will skip the superscript and subscript ε, and write H for Hε and

β for βε .

Lemma 6.1. For T >0 small enough, if Hw � 0 � Hw2 in Ω ×�T and w < w2 on ∂p(Ω ×�T ),
then w � w2 in Ω × �T .

Proof. As β is compactly supported and smooth, it is globally Lipschitz continuous for some
Lipschitz constant K .

For any given small number δ > 0, we define a new function w1 by

w1(x, t) = w(x, t) − δ

T − t
,

where x ∈ Ω̄ and 0 � t < T . In order to prove w � w2 in Ω × �T , it suffices to prove w1 � w2
in Ω × �T for all small δ > 0. Clearly, w1 < w2 on ∂p(Ω × �T ), and limt→T w1(x, t) = −∞
uniformly on Ω . Moreover,

Hw1 = wt − δ

(T − t)2
− F

(∇w,D2w
) + β

(
w − δ

T − t

)

= Hw − δ

(T − t)2
+ β

(
w − δ

T − t

)
− β(w)

� Hw − δ

(T − t)2
+ K

δ

T − t
due to the Lipschitz continuity of β

� Hw − δ

(T − t)2
+ δ

2(T − t)2
for T � 1

2K
so that 2K � 1

T − t

= Hw − δ

2(T − t)2
� − δ

2(T − t)2

� − δ

2T 2
< 0.

The above differential equalities and inequalities are all in the viscosity sense. Every step can be
made rigorous in the viscosity sense. We leave the work to the reader.

Define, for j = 1,2, vj (x, t) = e−λtwj (x, t), where λ > 2K . So wj(x, t) = eλtvj (x, t).
Obviously, w1 � w2 in Ω × �T is equivalent to v1 � v2 in Ω × �T . A simple computation

shows that in the viscosity sense, Hwj = eλt H̃ vj , where H̃v = vt − e−λtF (eλt∇v, eλtD2v) +
λv + e−λtβ(eλtv). Then, in the viscosity sense, H̃v1 � − δ

2T 2 e−λt � − δ

2T 2 e−λT < 0 and

H̃v2 � 0. Furthermore, v1 < v2 on ∂p(Ω × �T ), and limt→T − v1(x, t) = −∞ uniformly on Ω̄ .
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Suppose supΩ×�T
(v1 − v2) > 0. Then supΩ×�T

(v1 − v2) is a maximum and is assumed
exclusively in Ω × (0, T ), due to the last two conditions on v1 and v2.

Let M0 = supΩ×�T
(v1 − v2) = maxΩ×�T

(v1 − v2).
For any small ε > 0, we define

uε(x, y, t) = v1(x, t) − v2(y, t) − 1

2ε
|x − y|2, x, y ∈ Ω̄, t ∈ [0, T ). (6.9)

We observe first that maxΩ̄×Ω̄×[0,T ) u
ε(x, y, t) exists as limt→T v1(x, t) = −∞ uniformly on Ω̄ .

Let Mε = uε(xε, yε, tε) = maxΩ̄×Ω̄×[0,T ) u
ε , where xε , yε ∈ Ω̄ and tε ∈ [0, T ′) ⊂ [0, T ) for

some T ′ < T independent of ε. Clearly, Mε � M0 > 0. According to Proposition 3.7 in [9],
a generalization of Lemma 3.1 in [9], limε↓0 Mε = M0 and limε↓0

1
2ε

|xε − yε|2 = 0 hold.
We claim that xε , yε ∈ Ω and tε > 0 for all sufficiently small ε.
Suppose not. There exists a sequence εj → 0 such that either (xεj , tεj ) ∈ ∂p(Ω × �T )

or (yεj , tεj ) ∈ ∂p(Ω × �T ), and without loss of generality {xεj }, {yεj }, {tεj } converge. As
1

2εj
|xεj − yεj |2 → 0 implies |xεj − yεj | → 0, we may assume xεj → x0, yεj → x0, tεj → t0,

where (x0, t0) ∈ ∂p(Ω × �T ), and t0 � T ′ < T . So

0 < M0 � lim sup
j

Mεj
= v1(x0, t0) − v2(x0, t0) < 0

as (x0, t0) ∈ ∂p(Ω × �T ), which is an obvious contradiction.
For any small ε > 0, Theorem 8.3 in [9] implies that there exist X, Y ∈ Sn×n, and b ∈ � such

that (b,
xε−yε

ε
,X) ∈ P̄ 2,+v1(x

ε, tε), (b,
xε−yε

ε
, Y ) ∈ P̄ 2,−v2(y

ε, tε), and

−3

ε
I �

(
X 0

0 Y

)
� 3

ε

(
I −I

−I I

)
.

The last inequality implies that X � Y , while the first two inclusion conditions imply that

b − e−λtεF

(
eλtε xε − yε

ε
, eλtεX

)
+ λv1

(
xε, tε

) + e−λtεβ
(
eλtεv1

(
xε, tε

))
� − δ

2T 2
e−λT < 0

(6.10)

and

b − e−λtεF

(
eλtε xε − yε

ε
, eλtεY

)
+ λv2

(
yε, tε

) + e−λtεβ
(
eλtεv2

(
yε, tε

))
� 0. (6.11)

That F is degenerate elliptic implies that F(eλtε xε−yε

ε
, eλtεX) � F(eλtε xε−yε

ε
, eλtεY ).

