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Abstract
We consider inhomogeneous Aronsson’s equation

(D(ADu, Du), ADu) = f inU, 0.1)

where U is a bounded domain of R” withn > 2, A € C1(U; R"™) is symmetric and uni-
formly elliptic, and f € C(U). First, we establish the existence and uniqueness of viscosity
solutions for the corresponding Dirichlet problem on subdomains. Then we obtain the local
Lipschitz regularity and the linear approximation property of viscosity solutions to (0.1).
Moreover, under additional assumptions that A € C L1y; R™m) and f € cOlwu ), we
prove the everywhere differentiability of viscosity solutions to (0.1).
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1 Introduction

Letn > 2 and U be abounded domain (open connected subset) of R”.In 1960’s, Aronsson [3—
6] initiated the study of the infinity Laplace equation

Aot := (D*>uDu, Du) =0 in U (1.1)

by deriving it as the Euler—Lagrange equation of absolute minimizers for the L°°-functional
esssup U|Du|2. Obviously, A is a highly degenerated nonlinear second order differential
operator. Viscosity solutions to (1.1) are called infinity harmonic functions. In 1993, Jensen
in the seminal paper [19] identified absolute minimizers with infinity harmonic functions,
and further obtained their uniqueness under Dirichlet boundary; see also [1,7,11,13,26] for
different proofs. The regularity of infinity harmonic functions is a challenge problem. In 2001,
Crandall et al. [9,10] first obtained the linear approximation property (see (1.5) below). Based
on this, when n = 2, the interior C!-regularity was proved by Savin [27] in 2005, the interior
C “_regularity by Evans—Savin [14] and the boundary C'-regularity by Wang—Yu [29] later.
When n > 3, the interior everywhere differentiability was proved by Evans—Smart [15,16]
and the boundary everywhere differentiability by Wang—Yu [29] recently; but the C!- and
ch “-regularity are still open.
In 2008, Lu—Wang [24] considered inhomogeneous infinity Laplace equation

Aot = f in U. (1.2)

When f € C(U) is bounded and | f| > 0, they [24] obtained the existence and uniqueness
of viscosity solutions to (1.2) under Dirichlet boundary. Counter-example was constructed
there to show that the uniqueness may fail if f changes sign. Meanwhile, similar results were
also established for inhomogeneous normalized infinity Laplace equation by Lu—Wang [23],
Peres et al. [26] and also Armstrong—Smart [2]. Note that, under f > 0 or f < 0, the
uniqueness for Dirichlet problems corresponding to (1.2) or the normalized equation is open.
Recently, when f € C!(U), Lindgren [21] proved everywhere differentiability of viscosity
solutions to (1.2); but the C'-regularity is unknown even when n = 2.
We are interested in the Aronsson’s equation

Aylu] == %(DX[H(x, Du)], D,H(x, Du)) = f inU. (1.3)

As always, we assume unless specified otherwise, that f € C(U) and the Hamiltonian
H(x, p) = (A(x)p, p) with A € C'(U; R"™) being symmetric and uniformly elliptic, that
is,

1
TP < H(x,p) < LIpl> ¥xeUandp €R" (1.4)
for some constant L > 1. Note that A € C1(U; R"*") and f € C(U) are the most natural

(minimal in some sense) regularity on A and f required to define viscosity solutions to (1.3),
see Sect. 2. If A = I,, then &7y is exactly the same as 2A .
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The homogeneous Aronsson’s equation «/g[u] = 0 in U (that is, (1.3) with f = 0)
has been studied in the literature. Indeed, viscosity solutions in this case are identified with
absolute minimizers for the L°-functional esssup ;; H (-, Du) as proved by Barron et al. [8]
and Yu [30] (see Sect. 2 below). The existence and uniqueness of absolute minimizers,
and hence viscosity solutions, under Dirichlet boundary were established in [8,20,26]; the
linear approximation property in [20,31]. Recently, under A € CL!(U; R"*"), viscosity
solutions are differentiable everywhere as shown in [25]; butunder merely A € C 1 (U, R™M),
everywhere differentiability is unknown.

This paper focuses on the inhomogeneous Aronsson’s equation (1.3) with f s 0. First
we have the following existence and uniqueness.

Theorem 1.1 Suppose that A € C'(U) is symmetric and uniformly elliptic. Let V € U and
f € C(V) be bounded and satiiy |f| > 0in V. For arbitrary g € C(dV), there exists a
unique viscosity solution u € C(V) to the Dirichlet problem:

dylul=f in V,u=g ondV.

Next we prove the following local Lipschitz regularity and linear approximation property.
By the linear approximation property, we mean that for every x € U and every sequence
{rj};en that converges to 0, there exist a subsequence r = {rj, }ren and a vector ey, such
that H(x, ey r) = LipdAu(x) and

lim max ulx +rjy) —ul)

k—o00 yeK T

—(ex,r, ¥)| =0 Vcompactset K C U. (1.5)
See Sect. 3 for the intrinsic distance d4 and the pointwise Lipschitz constant Lip, L u(x).

Theorem 1.2 Suppose that A € C'(U) is symmetric and uniformly elliptic, and f € C(U).
Ifu € C(U) is a viscosity solution to (1.3), then u € C®\(U) and enjoys the linear approx-
imation property.

Finally, we obtain the everywhere differentiability. Observe that everywhere differentia-
bility always implies the linear approximation property; but the converse is not necessarily
true even when A = [,.

Theorem 1.3 Suppose that A € C“V(U) is symmetric and uniformly elliptic and f €
col). Ifu € C(U) is a viscosity solution to (1.3), then u is differentiable everywhere.

The proofs of Theorems 1.1-1.3 heavily rely on some careful analysis of the intrinsic
distance d4 determined by A and uniform estimates of solutions to approximation equations
gu]+ediv(ADu) = f.In particular, when A # I, since the intrinsic distance d4 loses
some important properties which hold for the Euclidean distance and play crucial roles in the
case A = I, (thatis, Au = f), new ideas are required. The proofs are organized as below.

Section 3 is devoted to the analysis of the intrinsic distance ds. Setdy ;0 = da (x9, +) for
x0 e U.Fori > 0andx® € U, let £)/; 0 be some viscosity solution to the Hamilton—Jacobi
equation '

(ADu, Du) + ru =1 inU\{(x°}; u(x®) =0.
The following properties obtained in Lemmas 3.1-3.3 will be useful below:
G)lhnkﬁoﬁijo::dmxokmaﬂyunﬁbnnWinLL

(i) e d, 0 < LY (< dy 0ifAdy 0 <InV2,
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>iil) ofy[— ﬁA 0l =5 2inV @Uin viscosity sense ifx% € 9V and Adiam 4V < 1/2,
(iv) “pldy 0] <0in U\{x } in viscosity sense.

In Sects. 4 and 5, we prove Theorem 1.1 under f > 0 (and hence under f < 0). The
uniqueness is proved by using some ideas from [12,24], see Theorem 4.1 and Lemma 4.2.
Note that A € C'(U) and f € C(U) is the minimal regularity required here. To prove the
existence (see Theorem 5.1), Lemmas 3.1-3.3 allow us to use Perron’s approach. Indeed,
the existence of viscosity sub-solutions follows from @7y [— E)‘ 0] > )‘ for large A > 0.
Moreover, to show that boundaries of the supremum of all sub- solutlons and the infimum of
all sup-solutions are the same as the given boundary, we need some barrier functions v, w so
that

dpv] <0 and Fylw]>1 inV

in viscosity sense. By Lemmas 3.1-3.3, we may take v = d ,0 and w = LA o for some
large A > 0. Recall that in the case A = I, (that is, Asou = f), Lu and Wang [24] take
w(x) = Clx—x°4/3 since Aoo[|x —x°[*/3] = 43/3%. But when A # I,,, QfH[d“/* 1>43/34

is not available.
Theorem 1.2 (that is, Theorem 6.1 below) is proved in Sect. 6. The proof relies on a key
monotonicity of maps r — Six . (u)(x) for large 1 > 0, see Lemma 6.2 for details. The
A’

idea here is that, instead of the slope ij () (x) with respect to da, we consider S; , (u)(x)
, A

which is defined in the same way as S}yr (u)(x) by replacing d4 there with L’jx above. This
monotonicity follows from Lemmas 3.1-3.3 (o7y [ﬂﬁ’ w0l = —4/2) and the comparison
principle in Lemma 4.2. Comparing with the monotonicity of maps r — Sf () (x) in the
case f = 0 (thatis Ay [u] = 0, see [20]), we see that D\ plays the role of d4 in some sense.

We also recall the monotonicity of maps r — St A r(u)(x) + r in the case A, = I, (that is,
Asou = f see [21]), whose proof relies on the fact that

Aclx]” < y3(y = DIxI7™* <0 for y (0, 1)

in viscosity sense. When A # [, similar properties for dj; 0 with y € (0, 1), and hence the

monotonicity of the maps r — Sj:r (u)(x) + r, are not available.

Sections 7 and 8 are contributed to the proof of Theorem 1.3 (that is, Theorem 8.1 below).
With the aid of Theorem 1.2, we can use the approach in [16] (see also [21,28]) by overcoming
several technical difficulties. Firstly, under A € CI(U;R"™) and f € C 0.1(U) with
f > 0, with the aid of uniqueness in Sect. 4 we approximate the viscosity solution « to (1.3)
in V = B(0, 3) € U by u® —smooth solutions to

Ape[ul+ediv(A°Du) = f€in V; ulyy = g°,

where A€, f€, g€ are smooth approximations of A, f,u and H¢(x, p) = (A°(x)p, p);
see Lemma 8.2. Note that the required smoothness of u€, uniform estimates and uniform
boundary regularity estimates of |u€|, and locally uniform estimates of | Du€| are established
in Lemmas 7.1-7.3. Secondly, observe that, after some suitable scaling, we may assume that
lu(x) — u(0) — xullLo(B0,2)), A0) = I, and [ DAl vy + [ID*All vy + I Df Lo (v)
are sufficiently small. This allows us to build up a uniform flat estimate for | Du€|> — ug, as
did in Lemma 7.4. Finally, via such flat estimates and the linear approximation property in
Theorem 1.2, an argument similar to [16,21,28] leads to everywhere differentiability of u.
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2 Viscosity solutions

We first recall the notion of viscosity (sub-/sup-)solutions.
Let U be a bounded domain in R” with n > 2. For continuous functions F : U x R x
R" x R"*" — R, we consider equations

F(,u,Du,D*u)=0 inU. 2.1

Definition 2.1 (i) A function u is called a viscosity sub-solutionto (2.1) if forevery x° € U,
we have

F(x° 0(x%), Dp(x°), D*¢(x%) >0

whenever ¢ € C>(U) and u — ¢ attains its local maximum at x°.
(ii) A function u is called a viscosity sup-solution to (2.1) if for every x° € U, we have

F(x°, o(x%), Do (x%), D?*¢(x%) <0

whenever ¢ € C2(U) and u — ¢ attains its local minimal at x°.
(iii) A function u is called a viscosity solution to (2.1) if it is a viscosity sub-solution and
also a viscosity sup-solution.

