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Abstract
We consider inhomogeneous Aronsson’s equation

〈D〈ADu, Du〉, ADu〉 = f in U , (0.1)

where U is a bounded domain of Rn with n ≥ 2, A ∈ C1(U ;Rn×n) is symmetric and uni-
formly elliptic, and f ∈ C(U ). First, we establish the existence and uniqueness of viscosity
solutions for the corresponding Dirichlet problem on subdomains. Then we obtain the local
Lipschitz regularity and the linear approximation property of viscosity solutions to (0.1).
Moreover, under additional assumptions that A ∈ C1,1(U ;Rn×n) and f ∈ C0,1(U ), we
prove the everywhere differentiability of viscosity solutions to (0.1).

Mathematics Subject Classification 35J60 · 35J70

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Viscosity solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Communicated by O. Savin.

G. Lu was partly supported by a US NSF grant DMS No. 1700918 and a collaboration grant No. 519099
from the Simons Foundation.
Y. Zhou and Q. Miao were supported by National Natural Science Foundation of China (Nos. 11522102,
11871088).

B Yuan Zhou
yuanzhou@buaa.edu.cn; yzhoubnu@gmail.com

Guozhen Lu
guozhen.lu@uconn.edu

Qianyun Miao
miaoqianyun@buaa.edu.cn

1 Department of Mathematics, University of Connecticut, Storrs, CT 06269, USA

2 School of Mathematical Sciences, Peking University, Beijing 100871, People’s Republic of China

3 Department of Mathematics, Beihang University, Beijing 100191, People’s Republic of China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00526-018-1460-5&domain=pdf


8 Page 2 of 37 G. Lu et al.

3 Intrinsic distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4 Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5 Existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6 Linear approximation property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7 Approximation equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
8 Everywhere differentiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1 Introduction

Letn ≥ 2 andU be a bounded domain (open connected subset) ofRn . In 1960’s,Aronsson [3–
6] initiated the study of the infinity Laplace equation

�∞u := 〈D2uDu, Du〉 = 0 in U (1.1)

by deriving it as the Euler–Lagrange equation of absolute minimizers for the L∞-functional
esssupU |Du|2. Obviously, �∞ is a highly degenerated nonlinear second order differential
operator. Viscosity solutions to (1.1) are called infinity harmonic functions. In 1993, Jensen
in the seminal paper [19] identified absolute minimizers with infinity harmonic functions,
and further obtained their uniqueness under Dirichlet boundary; see also [1,7,11,13,26] for
different proofs. The regularity of infinity harmonic functions is a challenge problem. In 2001,
Crandall et al. [9,10] first obtained the linear approximation property (see (1.5) below). Based
on this, when n = 2, the interior C1-regularity was proved by Savin [27] in 2005, the interior
C1, α-regularity by Evans–Savin [14] and the boundaryC1-regularity byWang–Yu [29] later.
When n ≥ 3, the interior everywhere differentiability was proved by Evans–Smart [15,16]
and the boundary everywhere differentiability by Wang–Yu [29] recently; but the C1- and
C1, α-regularity are still open.

In 2008, Lu–Wang [24] considered inhomogeneous infinity Laplace equation

�∞u = f in U . (1.2)

When f ∈ C(U ) is bounded and | f | > 0, they [24] obtained the existence and uniqueness
of viscosity solutions to (1.2) under Dirichlet boundary. Counter-example was constructed
there to show that the uniqueness may fail if f changes sign. Meanwhile, similar results were
also established for inhomogeneous normalized infinity Laplace equation by Lu–Wang [23],
Peres et al. [26] and also Armstrong–Smart [2]. Note that, under f ≥ 0 or f ≤ 0, the
uniqueness for Dirichlet problems corresponding to (1.2) or the normalized equation is open.
Recently, when f ∈ C1(U ), Lindgren [21] proved everywhere differentiability of viscosity
solutions to (1.2); but the C1-regularity is unknown even when n = 2.

