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Abstract Let �n(x) = ex − ∑n−2
j=0

x j

j ! and αn = nω
1

n−1
n−1 be the sharp constant in

Moser’s inequality (where ωn−1 is the area of the surface of the unit n-ball inRn), and
dV be the volume element on the n-dimensional hyperbolic space (Hn, g) (n ≥ 2). In
this paper, we establish the following sharp Moser–Trudinger type inequalities with
the exact growth condition on H

n :
For any u ∈ W 1,n(Hn) satisfying ‖∇gu‖n ≤ 1, there exists a constant C(n) > 0

such that

∫

Hn

�n(αn|u| n
n−1 )

(1 + |u|) n
n−1

dV ≤ C(n)‖u‖nLn .

The power n
n−1 and the constant αn are optimal in the following senses:

(i) If the power n
n−1 in the denominator is replaced by any p < n

n−1 , then there exists
a sequence of functions {uk} such that ‖∇guk‖n ≤ 1, but

1

‖uk‖nLn

∫

Hn

�n(αn(|uk |) n
n−1 )

(1 + |uk |)p dV → ∞.

(ii) If α > αn , then there exists a sequence of function {uk} such that ‖∇guk‖n ≤ 1,
but

G. Lu · H. Tang (B)
School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China
e-mail: hltang@bnu.edu.cn

G. Lu
Department of Mathematics, Wayne State University, Detroit, MI 48202, USA
e-mail: gzlu@wayne.edu

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12220-015-9573-y&domain=pdf


838 G. Lu, H. Tang

1

‖uk‖nLn

∫

Hn

�n(α(|uk |) n
n−1 )

(1 + |uk |)p dV → ∞,

for any p ≥ 0.

This result sharpens the earlier work of the authors Lu and Tang (Adv Nonlinear Stud
13(4):1035–1052, 2013) on best constants for the Moser–Trudinger inequalities on
hyperbolic spaces.
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1 Introduction

The Moser–Trudinger inequalities can be considered as the limiting case of Sobolev
inequalities. They were established independently by Yudovič [30], Pohožaev [25]
and Trudinger [28]. In 1971, Moser [23], sharpening Trudinger’s inequality, proved
that

Theorem A Let � be a domain with finite measure in Euclidean n-space Rn, n ≥ 2.

Then there exist a positive constant C(n) > 0 and a sharp constant αn = nω
1

n−1
n−1

(where ωn−1 is the area of the surface of the unit n-ball) such that

1

|�|
∫

�

exp
(
α | f | n

n−1

)
dx ≤ C(n) < ∞ (1.1)

for any α ≤ αn, any f ∈ C∞
0 (�) with

∫
�

|∇ f |n dx ≤ 1. This constant αn is sharp
in the sense that if α > αn, then the above inequality can no longer hold with some
C(n) independent of f .

This result has been generalized in many directions. For instance, the singular
Moser–Trudinger inequality was proved in [3], and the best constants for Moser–
Trudinger inequalities on domains of finite measure on the Heisenberg group were
established in [7,15]. There has also been substantial progress for theMoser–Trudinger
inequalities on spheres, CR spheres, or compact Riemannian manifolds. We refer the
interested reader to [5,8,9,17], etc. Moser–Trudinger inequalities have found many
applications in geometric analysis and PDEs; see, e.g., [12,15,18,23,24,27], the sur-
vey articles [6] and [13], etc.

When� has infinite volume, the sharp version ofMoser–Trudinger type inequalities
for unboundeddomainswas establishedbyAdachi andTanaka [1] in order to determine
the best constant. They proved that

Theorem B Let 0 < α < αn. There exists a constant C(α) > 0 such that

sup
u∈W 1,n(Rn),

∫
Rn |∇u|ndx≤1

∫

Rn
�n(α|u| n

n−1 )dx ≤ C(α)‖u‖nLn(Rn),
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Sharp Moser–Trudinger Inequalities on the Hyperbolic Spaces 839

where �n(t) := et − ∑n−2
i=0

t i
i ! . Moreover, the constant αn is sharp in the sense that if

α ≥ αn, the supremum will become infinite.

The method used in [1] is the symmetrization argument by reducing the problem
to the radial case. However, such a symmetrization argument does not work on the
Heisenberg group.Using an entirely differentmethod of dividing the entireHeisenberg
group into two parts using the level sets of the functions under consideration, such
a sharp subcritical Moser–Trudinger inequality on the Heisenberg group has been
established in [16].

Ruf [24] (for the case n = 2), Li and Ruf [18] (for the general case n ≥ 2) estab-
lished a criticalMoser–Trudinger type inequality for unbounded domains in Euclidean
spaces. They obtain the following theorem.

Theorem C There exists a constant C(n) > 0 such that for any domain � ⊂ R
n,

sup
u∈W 1,n

0 (�),‖u‖W1,n (�)
≤1

∫

�

�n(αn|u| n
n−1 )dx ≤ C(n).

Moreover, the constant αn is sharp in the sense that if αn is replaced by any α > αn,
the supremum will become infinite.

Such a sharp Moser–Trudinger inequality at the critical case has also been estab-
lished on the entire Heisenberg group in [11] where a symmetrization argument is not
available.

