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Abstract. In this paper, we use the discrete Littlewood—Paley—Stein analysis to get the
duality result of the weighted product Hardy space for arbitrary number of parameters un-
der a rather weak condition on the product weight w € Ago(R”! X --- x R™ ). We will
show that for any k > 2, (Hy (R"! x --- x R"%))* = CMOZ (R"! x --- x R"*) (a gen-
eralized Carleson measure), and obtain the boundedness of singular integral operators on
BMO,,. Our theorems even when the weight function w = 1 extend the H!-BMO duality
of Chang—R. Fefferman for the non-weighted two-parameter Hardy space H'(R” x R™)
to H?(R"! x---xR" ) forall 0 < p < 1 and our weighted theory extends the duality re-
sult of Krug—Torchinsky on weighted Hardy spaces HE (R” x R™) for w € A, (R” x R™)
withl <r <2andr/2 < p < 1to HY(R" x---xR" ) withw € Age(R™ x --- x R"*)
forall0 < p <.
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1 Introduction and statement of results

In the classical one-parameter setting, a celebrated theorem of C. Fefferman and
Stein ([5, 6]) says that the space of functions of bounded mean oscillation on R”,
BMO(R"), is the dual space of the Hardy space H!(R"). In the multiparameter
setting, the Hardy space was introduced by Gundy—Stein in the 1970’s in [14] and
was satisfactorily developed by S.-Y. Chang and R. Fefferman in [2, 3]. Chang
and R. Fefferman proved that the dual space of the product H!(R3 x R?) is the
product BMO(}R?Ir X Ri) by using the bi-Hilbert transform.
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Using a new version of Journé’s covering lemma ([18, 19, 27]), Ferguson and
Lacey in [11] gave a new characterization of the product BMO(R x R) by bicom-
mutator of Hilbert transforms (see also Lacey and Terwilleger [24]). Furthermore,
Lacey, Petermichl, Pipher and Wick established in [23] such a characterization of
product BMO(R” x R™) using multiparameter commutators of Riesz transforms.

Han and the first author have established in [15] the theory of boundedness of
singular integrals and its duality of the multiparameter Hardy space H 1{3 (R xR™)
associated with the flag singular integrals, where the L? theory has been devel-
oped by Miiller—Ricci—Stein [25] and Nagel-Ricci—Stein [26]. The Carleson mea-
sure space CMOf, (R™ x R™) associated with the multiparameter flag structures
was introduced for all 0 < p < 1, and the duality between H 1{3 (R™ x R™) with
CMOf, (R”™ x R™). Such CMOII; spaces when p = 1 play the same role as BMO
space. Using the method of discrete Littlewood—Paley—Stein analysis initially de-
veloped in [15], the theory of multiparameter Hardy spaces in several different
settings have been established. We refer the reader to the recent expository arti-
cle [16].

Motivated by the work [15], the characterization of the dual space of the mul-
tiparameter Hardy space H?(X x Y) has been recently established by the first
author with Han and Li in [17] for the product of two homogeneous spaces X and
Y without weight in the sense of Coifman—Weiss when p,0 < p < 1,iscloseto 1.

The main purpose of this paper is to characterize the dual spaces of the multi-
parameter weighted Hardy spaces

(HP(R™ x -+ x R™))* = CMOZ, (R™ x --- x R"¥)

for any arbitrary number of parameters kK > 2 and obtain the boundedness of the
singular integral operator on BMO,, forall0 < p <1 and w € Ago(R™! x --- X
R™%), the Ao product weights. This requirement on the weight Ao is consid-
erably weaker than the commonly used condition w € A, (R"! x --- x R") in
dealing with weighted L? boundedness of singular integrals for p > 1 consid-
ered by R. Fefferman and Stein [10] (see also R. Fefferman [8], R. Fefferman—
J. Pipher [9]). One should point out here that in general weighted H and L%,
spaces (p > 1) are different spaces as demonstrated by J. Stromberg and R. Whee-
den in [31] and [32]. Our theorems when the weight function w = 1 extend the
H1-BMO duality of Chang—R. Fefferman for the non-weighted two-parameter
Hardy space H!(R” x R™) to HP(R"! x --- x R™) forall 0 < p < 1.

R. Fefferman in [7] established the criterion of the H ?-LP boundedness of sin-
gular integral operators in Journé’s class by considering its action only on rectangle
atoms. However, Journé in [19] provided a counter-example in the three-parameter
setting of singular integral operators such that Fefferman’s criterion does not hold.
Journé’s works show the sharp difference between the two and three parameters.
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It thus motivates us to consider the characterization of the dual spaces of the mul-
tiparameter weighted Hardy spaces

(HP (R x -+ x R™))* = CMOZ (R™ x --- x R™)

for any arbitrary number of parameters k > 2 for all 0 < p < 1 and all weights
W € Aoo(R"! x -+ x R™). As it turns out, our work involves more complicated
geometric considerations than those in two parameters when characterizing the
dual spaces. Theorem 1.2 demonstrates such a complicated nature when dealing
with three parameters or more.

Weighted Hardy spaces have been studied extensively in the one-parameter set-
ting (see for example [13,22,29-32] and many other references therein), where the
weighted Hardy space was characterized by the non-tangential maximal functions
and atomic decompositions. The relationship between L% and H} for p > 1 were
considered in both one- and multiparameter cases (e.g., Stromberg and R. Whee-
den in [31, 32]). The atomic decomposition of weighted multiparameter Hardy
spaces H{ (R" x R™) was carried out by Krug [20]. The dual spaces for weighted
Hardy spaces HJ (R” xR™) (defined by the maximal function) were characterized
by Krug and Torchinsky [21] when the weights w are in some A, (1 < r < 2) and
r/2 < p < 1. The method employed in [21] applies the atomic decomposition of
the weighted Hardy spaces.