We are interested in the Aronsson’s equation

AH [u] := 1

2
〈Dx [H(x, Du)], DpH(x, Du)〉 = f in U . (1.3)

As always, we assume unless specified otherwise, that f ∈ C(U ) and the Hamiltonian
H(x, p) = 〈A(x)p, p〉 with A ∈ C1(U ;Rn×n) being symmetric and uniformly elliptic, that
is,

1

L
|p|2 ≤ H(x, p) ≤ L|p|2 ∀x ∈ U and p ∈ R

n (1.4)

for some constant L ≥ 1. Note that A ∈ C1(U ;Rn×n) and f ∈ C(U ) are the most natural
(minimal in some sense) regularity on A and f required to define viscosity solutions to (1.3),
see Sect. 2. If A = In , then AH is exactly the same as 2�∞.
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The homogeneous Aronsson’s equation AH [u] = 0 in U (that is, (1.3) with f ≡ 0)
has been studied in the literature. Indeed, viscosity solutions in this case are identified with
absolute minimizers for the L∞-functional esssupU H(·, Du) as proved by Barron et al. [8]
and Yu [30] (see Sect. 2 below). The existence and uniqueness of absolute minimizers,
and hence viscosity solutions, under Dirichlet boundary were established in [8,20,26]; the
linear approximation property in [20,31]. Recently, under A ∈ C1,1(U ;Rn×n), viscosity
solutions are differentiable everywhere as shown in [25]; but undermerely A ∈ C1(U ;Rn×n),
everywhere differentiability is unknown.

This paper focuses on the inhomogeneous Aronsson’s equation (1.3) with f 
≡ 0. First
we have the following existence and uniqueness.

Theorem 1.1 Suppose that A ∈ C1(U ) is symmetric and uniformly elliptic. Let V � U and
f ∈ C(V ) be bounded and satisfy | f | > 0 in V . For arbitrary g ∈ C(∂V ), there exists a
unique viscosity solution u ∈ C(V ) to the Dirichlet problem:

AH [u] = f in V ; u = g on ∂V .

Next we prove the following local Lipschitz regularity and linear approximation property.
By the linear approximation property, we mean that for every x ∈ U and every sequence
{r j } j∈N that converges to 0, there exist a subsequence r = {r jk }k∈N and a vector ex, r such
that H(x, ex, r) = LipdAu(x) and

lim
k→∞max

y∈K

∣
∣
∣
∣

u(x + r jk y) − u(x)

r jk
− 〈ex, r, y〉

∣
∣
∣
∣
= 0 ∀ compact set K ⊂ U . (1.5)

See Sect. 3 for the intrinsic distance dA and the pointwise Lipschitz constant LipdAu(x).

Theorem 1.2 Suppose that A ∈ C1(U ) is symmetric and uniformly elliptic, and f ∈ C(U ).
If u ∈ C(U ) is a viscosity solution to (1.3), then u ∈ C0,1(U ) and enjoys the linear approx-
imation property.

Finally, we obtain the everywhere differentiability. Observe that everywhere differentia-
bility always implies the linear approximation property; but the converse is not necessarily
true even when A = In .

Theorem 1.3 Suppose that A ∈ C1,1(U ) is symmetric and uniformly elliptic and f ∈
C0,1(U ). If u ∈ C(U ) is a viscosity solution to (1.3), then u is differentiable everywhere.

The proofs of Theorems 1.1–1.3 heavily rely on some careful analysis of the intrinsic
distance dA determined by A and uniform estimates of solutions to approximation equations
AH [u] + ε div (ADu) = f . In particular, when A 
= In , since the intrinsic distance dA loses
some important properties which hold for the Euclidean distance and play crucial roles in the
case A = In (that is, �∞u = f ), new ideas are required. The proofs are organized as below.

Section 3 is devoted to the analysis of the intrinsic distance dA. Set dA,x0 = dA(x0, ·) for
x0 ∈ U . For λ > 0 and x0 ∈ U , let Lλ

A,x0
be some viscosity solution to the Hamilton–Jacobi

equation

〈ADu, Du〉 + λu = 1 in U\{x0}; u(x0) = 0.

The following properties obtained in Lemmas 3.1–3.3 will be useful below:

(i) limλ→0 Lλ
A,x0

= dA,x0 locally uniformly in U ,

(ii) e−4λdA,x0 dA,x0 ≤ Lλ
A,x0

≤ dA,x0 if λdA,x0 < ln
√
2,
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(iii) AH [−Lλ
A,x0

] ≥ λ
2 in V � U in viscosity sense if x0 ∈ ∂V and λ diam AV ≤ 1/2,

(iv) AH [dA,x0 ] ≤ 0 in U\{x0} in viscosity sense.