We note that there is a sharp difference between the inequalities in Theorems B
and C. In Theorem B, the inequality only holds for α < αn while the inequality in
Theorem C holds for all α ≤ αn . The reason behind this is that the restriction on the
class of functions in Theorem B is for all with the Ln norm of their gradients being
less than or equal to 1 while the function class in Theorem C is for those with the full
Sobolev W 1,n norm less than or equal to 1.

In short, the failure of the originalMoser–Trudinger inequality (1.1) on the entireRn

can be recovered either byweakening the exponent α = nω
1

n−1
n−1 or by strengthening the

Dirichlet norm ‖∇u‖Ln . Then a natural question arises: Can we still achieve the best

constant α = nω
1

n−1
n−1 when we only require the restriction on the norm ‖∇u‖Ln ≤ 1?

Ibrahim, Masmoudi and Nakanishi [10] answered the question in the two-
dimensional case. They set up the following theorem.

Theorem D There exists a constant C > 0, such that

∫

R2

e4πu
2 − 1

(1 + |u|)2 dx ≤ C‖u‖2L2(R2)
,

for any u ∈ W 1,2(R2) with ‖∇u‖L2(R2) ≤ 1. Moreover, this fails if the power 2 in the
denominator is replaced with any p < 2.
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840 G. Lu, H. Tang

In this paper, we will consider the Moser–Trudinger inequalities with exact growth
condition on the hyperbolic spaces. The hyperbolic spaceHn (n ≥ 2) is a complete and
simply connected Riemannian manifold having constant sectional curvature equal to
−1, and for a given dimensional number, any two such spaces are isometric [29]. There
are several models for Hn , the most important model being the half-space model, the
ball model, and the hyperboloid or Lorentzmodel, with the ball model being especially
useful for questions involving rotational symmetry. We will only use the ball model
in this paper.

Let Bn = {x ∈ Rn : |x | < 1} denote the unit open ball in the Euclidean space Rn .
The space Bn endowed with the Riemannian metric gi j = ( 1

1−|x |2 )
2δi j is called the

ball model of the hyperbolic space Hn . Denote the associated hyperbolic volume by
dV = ( 2

1−|x |2 )
ndx . For any measurable set E ⊂ H

n , set |E | = ∫
E dV . Let d(0, x)

denote the hyperbolic distance between the origin and x . It is known that d(0, x) =
ln 1+|x |

1−|x | for x ∈ H
n . The hyperbolic gradient ∇g is given by ∇g = (

1−|x |2
2 )2∇, where

∇ is the Euclidean gradient.

Let � ⊂ H
n be a bounded domain. Denote ‖ f ‖n,� = (

∫
�

| f |ndV )
1
n . Then we

have the following:

‖∇g f ‖n,� =
(∫

�

〈∇g f,∇g f 〉n/2
g dV

) 1
n =

(∫

�

|∇ f |ndx
) 1

n

.

Let ‖ f ‖n = (
∫
Hn | f |ndV )

1
n . Then we have

‖∇g f ‖n =
(∫

Hn
〈∇g f,∇g f 〉n/2

g dV

) 1
n =

(∫

Bn
|∇ f |ndx

) 1
n

.

We use W 1,n
0 (�) to express the completion of C∞

0 (�) under the norm

‖u‖W 1,n
0 (�)

=
(∫

�

| f |ndV +
∫

�

|∇ f |ndx
) 1

n

.

We will also use W 1,n(Hn) to express the completion of C∞
0 (Hn) under the norm

‖u‖W 1,n(Hn) =
(∫

Hn
| f |ndV +

∫

Hn
|∇ f |ndx

) 1
n

.

It is known that the symmetrization argument is the key tool in the proof of the clas-
sical Moser–Trudinger inequalities. Now, let us recall some facts about the rearrange-
ment in the hyperbolic spaces [4].

Let f : Hn → R be such that

|{x ∈ H
n : | f (x)| > t}| =

∫

{x∈Hn :| f (x)|>t}
dV < +∞

123



Sharp Moser–Trudinger Inequalities on the Hyperbolic Spaces 841

for every t > 0. Its distribution function is defined by

μ f (t) = |{x ∈ H
n : | f (x)| > t}.

Then its decreasing rearrangement f ∗ is defined by

f ∗(s) = sup{t > 0, μ f (t) > s}.

Now, define f � : Hn → R by

f �(x) = f ∗(|B(0, d(0, x))|),

where B(0, d(0, x)) is the ball centered at the origin and with radius d(0, x) in the
hyperbolic space. Then, for every continuous increasing function � : [0,∞) →
[0,∞), we have from [4] that

∫

Hn
�(| f |)dV =

∫

Hn
�( f �)dV .

Moreover, for any Lipschitz continuous function f , when p ≥ 1,

‖∇g f
�‖p ≤ ‖∇g f ‖p.

Moser–Trudinger inequalities on a hyperbolic space were considered by Mancini
and Sandeep [21] in the two-dimensional case; they established the Moser–Trudinger
inequalities on a conformal disc. Recently, the authors [19] established sharp constants
for Moser–Trudinger inequalities on high dimensional hyperbolic spaces. They first
proved the sharp singular Moser–Trudinger inequality on bounded domains in the
hyperbolic space of any high dimension.