The weighted Hardy space estimates for singular integrals in both one-param-
eter and two-parameter cases using discrete Littlewood—Paley—Stein theory were
recently established in [4] under the hypothesis on the weight w € Ao. For the
case of arbitrary number of parameters, this has been done in [28].

In this paper, we apply the discrete multiparameter Littlewood—Paley—Stein
analysis to derive the duality results of the weighted Hardy spaces for arbitrary
number of k parameters, k > 2, that is,

(HP(R™ x -+ x R™))* = CMOP?, (R™ x --- x R™),

where w € Aoo(R”! x---xR"%). When w = 1, this extends the Chang—Fefferman
[2] duality result in the two-parameter case for p = 1to H? (R”! xR"2x.--x R"k)
for all 0 < p <1 and with arbitrary number of k parameters. This also extends
the duality result of Krug and Torchinsky [21] to H} (R™! x --- x R") for all
0<p<landw € Aeo(R™ x --- x R"), We will also get the boundedness of
singular integral operators on BMOy, (R"! x - - x R"¥).

We remark that the space CMOZ, introduced in this paper is a generalized
weighted Carleson measure space. The steps of the proofs of our main results are as
follows. We first show the functions space CMO?, is well defined by the Max—Min
type inequality (Theorem 1.2). The proof of Theorem 1.2 requires a careful analy-
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sis of some geometric properties of multiparameter rectangles. Discrete Calderén’s
identity and almost orthogonality estimates play a key role here. Especially due to
the arbitrary choice of M and L in (2.6) below, w € A works out. Next, we get
the duality results between the sequences spaces sZ and ¢ (Theorem 1.4). Finally,
relying on the projection and lifting between H2 and s% and between CMOZ, and
¢ (Lemma 4.1), we get our desired results. The method we use here avoids the
atomic decomposition and provides another proof of some of the known duality re-
sults for non-weighted Hardy spaces in the two parameter pure product settings by
Chang and R. Fefferman (see e.g. [2,3]).

We first recall the definitions of product weights in arbitrary number of param-
eters setting. For 1 < p < 0o, a nonnegative locally integrable function w belongs
to Ap(R™! x - x R"*) if there exists a constant C > 0 such that

—1
(F{l/Rw(x)dx) (llﬂ/;ew(x)_l/(p_l)dx)p <C,

for any rectangle R = I} x --- X I, where I; C R"™ are cubes, 1 <i <k. We
say w belongs to A1 (R”! x --- x R™) if there exists a constant C > 0 such that

Msw(x) < Cw(x),

for almost every x € R"! x --- x R", where M is the strong maximal function

defined as |

M f () = sup o /R FO)ldy.

for any rectangle R on R”! x --. x R”* whose sides are parallel to the axes. We
define w € Ao (R"! X -+ x R"*) by

AcoR™ x - xR™) = [ ] ApR™ x--- x R"¥).

1<p<oo

Notice that if w € Ao, then w € Ay, where gy = min{q : w € Aq}.

In the following, we denote by D¢ the high order derivatives %] - -- 9% for the
multi-index a = (o, ..., Q).

Fori =1,....k, let @ e 8§(R") with

suppy ) < {Ei €R™ > <& < 2}
and satisfy

Y WO )R =1 forall & € R™\(0}

Ji€Z
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Denote X
1
Vi (120 = Y0 (o) oy (), (1.1
where ) _ o
v () = 27my D @i, =1,k
Denote by 850 (R”! x --- x R ) the functions f € S(R"! x --- x R"%) such
that forevery i, 1 <i <k,

fx1... xp)xi dx; =0 forany |a;| > 0.
R
Let w € Ago. For 0 < p < 1, define the weighted Hardy spaces on the product
R™ x--- xR as HY = {f € (8s0) : €9(f) € L%} with the norm defined by
1/ 1z = 114z, where

()1, xp) :={ DY Wi x fQTM 2R

Jseesdic I oo I
SR
memﬁ,

i=1

and I; are dyadic cubes in R with the side length 27/i and the left lower corners
of [jare27Jig;, b; e ZMi,i =1,...,k, respectively.

In order to study the dual space of H} on R™! x---xR" we need to introduce
the weighted Carleson measure space CMO%, = CMOZ (R"1 x --- x R"¥),

Definition 1.1. Let w € Aso. For 0 < p < 1, wecall f € CMOL if f € (80)
with the finite norm defined by

Wi * SR 27002
SuP{w(Q)_l Z Z J J 1 &

eensJi T1 XX I3, CQ
Jk I k= . (1.2)

|1y x -+ x Ix]? ) 2
w(11 X"-Xlk)

for all open sets 2 in R”! x --- x R"?* with finite weighted measures, here I; are
dyadic cubes in R" with the side length 27/ and the left lower corners of [; are
270ig; b e ZM i = 1,...,k, respectively.

We use BMO,, to denote CMOL, . The following theorem tells us that the defi-
nition of the space CMOY, is independent of the choice of functions v/, ... j, , thus
the space CMOY, is well defined. One of the main theorems of our paper is the
following theorem.
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Theorem 1.2. Let w € Axo. Suppose V... j, and ¢, ... j, satisfy the conditions
in (1.1). Then for | € (8c0),

W1 * FQ7, L 27002
sup{w(g)_l Z Z JlseesJ 1 k

Jlseeosdie Ty x I €Q 1
Iy x - x Ix|? )2
w(11 X "'Xlk)

A Sup{ 1 > S i * L@ 2R
w(Q)7~

J1seensJie Ty XX T S
1
< x L2 ) b
X—
w(11x~--xlk)

for all open sets Q in R™ x -.- x R™ with finite weighted measures, here I; are
dyadic cubes in R™ with the side length 27Ji and the left lower corners of I; are
270k, by € ZM, 0 = 1,...,k, respectively.