As a result of the three preceding inequalities,

0 > λ
(
v1

(
xε, tε

) − v2
(
xε, tε

)) + e−λtε
{
β
(
eλtεv1

(
xε, tε

)) − β
(
eλtεv2

(
yε, tε

))}
� λ

(
v1

(
xε, tε

) − v2
(
xε, tε

)) − K
∣∣v1

(
xε, tε

) − v2
(
yε, tε

)∣∣
as β is Lipschitz continuous with Lipschitz constant K

� λ
(
v1

(
xε, tε

) − v2
(
xε, tε

)) − λ

2

∣∣v1
(
xε, tε

) − v2
(
yε, tε

)∣∣ as λ > 2K .
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On account of the reasons that justify the preceding claim, we know that there exists a
sequence εj → 0 such that xεj → x0, yεj → x0, tεj → t0, and x0 ∈ Ω , 0 < t0 � T ′ < T .
In addition, Proposition 3.7 in [9] implies v1(x0, t0) − v2(x0, t0) = M0. Taking limits in
0 � λ(v1(x

εj , tεj ) − v2(y
εj , tεj )) − λ

2 |v1(x
εj , tεj ) − v2(y

εj , tεj )|, we obtain, since v1(x0, t0) −
v2(x0, t0) = M0 > 0, that

0 � λ

2

(
v1(x0, t0) − v2(x0, t0)

)
> 0,

which is an obvious contradiction. We are done. �
We now loose the strict inequality restriction to a non-strict one.

Lemma 6.2. For T > 0 sufficiently small, if Hw1 � 0 � Hw2 in Ω × �T and w1 � w2

on ∂p(Ω × �T ), then w1 � w2 on Ω × �T .

Proof. For any δ > 0, let w = w1 −δt − δ̃, where the value of δ̃ > 0 will be taken in the following.
Then w < w1 � w2 on ∂p(Ω × �T ), and

Hw = Hw1 − δ − βε(w1) + βε(w1 + δt + δ̃)

� −δ + Kδt + Kδ̃ � −δ + KδT + Kδ̃

< −δ + 1

2
δ + 1

4
δ for T small and δ̃ � δ

4K

= −1

4
δ < 0.

Again, the above differential equality and inequalities are in the viscosity sense and can be made
rigorous.

The preceding lemma implies w � w2 on Ω × �T for small T , for any δ > 0. Therefore
w1 � w2 on Ω × �T . �

The following comparison principle for the ε-evolutionary problem follows quite easily.

Lemma 6.3. For any T > 0 including ∞, if Hεw1 � 0 � Hεw2 in Ω × �T and w1 � w2

on ∂p(Ω × �T ), then w1 � w2 on Ω × �T .

Proof. Let T0 > 0 be any small value of T in the preceding lemma so that the conclu-
sion of the preceding lemma holds. Then w1 � w2 on Ω × (0, T0). In particular, w1 � w2

on ∂p(Ω × (T0,2T0)). The preceding lemma may be applied again to conclude that w1 � w2

on Ω × (T0,2T0). And so on. In the end, we see that w1 � w2 on Ω × �T . �
The uniqueness of a viscosity solution of the ε-evolutionary problem is the straightforward

corollary of the preceding comparison result.
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Theorem 6.1. The ε-evolutionary problem

⎧⎨
⎩

Hεw = wt − Lw + βε(w) = 0 in Ω × �T ,

w(x, t) = σ(x) on ∂Ω × �T ,

w(x,0) = w0(x) on Ω̄,

possesses at most one viscosity solution.

A feasible explanation of the non-uniqueness of a viscosity solution of the elliptic free bound-
ary problem versus the uniqueness of a viscosity solution of the ε-evolutionary problem is that
different physical evolutionary processes with the same boundary condition may end up with
different steady states. For example, if the melting of ice and solidification of water observe the
physical laws described by the mathematical model so far discussed, we may have the following
phenomenon. We manage to keep the temperature distribution on the surface of a closed con-
tainer fixed as time goes by (however, the distribution in general is non-constant, somewhere
above the freezing point and somewhere below). If ice or water is put in the container, after a
long time, the temperature distribution inside the container reaches a steady state. Even though
the boundary temperature distribution is the same for either case, the steady states resulted may
differ from each other depending on the initial state. It needs rigorous mathematical justifica-
tion and is the subject of the authors’ following study. For now, we content ourselves with some
questions about the elliptic free boundary problem for which the uniqueness of a solution fails.

Let S(σ ) be the set of solutions of the elliptic free boundary problem with continuous initial
and boundary data

⎧⎨
⎩

�u = 0 in Ω+(u) ∪ Ω−(u),

u+
ν = g

(
u−

ν

)
along F (u),

u = σ on ∂Ω.

We ask the following questions about the set of solutions S(σ ).
How to determine, from the initial value, to which viscosity solution in S(σ ) do viscosity

solutions of the evolutionary free boundary problem converge as time goes to infinity?
Is S(σ ) a finite set?
Are there a largest element and a least element of S(σ ) in general?
Does S(σ ) contain only two solutions in general, which model the stationary states resulting

from the melting of ice and the solidification of water respectively? And under what condition
do they coincide with each other?
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