Theorem E Let � ⊂ H
n be a domain with |�| = ∫

�
dV < +∞ and αn = nω

1
n−1
n−1.

Then there exists a constant C > 0 such that

sup
u∈C∞

0 (�),‖∇gu‖n,�≤1

1

|�|
∫

�

exp(αn|u| n
n−1 )dV ≤ C.

The result is sharp in the sense that if αn is replaced by any α > αn, the supremum
will become infinite.

Then they set up the following sharp subcritical Moser–Trudinger type inequality
on the entire hyperbolic space in the spirit of Adachi–Tanaka [1].

Theorem F For any α ∈ (0, αn), there exists a constant Cα > 0 such that

∫

Hn
�n(α|u| n

n−1 )dV ≤ Cα‖u‖nn, (1.2)

123



842 G. Lu, H. Tang

for u ∈ W 1,n(Hn) with ‖∇gu‖n ≤ 1, where �n(x) = ex − ∑n−2
j=0

x j

j ! . Moreover, the

result is sharp in the sense that if α ≥ αn, there exists a sequence {uk}∞k=1 ⊂ W 1,n(Hn)

such that ‖∇guk‖n = 1 and

1

‖uk‖nn

∫

Hn
�n(α(|uk |) n

n−1 )dV → ∞.

Furthermore, the authors established in [19] the following sharp critical singular
Moser–Trudinger inequality on the entire hyperbolic space when we restrict the norms
of functions to full hyperbolic Sobolev norm.

Theorem G Let 0 ≤ β < n, τ > 0. For any α ∈ (0, αn(1 − β
n )], there exists a

constant Cα,τ > 0 such that

sup
u∈W 1,n(Hn),‖∇gu‖nn+τ‖u‖nn≤1

∫

Hn

�n(α|u| n
n−1 )

[d(0, x)]β dV ≤ Cα,τ .

The constant αn(1 − β
n ) is sharp in the sense that if αn(1 − β

n ) is replaced by any α

bigger than αn, the supreme will become infinite.

Motivated by the work [10] and our Theorems F and G, we naturally want to
know what will happen to the inequality (1.2) if we keep the condition α = αn and
‖∇gu‖n ≤ 1. In this paper, we will prove the exact growth condition for the sharp
Moser–Trudinger type inequality on the hyperbolic space with the restriction on the
norms of functions is only imposed on the gradient. This answers our question.

Theorem 1.1 For any u ∈ W 1,n(Hn) satisfying ‖∇gu‖n ≤ 1, there exists a constant
C(n) > 0 such that

∫

Hn

�n(αn|u| n
n−1 )

(1 + |u|) n
n−1

dV ≤ C(n)‖u‖nn .

We remark that both the power n
n−1 and the constant αn are optimal. These can be

justified by the following theorem.

Theorem 1.2 If the power n
n−1 in the denominator is replaced by any p < n

n−1 , there
exists a sequence of functions {uk} such that ‖∇guk‖n ≤ 1, but

1

‖uk‖nn

∫

Hn

�n(αn(|uk |) n
n−1 )

(1 + |uk |)p dV → ∞.

Moreover, if α > αn, there exists a sequence of functions {uk} such that ‖∇guk‖n ≤ 1,
but

1

‖uk‖nn

∫

Hn

�n(α(|uk |) n
n−1 )

(1 + |uk |)p dV → ∞,

for any p ≥ 0.
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Sharp Moser–Trudinger Inequalities on the Hyperbolic Spaces 843

Finally, we end this Introduction by commenting on some recent works on Adams’s
inequalities on high order Sobolev spaces. Sharp Adams’s inequalities on Sobolev
spaces Wm, n

m (Rn) were proved by Ruf and Sani [26] for all even m and established
by Lam and the first author for all odd and fractional m in [12,14]. Motivated by the
work of Masmoudi and Sani on Adams’s inequality with exact growth in dimension
four [22], the authors andM. Zhu have established the following Adams’s inequalities
with exact growth condition in general dimension [20].

Theorem 1.3 There exists a constant C > 0 such that for all f ∈ W 2, n2 (Rn) (n ≥ 4)
satisfying ‖� f ‖ n

2
≤ 1,

∫

Rn

�(βn| f | n
n−2 )

(1 + | f |) n
n−2

dx ≤ C‖ f ‖
n
2
n
2
,

where �(t) = exp(t) − ∑ j n
2
−2

j=0
t j
j ! , j n2 = min{ j ∈ R : j ≥ n

2 } ≥ n/2 and βn =

β(n, 2) = n
ωn−1

[
π

n
2 4

�(n/2−1)

] n
n−2

.

Moreover, both the power n
n−2 in the denominator and the constant βn are optimal

in the following sense:
(i) If the power n

n−2 in the denominator is replaced by any p < n
n−2 , there exists a

sequence of functions { fk} ∈ W 2, n2 (Rn) such that ‖� fk‖ n
2

≤ 1, but

1

‖ fk‖
n
2
n
2

∫

Rn

�(βn(| fk |) n
n−2 )

(1 + | fk |)p dx → ∞.

(ii) If α > βn, there exists a sequence of functions { fk} ∈ W 2, n2 (Rn) such that
‖� fk‖ n

2
≤ 1, but

1

‖ fk‖
n
2
n
2

∫

Rn

�(α(| fk |) n
n−1 )

(1 + | fk |)p dx → ∞,

for any p ≥ 0.