As always, we assume without otherwise specified, that A = (a' )?, j=1 € cl(u; R
is symmetric and uniformly elliptic, and f € C(U). Write H (x, p) := (A(x)p, p) forx e U
and p € R”, and the Aronsson operator

1
ylul(x) = §<DxH(X, Du), D, H(x, Du)) = (D{A(x)Du, Du), A(x)Du)
being as in (1.3). For € > 0, consider equations
dylul +ediv(ADu) = f inU. 2.2)

If € = 0, this is exactly the Aronsson equation (1.3); if € > 0, we call them as the approxi-
mation equations of (1.3).

The viscosity (sub-/sup-)solutions to (2.1) are defined via Definition 2.1. Indeed, fore > 0,
set

Fo(x, p, X) = 2[a™ (x) pra’* (x) po + €a1Xij + al* (x) pra’* (6) peps + €a pj — f(x)

where p = (p)j_;, X = (X;))! ;_; and a,';] = %aif. Here and below,. to simplify lthe
presentation, we will use the Einstein summation convention, that is, a;b' = >/, a'b;.

Note that A € C'(U; R™") and f € C(U) are the minimal regularity on A and f required
to guarantee the continuity of F, : U x R" x R"*" — R for € > 0, in particular ¢ = 0.
Observe that

dylul(x) + ediv (A(x)Du(x)) — f(x) = Fe(x, Du(x), Dzu(x)) in U

whenever u € C2(U). Thereby, we define the viscosity (sub-/sup-)solutions to (2.1) as those
of equations F (-, Du, D*u) = 0 as in Definition 2.1 correspondingly.

In a similar way, for A > 0 we define the viscosity (sub-/sup-)solutions to the Hamilton—
Jacobi equation

H(x, Du(x))+Au(x)=1 inU
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as those of F. 3 (x, u, Du) = 0 correspondingly, where
I::;\(x,r, p)=Hx,p)+rr—1.

Observe that A € C!(U; R"*") guarantees the continuity of F, : U xR xR" — R for
A > 0, and that

H(x, Du(x)) + Au — 1 = F5(x, u(x), Du(x))

whenever u € CL(U).
Finally, we recall the identification between viscosity (sub-/sup-)solutions to <7 [u] = 0
with absolute (sub-/sup-)minimizers of L°>°-functional esssup ;; H (-, Du).

Definition 2.2 (i) A functionu € C O’I(Ulis called an absolute sub-minimizer in U for
H,ifforeachV € U,v e C0! (V)NC(V)satisfiesv <uinV,andv = u on dV, then

esssup oy H(x, Du(x)) < esssup .y H(x, Dv(x)).

(ii) A function u € C%!(U) is called an absolute sup-minimizer in U for H if —u is an
absolute sub-minimizer in U for H.

(iii) A function u € C%1(U) is called an absolute minimizer in U for H, if it is both an
absolute sub-minimizer and an absolute sup-minimizer in U for H.

Denote by USC(U) (resp. LSC(U)) the collection of all upper (resp. lower) semi-
continuous functions u on U.

Lemma 2.3 The following are equivalent:

(i) ue CU)(ueUSCWU)u € LSC(U)) is aviscosity (sub-/sup-)solution to «/g[u] = 0
inU

(ii) u € COY(U) is an absolute (sub-/sup-)minimizer in U for H.

The proof of (ii)=>(i) was given by Crandall et al. [13]. When A € C 2(U), Yu[30] clearly
proved (i)=-(ii); when A € C L(U), ()=(ii) also follows from the arguments in [30] as
informed by Yifeng Yu (personal communication).

As a consequence of Lemma 2.3, we obtain the following result.

Lemma24 Ifu € C(U) (u e USC(U)/u € LSC(U)) is a viscosity (sub-/sup-)solution to
ylul = finU, thenu € C%L(U).

loc
Proof Consider #(X) = u(x) 4+ Clx,41/*3 for ¥ = (x,x,41) € U x R (see e.g. [18,
Theorem 1]). Then u € C(U) (u € USC(U)/u € LSC(U)) implies that & € C(U x R)
(' e USC(U xR)/u € LSC(U xR)). Moreover, since u is a viscosity (sub-/sup-)solution to
n[u] = fin U, we know that 7 is a viscosity (sub-/sup-)solution to <75 [ii] = fin U xR,
where f(X) = f(x) + C343/3* and H(X, p) = (A(X)p., p) with A(F) = diag{A(x), 1} for
all¥ € UxRand p € R™! Forany V € U,if4C/3%3 > || f| ¢y, then f>0inV xR,
and hence by Lemma 2.3, i € CY1(V x R). This implies that u € CO1(U) as desired. O

3 Intrinsic distance

We always assume that A € C!(U; R"*") is symmetric and uniformly elliptic in this section.
Define the intrinsic distance d4 by

172

1
da(x,y) = inf{(/o <A*1<5(s>>é(s>,é(s>>ds) ¢ cco. 1ix, U)} Vx,yeU.

3.1)
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Here and below, for t > 0, denote by C(0, t; x, y; U) all rectifiable curves & : [0, 7] — U
joining x, y; and by cho,t; x, y;U) all & € cL(o, ) N c,t; x, y; U). The uniform
ellipticity implies that d4 is a distance and comparable with the Euclidean distance locally.
For all x € U, set

dist 4 (x, dU) := min{da(x, y)|y € U}
and
Ba(x,r) :={y eUlda(x,y) <r} ifr < dist gs(x, 9U).
For K C U, write
diam 4 K := sup{da(x, y)|x,y € K}.

Denote by Lip,, u(x) the pointwise Lipschitz constant, that is,

Lipy,u(x) := lim sup M
y—>x dA(X, y)

When d4 is the Euclidean distance |- —- |, we define dist (x, dU), B(x, r), diam K and Lipu
correspondingly. Note that when A = I,, one has d4(x, y) = |x — y| whenever |x — y| <
dist (x, dU), but d4 (x, y) may be strictly larger than |x — y| when |x — y| > dist (x, dU).

Below we consider an approximation of the intrinsic distance, which has several nice
properties. For A > 0, define

t
Sy yyimint | [ 1437 €0nEo) don | e 2 a0 eco.nin i 0]
0

forall x, y € U. The following Lemmas 3.1-3.3 are crucial in this paper.

Lemma3.1 Forallx > 0and x,y € U, we have
0 < Lh(x.y) < LY. y) =da(x.y) 32)

and
da(x,y) < Eﬁ (x, y)e“ﬁk(x’y) whenever Aﬁﬁ(x, y) < Inv/2. (3.3)

Proof Proof of (3.2). Obviously, 0 < L};‘ < £g for all A > 0. To see (3.2), it suffices to
prove ﬁ% = d 4. By the change of variables we have

t
%di(x, y) = inf {/ (AN (EG$)E(s), é(s))ds‘& €C,t; x, y; U)} Vi>0,x,yeU.
0

Thus,
0 . d3(x,y)
Ly(x,y) <inf {1t + =—— ¢ <das(x,y) Vx,yeU,
t>0 4t

where we choose 1 = da(x, y)/2.
On the other hand, we claim that

t
da(x,y) = inf {/ \/(A—l(é(s))é(s), é(s))ds‘t >0, €C0,1;x,y; U)} Vx,yeU.
0
(3.4)
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8 Page8of37 G.Luetal.

The claim (3.4) is known to be true by a standard reparametrization argument; for reader’s
convenience we give the details at the end of the proof of Lemma 3.1. Assume that (3.4)
holds for the moment. Observe that for all x € U, ¢ € R” and 0 > 0, we have

sup  p-g= sup (p, Ax)"2q) = Vo |A(x)"?q|
(A(x)p,p)<o Ipl</o

and hence

1
Z<A—1<x)q, q) = sup {p-q — (AX)p, p)}

peR”

=sup sup {p-q—o}
0=0(A(x)p,p)<o

sup{+/a|A(x) " 2g| — o'}

o>0

|Ax)~?q -1,
thatis, /(A= (x)q, q) < %(A‘l(x)q, g) + 1. Therefore, by (3.4) we have

v

t
da(x,y) <inf {/ Bm*l(s(s))é(s), £(s)) + 1} ds\r >0, £ €C,1;x,y; U)}
0

3.5
which gives da (x, y) < L% (x,y) forall x, y € U, as desired.
Proof of (3.3). Assume that 0 < )\L"}{(x, y) < In /2. For any € > 0 with (1 +
e)kﬁi‘(x, y) <In \fZ, there exists £ € C(0, T'; x, y, U) for some T > 0 such that

T
1+ Li(xy) 2 /O [1+%<A“(s(s>>é(s>,é(s>>] e gy,

This implies that
T
(A+e)Lh(x,y) > / e MT=9 g,
0
which together with (1 + e)kﬁﬁ‘ (x,y) <In+/2 gives

T < _Tlln[l — A1+ )Ly, M <201 + )Ly (x, y).

Hence, forall s € (0, T),

e4x(1+e)£;(x,y)e—x(T—s) > HMT=9) > 1

which together with (3.5) leads to that

T
MIHOLEEN (| 4oy L (x, y) > / [1 + %<A—1@(s>>é<s>,é(s)>} ds > da(x, y).
0
Sending € — 0, we have

LA £ (x y) > da(x, y),

that is, (3.3) holds.
Proof of the claim (3.4). Let

1
da(x, y) :=inf{/0 \/<A—l<f(s)>é(s),é<s>>dsseC<o,1;x,y; U)} Vx,y eU.
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By a change of variable, we have

~ t . .
di(x.y) = inf {/0 VAT E6DES). E@)ds]i > 0.5 € .15,y U)} .

Thus, to prove the claim (3.4), we only need to prove that JA(x, y) = da(x,y) for all
x,y € U. By Holder’s inequality, we see that

172

1 1
//<A—‘(s<s>)é<s>,é<s>>dss(fo <A—1<s<s>)é(s),é(s>>ds) VEEC(O, 15 x, y; U)

and hence, dA(x y) < dag(x,y). To see da(x,y) < dA(x,y), for any € > O let & €
C(0, 1; x, y; U) such that

1 ~
=/0 JAT 1 E6nE®, Ee) ds < Tatx, ) +e.

Up to a standard smooth modification, we may assume that £ € C 1 0, 1; x, y; U). It then
suffices to find a reparametrization n € C(0, 1; x, y; U) of £ so that

(A’l(n(s))r‘](s), n(s)) = L foralmostall s € [0, 1].
Indeed, this implies that
1
[da(x, y)I* < / (A~ () (s). 7)) ds = L* < [da(x, y) +€]”.
0
Letting € — 0, we obtain d4 (x, y) < JA (x, y) as desired.