In Sects. 4 and 5, we prove Theorem 1.1 under f > 0 (and hence under f < 0). The
uniqueness is proved by using some ideas from [12,24], see Theorem 4.1 and Lemma 4.2.
Note that A ∈ C1(U ) and f ∈ C(U ) is the minimal regularity required here. To prove the
existence (see Theorem 5.1), Lemmas 3.1–3.3 allow us to use Perron’s approach. Indeed,
the existence of viscosity sub-solutions follows from AH [−Lλ

A,x0
] ≥ λ

2 for large λ > 0.
Moreover, to show that boundaries of the supremum of all sub-solutions and the infimum of
all sup-solutions are the same as the given boundary, we need some barrier functions v,w so
that

AH [v] ≤ 0 and AH [w] ≥ 1 in V

in viscosity sense. By Lemmas 3.1–3.3, we may take v = dA,x0 and w = −Lλ
A,x0

for some
large λ > 0. Recall that in the case A = In (that is, �∞u = f ), Lu and Wang [24] take
w(x) = C |x−x0|4/3 since�∞[|x−x0|4/3] = 43/34. Butwhen A 
= In ,AH [d4/3

A,x0
] ≥ 43/34

is not available.
Theorem 1.2 (that is, Theorem 6.1 below) is proved in Sect. 6. The proof relies on a key

monotonicity of maps r → S±
Lλ

A,r
(u)(x) for large λ > 0, see Lemma 6.2 for details. The

idea here is that, instead of the slope S±
A,r (u)(x) with respect to dA, we consider S

±
Lλ

A,r
(u)(x)

which is defined in the same way as S±
A,r (u)(x) by replacing dA there with Lλ

A above. This

monotonicity follows from Lemmas 3.1–3.3 (AH [Lλ
A,x0

] ≤ −λ/2) and the comparison

principle in Lemma 4.2. Comparing with the monotonicity of maps r → S±
A,r (u)(x) in the

case f ≡ 0 (that isAH [u] = 0, see [20]), we see that Lλ
A plays the role of dA in some sense.

We also recall the monotonicity of maps r → S±
A,r (u)(x) + r in the case An = In (that is,

�∞u = f see [21]), whose proof relies on the fact that

�∞|x |γ ≤ γ 3(γ − 1)|x |3γ−4 < 0 for γ ∈ (0, 1)

in viscosity sense. When A 
= In , similar properties for dγ

A,x0
with γ ∈ (0, 1), and hence the

monotonicity of the maps r → S±
A,r (u)(x) + r , are not available.

Sections 7 and 8 are contributed to the proof of Theorem 1.3 (that is, Theorem 8.1 below).
With the aid of Theorem1.2, we can use the approach in [16] (see also [21,28]) by overcoming
several technical difficulties. Firstly, under A ∈ C1,1(U ;Rn×n) and f ∈ C0,1(U ) with
f > 0, with the aid of uniqueness in Sect. 4 we approximate the viscosity solution u to (1.3)
in V = B(0, 3) � U by uε —smooth solutions to

AH ε [uε] + ε div (AεDuε) = f ε in V ; uε |∂V = gε,

where Aε, f ε, gε are smooth approximations of A, f , u and H ε(x, p) = 〈Aε(x)p, p〉;
see Lemma 8.2. Note that the required smoothness of uε , uniform estimates and uniform
boundary regularity estimates of |uε |, and locally uniform estimates of |Duε | are established
in Lemmas 7.1–7.3. Secondly, observe that, after some suitable scaling, we may assume that
‖u(x) − u(0) − xn‖L∞(B(0,2)), A(0) = In and ‖DA‖L∞(V ) + ‖D2A‖L∞(V ) + ‖Df ‖L∞(V )

are sufficiently small. This allows us to build up a uniform flat estimate for |Duε |2 − uε
n as

did in Lemma 7.4. Finally, via such flat estimates and the linear approximation property in
Theorem 1.2, an argument similar to [16,21,28] leads to everywhere differentiability of u.
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2 Viscosity solutions

We first recall the notion of viscosity (sub-/sup-)solutions.
Let U be a bounded domain in R

n with n ≥ 2. For continuous functions F : U × R ×
R
n × R

n×n → R, we consider equations

F(·, u, Du, D2u) = 0 in U . (2.1)

Definition 2.1 (i) A function u is called a viscosity sub-solution to (2.1) if for every x0 ∈ U ,
we have

F(x0, ϕ(x0), Dφ(x0), D2φ(x0)) ≥ 0

whenever φ ∈ C2(U ) and u − φ attains its local maximum at x0.
(ii) A function u is called a viscosity sup-solution to (2.1) if for every x0 ∈ U , we have

F(x0, ϕ(x0), Dφ(x0), D2φ(x0)) ≤ 0

whenever φ ∈ C2(U ) and u − φ attains its local minimal at x0.
(iii) A function u is called a viscosity solution to (2.1) if it is a viscosity sub-solution and

also a viscosity sup-solution.