This extends Masmoudi and Sani’s result in [22] when n = 4 to all dimensions
n ≥ 4.

The organization of the paper is as follows. In Sect. 2, wewill establish an important
lemma (Lemma 2.1) which plays a key role in the proof of our main result (Theo-
rem 1.1). Section 3 will give the subcritical Moser–Trudinger inequality with exact
growth condition on the hyperbolic space (Theorem 1.1). In Sect. 4, we will prove the
sharpness of the inequality (Theorem 1.2).

123



844 G. Lu, H. Tang

2 A Crucial Lemma

In this section, we give the following lemma, which plays an important role in the
proof of Theorem 1.1.

Lemma 2.1 There exists a constant C(n) > 0 such that for any nonnegative decreas-

ing function u satisfying u(R) > K
1
n and ωn−1

∫ +∞
R |u′|ntn−1dt ≤ K for some

R, K > 0, then we have

exp

(
αn

K
1

n−1
u

n
n−1 (R)

)

u
n

n−1 (R)
Rn ≤ C(n)

∫ +∞
R |u|ntn−1dt

K
n

n−1
.

Such a lemma in dimension two (n = 2) was proved in [10] to establish Theorem
D. In order to prove our Theorem 1.1 in the high dimensional case n ≥ 2, we need to
prove a high dimensional version.

To prove Lemma 2.1, we need the following useful lemma.

Lemma 2.2 Given any sequence a = {ak}k≥1, let ‖a‖1 = ∑+∞
k=0 |ak |, ‖a‖n =

(
∑+∞

k=0 |ak |n)1/n, ‖a‖(e) = (
∑+∞

k=0 |ak |nek)1/n and μ(h) = inf{‖a‖(e) : ‖a‖1 = h,

‖a‖n ≤ 1}. Then for h > 1, we have

μ(h) ∼ e
h

n
n−1
n

h
1

n−1

.

Proof Sinceμ(h) is increasing in h, it suffices to show thatμ(N 1− 1
n ) ∼ e

N
n

N1/n . Choose

ak = { 1
N1/n , } when k ≤ N − 1 and ak = 0, when k ≥ N . Obviously,

‖a‖n = 1, ‖a‖1 = N 1− 1
n and ‖a‖(e) � e

N
n

N 1/n .

So

μ(N 1− 1
n ) � e

N
n

N 1/n

Now we only need to prove that μ(N 1− 1
n ) � e

N
n

N1/n . By contradiction, suppose that
for any ε � 1 and a sequence a, we have

‖a‖n ≤ 1, ‖a‖1 = N 1− 1
n , ‖a‖(e) ≤ ε

e
N
n

N 1/n .

From the last condition, we know that when k ≥ N ,

|ak | � ε

N 1/n e
N−k
n .

123



Sharp Moser–Trudinger Inequalities on the Hyperbolic Spaces 845

Now set a′
k = ak , for k ≤ N − 1 and a′

k = 0 for k ≥ N , then

‖a′‖1 = ‖a‖1 −
∑

k≥N

|ak | = N 1− 1
n −

∑

k≥N

|ak | ≥ N 1− 1
n − Cε

N 1/n . (2.1)

Using the fundamental inequality: (1 − x)p ≥ 1 − px , when p > 1 and 0 ≤ x < 1,
we can obtain

‖a′‖
n

n−1
1 ≥

(

N 1−1/n − Cε

N 1/n

) n
n−1

= N

(

1 − Cε

N

) n
n−1

≥ N − Cε. (2.2)

On the other hand,

‖a′‖
n

n−1
1 =

⎛

⎝N
∑

0≤ j≤N−1

|a j |2 −
∑

0≤ j,k≤N−1

(a j − ak)2

2

⎞

⎠

n
2(n−1)

= N
n

2(n−1)

⎛

⎝
∑

0≤ j≤N−1

|a j |2
⎞

⎠

n
2(n−1)

⎛

⎝1 − 1

N

∑
0≤ j,k≤N−1

(a j−ak )2

2∑
0≤ j≤N−1 |a j |2

⎞

⎠

n
2(n−1)

≤ N
n

2(n−1)

⎛

⎝
∑

0≤ j≤N−1

|a j |2
⎞

⎠

n
2(n−1)

⎛

⎝1 − n

2(n − 1)

∑
0≤ j,k≤N−1

(a j−ak )2

2

N
(∑

0≤ j≤N−1 |a j |2
)

⎞

⎠

≤ N
n

2(n−1)

⎛

⎝N
n
2 −1

⎛

⎝
∑

0≤ j≤N−1

|a j |n
⎞

⎠

⎞

⎠

1
n−1

⎛

⎝1 − n

2(n − 1)

∑
0≤ j,k≤N−1

(a j−ak )2

2

N (
∑

0≤ j≤N−1 |a j |2)

⎞

⎠

≤ N

⎛

⎝1 − n

2(n − 1)

∑
0≤ j,k≤N−1

(a j−ak )2

2

N 1+1− 2
n

⎞

⎠

= N − n

2(n − 1)

∑
0≤ j,k≤N−1

(a j−ak )2

2

N 1− 2
n

, (2.3)

where the first inequality uses the fundamental inequality:

(1 − x)q ≤ 1 − qx, when 0 < q < 1 and 0 ≤ x < 1,

and the second inequality uses the fundamental inequality:

⎛

⎝
N∑

j=1

|c j |
⎞

⎠

p

≤ N p−1
N∑

j=1

|c j |p for p ≥ 1.