We may use the following weighted sequence space to derive that the space
CMOY, is exactly the dual space of H) on R"! x --- x R,

Definition 1.3. Let w € A and 0 < p < 1. Set s to be the set of all sequences
s = {81, x.-xI } such that

D=

Isllsz = < 00,

LY

k
{ Z Z |SI]X---ka|2 1_[|1i|_1X1i}

J1seeesJi I1yees I i=1

where the sum runs over all dyadic cubes /; are dyadic cubes in R"/ with the side
length 27Ji and the left lower corners of I; are 27/if;, £; € Z",i =1,...,k,
and yj, are characteristic functions of /;.

Let c? be the set of all sequences ! = {t7, x..xI, } With the finite norm defined
by

L
2 x|
t E E 175 _ =
” ”cw Sls'.lzp{ 7_1 |11X X1k| (11 . X Ik)}

)7 J1seeosJio D1 XX I S

where €2 are all open sets in R"! x --- x R"* with finite weighted measures and
I; are dyadic cubes in R"/ with the side length 27/ and the left lower corners of
Iiare277il; 4; e Z™ i =1,...,k.

Then we have the following theorem.
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Theorem 1.4. Let w € Awo. Then for 0 < p < 1, (sb)* = c&. To be precise, for
each t € cly, the map which maps s = {s1,x.-xI, } 10

(S,t) = Z Z SIIX"'XI/( ;le...xlk

J1seensJie Ty XX T g

defines a continuous linear functional on s&, with [tll(szy« ~ Ntlloz, and every
L e (sb)* is of this form for some t € cb).

By the aid of this duality result above, we can get the duality of the space HJ)
for 0 < p < 1 which is another main theorem of our paper.

Theorem 1.5. Let w € Awo. Thenfor0 < p < 1, (HE)* = CMOZL,. To be precise,
if g € CMOY, the map Lg given by Le (f) = (f, g), defined initially for f € 8o,
extends to a continuous linear functional on HY with ||{g| ~ | gllemoz,- Con-
versely, for every £ € (HD)* there exists some g € CMOY, so that { = {g. In par-
ticular, (H))* = BMO,,.

Applying Theorem 1.5 above and Proposition 2.3 blow, we can obtain the boun-
dedness of singular integral operators 7" with the product kernel X on BMO,,. The
product kernel X in Definition 1.6 below has been studied by many researchers,
e.g. Nagel, Ricci and Stein in [26].

Definition 1.6. Let K be a distribution on R”! x - - - x R"%, which coincides with a
C °° function away from the coordinate subspace x; = 0, 1 <i < k, and satisfies

(i) (differential inequalities) for each multi-index o = («q, ..., k), & € N,
there exists a constant C,, > 0 such that
0%+ 0% K (xy. x| < Co [ |l (1.3)
1<i<k

(ii) (cancellation conditions) for every r; > 0 and every normalized bump func-
tion ¢; on R”, that is, ¢; is smooth, supported in the unit ball and satisfies

|ID¢pi(x)| <1, 0<|a| <N,

where N is some fixed positive integer, there exist A;, C > 0 such that

/R - 0% K (X1, xg)

1 X xR X xRk
X l_[ @o(rexg)dxy - -dxj -+ dxg
1<t<kl#i
S Al |xi|_ni_|ai|’ l — 1,...,k, (1'4)
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and

/ K(x1,...,Xk) 1_[ @i(rixi)dxy---dxi| <C. (1.5)
R”1 x--xR"k

1<i<k

Theorem 1.7. Suppose that T is a convolution singular integral operator with the
product kernel K satisfying the conditions in (1.3)-(1.5). Then T is bounded on
BMOy,.

The organization of this paper is as follows. In Section 2, we obtain the discrete
Calder6n’s identity on §o, and its dual space (8,) and list some known results
on the boundedness of the singular integral operators on H.. In Section 3, we
prove the Max—Min principle related to the space CMOZ,, namely Theorem 1.2.
This theorem guarantees that the CMOZ, norm given in Definition 1.1 is well de-
fined. Section 4 contains the proofs of Theorems 1.4 (the duality of the weighted
sequence spaces s and c2), Theorem 1.5 (duality of H} and CMOZ)), and The-
orem 1.7 (the boundedness of singular integrals on the space BMOy,).

2 Some preliminaries

We now give the following necessary estimates and results in the setting of arbi-
trary number of parameters.

Proposition 2.1 (Discrete Calder6n identity). Let v/, ..., j, be the same as in (1.1).
Then

k
S )= 30 > TTHilV i Gn =27 g = 27754y

J1seesJic L1 5o I i=1
XY * LTI 27K ), (2.1)

where I; are dyadic cubes in R™ with the side length 27/i and the left lower
corners of I are 277id;, £; € Z"i,i = 1,...,k, and the series in (2.1) converges
in L?, 8o0 and (8so)’.

Proof. Our proof is similar to that in [12]. For the sake of completeness, we give
the details here. Denote x;, by 27Jig;, 6 € ZM, i =1,...,k. Let I; be dyadic
cubes in R” with the side length 27Ji and the left lower corners of ; are X1;s
i=1,...,k.

By taking the Fourier transform, we can get the following continuous version
of Calderdn’s identity:

SO X)) = D W ¥ Vs * SO X0, (222)

J1seeesJK €L
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where the series converge in L2, 84, and (84)’. Set

g=Yj,..p*xf ad h=v; .