Finally, we find the reparametrization n € C(0, 1; x, y; U) of & required as above. If
|&] > 0 almost everywhere in [0, 1], then define

1" .
v(r) = Z/o \/(A‘I(S(S))%‘(S), £(s))ds Vre(0,1].

Obviously, v is a strictly increasing continuous function from [0, 1] to [0, 1]. Set n(¢) =
E(w‘l(z)) fort € [0, 1]. One has n € C(0, 1; x, y; U) and

& =1
) =EQ MO Y @) = % for almost all 7 € [0, 1].

Since 1ﬁ(s) = %\/(A—l(é‘(s))é(s), é(s)) for all s € [0, 1], we attain

\/(A—l(n(t))r';(t), n(t)) = L for almost all ¢ € [0, 1]

as desired.

In general, £ may vanish in a set with positive measure in [0, 1]. By an argument similar
to above, it suffices to find a reparametrlzatloné € C'(0,a; x, y; U) of & forsome a > 0 and
£ > 0 almost everywhere in [0, a]. This is done by removing all open sub-intervals of [0, 1]
whereéj vanishes. Precisely, since S is continuous, the set I = {s € [0, 1] : |§ (s)| > 0} is
open (relative to [0, 1]). The open set (0O, 1)\1 is the union of at most countable many open
intervals I; = (aj, bj) sothata; < b; < a; for all possible j. For each j, we know that &
vanishes, and hence £ is a constant, in /;. Define a function ¢ : [0, 1] — [0, 1 — Z./ |1;]] by
o(s) =5 — Zj,bjss |1;]| fors € [0, 11\(U;1;), and ¢(s) = ¢(a;) whenever s € I; for some
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8 Page100f37 G.Luetal.

J-Set&(t) =&(@ t)) fort € [0,1— Y, |I;]]. We have & € C'(0,1 = 3, |1;: x, y: U).
Indeed, letting s+ be the maximum of go_l (1), one has

1 ~ ~ 1
Z[fi(f +h)-§(0] = E[E(SJF +h) =G = ¢'(s4) ash — 0+;

similarly, letting s be the minimum of @~ (1), one has }h[g(t —h) — E(z)] — ¢ (s)
ash — 0—.If (p_l({t}) contains a single point s, we have sy =8 and g(t) = é—‘(s);
otherwise ¢~ ({r}) = [s_, s1] = laj, bj] for some j, and hence &(s) = O in [a;, b;], that
is, E(t) = 0. The continuity of E comes from that of £&. Moreover, E > () almost everywhere
in [0, 1 — Zj [1;]] as desired. This completes the proof of Lemma 3.1. m}

Lemma 3.2 For any compact set K C U, there exists a constant C > 0 depending on L, K
such that

sup Lip(llf}‘; K xK)<C.
A>0

Consequently, lim; ¢ L)/; = dy locally uniformly in U x U.
Proof Letx,y,ze K.If |y —z| > %dist (K, adU), by Lemma 3.1, we have

diam 4 K
£h(x,2) — £ (x, <2di K<4———|y—7z|.
[L5(x,2) = L4 (x, y)| <2diam 4K < dist(K,aU)ly z|

Ifly—z| < %dist (K, adU), choose & € C(0,t; x, y; U) for some ¢t > 0 such that

) _ ! 1o : : —A(t—s)
Ly, y)+1y—zl = A 1+4(A (E(s))&(s),E(s)) | e ds.

Let n(s) = &(s) fors € (0,¢t]and n(s) = y+ (s — 1) |§:Z\ fors € (t,t + |y — z|). Then
n €C@,t+]|y—zl;x,z; U), and we have

LA (x, 2)

IA

1+]y—z| - l(A*I( $)As). 7 —MeHy—zl=s) 4
A 2 n(sNN(s), n(s)) | e $
1
= M= /0 [1+%(A*‘(s(s»é(s),é(s»}e*”’*” ds

1+]y—z| 1 _ _
+ / [1+—<A*‘(n<s)) oL 122 >]ﬂ<’+l>’*zlﬂ> ds
1 4 ly—zl ly—zl

< e,y +H 1y — 2D+ A+ D)y -z
< LAx,y) + (L +2)]y —zl.

Changing the roles of y, z, we have £% (x, y) < £ (x,z) + (L 4+ 2)|y — z| and hence
1L (x.2) = L4 (e )| < (L +2)]y —zl.
By symmetry, we have
1Lz x) = Ly (y, )| < C(L, K)|y — 2.
Therefore, for all x, y, z, w € K, we have

IL%(x, 2) — L4, w)| < [£5(x, 2) = L4 (e, w)| + 125 (x, w) — £ (v, w)
< C(L, K)[|w —z| + |x — y[I.
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Combining this with the fact that lim; ¢ E)/; (x,y) = da(x,y) forall x,y € U given by
Lemma 3.1, we conclude that lim, ¢ llfa = d4 locally uniformly in U x U. This completes
the proof of Lemma 3.2. O

Below, for convenience, we setd, 0 = da %, ) and £f‘4 o= [,f; (x°, ) for x* € U and
A > 0. '

Lemma3.3 (i) Forall X eu, yldy 0] <0in U\{xo} in viscosity sense.
(ii) If Ve U, NV edvando < < then MH[—CZ xo] > % in V in viscosity
sense.

1
2diam 4V *

To prove Lemma 3.3, we need an approximation for [Iﬁ via smoothing A. Let ¢ €
C®MR"),0<¢ <1, fR,,qb(x)dx = 1 and supp¢ C B(0,2). For € > 0, set ¢e(x) =
e "p(e x)forallx € R*. Set U, = {x € U, dist (x, dU) > €} fore > 0. Forevery e > 0
andx e U,

A7 @ = [ A7 000 0) + Lty 0] e = )
Rn 3e
in particular, for x € Use, A€(x) = (A7 % ¢ (x))~'. Then (A€)~!, A€ € C2(U, R"™") are

uniformly elliptic with the same constant L as A. For ¢ > 0 and A > 0, define E)/;é in the
same way of ﬁﬁ‘.

Lemma 3.4 Forevery A > 0,

lin}) L4 = £ Tocally uniformly in U x U.
e—

Proof Due to Lemma 3.2, it suffices to prove lime_.o L4 (x, y) = £ (x, y) forallx, y € U.
We first show lim inf._. ¢ Eﬁ‘“ (x,y) > UA (x,y). Ateach z € U, we have

(@ @pep) = [ [0 P, + LipPryg | e = dy
> [ a7 @p. piec =)y

+ /R (AT 0) = A7 @) ) xus el — y)dy

> (A @p, p) = 2€1A I con g, P
which implies that

(A" @p, p) = (1 =2Le| A"l con gz, N(A™ @), p).
Ateach z € U\U,, we have

(A~ @p. p) = fR LIpP (e (z =) dy = (A7 @p, p)-

Therefore, for £ € C(0, t; x, y; U), we have
! 1 . .
fo [1 + Z<(A€>*1@(s>>5(s>, é(S)>] e M= g

! 1 . ‘
= (1= 2Lel A leor @) fo [1 + AT EGE), 5(s>>] eI g
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Taking infimum over all £ € C(0, t; x, y; U), we deduce that
Lhe(x,y) = (1 =2Lel| Al con ) L5 (X, ),

that is, liminf._,¢ Cge (x,y) > 52 (x, y) as desired.
To see lim sup, _, o L4 (x, y) < L7 (x, y), forany § € (0, 1), choose & € C(0,#; x, y; U)
such that

4 1 . .
A+ 8L (x,y) = / [1 + Z<A—1(s(s))s(s), E(s))] e M9 gs.
0
Observe that if € < €9 = min{$, %dist (&, 0U)}, then U0,/ B(£(s), 2¢) C Usze C Uzg,-
Thus (A€) 1 (£(s)) = A~ % ¢ (£(s)) and hence, at £(s),
(AT P p) = (AT P pI= AT = AT g p. p) <2Lel A o @, ) (A7 P )
for all p € R”, that is,
(1 +2Lel A cor @, (AT p. p) = (A7 p. p).
Thus,
(1 +2Lel A cor g, ) + LG, )

! 1 . .
> /0 [1+Z«Af)—‘(s(s))sm,s<s>>] e M=) g

> Ef}le (x,y).

Sending € — 0 and 6 — 0 in order, we conclude that lim sup, _, Ej\qg (x,y) < Ej\q (x,y)as
desired. O

We also need the following fact, which was used in [30]. For convenience, we give the
details.

Lemma 3.5 Suppose that u € C(U) is semi-concave and is a viscosity solution to
(ADu, Du) +Au =1 inU (3.6)
for some A > 0. Then u is a viscosity sup-solution to
ylu]l +A(ADu, Du) =0in U. 3.7
Proof Step 1. We first prove that for almost all x € U with Du(x) and D2%u(x) existing,
A [u](x) + A(Ax)Du(x), Du(x)) <0 (3.8)

holds in pointwise way and hence in viscosity sense.
Note that the semi-concavity of 1 implies that u € C%!(U), differentiable almost every-
where and
(ADu(y), Du(y)) + ru(y) =1 (3.9)

whenever u is differentiable at y € U. Moreover, the semi-concavity guarantees that there
exists E C U with full measure such that Du, D?u existin E and for all x € E,

Du(y) = Du(x) + Dzu(x) -(y—x)4+o(ly—x|) foryeE. (3.10)
Without loss of generality, we may let U = [0, 1]". Applying the Fubini Theorem, there
exists E> C [0, 17"~ ! with (n — 1)-Lebesgue measure | E»| = 1 such that E, =ENIO0, 1] x
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{y'} has length 1 for all y" € E5. For each y" € Ea, let E be the set of all density points
of Ey . Notice that E = (&, Y)Yy € Ep, t € E '} C E satisfies |E| =1.1If(t,x") € E
there exists a family of points {t;;};u>1 € Ey such that (t,,, x’) € E and t,,, — t. Observe
that (3.9) holds whenever y is given by x,,, := (f;5,, x") or x := (¢, x’). By (3.10),

1
— t[(A(xm)Du(xm), Du(xp)) — (A(x)Du(x), Du(x))]

Im

1
= ; ([AGm) — AX)]1Du(xm), Du(xm))

tm —

+: 1 (A [Duxm) — Dux)], [Dulxm) + Du(x)l)

= ([Dx, A()1Du(x), Du(x)) + (A(x)D*u(x)ey, [Du(xy) + Du(x)]) + o(1)
— ([Dx; A(x)]Du(x), Du(x)) + 2(A(x)D2u(x)e1, Du(x))

as m — 00. On the other hand,

! I[Au(x) —Au(xy)] = Aup(x) +o(1) > Auj(x), m — oo.

m

Thus,
([Dyx; A(x)]Du(x), Du(x)) + 2(A(x)D2u(x)e1, Du(x)) + Auj(x) = 0.