123
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Then, by (2.2) and (2.3),

∑

0≤ j,k≤N−1

(a j − ak)2

2
≤ CεN 1− 2

n .

Now choose m < N − 1 so that min0≤ j≤N−1 |a j | = am . Then

‖a′‖1 − N |am | ≤ ‖a j − am‖l1( j≤N−1)

≤ √
N‖a j − am‖l2( j≤N−1)

≤ CεN 1− 1
n

If ε is small enough, combining it with (2.1), we get

|am | � 1

N 1/n .

Hence

‖a‖(e) �

⎛

⎝
∑

j≤N−1

e j

N

⎞

⎠

1
n

� eN/n

N 1/n ,

which yields a contradiction. So, we complete the proof of Lemma 2.2. ��
Now, let us prove Lemma 2.1. By scaling, it suffices to show that for any nonnegative
decreasing function u satisfying u(1) > 1 and ωn−1

∫ +∞
1 |u′(r)|ntn−1dt ≤ 1,

expαnu
n

n−1 (1)

u
n

n−1 (1)
≤ C

∫ +∞

1
|u|ntn−1dt .

Set hk = α
n−1
n

n u(ek/n), ak = hk − hk+1 and a = {ak}. Then ak ≥ 0 and

∑

k≥0

|ak | = h0 = α
n−1
n

n u(1).

Since

hk − hk+1 = α
n−1
n

n

(
u

(
e
k
n

)
− u

(
e
k+1
n

))

= α
n−1
n

n

∫ e
k
n

e
k+1
n

u′(t)dt

123
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≤ α
n−1
n

n

⎛

⎝
∫ e

k+1
n

e
k
n

|u′|ntn−1dt

⎞

⎠

1/n ⎛

⎝
∫ e

k+1
n

e
k
n

1

t
dt

⎞

⎠

n−1
n

=
⎛

⎝ωn−1

∫ e
k+1
n

e
k
n

|u′|ntn−1dt

⎞

⎠

1
n

,

then

‖a‖n =
⎛

⎝
∑

j≥0

|ak |n
⎞

⎠

1/n

=
⎛

⎝
∑

j≥0

|hk − hk+1|n
⎞

⎠

1/n

≤ 1.

At the same time,

∫ ∞

1
|u|ntn−1dt =

∑

k≥0

∫ e
k+1
n

e
k
n

|u|ntn−1dt

≥
∑

k≥0

(
u
(
e
k+1
n

))n
∫ e

k+1
n

e
k
n

tn−1dt

�
∑

k≥0

(
u
(
e
k+1
n

))n
ek+1 �

∑

k≥0

(hk+1)
nek+1

=
∑

k≥1

(hk)
nek ≥

∑

k≥1

(ak)
nek .

Therefore

‖a‖n(e) = an0 +
∑

k≥1

(ak)
nek ≤ hn0 +

∑

k≥1

(ak)
nek ≤ hn0 +

∫ +∞

1
untn−1dt (2.4)

Next, let us estimate h0. Set 1 < r < e1/4n , since

h0 − α
n−1
n

n u(r) = α
n−1
n

n

∫ r

1
|u′(t)|dt

≤ α
n−1
n

n

(∫ r

1
|u′(t)|ntn−1dt

)1/n

(ln r)
n−1
n

≤ n
n−1
n

(

ωn−1

∫ r

1
|u′(t)|ntn−1dt

)1/n

(ln r)
n−1
n

< 1/2 ≤ h0/2,
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then we have

∫ +∞

1
untn−1dt ≥

∫ e1/4n

1
un(t)tn−1dt � hn0 . (2.5)

Combining (2.4) and (2.5), we have

‖a‖n(e) �
∫ +∞

1
untn−1dt .

By Lemma 2.2, thus

∫ +∞

1
untn−1dt �

⎛

⎜
⎜
⎝
e
h

n
n−1
0
n

h
1

n−1
0

⎞

⎟
⎟
⎠

n

= exp(αnu
n

n−1 (1))

αnu
n

n−1 (1)
.

This completes the proof of Lemma 2.1.

3 Sharp Moser–Trudinger Inequalities with Exact Growth: Theorem 1.1

In this section, wewill prove Theorem 1.1. To do so, wewill apply Lemma 2.1 together
with some ideas used in [10] in the Euclidean case. Nevertheless, in our hyperbolic
spaces, it is considerably more difficult to carry out the argument.

To prove Theorem 1.1, we will use the arrangement argument. By means of sym-
metrization, it suffices to show the desired inequality for functions u(x) = u0(d(0, x)),
which are radially symmetric, nonnegative, smooth, compactly supported and u0(t) :
[0,+∞) → R is decreasing.