Then
k X . ~
gE...&) =[]y fE ... &),
i=1
~ k X .
hr .. ) = [[vPe ).
i=1

Note that supp g, supph € Rj, ..., » where
Rjpje = AGE1 - E) €R™M x o xR 1 || < 2 i = 1, k),

which imply that we can expand g in a Fourier series first on the rectangle R j, ... j,
and then replace R, .. j, on R"! x ... x R"*

k
T )= Y @uy et 1| e @ b2 itk
Iy, Ik j=1

X / :g\(nl’ o nk)ei(Z*hZ].7]1+...+2—jkék.nk)dnl N dnk

k
—i(2=714,- k27K Er
= > [Tilerie st e, xg,).
I,. I j=1

Multiplying E(Sl, ..., &) from both sides and applying the identity gxh = Eh)V,
we get

k
(gxh)(x1,....x5) = Z 1_[|I,-|g(xll,...,ka)h(xl—x11,...,xk—x1k).
I, I i=1 2.3)

Substituting g by ¥ * f and & by ¥/; . into Calderdn’s identity in (2.2) gives the
discrete Calderdn’s identity in (2.1) and the convergence of the series in L2,
We now prove that the series in (2.1) converges in 8. It suffices to show that

k
> 2 T Wi x HG-xn) 2.4)

J1seemrJi)EWE I, I i=1
X le,m’jk(xl = X[yseee s X — x1k)

tend to zero in 8 (R"1 T 17k) as Ny, ..., Ni tend to infinity, where
W= {ljil < Ni,i=1,...k}.
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Claim. For any fixed ji,..., ji, and any given integer M > 0, || > 0, there ex-
ists a constant C = C(M, ) > 0, which is independent of ji, ..., ji, such that

k
Yo [Tl * Y1 x0)
Iy,....Ixi=1 o
X (wan,,/k)(xl - xll’ ey X — xlk)
< C 2_(‘]1‘++|Jk|)(1 + |X1| 4+ 4 |xk|)_M~ (25)

Using the classical almost orthogonality argument, that is, for any given positive
integers L and M, there exists a constant C = C(L, M) > 0 such that

2= Lji=J{IL 9ni (i AJ))

(1 + 2UiND | x; pM

vy vl < €

P (2.6)

we have that

k
(Wi * D120l < C [T A+ 6D™). @)

i=1

From the size conditions of the functions w(i ), i =1,...,k, we have that for
any fixed large M,

k
D&Yy (r, . up)| < € [ [ 21 HmH D ()™ (28)

i=1

Estimates in (2.7) and (2.8) yield

k
Yo TIPS = X1y Xk = X1

Ity i=1

X (le,...,jk * f)(xh PII ,xlk)

k
<C l_[ 2—lji l(L=M—n;—l|al)

i=1

k
< 2. [T+ 1x D™ + |xj —xp,D"Mduy - dug
Iy, I Ty Ik j=1

k
<C 1_[(2_|ji|(L_5M_ni_|a|)(1 + |xl.|)—M)'
i=1
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Choosing L = 5M + Zf-czl n; + |a|, we derive the estimates in (2.5) and hence

the series in (2.4) converges to zero as Ny, ..., Ni tend to infinity. Therefore, the
series in (2.1) converges in 8. By the duality argument, we obtain the series in
(2.1) converges in (8c0)'. o

Proposition 2.2 ([28]). Given any positive integers M1, ..., My and Ny, ..., Nk’
let I;, 1] be dyadic cubes in R™ with the side-lengths £(I;) = 2771 £(I]) = 27/i,
i=1,... k. Thenforanyui,u;k el;,i=1,...,k wehave

k =i AJ)N; 14
Z 1_[ (2—(jiAji’) + |u; — xli,|)ni+Ni

I ed) \i=1

XA@jr gy ¥ S X xp7)

< Co{eMs( Y it iy L Xy )

I . 5 ,
X 1_[ )(Il{) (u’f,,u,t)} ,
i=1

where My is the strong maximal function on R x---x R™ 0 < § < min{l, qL}
w

and

k
Co=C 1_[ 2(1—%)(ji—j,-')+_

i=1

In [28], we have obtained the A boundedness of the convolution singular in-
tegral operator 7' with the product kernel KX on R” x R™ x R?. We can extend
this result below by applying similar arguments.

Proposition 2.3. If T is a singular integral with the kernel X, where K satisfies
the conditions in Definition 1.6, then for w € Ao, there exists a constant C > 0
such that for 0 < p < oo,

1T gz = Clf gz

3 Proof of Theorem 1.2

The purpose of this section is to get the Max—Min principle to ensure that the
space CMOZ, we introduce in this paper is well defined. The proof follows from
the discrete Calderén identity, almost orthogonality estimates and some geometric
properties. Here we only consider the case n; = 1,1 < i < k, since the extension
to general n;,i = 1,...,k, is straightforward.
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For simplicity, we denote fj, . j. = fr, where R = I; x--- x I} C RK I,
are dyadic intervals with the side lengths |/;| = 2777, and the left lower points of
I are xy,, i =1,...,k. Then we can rewrite the discrete Calderén identity on

(Se0)',

k
SO, xk) ZZHIL'WR(M = X[yse s Xk — X)) PR * (X100 X0, ).

R i=1
Thus for all (uy,...,ux) € R,
k
WR*f(ul,...,Mk): Z 1_[|Il~/|WR*(]ﬁR/(ul—XII/,...,Mk—)CI]/()
RI=I|x-xI} i=1
X QR * f(xpps o xp),

where /] are dyadic intervals with the side lengths |I/| = 27Ji, and the left lower
points ofI’are xpni =1,k
The almost orthogonahty estimate in (2.6) implies that

[VR * flur,... ug)?

<C Z l_[( |I |) |Ii/|N+1
B / NN+
R'=I]xxI} i=1 L) Q= xpy])
X | * f(xps ,x,}:)|2, (3.1)

where N, L are any positive integers such that L > g, + % +2and N > %, the
constant C depends only on N, L and functions ¥ and ¢.