As always, we assume without otherwise specified, that A = (ai j )ni, j=1 ∈ C1(U ;Rn×n)

is symmetric and uniformly elliptic, and f ∈ C(U ).Write H(x, p) := 〈A(x)p, p〉 for x ∈ U
and p ∈ R

n , and the Aronsson operator

AH [u](x) := 1

2
〈Dx H(x, Du), DpH(x, Du)〉 = 〈D〈A(x)Du, Du〉, A(x)Du〉

being as in (1.3). For ε ≥ 0, consider equations

AH [u] + ε div (ADu) = f in U . (2.2)

If ε = 0, this is exactly the Aronsson equation (1.3); if ε > 0, we call them as the approxi-
mation equations of (1.3).

The viscosity (sub-/sup-)solutions to (2.1) are defined viaDefinition 2.1. Indeed, for ε ≥ 0,
set

Fε(x, p, X) = 2[aik(x)pka j
(x)p
 + εai j ]Xi j + aiks (x)pka
i
(x)p
 ps + εai ji p j − f (x)

where p = (pi )ni=1, X = (Xi j )
n
i, j=1 and ai jk = ∂

∂xk
ai j . Here and below, to simplify the

presentation, we will use the Einstein summation convention, that is, aibi = ∑n
i=1 a

ibi .
Note that A ∈ C1(U ;Rn×n) and f ∈ C(U ) are the minimal regularity on A and f required
to guarantee the continuity of Fε : U × R

n × R
n×n → R for ε ≥ 0, in particular ε = 0.

Observe that

AH [u](x) + ε div (A(x)Du(x)) − f (x) = Fε(x, Du(x), D2u(x)) in U

whenever u ∈ C2(U ). Thereby, we define the viscosity (sub-/sup-)solutions to (2.1) as those
of equations Fε(·, Du, D2u) = 0 as in Definition 2.1 correspondingly.

In a similar way, for λ ≥ 0 we define the viscosity (sub-/sup-)solutions to the Hamilton–
Jacobi equation

H(x, Du(x)) + λu(x) = 1 in U

123



8 Page 6 of 37 G. Lu et al.

as those of F̃λ(x, u, Du) = 0 correspondingly, where

F̃λ(x, r , p) = H(x, p) + λr − 1.

Observe that A ∈ C1(U ;Rn×n) guarantees the continuity of F̃λ : U × R × R
n → R for

λ > 0, and that

H(x, Du(x)) + λu − 1 = F̃λ(x, u(x), Du(x))

whenever u ∈ C1(U ).
Finally, we recall the identification between viscosity (sub-/sup-)solutions to AH [u] = 0

with absolute (sub-/sup-)minimizers of L∞-functional esssupU H(·, Du).

Definition 2.2 (i) A function u ∈ C0,1(U ) is called an absolute sub-minimizer in U for
H , if for each V � U , v ∈ C0,1(V )∩C(V ) satisfies v ≤ u in V , and v = u on ∂V , then

esssup x∈V H(x, Du(x)) ≤ esssup x∈V H(x, Dv(x)).

(ii) A function u ∈ C0,1(U ) is called an absolute sup-minimizer in U for H if −u is an
absolute sub-minimizer in U for H .

(iii) A function u ∈ C0,1(U ) is called an absolute minimizer in U for H , if it is both an
absolute sub-minimizer and an absolute sup-minimizer in U for H .

Denote by USC(U ) (resp. LSC(U )) the collection of all upper (resp. lower) semi-
continuous functions u on U .

Lemma 2.3 The following are equivalent:

(i) u ∈ C(U ) (u ∈ USC(U )/u ∈ LSC(U )) is a viscosity (sub-/sup-)solution toAH [u] = 0
in U

(ii) u ∈ C0,1(U ) is an absolute (sub-/sup-)minimizer in U for H.