Following Moser’s argument of the classical inequality [23], we set w(t) = u0(t),
|x | = tanh t/2, then w(t) ≥ 0, w′ ≤ 0 and w(t0) = 0 for some t0 ∈ R. Then, we
have

∫

Hn

�n(αn|u| n
n−1 )

(1 + |u|) n
n−1

dV = ωn−1

∫ ∞

0

�n(αn|w| n
n−1 )

(1 + w(t))
n

n−1
(sinh t)n−1dt,

‖∇gu‖nn = ωn−1

∫ ∞

0
|w′|n(sinh t)n−1dt,

∫

Hn
|u|ndV = ωn−1

∫ ∞

0
|w|n(sinh t)n−1dt.

Thus, to prove the theorem, it suffices to show that there exists a constant C such that

∫ ∞

0

�n(αn|w| n
n−1 )

(1 + w(t))
n

n−1
(sinh t)n−1dt ≤ C

∫ ∞

0
|w|n(sinh t)n−1dt
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for any w satisfying w(t) ≥ 0, w′ ≤ 0, w(t0) = 0 for some t0 ∈ R and

ωn−1

∫ ∞

0
|w′|n(sinh t)n−1dt ≤ 1.

Set R0 = inf{t ∈ R : w(t) < 1}, and we know that for t > R0, 0 ≤ w(t) < 1 and
w(R0) = 1.

For t ∈ (R0,∞), we havew(t) ∈ [0, 1). Since for x ∈ [0, n)we can find a constant
Cn such that �n(x) ≤ Cnxn−1, thus we have

∫ +∞

R0

�n(αn|w| n
n−1 )

(1 + w)
n

n−1
(sinh t)n−1dt

≤
∫ +∞

R0

�n(αn|w| n
n−1 )(sinh t)n−1dt

≤ Cn

∫ +∞

R0

|w|n(sinh t)n−1dt . (3.1)

Next, we consider the integral over (0, R0]. Fix 0 < ε0 < 1. And let R1(u) > 0
such that

ωn−1

∫ R1

0
|w′|n(sinh t)n−1dt ≤ β(1−ε0) and ωn−1

∫ ∞

R1

|w′|n(sinh t)n−1dt ≤ βε0,

where 0 < β ≤ 1.
In order to estimate the integral over (0, R0], we need to consider two cases: R1 ≥

R0 and R1 < R0.
First we consider the case R1 ≥ R0. When 0 < t ≤ R0, we have

w(t) = w(R0) +
∫ t

R0

w′(s)ds

≤ w(R0) +
(∫ R1

t
|w′(s)|n(sinh s)n−1ds

)1/n (∫ R0

t

1

sinh s
ds

) n−1
n

≤ 1 +
(

β(1 − ε0)

ωn−1

)1/n (

ln

(
eR0 − 1

eR0 + 1

et + 1

et − 1

)) n−1
n

.

It is well known that for any ε > 0, there exists a constantCε = (1− 1
(1+ε)n−1 )

1
1−n >

0 s.t.

1 + s
n−1
n ≤ ((1 + ε)s + Cε)

n−1
n .
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Then

|w(t)| n
n−1 ≤ (1 + ε)

(
β(1 − ε0)

ωn−1

) 1
n−1

ln

(
eR0 − 1

eR0 + 1

et + 1

et − 1

)

+ Cε.

Set ε = (1 + ε0)
1

n−1 − 1, so

|w(t)| n
n−1 ≤

(
β(1 − ε20)

ωn−1

) 1
n−1

ln

(
eR0 − 1

eR0 + 1

et + 1

et − 1

)

+ Cε0 .

Denote c0 = n((1 − ε20))
1

n−1 , then 0 < c0 < n and

∫ R0

0

�n(αn|w| n
n−1 )

(1 + w)
n

n−1
(sinh t)n−1dt

≤
∫ R0

0
�n(αn|w| n

n−1 )(sinh t)n−1dt ≤
∫ R0

0
eαn |w| n

n−1
(sinh t)n−1dt

≤
∫ R0

0
eαnCε0

[

exp

(

ln

(
eR0 − 1

eR0 + 1

et + 1

et − 1

))]n(β(1−ε20))
1

n−1

(sinh t)n−1dt

≤ eαnCε0

(
eR0 − 1

eR0 + 1

)c0 ∫ R0

0

(et + 1)c0+n−1

(et − 1)c0−n+1

dt

(2et )n−1 .

When n > c0 > n − 1,

(
eR0 − 1

eR0 + 1

)c0 ∫ R0

0

(et + 1)c0+n−1

(et − 1)c0−n+1

dt

(2et )n−1

≤ 2

(
eR0 − 1

eR0 + 1

)c0 ∫ R0

0

(2et )c0−1

(et − 1)c0−n+1 de
t

≤ 2

(
eR0 − 1

eR0 + 1

)c0

(2eR0)c0−1
∫ R0

0

1

(et − 1)c0−n+1 de
t

≤ 2c0

n − c0

(eR0 − 1)n

eR0
.

When c0 ≤ n − 1,

∫ R0

0

�n(αn|w| n
n−1 )

(1 + w)
n

n−1
(sinh t)n−1dt

≤ 2

(
eR0 − 1

eR0 + 1

)n−1 ∫ R0

0

(2et )n−1−1

(et − 1)n−1−n+1 de
t
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≤ 2n−1
(
eR0 − 1

eR0 + 1

)n−1 ∫ R0

0
(et )n−2det

≤ C
(eR0 − 1)n

eR0
.