Let
Mg = |yg* Q770 ..., 277k 4) 2,
mg = |pr * fQ 70, .. 270002
Then
I - x I |?
Z | 11 k]| M
ot Wl X x I)
1] x - x T[]
<C Y Y FRR)P(RR)———Kmp
rca'® w(l] x X Ik)
where

k i\ L—2 ’ ’

— [1;|  |1]] w(le---ka)
N _ i
’"(R’R)‘il_[(uﬂ M

—1 w(le--~ka)
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and
k 1

/
P(R,R) = z=1_[1 (1+ distl(Zl,I;))l-f—N.
Since w € Ao and I; C I; U I}, we have that w € Ag,,, and
Wl x> 1) (U] U ) xx () U Ty)
w1 = )

<C1_[(1+||]—:|)

i=1

=elll = (i)'}

i=1"0<r;i<quw
(i (1, by
|;] /] |1

Thus,
AN
TR R) <Cn{(|1| A
k / L—2—
a4 qw
<C — AL
- ,Dl(ll/l 1]

=r(R,R),
which implies that

Ii X% I |2
Z |1Ix X kI| M
o wlly < x )

0<ri<quw

Vi 7 |2 (3.2)

( -x 1 k)
In the following we estimate the right-hand side of inequality (3.2).
Define

Qi =) 3@ x - x 25 D) for ji..... i = 0.
I x-xI; CQ

<C > Y r(R.R)P(R.R)

RCQ R

Given 1 <d <k —1, forany ji,...,jr > 0,1 <m; <k, my <myy1, with
r=1,...,d, denote

QI = {(xy,. . xk) € Qi X, €3I 1< i <d,

mip,.. :m

xg €30I, 1<t <k, L#m.....mg)
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and
R;]nlf, ’fk ={(x}.....x}) eRF :x}, €3I, 1<i<d,

X, €3QI) 1<l <kLAmy,....my}).
For ji,...,jr = 1, let B/1>-Jk be a set of dyadic rectangle R’ such that

BItsdke = (R = 1] x -+ x I} 1 3QIV ] x -+ x 20K [[) N QJ1ik £ gy,
307N x e x 20T ) 0 QI = gy,
andforany 1 <d <k—1land j; > 1,1 <{ <k, #mq,...,my,

BL I = (R = I o x I 13RI ) n QU 3t g,

mi,....mq my,....mq mip,....,m
—1,...,Jk
3Ry n @l ”E\ = 0},
mi,....mq mi,....myg

and BO00 = (R =[] x -~ x I} : 3(I] x -+ x I[) N Q000 £ ¢},

Since each (i, ..., jk, I1,..., Ix) belongs to precisely one rectangle BJ1>eesJk
or BIJk | we write
My ey
1] x - x I} |2
> Zw(]’ ) r(R,R)P(R,Rmg
RCQ R

s(z > o+ ¥ )

J1seesjk=1 R’eBJ1Jk  R'€B0.0.....0

[1] x---x I]]?
X Z ﬁ r(R,R')P(R,R’)mR/
rea k

> >

d=1 je=14#my,....mq,1<l<k R’EBJ;l\ """ j/k\

Il x---xI|?
X Z M r(R’ R/)P(R,R,)mR/,
rog WU X x )

We first consider the case for R’ € B%0+0 1In this case, 3R’ N Q%00 £ g,
For each integer A > 1, let

— {R/ e B0,0,...,O : |3(1{ X oo X I]é) N QO’O""’O

1
> 27|3(1{ X oo X I,é)|}.
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Let
Dy, =F\F)—1 and Q) = U R'.
R €D,

Without loss of generality we may assume that for any open set 2 C R¥,

Ii XX I1]?
Z % mpr < Cw(Q)%_I. (33)
R=Ix--xI;CQ w( 1 X X k)

Since B9:0>0 = U)lzl D, and for each R’ € B%0%0 P(R R’) <1, we have
1] x - x T[]

22 w(l] x - x 1]) r(R.R')P(R,R)mp

R’€B0.0.....0 RCQ
] > x I} |?
Y Xy M ke
A>1R'CQ; RSO w(ly x - x Ip)
Foreach A > 1 and R’ C Q, decompose {R : R C Q} into
A®OO(RNY =R C Q:dist(f;, I]) < |I;| v |I]], 1 <i <k},

and

eIk (RN = {R € Q : distUmy, y)) < [y | V[T, |, 1 <7 <d,

mi,....mqg
27N (L v L)) < dist(1;, 1)) < 27| 3| v ),
1<i<k,i ;éml,...,md},

where 1 <d <k—1,j/ >1forl <i <kandi #my,...,mg,and

ATk (R = (R € @ 27111 v (1) < dist(1;, 1]
< 2LV, 1 <i <k
for ji, j3..... j, = 1, where
;| v 1] = max{| [;], |1]]}.
Split
1] x - x I ?

Z Z Zmr(R’R/)P(R’R/)mR/

A>1R'CQ) RCQ
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into three parts

T ¥

A>1 R’€Q) ReA0.0....0(R")

k—1
IDIDD > >
AZ1 R'€Qy d=1j/>1,1<i<k,i#mi,...mq , _ J{.Jh

my....mg

|Il’><---xI];|2 , )
XYY Y )i s iR RIPR R
1 k

AZ1 R'€Q) ji s jiz1 pe g1 j,’C(R,)
=5+ L+ Is.
To estimate the term I1, since P(R, R’) < 1, we only need to estimate
> r(R,R).
ReA0.0....0(R")

Note that when R € A%%+%(R’), we have 3R N 3R’ # @. For such R, there are
three cases:

Case I: [I/| > |I;|,1 <i <k,
Case 2: |I/| <|I;i|,1 <i <k,

Case 3: |Ic/i,-| > |Ig;| and |I}| < |I¢|, where £ # d;,d; < d;i+1,1 <d; <k, and
l<i<r<k-1.