The proof of (ii)⇒(i) was given by Crandall et al. [13]. When A ∈ C2(U ), Yu [30] clearly
proved (i)⇒(ii); when A ∈ C1(U ), (i)⇒(ii) also follows from the arguments in [30] as
informed by Yifeng Yu (personal communication).

As a consequence of Lemma 2.3, we obtain the following result.

Lemma 2.4 If u ∈ C(U ) (u ∈ USC(U )/u ∈ LSC(U )) is a viscosity (sub-/sup-)solution to
AH [u] = f in U, then u ∈ C0,1

loc (U ).

Proof Consider ũ(̃x) = u(x) + C |xn+1|4/3 for x̃ = (x, xn+1) ∈ U × R (see e.g. [18,
Theorem 1]). Then u ∈ C(U ) (u ∈ USC(U )/u ∈ LSC(U )) implies that ũ ∈ C(U × R)

(̃u ∈ USC(U×R)/̃u ∈ LSC(U×R)). Moreover, since u is a viscosity (sub-/sup-)solution to
AH [u] = f inU , we know that ũ is a viscosity (sub-/sup-)solution toAH̃ [̃u] = f̃ inU ×R

n ,
where f̃ (̃x) = f (x) + C343/34 and H̃ (̃x, p) = 〈 Ã(̃x)p, p〉 with Ã(̃x) = diag{A(x), 1} for
all x̃ ∈ U ×R and p ∈ R

n+1. For any V � U , if 4C/34/3 > ‖ f ‖C(V ), then f̃ > 0 in V ×R,

and hence by Lemma 2.3, ũ ∈ C0,1(V × R). This implies that u ∈ C0,1(U ) as desired. ��

3 Intrinsic distance

We always assume that A ∈ C1(U ;Rn×n) is symmetric and uniformly elliptic in this section.
Define the intrinsic distance dA by

dA(x, y) := inf

{(∫ 1

0
〈A−1(ξ(s))ξ̇ (s), ξ̇ (s)〉 ds

)1/2 ∣
∣
∣ξ ∈ C(0, 1; x, y;U )

}

∀x, y ∈ U .

(3.1)
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Here and below, for t > 0, denote by C(0, t; x, y;U ) all rectifiable curves ξ : [0, t] → U
joining x, y; and by C1(0, t; x, y;U ) all ξ ∈ C1([0, t]) ∩ C(0, t; x, y;U ). The uniform
ellipticity implies that dA is a distance and comparable with the Euclidean distance locally.
For all x ∈ U , set

dist A(x, ∂U ) := min{dA(x, y)|y ∈ ∂U }
and

BA(x, r) := {y ∈ U |dA(x, y) < r} if r < dist A(x, ∂U ).

For K ⊂ U , write

diam AK := sup{dA(x, y)|x, y ∈ K }.
Denote by LipdAu(x) the pointwise Lipschitz constant, that is,

LipdAu(x) := lim sup
y→x

|u(y) − u(x)|
dA(x, y)

.

When dA is the Euclidean distance |·−·|, we define dist (x, ∂U ), B(x, r), diam K and Lip u
correspondingly. Note that when A = In , one has dA(x, y) = |x − y| whenever |x − y| ≤
dist (x, ∂U ), but dA(x, y) may be strictly larger than |x − y| when |x − y| > dist (x, ∂U ).

Below we consider an approximation of the intrinsic distance, which has several nice
properties. For λ ≥ 0, define

Lλ
A(x, y) := inf

{∫ t

0

[

1+ 1

4
〈A−1(ξ(s))ξ̇ (s), ξ̇ (s)〉

]

e−λ(t−s) ds
∣
∣
∣t>0, ξ ∈C(0, t; x, y;U )

}

for all x, y ∈ U . The following Lemmas 3.1–3.3 are crucial in this paper.

Lemma 3.1 For all λ > 0 and x, y ∈ U, we have

0 ≤ Lλ
A(x, y) ≤ L0

A(x, y) = dA(x, y) (3.2)

and
dA(x, y) ≤ Lλ

A(x, y)e4λL
λ
A(x,y) whenever λLλ

A(x, y) < ln
√
2. (3.3)

Proof Proof of (3.2). Obviously, 0 ≤ Lλ
A ≤ L0

A for all λ > 0. To see (3.2), it suffices to
prove L0

A = dA. By the change of variables we have

1

t
d2A(x, y) = inf

{∫ t

0
〈A−1(ξ(s))ξ̇ (s), ξ̇ (s)〉 ds

∣
∣
∣ξ ∈ C(0, t; x, y;U )

}

∀t > 0, x, y ∈ U .