On the other hand,

∫ R0

0
|w(t)|n(sinh t)n−1dt ≥

∫ R0

0
(sinh t)n−1dt

=
∫ R0

0

(et − 1)n−1(et + 1)n−1

2n−1(et )n−1 dt

≥ 1

2n−1

∫ R0

0

(et − 1)n−1

et
det

≥ 1

2n−1

1

eR0

(eR0 − 1)n

n
.

Then

∫ T0

0
�n(αn|w| n

n−1 )(sinh t)n−1dt ≤ Cn

∫ T0

0
|w|n(sinh t)n−1dt . (3.2)

Therefore, by (3.1) and (3.2), we get the desired inequality of Theorem 1.1 when
R1 ≥ R0.

Now, let us consider the case R1 < R0. First, we consider the integral over (R1, R0).
Since ωn−1

∫ ∞
R1

|w′|n(sinh t)n−1dt ≤ βε0, then when R1 < t < R0,

w(t) = w(R0) +
∫ t

R0

w′(s)ds

≤ w(R0) +
(∫ +∞

R1

|w′(s)|n(sinh s)n−1ds

)1/n ( ∫ R0

t

1

sinh s
ds

) n−1
n

≤ 1 +
(

βε0

ωn−1

)1/n (

ln

(
eR0 − 1

eR0 + 1

et + 1

et − 1

)) n−1
n

.

Setting ε = 1 − (ε0)
1

n−1 and using the inequality

1 + s
n−1
n ≤ ((1 + ε)s + Cε)

n−1
n ,

we have

|w(t)| n
n−1 ≤

(
1 − (1 − (ε0)

1
n−1 )2

) (
1

ωn−1

) 1
n−1

ln

(
eR0 − 1

eR0 + 1

et + 1

et − 1

)

+ Cε0 .
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Denote c1 = n(1 − (1 − (ε0)
1

n−1 )2), then 0 < c1 < n and

∫ R0

R1

�n(αn|w| n
n−1 )

(1 + w)
n

n−1
(sinh t)n−1dt

≤
∫ R0

R1

�n(αn|w| n
n−1 )(sinh t)n−1dt ≤

∫ R0

R1

eαn |w| n
n−1

(sinh t)n−1dt

≤
∫ R0

0
eαnCε0

[

exp

(

ln

(
eR0 − 1

eR0 + 1

et + 1

et − 1

))]c1
(sinh t)n−1dt

≤ eαnCε0

(
eR0 − 1

eR0 + 1

)c1 ∫ R0

0

(et + 1)c1+n−1

(et − 1)c1−n+1

dt

(2et )n−1 .

Using the same calculation as we did in the case R1 ≥ R0, we can obtain

∫ R0

R1

�n(αn|w| n
n−1 )

(1 + w)
n

n−1
(sinh t)n−1dt ≤ C

∫ R0

0
|w(t)|n(sinh t)n−1dt .

Now we only need to consider the integral on [0, R1). Set v(t) = w(t) − w(R1),
since

ωn−1

∫ R1

0
|w′|n(sinh t)n−1dt ≤ β(1 − ε0),

then

ωn−1

∫ R1

0
|v′|n(sinh t)n−1dt ≤ β(1 − ε0).

And

|w(t)| n
n−1 = (v(t) + w(R1))

n
n−1 ≤ (1 + ε)|v| n

n−1 + Cεw(R1)
n

n−1 .

Thus

∫ R1

0

�n(αn|w| n
n−1 )

(1 + w)
n

n−1
(sinh t)n−1dt

≤
∫ R1

0

�n(αn|w| n
n−1 )

(w(R1))
n

n−1
(sinh t)n−1dt ≤

∫ R1

0

eαn |w| n
n−1

(sinh t)n−1

(w(R1))
n

n−1
dt

≤ exp (αnCεw(R1)
n

n−1 )

(w(R1))
n

n−1

∫ R1

0
exp (αn(1 + ε)|v| n

n−1 )(sinh t)n−1dt . (3.3)
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Set ε = (1 − ε0)
1

1−n − 1, then

Cε =
(

1 − 1

(1 + ε)n−1

) 1
1−n = 1

ε
1

n−1
0

.

Since ωn−1
∫ +∞
R1

|w′|n(sinh t)n−1dt ≤ βε0 ≤ ε0, using Lemma 2.1 we have

exp (αnCεw(R1)
n

n−1 )

(w(R1))
n

n−1
=

exp ( αn

ε

1
n−1
0

w(R1)
n

n−1 )

(w(R1))
n

n−1
≤ C

∫ +∞
R1

|w|ntn−1dt

Rn
1 (ε0)

n
n−1

. (3.4)

Let � = {x : d(0, x) < R1} and w1(x) = (1 + ε)
n−1
n v(d(0, x)) in � , then

‖∇gw1‖n,� = ωn−1

∫ R1

0
(1 + ε)n−1|v′|n(sinh t)n−1dt ≤ β ≤ 1.

By Theorem E (the Moser–Trudinger inequality on bounded domain in hyperbolic
space), we have

∫

�

exp(αn|w1| n
n−1 )dV ≤ C |�|.