Incase 1,since 3R N 3R’ £ @Fand R € AO’O""’O(R’), we can deduce that
|1;| <|31; ﬂ3li'| <3|, 1<i<k,

then

1
<
— 2A-1
Thus, |R’| = 2A~1=%+1|R| for some 5 > 0, where 274! < 3K < 2%k For each
fixed n > 0, the fact that 3R N 3R’ # @ implies that the number of such R must
be less than 55¥24+7=vk—1 therefore,

1 L—quw—2
> r(R.R) <5 oM (—) < 02 ML—qu=3),

2A—1—yr+n
Recase 1 n>0

|R| < |3R N 3R'| < |3R N Q%00

3R.

In case 2,

1
[R'| < [3RN3R'| < 3R' N Q%40 < ——|3R|,
2A—1
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which implies that 24! < 3% Since |R| < |R|, we have that |R'| = 27|R| for
some 6 > 0. For each fixed 8 > 0, the number of such R must be less than 5k20.

Hence,
X 0 1 L—qyw—2
} : / 2 :

Recase 2 6>0
Incase3,forl <r <k -1,

,
I, 1
I1 Ldl/l 3R] < |3RN3R'| < [3R' N Q%00 < ——|3R/|.
i=1 3 |Idi| 2+
Thus,
r r
l_[|léi|:2),—1—yk+ﬂl_[|1di|’
i=1 i=1

for some p > 0. For fixed pu,
3(1y, X-~-de'_)ﬂ3([él X~-~X1‘/1r) #0

implies that the product number of such /4,,..., Iz, must be less than 5" 2AtIL,
Asfor |I;| = 2”/|ij|,for some v; > 0, where j # di,...,d,. For fixed v;, since
31;N31 j’ # @, we have that the number of such /; must be less than 5. Therefore,

k A 1 L—qyw—2
/ +u
Z r(R,R)ES Z 2 (zk—l—yk-i-ul_[j#d d 2Uj)

1see54r

Recase 3 w,v;>0

< 2 ML-qu—3),

Hence, we have

> r(R.R) = Ccy M),
ReA0.0.....0(R)

Since |2, | < CA2*(Q%0-0|, |©%:0---0| < C|Q| and w which belongs to Auo is
a doubling measure, together with (3.3) and L > g, + % + 1 > gy + 3, we have
that /; is bounded by

Z 2_A(L_qw_3)Lw(QA)%—l < Z 2—A(L_qw_3)w(Ckl/kzk/kgo,o,...,())%—l
A.zl AZl
< Cw(QO,O,...,O)%—l < CU)(Q)%_I

In the following, we only estimate the term /3 since estimates of I can be
concluded by applying the same techniques as for /; and /3.
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For each ji, ja,..., jx = 1,if R € A/1-/2+Jk(R’), then

k
P(R.R') < []27UimDa+M), (3.4)
i=1

Similarly, we only need to estimate the sum
> r(R,R).

ReA/1-72-J (R")

Note that for R € A/1-/2+Jk (R'),
30 x - x PRI N3] x -+ x 29k 1)) # 0.
To estimate this sum, we also split the sum above into three cases:
Case I: [2/11)| > |25 I;|,1 <i <k,
Case 2: |2ji/Ii’| < |2j,~’]i|’ 1<i <k,
Case 3: [274 Iy | = |2/a 14| and |2féllf| < |27ely|, where £ # dy, dy < diq1,
1<d; <k, 1<t<r<k-1

Following a similar argument to that in /1, we can conclude that

> r(R,R") < C27AL—qw=3)

which combined with the estimate of P(R, R’) in (3.4) implies that

VESE ><1|2

L=CY > > oA qw—3)]_[2 Ji (1+N)w(1, Xlk)

A>1j1,/25e-Jk =1 R'CQ i=1

Therefore 73 is bounded by

> 2 A, < Cu(@)7 !
A>1

Combining /1, I> and /3, we have

1 I/X-..XI/Z
a2 Z%V(R’R/)P(R,R/)mw
U)(Q) B R’€B0.0.....0 RCQ w( IX"'X k)
1 I x-.-x T2
< C sup me
_ w(Q)p_l R/CS_Z w(Il X-..Xlk)
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Now we consider
II/ ceex I |2

> > 3 w(l,—"[,) r(R,R')P(R, R)mp.
k

J1:J25-jk=1 R’eB/1-72+Jk REQ

Note that for R’ € B/1:/2Jk 3211 [ x -+ x 2k [[) N QJ1-T2mTk £ (. Let
&‘A.'/.lastu'sjk — {Rl c le,jz,...,jk . |3(2]1 I{ X e X 2]k ]]2) N le’jZ:"'ajkl

1 .
7|3(21111 -xszl,g)|},

ofl)./l:]Za o) ?Jls/Z: - Jk \ P‘JIJJZa - Jk

’

and o _
J1sJ2seeJk ’
QA = l l R'.

Since BJ1:/2sJk = UA>1 :Dil’]z""’]k, we have

1 /2
> DD —L(ﬁ 1|) r(R,R)P(R, Rymps

J15J25+-5Jk =1 R’'eB/1:J2+++Jk RCQ
|I] x

cex T2
- T Y Y Y R KPR R e

J15J2505 ik Z1 A1 R/Echfl 2. Jk REQ

We first estimate

|]/ /|2
Y Oy m r(R.R)P(R, R)mg
R,ei)Jl 2J25Jk REQ
for some j1, ja,..., jr > 1.