Thus,

L0
A(x, y) ≤ inf

t>0

{

t + d2A(x, y)

4t

}

≤ dA(x, y) ∀x, y ∈ U ,

where we choose t = dA(x, y)/2.
On the other hand, we claim that

dA(x, y) = inf

{∫ t

0

√

〈A−1(ξ(s))ξ̇ (s), ξ̇ (s)〉 ds
∣
∣
∣t > 0, ξ ∈ C(0, t; x, y;U )

}

∀x, y ∈ U .

(3.4)
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The claim (3.4) is known to be true by a standard reparametrization argument; for reader’s
convenience we give the details at the end of the proof of Lemma 3.1. Assume that (3.4)
holds for the moment. Observe that for all x ∈ U , q ∈ R

n and σ > 0, we have

sup
〈A(x)p,p〉≤σ

p · q = sup
|p|≤√

σ

〈p, A(x)−1/2q〉 = √
σ |A(x)−1/2q|

and hence

1

4
〈A−1(x)q, q〉 = sup

p∈Rn
{p · q − 〈A(x)p, p〉}

= sup
σ≥0

sup
〈A(x)p,p〉≤σ

{p · q − σ }

= sup
σ≥0

{√σ |A(x)−1/2q| − σ }

≥ |A(x)−1/2q| − 1,

that is,
√〈A−1(x)q, q〉 ≤ 1

4 〈A−1(x)q, q〉 + 1. Therefore, by (3.4) we have

dA(x, y) ≤ inf

{∫ t

0

[
1

4
〈A−1(ξ(s))ξ̇ (s), ξ̇ (s)〉 + 1

]

ds
∣
∣
∣t > 0, ξ ∈ C(0, t; x, y;U )

}

(3.5)
which gives dA(x, y) ≤ L0

A(x, y) for all x, y ∈ U , as desired.
Proof of (3.3). Assume that 0 < λLλ

A(x, y) < ln
√
2. For any ε > 0 with (1 +

ε)λLλ
A(x, y) ≤ ln

√
2, there exists ξ ∈ C(0, T ; x, y,U ) for some T > 0 such that

(1 + ε)Lλ
A(x, y) ≥

∫ T

0

[

1 + 1

4
〈A−1(ξ(s))ξ̇ (s), ξ̇ (s)〉

]

e−λ(T−s)ds.

This implies that

(1 + ε)Lλ
A(x, y) ≥

∫ T

0
e−λ(T−s)ds,

which together with (1 + ε)λLλ
A(x, y) ≤ ln

√
2 gives

T ≤ −1

λ
ln [1 − λ(1 + ε)Lλ

A(x, y)] ≤ 2(1 + ε)Lλ
A(x, y).

Hence, for all s ∈ (0, T ),

e4λ(1+ε)Lλ
A(x,y)e−λ(T−s) ≥ eλ(T−s) ≥ 1,

which together with (3.5) leads to that

e4λ(1+ε)Lλ
A(x,y)(1 + ε)Lλ

A(x, y) ≥
∫ T

0

[

1 + 1

4
〈A−1(ξ(s))ξ̇ (s), ξ̇ (s)〉

]

ds ≥ dA(x, y).

Sending ε → 0, we have

e4λL
λ
A(x,y)Lλ

A(x, y) ≥ dA(x, y),

that is, (3.3) holds.
Proof of the claim (3.4). Let

d̃A(x, y) := inf

{∫ 1

0

√

〈A−1(ξ(s))ξ̇ (s), ξ̇ (s)〉 ds
∣
∣
∣ξ ∈ C(0, 1; x, y;U )

}

∀x, y ∈ U .
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By a change of variable, we have

d̃A(x, y) = inf

{∫ t

0

√

〈A−1(ξ(s))ξ̇ (s), ξ̇ (s)〉 ds
∣
∣
∣t > 0, ξ ∈ C(0, t; x, y;U )

}

.