Here and below, for k € {1, ..., n} we write e; as the vector whose kth element is 1 and
others are 0.

Similarly, we can show that there exists a set E™ ¢ EM ¢ E such that |l-?(”)| =1, D?u
and Du exist on E™ and for each x € E™ and k € {1,...,n}, we have

([Dyx, A(x)]Du(x), Du(x)) + 2(A(x)D2u(x)ek, Du(x)) + Aup(x) =0
which times A Du(x) yields that (3.8) as desired.

Step 2. Now we prove that u is a viscosity sup-solution to (3.7), that (3.8) holds for all x € U
in viscosity sense.

Suppose that ¢ € C>(U) and u — ¢ attains strictly minimal at £ € U. Since u — ¢ is
semi-concave, owing to Lemma A.3 in [12], for any r, § > 0, there exists x, s € B(x, r) and
pr.s € B(0, d) suchthatu —¢ — (p, s, x) has alocal minimal at x, 5, u is twice differentiable
at x, s, and

Fh [u](xr,5) + A{A(xp 8) Du(xr 5), Dux,5)) <0
in the viscosity sense.
Obviously, we have D¢ (x,.s) = Du(x, 5) — pr.s and D>¢(x, 5) < D>u(x, s). So due to

the ellipticity of A, we have

Dl +(pr.s. x)1(xr5) + AAXr ) [DP (xr5) + prsl. [DP(xr5 + prs)]) <0
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Sending » = § to 0 and noting (x, s, prs) — (%, 0), we arrive at (3.8) with x = X as
desired. O

Proof of Lemma 3.3 Thanks to Lemma 3.2, we know that (i) follows from (ii). Below we show
(ii). Let {A€}¢~ 0 be as in Lemma 3.3. Denote by H¢ (x, p) = (A€ p, p). Then || D* A€ lew) S
}2. Thanks to Lions [22, pp. 134-135], L’/\“ Lo 1s semi-concave and a viscosity solution to

(A°Du, Du) — 1+ Au =0 in U\{x"},
and, by Lemma 3.5, is a viscosity sup-solution to
Ae[u]l + AM(ADu, Du) =0 in U\{x"}.

Note that lim¢_,¢ Ej\qé = E’/k locally uniformly in U as given by Lemma 3.3. Sending € — 0,
we know that Ef; Lo 1s a viscosity solution to

(ADu, Du) — 1 +Au =0 in U\{x"}, (3.11)
and also is a viscosity sup-solution to
Aylu) + A(ADu, Du) =0 in U\{x}. (3.12)

Assume that E)/; 0 ¢ attains a minimum at ¥ € V\{x°} for some ¢ € CZ(U). Since u
is a viscosity solution to (3.11), we know that

(AX)D¢ (%), D (X)) — 1+ 1L4 (", %) > 0.

If A since Eﬁ(xo, X) <da (xo, Xx) < diam 4V by Lemma 3.1, we have

=< m,
(AX) D¢ (), DP(X)) > 1 — rds(x°, %) > 1/2,

Considering (3.12), we conclude that o/y[¢](x) < —% in V in viscosity sense as
desired. ]

4 Uniqueness

We always assume that f € C(U) with |f| > Oand A € cl(U; rR™ny is symmetric and
uniformly elliptic.

Theorem 4.1 For any g € C(dU) there exists at most one viscosity solution u € C(U) to
the Dirichlet problem:

Hylul =f inU; ulyy =g.
To prove Theorem 4.1, we need a comparison principle as below.

Lemma 4.2 Lete > 0. Suppose that f1, f>» € C(U) satisfy fi < f», and thatu; € USC(U)
is a viscosity sup-solution to
g lu] 4+ ediv(ADu) = fi 4.1)

anduy € LSC(U) is a viscosity sub-solution to

plu] 4 ediv(ADu) = f>. 4.2)
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If either uy € COY(U) orup € COV(U), then

max[uy — u1] = max[uy — uq].
U U

Proof of Theorem 4.1 Let u, v € C(U) be viscosity solutions to &y [u] = f with u|yy = g.
We may assume that f > 0 up to considering —u,—v. For any € > 0, set ue = (1 + €)u —
€llgllL=@u)y on U. Then

Fyluel = (1 + €)1’ f > f = aylv]

in U in viscosity sense and u, < u = v on dU. Since @/g[u.] > 0in U in viscosity sense,
by Lemma 2.3, we know that u, € C%!(U). Applying Lemma 4.2, we have u, < v in U
for all ¢ > 0. By sending € — 0, it follows that ¥ < v in U. Similarly, we have u > v.
Therefore u = v as desired. O

To prove Lemma 4.2, we recall the notion of jets in [12, Section 2]. Define the second-order

superjet JLZ,’ Tu(x%) of a function u at x as the collection of all (D¢ (x°), D2¢ (x9)) satisfying

that ¢ € C>(U) and u — ¢ taking its local maximum at x°. Denote by 7%]’ +u(x0) its closure,
that is, the collection of (p, X), for which there exists x,, € U and (py,, X;n) € JLZ,’ +u(x0)
such that (x,,,, u(xp,), P> Xm) — (xO, u(xo), p, X). Similarly, define the second-order sub-

. - . -2, — . . .
jetJ L2/ u(x9) and its closure J U U (x©) in the same manner with the local maximum replaced
by the local minimum.

Proof of Lemma 4.2 We may assume that maxyy[uy — u1] = O up to considering u; —
maxyy [up — uy] instead of uy. It suffices to prove u» < u; in U. Suppose that this is not
correct. Then

My = supluz(x) —uj(x)] > 0.
xeU
For any small § > 0, define
1 —_
ws(x, y) = wa(¥) =i () = v =y V(x, y) €U xU
and let

Ms = sup ws(x, y) = ws(xs, ys)
x,yeU

for some x5, ys € U.
Obviously, Ms > My for all § > 0. By Lemma 3.1 of [12], My = lims_.o Ms and
x5, ys € Uy € U for all § > 0 sufficient small. Moreover,

lxs — ys| = C(U1)8. (4.3)

Indeed, if u» € CO1(U), by Ms > My, we have

1
up(xs) —ui(ys) — ﬁlxs — ys1? = ua(ys) — u1(vs),

which leads to that
uz(ys) — uaz(xs)

Ixs — ys| <286 ————— < lluallco1@,y5:
lxs — s i
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that is, (4.3). If u; € C%'(U), similarly, we have (4.3). By [12, Lemma 3.1] again, there
exist X, Y € ."*" such that

! x)eTst ! Y)eTso
g(xa - ¥5)s € Jy, uz(xs), g(xa = ¥s), € Jy, ui1(ys)

3(1, 0 X 0 3( I, -1,
_3<0 1,,>5<0—Y)5§<—1,, L ) (44)

. -2, .
Let p = %(xg — ys). Since (p, X) € JUIJruz(xg), there exists a sequence (Z, Pm, Xm)

and

with (pm. Xm) € J5 " uz(zm) approximating (x5, p. X). For each (pm. X)) € J3 uz(zm)
we can find ¢, € C? such that Pm = Dowm(zm), Xm = D2¢m (zm) and u,, — ¢y, attaining
its local maximum at z,,. From the definition of viscosity sub-solution, we deduce that

G Pm)(@m) + € div (A(zm) Do (zm)) = f2(zm)-

Sending m — o0, by (zm, pm» Xm) — (x5, p, X) and the continuity of DA, A and f, we
obtain

H(xs5) < (XA(xs)p, A(xs)p) + ((DA(xs)p, p), A(xs)p) + €a” (x5)Xij + eafj(Xa)Pj~

Similarly, we also have

Fi(s) = (YA(s)p, Ays)p) + (DA P, p), Ays)p) + €a” (y5)Yij + eal‘fj s)pj-

Below we show that for arbitrary n > 0, f>(x5) < f1(ys) + Cn whenever § € (0 n) is
sufficiently small. If this is true, sending n — 0, we have f> @Y < fi (x9) for some x° € U,
which is contradiction with fi =% < f2 (xo), as desired.

To see fa(xs) < f1(ys) + Cn, by (4.3) and (4.4) we have

(XA(x3)p, Alxs)p) — (Y A(ys)p, A(ys) p)

3
= E(A(Xs)l? — A(ys)p)" (A(xs)p — A(ys)p)

3
= Z|A(xs)p — Ays)pl?

1)
3 ya
glA(XS) —AGPIE P
= CU, A)é
<CU1, A)n
whenever § < 1. Let A2 = (b'J )i j=1- For each k, the same argument leads to

br (xs5) Xi;b7% (xs) — BY (vs)Yi;b7* (5) < C (U, A8 < C(Uy, A)p

when § < n, and hence

n
a (xs)Xi; — a' (ys)Yij = Y _[BY (es) Xijb7% (x5) — b (35) Yi 0¥ (35)] < C (UL, A
k=1
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Moreover, using (4.3) again, we have

((DA(x5)p, p), A(xs)p) — ((DA(ys)p. p), A(Ys) )
< [([DA(x5) = DA(ys)lp, p)lIA(xs)p|
+{(DA(ys)p, P)I[A(xs) — A(ys)]pl
< CIDA(xs) — DA(ys)| + C3,

which, by the continuity of DA, will be less than Cn when § € (0, n) is small enough.
Similar arguments lead to that

a’ (xs)p; —a;’ (ys)pj < Cn

when § € (0, n) is small enough. Combining all above estimates, we conclude for arbitrary
n > 0, f2(xs) < fi(ys) + Cn whenever 6 € (0, n) is small enough. This completes the
proof. O

5 Existence

We always assume that A € C!(U; R"*") is symmetric and uniformly elliptic in this section.

Theorem 5.1 Let V € U and f € C(V) be bounded. For arbitrary g € C(dV), there exists
a viscosity solution u € C(V) to the Dirichlet problem:

dylul = f inV; ulgy =g.

Proof Denote by f; o the set of all viscosity sup-solutions v € C(V) to the Dirichlet
problem: '

dylul = f inV; ulgy >g.

Noticethatjﬂ;fg # (). Indeed, forany xg € V,0 < A < m and C > (2||f||C(v)/)»)1/3,
by Lemma 3.3, we have
AulCLy o +llgllcov)] = CaulLy o] < =C2/2 < =lIfllcyy < f inV

in viscosity sense. Thus Cﬁ;\uo +ligllc@v) € f;g. Set

u(x) = inflv(x)|v € yffg} Vx e V.