Note that for each R’ € J)/{l’jz""’jk,
307N x - x 20T ) 0 QI = g,
So for any R C , we have 2/i (|I;| v |1/]) < dist(/;,1]),1 <i < k. Thus

{R: RC Q)= Z Ajl’,jé,...,j,é(R/)’

J1sJ5sensdi =1
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where

At gt (R = AR C Q271211 v 1)) < dist(1;, 1)
< 2720\ v ), 1 < i < k).
Then we rewrite

L T
> Zmr(, )P(R, R))mp/

ReDI72Ik RCQ

] x - x I 2

= 2 X X wixx)

xr(R,R)P(R, R Ymp.

/ J1sJ2sedk A, . : /
For R" € B and R € Alfalz'w--:];é (R"),

k
P(R.R) <] 2—Ji(1+N)p=({=D(A+N)
i=1
Following the same proof with B0.0....,0 replaced by Btz we have

> r(R,R) < C27ME=qw=3),

and since

1] x - x I 2

k
iyl -1
Z w(I/x---xllé)mR/SCH(le )P w() e,

R/eBJ1:J2.Jk i=1
we have
1] x - x I 2
—  k »(R,R)P(R,R ’

R’Ei)'}{] J2end ) REA-/'i'jé"“'jli' (R")

k 2
<c[]2 (M—%)z—j;(uM)jirlA%—12—A(L—qw—z—%)

i=1 X
1
xsup——— > []1/Ime.
p

2 w@7r ! gogi=1
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Summing all j1, j2,.... jk» j1s Jar s dp = 1
|1/ -~'XI/|2

1 k
prr= SO DR DR D epry o

w(Q)i_l J15j250Jk=1 R'€BJ1-72:-Jk REQ
xr(R,RP(R, R Ymp

1 1] x - x I} |2

<Csup—— /—

a w(@)r! e w(I1 X Ik)
Similar estimates hold for

k—1 I 712
[1] x - x I} ]
DY D O

d=1jez14t#my,...mq prcpl1-72-Jk REQ
xr(R,RP(R, R Ymp.

We complete the proof of Theorem 1.2. |

4 Proofs of Theorem 1.4, Theorem 1.5 and Theorem 1.7

In this section, we use the lifting and projection between HJ, and s and between
CMO?Z and ¢ respectively to get that the space CMO?Y, is exactly the dual space of
the weighted Hardy space HJ. We also obtain the boundedness of the convolution
singular integral operator 7 on BMOy,.

Proof of Theorem 1.4. We first show
b S G6hr

Suppose that # = {7, x..x1, } € cP and set

1
2
h(X1,...,Xk)={ Z Z |Sll>< Xlk 1_[|Il Xll(xl } )

J1seeesfic D1 XX I g i=1

and
Qg = {(x1,...,xk) € R" x - x R"™ : h(xq, ..., xg) > 2%,

where /; are dyadic cubes in R" with side length 27Ji and the left lower corners
of I; are 277/i¢;, 1 <i < k. Denote

By = {R =11 x---xIp:w(RNQy) > %w(R),w(R NQyyp) < %w(R)},
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and then by Cauchy—Schwarz’s inequality we have forany 0 < p <1

Z Z Sle...)(Ik ;le'"XIk

J1seeesfic Ty XX I g

-lxr ¥

Jlsesdic £ (1 xxIx)EBy

{Z[Z S st P 0]

Ty x Iy
J1seeesJk (I XX I )€EBe

STy eIy LIy xex I

(SIS

1
|1 X x| ]2\ 7
DS S UL S

1 x I
JtseesJk (I XX I )€Be wilix K

5cuzncuz;{2w<9e>l“2’[ > X

L Tl (1 XxIi)€By
y2
I x--xI.)]2
SRCICIBSRERIO) B KPR
i< x I

where the last inequality follows from the fact that if /; x
exists 0 < 6 < 1 such that

|S]1 P |2

=

--x I € By, then there
Iy x I © Qo= {(xn, . xp) - Ms(r,) (X1, - .- Xg) > 6},

which together with the fact w(ﬁg) < Cw(S2y) implies that

Iy x---x1 1_
(T T Pl < el @i
Flaeesfk (I1 X% I )EBy 1 k

We claim that

w(ly x---x1
> > IS 1y s I |ZH < C22'w(Qy).
J1seesdke (I %X I )EBy 1 k

Assume the claim for the moment; then

Z Z SI]X xlktllx X Iy

J1seeesJie Ty XX Iy

X =

< Clll {Zw(sze)zh’}

= Clitlieg il = Clielleglislisg
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and thus, ¢ C (s£)*. To show the claim, we notice that
[v W2 w < 226Dy (Qy) < € 225w (),
Qe\Qe41

so it is sufficient to show that
w(11 X+ X Ik)
Xeee X —_— = .
Z Z |1y eI I* %X I <C | h?w
J1seensji (I1xx I )EBy 1 k Qe\Q2e+1

However,

/V h?w
Qe\ Q41

k
- /ﬁe\ﬂz+1 Z Z |s11x"'xlk|2 1_[ |Ii|_1 XL W

j],...,jk 11X-~-X1k i=1

> > S 7,1 |2w((11 - x Ig) N (2e\Qe41))

[y - % Ig]

v

j] ,...,jk ([1 X---Xlk)Ei‘)’g

1 w(ly X -+ x It)
2 Z Z |S11X---Xlk|2m,
Tlaeesfc (I1 X% I )EBy 1 k

\

where in the last inequality we follow from the fact that for 71 x --- x I, € By,
w((ly X+ x I) N Qy) > %w(ll X oo X Iy),
W((y % 1) 0 Q) < sl <o Ip)
which yields that 11 x -+ x I C Qg, hence,
w((I1 X -+ x I) N (Q¢\Reg1)) > %w(]l X oo x It).
This proves the claim and thus we have showed that c& C (s5)*.