That is

∫ R1

0
exp (αn(1 + ε)|v| n

n−1 )(sinh t)n−1dt ≤ C
∫ R1

0
(sinh t)n−1dt . (3.5)

Since sinh t
t is monotone increasing on (0,+∞), then by inequalities (3.3), (3.4)

and (3.5) we have

∫ R1

0

�n(αn|w| n
n−1 )

(1 + w)
n

n−1
(sinh t)n−1dt

≤ C

∫ +∞
R1

|w|ntn−1dt

Rn
1 (ε0)

n
n−1

∫ R1

0
(sinh t)n−1dt

= C

∫ +∞
R1

|w|n sinh tn−1
( t
sinh t

)n−1
dt

Rn
1 (ε0)

n
n−1

∫ R1

0
tn−1

(
sinh t

t

)n−1

dt

≤ C

∫ +∞
R1

|w|n sinh tn−1dt

(ε0)
n

n−1
.

Thus we have completed the proof of Theorem 1.1.
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4 Sharpness of Theorem 1.1: Proof of Theorem 1.2

In this section,wewill give the proof of Theorem1.2, namely the sharpness of Theorem
1.1.Wewill show that the inequality inTheorem1.1 is sharp in both senses as described
in Theorem 1.2. First, we will show that the inequality in Theorem 1.1 does not hold
if the power n

n−1 in the denominator is replaced by any p < n
n−1 .

We choose {uk}∞k=1 as follows:

uk(x) = ω
− 1

n
n−1Ck

⎧
⎪⎪⎨

⎪⎪⎩

k
n−1
n , if 0 ≤ d(0, x) ≤ e−k,

k
n−1
n − ln [d(0,x)]

k , if e−k ≤ d(0, x) ≤ 1,

0, if 1 < d(0, x),

whereCk = (k−1
∫ 1
e−k t−n(sinh t)n−1dt)− 1

n . SinceCk ∼ (
(sinh e−k)n−1

e−(n−1)k )− 1
n , as k → ∞,

then Ck → 1 and C
n

n−k
k k − k → 0, as k → ∞. Then, by calculation

‖∇guk‖nn = 1,

and
∫

Hn
|uk |ndV = O

(
1

k

)

.

It follows that, as k → ∞
∫

Hn

�n(αn|uk | n
n−1 )

(1 + |uk |)p dV

≥
∫

d(0,x)≤ek

�n(αn|uk | n
n−1 )

(1 + |uk |)p dV

=
�n

(

αn|ω− 1
n

n−1Ckk
n−1
n | n

n−1

)

(

1 + |ω− 1
n

n−1Ckk
n−1
n |

)p

∫ e−k

0
(sinh t)n−1dt

∼
�n

(

nkC
n

n−1
k

)

(

1 + |ω− 1
n

n−1Ckk
n−1
n |

)p e
−nk

∼
exp

(

nkC
n

n−1
k

)

(

1 + |ω− 1
n

n−1Ckk
n−1
n |

)p e
−nk

∼ k−p n−1
n .
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Now, since p < n
n−1 , we have

1

‖uk‖nn

∫

Hn

[�n(αn(|uk |) n
n−1 )]

(1 + |uk |)p dV

≥ k−p n−1
n

O( 1k )
∼ k1−p n−1

n

→ ∞.

So we have proved that the power n
n−1 is optimal.

Next, let us show that the constant αn is optimal. We only need to find a sequence
of functions {uk} such that ‖∇guk‖n ≤ 1, but for any p ≥ 0 and α > αn ,

1

‖uk‖nn

∫

Hn

[
�n(α(|uk |) n

n−1 )
]

(1 + |uk |)p dV → ∞.

We still choose {uk}∞k=1 as follows:

uk(x) = ω
− 1

n
n−1Ck

⎧
⎪⎪⎨

⎪⎪⎩

k
n−1
n , if 0 ≤ d(0, x) ≤ e−k,

k
n−1
n − ln [d(0,x)]

k , if e−k ≤ d(0, x) ≤ 1,

0, if 1 < d(0, x),

where Ck = (k−1
∫ 1
e−k t−n(sinh t)n−1dt)− 1

n .

We already know that C
n

n−k
k k − k → 0, as k → ∞,

‖∇guk‖nn = 1,

and
∫

Hn
|uk |ndV = O(

1

k
).

Since α > αn , it follows that

∫

Hn

�n(α|uk | n
n−1 )

(1 + |uk |)p dV

≥
∫

d(0,x)≤ek

�n(α|uk | n
n−1 )

(1 + |uk |)p dV

=
�n

(
α
αn

αn|ω− 1
n

n−1Ckk
n−1
n | n

n−1

)

(

1 + |ω− 1
n

n−1Ckk
n−1
n |

)p

∫ e−k

0
(sinh t)n−1dt
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∼
�n

(
α
αn
nkC

n
n−1
k

)

(

1 + |ω− 1
n

n−1Ckk
n−1
n |

)p e
−nk

∼
exp

(
α
αn
nkC

n
n−1
k

)

(

1 + |ω− 1
n

n−1Ckk
n−1
n |

)p e
−nk

∼ e( α
αn

−1)nkk−p n−1
n

→ +∞.

Therefore

1

‖uk‖nn

∫

Hn

[�n(α(|uk |) n
n−1 )]

(1 + |uk |)p dV → ∞.

Thus, we have completed the proof of Theorem 1.2.
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