We claim that u is the desired viscosity solution.
To prove the claim, we observe thatu € USC(V),u > gon dV and by [12, Lemma 4.2],
ylu] < fin V in the viscosity sense. Moreover, similarly define

i(x) = sup{w()|w € 77} Vx e v,
where . e is the set of all viscosity sub-solutions v € C(V) to the Dirichlet problem:
Aylul = f mV; ulgy <g.

Note that &/, # @. Indeed, forany x® € 9V,0 < A < m and C > Q| fllcvy/M)'3,
letting b € R with —CL',j\4 ot b < |igllc@v), by Lemma 3.3, we have

Ay[—=CLy 0+ bl = Claly[—Ly 012 Ch/2= | fllcwy = [ inV
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in viscosity sense. Thus —Cﬁﬁ‘ w tb e, Note that e LSC(V), i < gondV and

by [12, Lemma 4.2], @y [i] > fin V in the viscosity sense.
Now we are ready to prove the claim by 3 steps.

Step 1. o/ylu] = f in V in the viscosity sense.

It suffices to prove &y [u] > f in V in the viscosity sense. Suppose this is not true. Then
there exist ¢ € C%(V) and a point x° € V such that u — ¢ attains its local maximum at x°,
but &7y [(p](xo) < f (x9). Without loss of generality, we may assume that u(x%) = (p(xo).

For any small € > 0, we define

Pe(x) = p(x) + €lx — x"2.

Since .7y [(p](xo) < f(xo), if € is small enough, we have &7y [(pé](xo) < f(xo), and hence,
by the continuity of f and DA, we have

Dhlpel(x) < f(x)

for all x in some small open neighborhood of x°, say V (x%) . Moreover, xV is a strict local
maximum point of u — ¢.; indeed, this follows from the fact that u — ¢ attains its local
maximum at x° and ¢ — ¢, attains its strictly local maximum at x°. Observing u(x°) =
(p(xo) = Q¢ (x%), we know that @e(x) > u(x) forx € Vi (xo)\{xo}, where V;(x%) c V(x9)
is some open neighborhood of x°.

Let § > 0 be sufficiently small so that the closure of

0

Va(x®) := {x € Vi(x0)lge (x) — 8 < u(x)}
is contained in V;(x9), and hence, ¢ — 8 > u in Vi (x?)\ Va2 (x0). Set

P(x) x € Va(xY)

0 = min(pe — 8, u) = { u(x) x € V\Va(x0).

Then 9 = u > g on dV. Since y[u] < f in V and «7y[¢] < f in Vi(x?) D VL (x?)
in viscosity sense, we conclude that <75 [0] < f in V in the viscosity sense. Therefore,
V€ 5’;“ - However, b = @ — 8 < uin V5(x), which is a contradiction with u < © by
definition.

Step2.u=g=uondV.
Let x° € V. For any € > 0, there exists r € (0, €) such that |g(x) — g(xo)l < € for all
x € Ba(x%, ) NaV.LetC; > %”g”c(gv) and define

v=g(% +e+ Cidy 0.
Then
v(x) > g(xo) +e€>g(x) Vxe Ba(x", rynav
and
V() = g +e+Cir = ligle@v) = 8(x) Yx € IV\BAG, r).
By Lemma 3.3, @y [v] <0 < f in V in viscosity sense, and hence v € y;g. Thus
g0 =u(x) = v(®) = g +e

which together with the arbitrariness of € > 0 yields that u(x%) = g(x?).
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On the other hand, by Lemma 3.2 and V & U, for all sufficiently small A > 0 we have

1
L o) = EdA(xO,x) >r/2 ¥x e V\Ba(x’,r).

Define
w_g(x )—e—Czll

A,x0

\Y

where C» satisfying Cor/2 > 2|Igllc(yv) and C;k/2 > | fllcvy- If 4 > 0 small enough,

Lemma 3.3 leads to that
ylw] = C3A2 = | fllew) = f

in viscosity sense. Observe that

wx) < g(xo) —e<gx) VxeadVn BA(xo,r)
and
wx) < —liglcav) —€ < g(x) ¥x € aV\Ba(x", r).

We know that w € .% ff e Therefore,
g(x”) = a(x%) > wx?) = g(x% —e,

which together with the arbitrariness of € > 0 implies a(x% = g(xo).
Step 3. We prove u € C(V).

Since u € USC(V) and <y[u] > f in V in the viscosity sense, by Lemma 2.4, u €
C%1(V) and hence u € C(V). It suffices to prove that u is continuous up to V. Since
u € USC(V) and ulyy = g, we only need to show that u € LSC (V). To this, applying
Lemma 4.1 to every pair of v € 5’f’ and w € //}"g, we have w < v on V, which yields

that u < 1 on V. Since #i|yy = g given in Step 2, we conclude that

liminf u(x) < liminf 4(x) < g(x°)
Vax—x0 Vax—x0

for every point x € 9V, thatis, u € LSC (V) as desired. O

6 Linear approximation property

We always assume that f € C(U)and A € C!(U; R"*") is symmetric and uniformly elliptic
in this section.

Theorem 6.1 Ifu € C(U) is a viscosity solution to (1.3), then u € oYUy and enjoys the
linear approximation property.

Instead of u, we consider the function #(¥) = u(x) + 2x,11 for ¥ = (x, xp41) € U =
U x R. Then the local Lipschitz regularlty and linear approximation property of u will follow
from those of u. Observe that JZ{H f in U in viscosity sense, where f (X) = f(x) and
HE, p) = (A(x)p p) with A(X) = dlag{A(x) 1} forall ¥ € U and p € R*1.

Moreover, i has the following property

{ u(N) 1(x)] ’d

S, @) := sup 170 < r} >2,
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forall ¥ € U and all possible » > 0, which is required in the following lemmas. Below we

write i1, A, f,U as u, A, f, U correspondingly.
ForA>0and x € U and r € (0, dist 4(x, dU)), define

{i[u(y) —u(x)]
r

Sz"r(u)(x) 1= sup L. < r} .

When J = 0, we have Sz)vr(u)(x) = S% ,(u)(x). For € > 0, set

U :={x e U,ds(x,0U) > €}.

Lemma6.2 For any € > 0 and A > 2| f|cw.), there exists rc; € (0, €) such that for all
x € Uy, the mapsr € (0,r¢ ;) — S; r(u)(x) are increasing.
W

Proof Let
res = min{e/2, 17" (e). n~' (1/41), (Inv2)/4),
where 7(r) = ¢**'t. By Lemma 3.1, we have
dpx () = 1(L ()
whenever Eﬁ\,x (y) < (In+/2)/A. Thus for all x € Use and 0 < r < r¢ 5, we have

{yeU: L} (y) <r} C Ba(x,n(r)) C Ba(x, €) C Ue.

Given x € Uze and 0 < r < r¢y, set
vEO) = £85 0L ).
Then
—v7(y) < u(y) —u@x) <vt(y) whenl) (y)=rory=x.
By Ezyx(y) <dj x(y)forall x,y € U, we have
Sar(u)(x) > S, ()(x) =2 Vx e Uandr € (0, dist 5 (x, 9U)).
Since r¢.; < n~'(1/42) implies that
diam a{y : £§ . (v) <r} <2n(r) < 1/22,
applying Lemma 3.3 we have
vt < —1/2 < —fand SylvT1 = A/2 > finf{y: L () <1}

Notice that &y [u —u(x)] = fin{y: ﬁﬁx,x()’) < r}. By Lemma 4.2, we have

vT <w—u]<vt in {y: L4 () <7}
In particular, when Ej\q, () <s <r,wehave

—sSzﬁ’r(u)(x) <u(y)—ulx) < sSZz’r(u)(x),
which implies that

Spr () = S7, ()

as desired. O
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Corollary 6.3 We have u € C%'(U) and

ST () (x) = lim Si, ) (x) = lim St w)(x) VxeU, u>0.

E“

Moreover, LipdAu = ij(u) e USC(U).

Proof Note that u € C%!(U) is given by Lemma 2.4. Here we would like to give a different
proof via Lemma 6.2. For € > 0 sufficiently small, let A and r¢  be as in Lemma 6.2. Let
x,y € Use withda(x, y) = r for r < re ;. Then £%(x,y) < da(x,y) < r and hence, by
Lemma 6.2,

lu(y) —u(x)| < r[SZ%r(u)(x) + S (W] = r[SZ',\Je,x(u)(x) SR OIC)
Since
St W@ +S., W) < i||u|| =
Lyorea Lhurea =, Me@ar
we have

4
lu(y) —u(x)| < da(x, y) Hu”C(U ).

This holds trivially when x, y € Uae with da(x, y) > re;. Thus u € C%1(Upe).
Moreover, by Lemma 3.1,
Ba(x,r) C{zeU: llfg,x(z) <r} C Ba(x,n(r)) C Ba(x,e) C Ue
whenever x € Uy and r < r¢ ;. This implies that
{z: L4 @) =07 ' (M} CBalx.r) Clz: L) (2) <7}
and hence

n~(r)

St a1 ) = S5, (00 = S, (0().
i

Recall that n(¢) = ey, By lim, ¢ n_] (r) = 0, we have

~1
r _
im T im0

r—0 r r—0
and hence
11m1nfS - (w)(x) < liminf §T (u)(x) < limsup ST, (u)(x) < limsup §%, () (x).
) r—0 i r—0 ! r—0 Lor

Since the map r — S; ru(x) is increasing as given by Lemma 6.2, we have
't

R TI + _ . +
lllfljélps L) (x) = hgl)l(r)lf Sqm,l(r)(u)(X) = re(lol?fd) S,Ci‘\,r(u)(x)’
which yields that
+ P ot _ i of o +
S0 = lim 3,000 = lim 7, @) = it S .

This together with SZ () € C(U) tells that S5 (u) € USC(Ue).
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For0 < pu < A, by L4 < £ < ds we have

Ba(x,r) Cly: LYy (0 <ryCily: L, (») <7}

and hence
i @) = S5 @ < 57 @,

Therefore lim,_. Siigr(u)(x) = S5 () (x).