Now we show that
(sPy* C cb.

Let £ € (sb)*; then there exists some t = {t1,x--x I, } such that

L(s) = Z Z SIyxexI LT xxI,  forevery s = {sy,x..xr, } € sb,
J1seens i D1 XX T
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For any open set 2 C R"! x --- x R"* with finite weighted measure, and any se-
quence S = {87, x..xI; } € sb we define

k z »
Isllsz o, = { f ( > > |s11x...x1k|21"[|11~|—1m) w(x)dx} :

vorJi Ty XX I CQ i=1

Then

LL
Islyp . < pz{/ S Y el

gk I % XIkCQ

N|—

X 1_[ |1; |_1)(1iw(x)dx}

i=1
x Ir)

Il (D S S e s %
= ” s e ——
i1 Tl |]1X---X]k|

vk I XX 1 CQ
“4.2)

To estimate the c{z norm of ¢ = {t7,x..xr, },» we introduce the notation Eﬁ) Q
for s = {s7,x..x1, } and any open set 2 C R"! x --- x R"x with finite weighted
measure by

1
_ 2w(11x---xlk) 2
s, 0 = ( Z Z It [Iy X -+ x Iy |

wsJk Iy % XIkCQ

Thus,
Isllz o = Cw@P 2lsla
Therefore,
RS L
w(Q);_1 osgk Ty XX [ €9 (£1 - x 1)

1

Z Z STy XX Iy fllx---xlk

w(Q)p 5 ||S||£2 Qsl Jlseeosdik D1 XX [ CQ

1
= gy sup lslle
w(Q)F 2 ol <t "
< C [itllszy*-

Therefore, ¢ € cf) and ltller < Clltll sy« o
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To show Theorem 1.5, we need Theorem 1.4 and the following lemma.

Lemma 4.1. Let w € Aoo. For 0 < p < o0, define a map £ on (8s0) by

k
l ) )
L(f) = {]’[ 12y * QT2 Juzk)} .
Ii,...Ix

i=1

For any sequence s = {51, x..x1I, }» we also define the map & by

k
L ) 3
P)= > [PV @ 275 ) st ety

Iy, Igi=1

where I; are dyadic cubes in R™ with the side length 2771 and the left lower cor-
ners of I; are 277id;, £; € Z",i = 1,...,k. Then the maps

L£:HP - sP and CMOL — cP,

and
P:sPb - HP and cf — CMOP

are bounded, and P o & is the identity on HE and CMO¥,.

Proof. Obviously, there exists a constant C > 0 such that

1Lz = CIf g 1Lz = ClS lemoz -

Lets = {s,x--xI; } € sb: then

12 $) g < C

{ S Y Wi # POQ L 2R

J1seesdic T Ik .
k 2
X l_[ XI; (xl')}

i=1

L)
The almost orthogonality estimates in (2.6) and Proposition 2.2 imply that for any
0 < r < min{l, ﬁ},

k 2
Vi * PEOCQ 270 T, (x))

i=1

k
Do T TH Wi * Vit Q7 L 2R ) s ey

I i=1

2

k
_1
< [T11172 xr (i)

i=1
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2
=

k r
—|ji—j! _1
<C Z 2=l J,IL{MS( Z |SI{><-~><I,LH|II'/| 2)(1{) } (ul.....uz)
I/

Jlsmeesdie 4 i=1

k
< [T an (),
i=1
where uf € I;, 1 <i < k. Since w € Aq,, C A,/,, by the L2/"(¢2/™) bounded-
ness of the strong maximal operator M and Holder’s inequality, we get the bound-
edness of the operator & from s, to HZ. We can also obtain the boundedness of
P from ¢ to CMOZ by similar arguments to that in the proof of Theorem 1.2.
The discrete Calderdn identity in Proposition 2.1 could yield that & o £ is the
identity on H} and CMOZ%,. We omit the details here. O

Proof of Theorem 1.5. Let f € 8, N HY and g € CMOZ,. For the map Lg ini-
tially defined on 8, by the discrete Calderén reproducing formula in (2.1), The-
orem 1.4 and Lemma 4.1,

e (S = (/. &)l

k
=1 Y [Timlrvesf@ ... 27

R=Ix-xIyi=1

X |Ii|%WR % g7y, . 27Ky

= [(£(f). L))
= €D sp €@ e

=Clflazlglemor -

w

Since 8 is dense in HZ, we have from limiting arguments that the map ¢ g can
be extended to a continuous linear functional on the weighted Hardy spaces H2
and [[fg]| = Cligllemor-

Now we suppose £ € (HJ)* and set £; = £ o . Then from Lemma 4.1,

1L (O = 6P UDI = IEIP Ny = CIENS Nz for /€ s,

which implies £1 € (s))*. Then by Theorem 1.4, there exists ¢ = {t7,x..x1, } € ¢&
such that

li(s) = Z SIyxexcIy E1yxeexr,  forall s = {s1, x..x1, } € s5,
IIX---XIk

and
Itllez ~ il < Cle]l.
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Since P o £ is an identity on HP from Lemma4.1, wehave £ = foP oL = {j0L

and
L) = G(L(f) = (L(f).1) = (f. g)
where
k 1
g:= Z 1_[ [1; |2 tryscx1, YR(XI, — X1, X[, — X2, X[, — Xi) = P(1).

11X~--Xlk i=1

This shows that £ = £, and by Lemma 4.1, ||g[lcpoz, = Clltllez = Clilgll. o

Proof of Theorem 1.7. Since H,}) is a Banach space, we may use the duality argu-
ment to show our result by applying Theorem 1.5 and Proposition 2.3. o
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