Finally, we show that S5 («)(x) = Lipy,u(x) for x € Use. Obviously S (u)(x) <
LipdAu(x). On the other hand, for any + € (0, r¢ ), by Lemma 3.1, Lemma 6.2 and the
continuity of SiA t(u), we have

A

Lip,, u(x) < lim sup Mlz, w € Ba(x,r)
A T r—0 da(z, w)

< lim sup Mlz,w € Ba(x,r)
r—0 [,A(Z, w)

IA

lim sup { sup S; (u)(w)|w € By(x,r)
r=0 se(0,2r) At

IA

lim sup { S, (u)(w)|w € B4(x, r)}
Lyt

r—0

+
SWCOICR
Therefore,
Li . + ot
ipgu(x) < lim ST, ()(x) = ST ()(x)
as desired. O

Lemma 6.4 Assume that 0 € U and let A, (x) = A(rx) and u,(x) = @ for all possible
r>0andx € %U. For all possible r > 0, s > 0 and x € U, we have

Sk rx) =Sy (u)(x) = S5 () (x/5).
Proof Let d,, be the intrinsic distance determined by A,. Note that

1
da(rx,ry) =rda,(x,y) Vx,ye-U. (6.1)
r
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Indeed, by (A™1),(z) = (A4,)7!(z) for z € LU, we have

da(rx,ry)

1
— inf { < fo (AT E6))E®), E(s)) ds)

, L 1,1, VZ 1
= rinf </ (A7) ((=5)N(=8)(5), (=5)'(s)) dS) ’(*5) € C, 1;x,y; =U)
0 r r r r r

12
‘%‘ e C(0, I;rx,ry; U)}

1 1/2 |
= rinf{(/o (A~ ) (), ﬂ/(S))dS> ‘77 €C(0, 15 x, y; rU)}

1
=rdy, (x,y) Vx,ye-U.
r

By (6.1), we know that %BA (x,8) = Ba,(x/r,s/r) for all possible x, y, 7, s.
By the definition,

=+ —
SE e = max DTN ) — /el
r YEBy, (x,5) s YEBy, (x,5)

By (6.1), we have
da,(x,y) = sda, (x/s,y/s).
Hence, d4, (x, y) < s implies that d4, (x/s, y/s) < 1.So

S ) (x) = oM Elrs (@) —urs (/)] = S 1 () (/).

Similarly, we have S (u,)(x) = Sy, () (rx). o

We also need the following result, which can be found in [10]. When A = [, and U = R"
(in this case, d4 is the Euclidean distance), we write Sj; ~(u) as S;IE (u) respectively.

Lemma 6.5 Suppose that u is a viscosity solution to Axou = 0 in R" and
SE@)(0) = SEw)(0), SEw)(y) < STw)(0) Vy e R" and r > 0.
Then u is a linear function.
With those lemmas above, we are ready to prove that all blow-ups are linear.

Proof of Theorem 6.1 Fix x° € Uy, for any € > 0. Up to dilations and translations, we may
assume that x* = 0, A(0) = I, and u(x°) = 0. Let A, (x) = A(rx) and u, (x) = “C for
all x € %U and r < re

Letx,y € By, (0 Tedy, By (6.1),rx,ry € B4o(0, re ;. /2) C Ue. Hence, by Lemma 6.3,

2
1
lur (X)| = a0l < C—da(rx,0) = Cdy,(x,0) < CL|x|,
r r
u(rx) —u(ry) 1
lur (x) —ur ()| = % = Coda(rx,ry) < Cdy, (x,y) < CLIx —yl.

For each sequence {r;} with r; — 0 as j — oo, by the Arzela—Ascoli lemma, there is a
subsequence {rj, } and v such that u,;, — v locally uniformly in R" as k — oo. For short
we write {r;, } as {r;} below. Obviously, v(0) = 0. By the compactness of viscosity solutions
and A(0) = I,,, we have Asv = 0 in R” in viscosity sense.
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We claim that S (v)(0) = SF(v)(0) = S5 (u)(0) and SF(v)(x) < §F(v)(0) foralls > 0
and x € R". If this is true, then Lemma 6.5 implies that v is linear. Theorem 6.1 then follows
from this and Corollary 6.3.

To see the claim, observe that lim ; _,  u, ;=0 andlim, 0 da, = |-—-|locally uniformly
in R” (see [20]). This implies that

. . fuy; (x) +u(x
lim Sf' (ur)(x) = lim  sup “UT = sup *x)
j—oo T ./—>00xeBA,j (x,5) s xeB(x,s) S

= SEw)(x).
By Corollary 6.3, for every s > 0 we have
. + . + +
Jim S5 Gr)0) = Jim SF, (0(0) = SF)0).
Hence, S;t v)(0) = Sf(u)(O) for all s > 0. Moreover, for all x € R", if R € (0, r¢3) and
rj < R/s, since the maps r — S; r(u)(rjx) are increasing when A > 2|| f|lc.), we have
%
Sk @ )) =Sy, (rjx) <87, @(rjx) < S5, @)(rx)
A,j,s rj A,srj J — ﬁ%sr./ J — "LAR JrI e

Letting j — oo first and R — 0 later, by Corollary 6.3 we arrive at

SE@)(x) < ST@)(0) = $*(v)(0)

as desired. ]

7 Approximation equations

In this section, we always let f, g € C*°(U),and A € C*°(U; R"*") being symmetric and
uniformly elliptic. Assume that V = B(0,3) € U and f > O in V. For € € (0, c0), we
consider the approximation equations:

dylvl+ediv(ADv)=f in V; v=g on dV. (7.1)

Lemma 7.1 For each € € (0, 00), there exists a classical solution u¢ € C®(V) N C(V)
solves (7.1).

Assume that {u€}.~0 are (viscosity) solutions to (7.1) as given in Lemma 7.1. We have the
following uniform estimates for €, locally uniform estimates for Du¢ and locally uniform
flat estimates for | Du® |2 — uj,. Write Ly > 1 as the elliptic constant of A in V/, that is,

1
E""z < (A(X)p,p) <Ly|p| VxeV peR"

Lemma 7.2 Assume that 1 < Ly < 21/4,
(i) There exists 8o > 0 such that if || DAllc(vy < do, then

sup max |u¢| < C,
ec(0,11 V

where C = 1 depends on | gllc@v), Il fllcv).
(ii) Moreover, for any y € (0, 1), there exists §,, such that if || DA||c(v) < 8y, then

sup [u€(x) —g(xO) < Clx —=x°), vx' e aVandx eV, (7.2)
ee(0,1]

where C = 1 depends on 'y, |||l cor s | fllcw).
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Lemma 7.3 Assume that 1| < Ly < 2Y4 For each W € V, there exists a constant
C = 1 depending on ligllcovy. I fllcvy, I1Dflcy Al IDAllcv). ID*Allcw)
and dist (W, dV) such that

sup max |Du‘| < C.
ec(0,1] W

Lemma7.4 Assume that 1 < Ly < 2%. and A(0) = I,. Suppose that, for some small
constant ). > 0,

IDAllcvy + ID*Allcovy + IDfllcvy < A
and

max |u€(x) — x,| < A.
x€B(0,2)
Then there exists a constant C > 0 depending || flc(v), lIgllcv) but independent of A such
that

|Duf (x)|> < uf(x) + C1Y? Vx e B(0,1)and € € (0, 1].
Lemma 7.1 follows from the elliptic theory (see [17, Chapters 13&14]).

Proof of Lemma 7.1 To show that (7.1) has a solution u € C* (V)N C(V), due to the elliptic
theory, it suffices to show this equation has a solution u € Cx*(V) N C(V) for some
a € (0, 1). Indeed, if Du is bounded locally in V, and hence the above equation is a uniform
elliptic equation in each subdomain W & V/, then the elliptic theory yields that u € C*°(W)
as desired.

For convenience, we only consider the case € = 1; the case € # 1 is similar. Rewrite (7.1)
withe =1 as

a’(x, Dv)vi; +b(x, Dv) =0 in Viv=g on 3V

where
a'l(x, p) = 2a" (x) pra’* (x) p + @' (x),
b(x, p) = —f () +a] () pipja* (¥ pe +a (¥)p;.
We always use the Einstein summation convention and also write v; = %v and v;; =

#;xjv. Obviously a/ (x, p) € C®(V x R") and b(x, p) € C®(V x R"). Set

A(x,p) = L(1+2L|p|)
and
E(x, p) = a" (x, p)pipj = a’ (x)pip;j + 2[a” (x) pip;1*
forall x € V and p € R". Then

1 2 2
lel <&@, p) < A, p)lpl-.

By [17, Theorem 13.8],7the existence of a solution u € C2’°‘(V) N C(V) is reduced to
proving that if v € C>%(V) are a solution to the equation

n
Z aij(x, Dv)v;j +ob(x,Dv) =0 in Viv=o0g on 9V
i j=1
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for each o € [0, 1], then there exists a constant C > 1 independent of o such that

sup |[v7 | + sup |[Dv?| < C.
v Vv

Note that supy; [v?| < C follows from the maximum principle (see [17, Theorem 10.3])
due to

lob(x, Pl _ pilpl + w2
Ex,p) ~  IpP?
for some constant 1, ;2 > 1 independent of o.

Moreover, sup,y |Dv?| < C follows from [17, Theorem 14.1] since there exists a constant
© > 1 independent of ¢ such that

IpIA(x, p) + lob(x, p)|
< LIpl(1 +2LIpI») + I fllcvy + n*IDAlcovyl pl(1 + nllAllcylp?)

Vx € Vand p e R"

1 2 1 2
< u— 14+ —
_uLlpI( +L|p|)
< u&(x, p)

whenever |p| > u, x € Vando € [0, 1].
Finally, we prove that supy, |Dv?| < C. We consider the following quantities

1 n
alx, p) =z 3 :(g piDpy — DE(x, p)}

Balx, p) = {lpI7?pi Dy, E(x, p) + 0 (pi Dy, — Db(x, p)}
&, p) =
2 n . n
yax.p) = g :L‘;'L > eI pka! 01+ 0 Y piDpbx, p)}
’ k=1 i=1

thatis,r = —1,5s = 0,8 = |p|2 Y piDy, 8 =Y piDp,, ay (x, p) = a"(x) and
A* =1/Lin[17,(15.27)]. With the aid of sup,y, |[Dv°| < C, supy, |[Dv?| < C follows from
Theorem 15.2 of [17] if we can show that lim SUP 5, 00 a(x, p) andlim SUP 5 00 Ba(x, p) are
uniformly inx € V and are uniformly boundedino € [0, 1], and limsup,_, ., ya(x, p) = 0.
Observing that

n
piDpEx, p) =Y piDpda" (x)pipj +20a” (x)pip; 1}
k=1

= 24" (x)pipj + 8[a" (x)pi p; 1%,
we know that lim supp_woa(x, p) = 3 uniformly in x € V. Moreover, by E(x, p) =
o(p/M, A € CH(V; R™"), we have

n n
> piDyE, p) =Y peDyda” (x)pipj + 2la” (x)pip; 1}
i=1 k=1

n
=" pea! () pip;l1 + 24" () picpe]
k=1

< o(pP),
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and
n .. .
Y piDpb(x, p) =3¢ () pipja (x)pe + a (¥)pj < OpP),
i=1

we obtain limsup,,_, ., Ba(x, p) = limsup,_,, ya(x, p) = O uniformly in x € V and
o € [0, 1] as desired. O

Lemma 7.2 follows from Lemma 4.2.

Proofof Lemma 7.2 Proof of (i) Let v = | gllc(3v) be a constant function. Since f > 0, by
Lemma 4.2, we know that u¢ < ||gllcav) in V. -
To get the lower bound of «€ in V, it suffices to find w € C(V) such that w < gon dV,

w>—=C( fllcwy, lglcevy) inV, (7.3)

and
ylw] +ediv(ADw) > || fllcvy in V. (7.4)

Indeed, if such an w exists, then by Lemma 4.2, w < u€ in V and hence
u¢ > w>—Cglcevy I fllcyy) inV

as desired.
We take w(x) = —Alx — x0)¥ — llgllcvy where y € (0, 1) and x% € 9V, but the value
of A > 1/y will be determined later. Then w < g on dV. It is easy to see that

2a™ ()wi (0)a’ (ywe (x) = 222y 2 x — x°1P e () o — xd)a’ () (xe — x7)
and
—wij(x) = Ay (y —2)lx = x°17 7 0n = x)) 0 — xD) + Ay e — x°)7 7255
Then
—2a"™ (ywr(x)a’* () we (wij (x) — ea’’ ()i (x)
=222y (v = 2l — x°PB a0  — 2 (i — a1
+ery(y —2lx —x° Y () (rj — xND i — x))
+2233x = xPPr0a* ()at () (o — x) (e — x{)]
+erylx — x4l s
<22~ 2l 2L 4 Ay (y — D) — 0P
+ L2333 — XY - nLaey|x — X072

By L* < 2, we have %(2 —y)+ L? < %(y — 1), and moreover, we can choose X large
enough such that

1 _
nL < ﬁxzﬁ(l — 6% 2.
Thus

—2a"™ (ywr(na’ (Wwe (o)wi; (x) — €a” (ywi; (x) < %ﬁﬂy = Dl =207,
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Moreover,

| — £ +a Owi )w; () (Dwe(x) + eal (w; (x)]
< Ifllcevy + n2IDAllcvyLIDw]? 4 en® | DAl c vy | Dw)
< Ifllcw)+ n260LA3y3|x |3V -4 nzéo)\y|x — x0|y_1.

If 8o < (1 — y)/8n%6* =3, then

1 _
A3y = Dlx =204

2 3.3 0,3y—3 2 1 _
n°8oLA x = xOPY 3 ¢ enSory|x — 201V
oLA7y”| | +endory| | =502

Combining these estimates, we arrive at
1 _
ulw] + € div(ADw) = 527y (A=)l =2 = fllew) = 1 fllew)

if we let A be large enough such that

1 _
ﬁﬁﬁ(l — )6 =4 fllew.

This gives (7.4).

Proof of (ii). Take a point x® € 9V. Define w(x) = —Alx — x|, the value of A will be
determined later. First, since g € C%!(3V), we can choose A > || gllco.1pyy such that

w+g(®) <g<g(x® —wonadV.

Moreover, following the procedure in (1), if [ DA|cv) < 8, = (1 — y)/8n262V_3, and A is
large enough (depending on || f|lc(v)), we have
Aplw] + ediv(ADw) > || flicw)-
Applying Lemma 4.2, we conclude that
w4+g(x" <uf <gx® —win V.
That is, [u€(x) — g(x%)| < C|x — x°|7 as desired. o

The proofs of Lemmas 7.3 and 7.4 are similar to those of [28, Theorem 3.1 and Theorem
3.3] respectively, where f = 0. Here we only sketch it by omitting several details, but
pointing out that the additional terms comes from f # 0 can be controlled.

Proof of Lemma 7.3 We let all the notation be the same as in the proof of [28, Theorem 3.1]
except that we write A€, H¢, f€, g€, u€ there as A, H, f, g, u here for simple.
Recall that

dylu] = 2aikukuijaj£u4 + a,l(ju,-ujauug.

We always use the Einstein summation convention. Taking % of the equation <7y [u] +
e div(ADu) = f, we obtain

2aikuku,-jsajlug +4aikuku,~jaﬂu4 +4aikuk5uijajeug —l—a,’cjyu-u 'akeug +2a,’€] uisujakeug
+ak Uil akeug —i—ak u; uja Clgs + € div(ADuy) 4+ € div(AsDu) = f;. (7.5)
Set

G, = 4aimu,-jaﬂug + ZaZ”ujak[ug + a,l(/uiujakm, (7.6)
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and
Fy = 4a§kukuijaﬂug + a,lc'/uiujafeug + a,’("suiujakzug + e div(AgDu). (7.7)

Define the operator L, by

n
Lev :=2a"ugvija’‘ug + ) Gpvm + € div(ADv). (7.8)

m=1
Then (7.5) can be written as
— Le(us) = Fs + fs. (7.9)

Setv := %|Du|2. Then, by (7.9) and an argument similar to [28, Theorem 3.1] we have

n
Lev =2|D*uADul® + ) " [ea ugius; — usFy — ug f;]. (7.10)

s=1

Setz := %(u)z. Then, by @7y [u]+€ div (ADu) = f and an argument similar to [28, Theorem
3.1] we have
Lez = 2(Du, ADu)? + €(ADu, Du) + uf
+4u(ADu, D*uADu) + 2u{(Du, DADu), ADu),
where (Du, DA Du) is interpreted as the vector ((Du, Ax Du)); with Ax being the element-
wise derivative of A.

Choose ¢ € C(c)’o(V) suchthat¢ =1in V, 0 < ¢ < 1, and, for § > 0 to be determined
later, define the auxiliary function w by

w = ¢2v + Bz.
If w attains its maximum on 0V, then
B 2
supv < supw(x) < max w = max w = Emaxu s
V V Vv A% A%
as desired. Thus we may assume w attains its maximum at an interior point x° € V. This

gives Dw(xo) =0and Dzw(xo) < 0, so that

— Lew(x%) = —a" ura’ up + ea’yw;| = 0. (7.11)
X

=x

On the other hand, by (7.10) and (7.11), similarly to the proof of [28, Theorem 3.1] we have

that, at x = x9,

0 < —Lw(x’) = —Le(¢*v) — BLez

|:—2¢2|DZMADM|2 — e? Za"fusiusj — 28(Du, ADu)*> — €f{Du, ADu) — ,Buf:|

s=1

— [4ﬂu(ADu, DzuADu) + Zﬂua;”jujumakeug]

- [8¢a”‘uka”ue¢i D urjur+dep Y pia'l um,um} +¢> > us[Fo+ fil—vLe(¢?)

r=1 m=1 s=1

=h+hLh+L+1L4+Is.
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Observe that the terms 1o, I3, I5 are exactly the same as in the proof of [28, Theorem 3.1].
So the same argument as there leads to that

I < B3\ D*uADu|*> + C|Dul* + C(B),

IA

I3

IA

1 €
g|DZMADM|2¢>2 + ﬁ|D2u|2¢>2 +C|Dul* + C,

Is

IA

1
g|D2uADu|2<;>2 + C|Dul* + C,

Comparing /1 and /4 with those in the proof of [28, Theorem 3.1], we get additional terms
Buf in I and ¢> > i usfs in I4 here. But applying an argument similar to proof of [28,
Theorem 3.1], we also have

2
I} < —2¢*|D*uADul* — %¢2|D2u|2 - —€|Du|4 +C(B)
Iy < |D2uADu| ®% + C|Dul* + ——¢*|Dul? + C.

16L

Above C > 0 denotes constants depending only on n, L, |Allcriyy, 1 fllcivys lullew),
Il fllcevy and dist(V, V).
Combining all these estimates with (7.11) yields that, at x = x©,

262 D*uADul? + %¢2|D2u|2 + %mour‘
< |D*uADul*¢*> + C|Du|* + CB*3|D*uADu|*> + 8%¢2|D2u|2 +C(B),
so that
|D>uADu|*¢? + 7 ﬂ|Du| < C|Dul* + CBY3\D*uADu|*? + C(B).

We may choose 8 > 1 sufﬁciently large so that

B

|DXuADu|*¢* + ﬁlDu|4 < CB*3\D*uADul*’® + C(B).

Multiplying both sides of this inequality by ¢* and applying Young’s inequality implies

|D?uADu|?¢® + p S |1Dul*¢* < CBYPID*uADU ¢t + C(B)
1
E|D2uADu| ° +C(B).
Hence we have |Du(x")[*¢ (x%)* < C.
This finishes the proof. O

Proof of Lemma 7.4 We let all the notation be the same as in the proof of [28, Theorem 3.3]
except that we write A€, €, u€ as A, f, u for simplicity.
Set @(p) := (|p|* — pn)% = max{|p|* — py. 0}%. Let ¢ € C°(B(0, 3)) be such that

¢ = 1in B(0, 1), ¢ = 0 outside B(0,2), 0 <¢ <1, and |D¢| < 2.
Define

v =¢>®(Du) + B — x,)*> + A|Dul?,
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where 8 > 0 is a sufficiently large number whose value will be determined later. Applying
Lemmas 7.2 and 7.3, we have |u| + |Du| < C in B(0, 2). If maxp(,2) v is attained on
dB(0, 2), then by the same argument as in [28], we have the desired estimate. Therefore we
may assume that v attains its maximum at an interior point x0 e B(0, 2). Moreover, we can
also assume (| Du|* — u,)(x°) > 0.

To estimate v(x?), let L. and F; be given by (7.8) and (7.7). We need to compute L.v at
x0. Using

Aylul + ediv(ADu) = 2aikukuijajgug + a,ijuiujakzug + ediv(ADu) = f,
similarly to [28, Theorem 3.3] we obtain

—Le((u — xz)?) = —4({Du, ADu) — a”kuk)2 —2e(Du — e,, A(Du —e,))
—8a™ (uy, — Senuijalue(u — xy)

ij ke
—day (w; — Sipuja” ug(u — xp)

n
+2a;l<juiujak461gn(u —Xn) + ZGZaf”(u —xp) =2 —xp) f
i=1

=h+h+B+D+Js+ Jg+ J7,

where we denote e, = (0, ..., 0, 1). Comparing the formula of —L,((u — xn)?) as in that
appeared in the proof of [28, Theorem 3.3], we will see that the terms J; through Jg are
the same and J7 is new here due to f 7# 0. Regards of the terms J; to Jg, with the aid of
Theorem 7.2 and by exactly the same argument as in the proof of [28, Theorem 3.3], we have

€
= =7 |Du—en’ 131 < CAID*uADuL, |Jal +1J5| < Ch. |Jg| < Cer,

and
I < —4)1Du = u, ' + Ca,

where we use ||DA| L~ < X and A(0) = I,. It is easy to see that | J;| < CA. Therefore, we
arrive at

2
— Le(u = x)?) < —4(1Dul® = u,)” - {lDu —ey)? + CA(1 + |D*uADu|)7.12)
Moreover, similarly to the proof of [28, Theorem 3.1], by (7.10) we have

1
SLe(1Dul) = |D2uADu|2+%ID2u|2—C. (7.13)
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Next we need to estimate L (¢>®(Du)). As explained earlier, we may assume | Du 12 > up,
atx% € B(0,2). As in the proof of [28, Theorem 3.3] for L. (®(Du)), we write, at x = x0,

n n
L (®(Du)) = 4aikukajeug (ZZusjux — unj) (221@,»% — u,,,-)
s=1 s=1
n
+ 8(|Du|2 — u,,)a’kukaﬂug (Z%i%/)
s=1
B n n
+ 2ea" (ZZus,‘uS - um-) (ZZusjus - u,,j)
s=1 s=1
n
+ 4ea" (|Du|2 — un> (Zusjusj)
s=1

+ 2(|DM|2 - ”n)(zzusLe(us) - Le(“n))

s=1

=K+ K>+ K3+ K4 + Ks.

(7.14)

Here G,, is as defined in (7.6). The estimate of K1, ..., K4 are exactly the same as in the
proof of [28, Theorem 3.3], that is,
2
K, = 4[2(Du, D2uADu) — (D*u)", ADu)] ,
K> = 8(|Du)? — u,)|D*uADul?,

2e - 2
K3 > f (zzusius - uni) s

i=1  s=1
2
Ky )

v

4f€(|Du|2 — uy)|D*u

where (D%u)" denotes the nth-row of D%u. Regards of Ks, by (7.5), we have
n
Ks =2(1Duf? - un)(Zzust Fugfy — Fy — fn).
s=1

Applying Lemma 7.3, we obtain

IKs| < (IDul® — u,)(CA|D*uADul + ﬁwzmz +Ch).
Putting these estimates into (7.14) gives

Lo(®(Du)) > 8(|Duf® — un)(|D2uADu|2 n imzuﬁ)

+4[2(Du, D2uADu) — (D*uw)", ADu)]2

2¢ I n 2
+ f Z <Zzuxius - uni)

i=1 s=1

— CA(|Du)? = up)|D*uADu| — Ch. (7.15)
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Applying this and using the arguments same as in the proof of [28, Theorem 3.3], we
conclude that

Le(¢*®(Du)) = —C(|Dul* — up)* — Cr(|Dul* — uy) — Ch. (7.16)
Combining the estimates (7.12), (7.13), with (7.16) yields that, at x = x9,
0 < —Le(v) = —Le(¢*®(Du)) — BLe((u — x4)*) — ALe(1Dul?)

C(1Dul® = un)* + CA(1Dul? = u,) + Ch

2ep
L

+2A( — |D*uADu|? — %IDZMIZ + c).

IA

—48(1Dul? — u,)’ |Du — e, |” + CBA + CBA|D*uADu|

Thus we have that, at x = x9,

@B — O)(1Dul® — uy)® + 21| D*uADu|* + 22—;|D2u|2
< CA(IDul* — uy) + C(1 + B)r + CPA|D*uADul.
Choosing 8 > C and applying Young’s inequality, we obtain
B(IDu® —u,)* < Cr+ 2%,

Thus we conclude that | Du(x?) |2 — u, (x%) < C+/A as desired. o

8 Everywhere differentiability

In this section we always assume that A € C'-1(U; R"*") is symmetric and uniform sym-
metric, and f € COL(U).

Theorem 8.1 Ifu € C(U) is a viscosity solution to <7y [u] = f in U, then u is differentiable
everywhere in U.

Assume that B(0,3) € U and f > 01in B(0, 3). Write V = B(0, 3). Denote by Ly the
ellipticity constant of A in V, and assume that 1 < Ly < 2%. It is a standard fact that there
exist {A€}es0 C C®WU; R, { f)e=0, {g}e=0 C C*®(U), and constant €y € (0, 1) such
that

(A1) A(0) = A(0), and A€ is symmetric and uniformly elliptic with constant L%, for all
€ € (0, €)
2 2
(A2) |DA| ) = 2|DA| ¢y, and | D A leqr = 2| D*Afl o forall € € (0, €)
(A3) foranya € (0,1), A > AinCL¥(V)ase — 0,
(A4) f€ >0, |Dfe “C(V) = 2HDf“c(V) and || Dg*
(0, €0), _
(A5) forany o € (0, 1), f¢ - fin CO%(U) and g¢ — u in C**(V) as e — 0.

|C(V) < 2||Du||L°°(V) for all € €

For € € (0, €p) let u€ be the smooth solution to the approximation equation
ye[v] +ediv(A°Dv) = f€ in V; v=g° on 9V (8.1)

as given in Lemma 7.1. We have the following approximation property.
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Lemma 8.2 There exists a constant 8 > 0 such that if ”DA”C(V) <&, thenu — u locally
uniformly in V.

Proof Fixay € (0, 1) and assume || DA|lc(v) < § = min{$,, §o}/2 where §,, and & are the

same as in Lemma 7.2. Then || DA€||c(vy < 258 fore € (0, €0]. Notice that A€ has the same
elliptic constant L%, < 274 By Lemma 7.2, we have

sup |u€ ”c(V) < ||”||C(V) 8.2)
€€(0,€0]
and
sup u(x) —u(x®)| < Clx —x°7, vx e dVandx e V. (8.3)

€€(0,¢0]

Moreover, due to (A1)—(AS5) again, applying Lemma 7.3 we know that for any compact
subset K € V, there exists a constant C > 0 such that

sup HDue HC(K) <C.
€€(0,€0]
By this and (8.2) one has that, up to some subsequence, u¢ — i locally uniformly in V for
some i € C%!(V). From this and (8.3), it follows that

li(x) —u(x®)| < Clx —x°)”, Yx e Vand x° € 9V.

Thus, # € C(V) and & = u on dV. By [12, Lemma 6.1], we know that # € C(V) is a
viscosity solution to the Aronsson equation (1.1). Since # = u on 9V and f > 0in V, by
Theorem 1.1, we have & = u. Therefore, u® — u locally uniformly in V as desired. O

With the aid of Lemma 8.2 and Lemma 7.4, Theorem 7.1 follows from an argument similar
to those of [16, Theorem 1.1], [28, Theorem 1.1] and [21, Theorem1.2].

Proof of Theorem 8.1 For each fixed point x* € U, we need to show the differentiability
of u at x0. Up to consider #(X) = u(x) + Clxur1|*3 for ¥ = (x, x,41) € U x R (see
e.g. [18, Theorem 1]), we may assume that f > 0 in B(x%, Ldist 4(x°, 9U)). Indeed,
differentiability of u at x follows from that of & at (x°, 0). Moreover, U] = f inU xR,
where f(%) = f(x) + C343/3* and H(X, p) = (AX)p, p) with A(¥) = diag{A(x), 1} for
all¥ € U x Rand p € R™IF4C/3%3 > || f| ¢y, then f>0inV.

Up to some scaling, rotation and translation (see [28, Lemma 4.2]), we may assume
that x% = 0, u(x% = 0, and A(x®) = I,. Moreover, we assume that LipdAu(O) > 0
otherwise (8.4) holds with pp = 0. Up to consider u/Lip,, u(0), we may further assume that
Lip,,u(0) = 1.

Now, it suffices to prove the existence of a vector py € R” such that

lu(h) = (po, h)| = o(lh]), ¥ h € R". (8.4)

By Theorem 6.1, we need to show that for every pair of sequencesr = {r;} and s = {s;} that
converge to 0, if

1
lim max — |u — (a, =0
Jim max =) = (. )l

and

1
lim ma — — (b, =0
kl>oo yeB(o,x3xk) Sk lu(y) = (b, ¥l
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for some a, b € R”, thena = b.
We prove the above claim by contradiction. Suppose that a # b. Recalling that

H(0,a) = (a, a) = Lipy, u(0) = (b, b) = H(0, b)

as given in Theorem 6.1, we have |a| = |[b| = 1. Up to a rotation, we may assume that
a = ¢,. Since |b| = 1 and b # ¢,, we have

6:=1—-b, >0.
Let C > 0 be the constant in Lemma 7.4 and choose A > 0 such that

b =2

4

Choose r € {r;} such that f > 0in B(0, 3r),
| ) =yl = * (8.5)
max — .
veB© 3 r Y T =g

and

{ “181p12 < (A()p, p) <2"8IpP, x € B(O,3r), peR", 56)

r”DA HC(B(O 3y tr H D2AHC(B(0 3y TriIDfllcso3) = mm {5’ 7‘}’

where § is the constant given by Lemma 8.2.

For x € B(0,3) C U=1Ulet Ax) = AGrx), f(x) = rf(rx) and i(x) = Ju(rx).
Then /(U] = f in B(0, 3) in the v1scos1ty sense. We also let {A€}€>0, {f }e=0 and {g°€}
be smooth approximations of A, f and u u_in U as in the beginning of this section, and
hence satisfy (A1)—-(AS5). Observe that DA(x) = r(DA)(rx), Df(x) r2Df (rx) and
D?A(x) = r2(D*A)(rx) for x € B(0,3). By (8.6), for ¢ < €

{ “V4p)? < <AE(X)P p) <2Y4p]2, x € B(0,3), peR",
”DA ||C(B(0 a3y T “ D2 A HC(B(O 3y T ”Df ”C(B(O 3y < min {8,2}.

By Lemma 7.1, we denote by € € C*°(B(0, 3)) N C(B(0, 3)) be smooth solutions to the
Dirichlet problem:

Age[v] + ediv (A°Dv) = f€ in B(0,3); v=23% on dB(0,3).

Lemma 8.2 implies that ¢ — u uniformly in B(0, 2). From (8.5), we also have

max |u < —.
yeB(O’z)l ) =l < 1

Hence there exists €; € (0, ) such that for all € < €1,

N>

y£?§2)|u ) — | <

Applying Lemma 7.4, we arrive at
|DE€|” <@+ CA'? in B(O, 1).

On the other hand, set 5; = si/r. Then

lim  max u =0.
k—00 yeB(0,35%) Sk | (y) ( >|
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Choose n = % and pick s € {5}, with 0 < s < 1, so that

1
max - |u(y) — (b, <
(xS [u(y) — (b, y)| <

s

By Lemma 8.2 again, there exists €2 > 0 such that for all € < €3,

1,
max - [i(y) — (b, y)|

<n.
yeB(0,s) § g

Applying [28, Lemma 4.3] to %if (s-), we can find a point x% € B(0, s) such that

| D (x%) — b < 4n,

which, combined with |b| = 1, yields

46 (x0) < b, +4n < 1—0+4n,
| Dii€(x%)| = 1 —4n.

Thus

~ - - 0
(1 —4n? < [DEE (O] <750 + CA2 < 750 + =

which gives

=

s

NS
D

0 <121+

this is impossible. The proof is complete. O
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