Thus, to prove the claim (3.4), we only need to prove that d̃A(x, y) = dA(x, y) for all
x, y ∈ U . By Hölder’s inequality, we see that

∫ 1

0

√

〈A−1(ξ(s))ξ̇ (s), ξ̇ (s)〉 ds≤
(∫ 1

0
〈A−1(ξ(s))ξ̇ (s), ξ̇ (s)〉 ds

)1/2

∀ξ ∈C(0, 1; x, y;U )

and hence, d̃A(x, y) ≤ dA(x, y). To see dA(x, y) ≤ d̃A(x, y), for any ε > 0 let ξ ∈
C(0, 1; x, y;U ) such that

L =
∫ 1

0

√

〈A−1(ξ(s))ξ̇ (s), ξ̇ (s)〉 ds ≤ d̃A(x, y) + ε.

Up to a standard smooth modification, we may assume that ξ ∈ C1(0, 1; x, y;U ). It then
suffices to find a reparametrization η ∈ C(0, 1; x, y;U ) of ξ so that

〈A−1(η(s))η̇(s), η̇(s)〉 = L for almost all s ∈ [0, 1].
Indeed, this implies that

[dA(x, y)]2 ≤
∫ 1

0
〈A−1(η(s))η̇(s), η̇(s)〉 ds = L2 ≤ [d̃A(x, y) + ε]2.

Letting ε → 0, we obtain dA(x, y) ≤ d̃A(x, y) as desired.
Finally, we find the reparametrization η ∈ C(0, 1; x, y;U ) of ξ required as above. If

|ξ̇ | > 0 almost everywhere in [0, 1], then define

ψ(r) = 1

L

∫ r

0

√

〈A−1(ξ(s))ξ̇ (s), ξ̇ (s)〉 ds ∀r ∈ (0, 1].

Obviously, ψ is a strictly increasing continuous function from [0, 1] to [0, 1]. Set η(t) =
ξ(ψ−1(t)) for t ∈ [0, 1]. One has η ∈ C(0, 1; x, y;U ) and

η̇(t) = ξ̇ (ψ−1(t))(ψ−1)′(t) = ξ̇ (ψ−1(t))

ψ̇(ψ−1(t))
for almost all t ∈ [0, 1].

Since ψ̇(s) = 1
L

√

〈A−1(ξ(s))ξ̇ (s), ξ̇ (s)〉 for all s ∈ [0, 1], we attain
√

〈A−1(η(t))η̇(t), η̇(t)〉 = L for almost all t ∈ [0, 1]
as desired.

In general, ξ̇ may vanish in a set with positive measure in [0, 1]. By an argument similar
to above, it suffices to find a reparametrization ξ̃ ∈ C1(0, a; x, y;U ) of ξ for some a > 0 and
ξ̃ > 0 almost everywhere in [0, a]. This is done by removing all open sub-intervals of [0, 1]
where ξ̇ vanishes. Precisely, since ξ̇ is continuous, the set I = {s ∈ [0, 1] : |ξ̇ (s)| > 0} is
open (relative to [0, 1]). The open set (0, 1)\I is the union of at most countable many open
intervals I j = (a j , b j ) so that a j < b j < a j+1 for all possible j . For each j , we know that ξ̇
vanishes, and hence ξ is a constant, in I j . Define a function ϕ : [0, 1] → [0, 1−∑

j |I j |] by
ϕ(s) = s −∑

j,b j≤s |I j | for s ∈ [0, 1]\(∪ j I j ), and ϕ(s) = ϕ(a j ) whenever s ∈ I j for some
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j . Set ξ̃ (t) = ξ(ϕ−1{t}) for t ∈ [0, 1 − ∑

j |I j |]. We have ξ̃ ∈ C1(0, 1 − ∑

j |I j |; x, y;U ).

Indeed, letting s+ be the maximum of ϕ−1(t), one has

1

h
[̃ξ(t + h) − ξ̃ (t)] = 1

h
[ξ(s+ + h) − ξ(s+)] → ϕ′(s+) as h → 0+;

similarly, letting s be the minimum of ϕ−1(t), one has 1
−h [̃ξ(t − h) − ξ̃ (t)] → ϕ′(s−)

as h → 0−. If ϕ−1({t}) contains a single point s, we have s± = s and ˙̃ξ(t) = ξ̇ (s);
otherwise ϕ−1({t}) = [s−, s+] = [a j , b j ] for some j , and hence ξ̇ (s) = 0 in [a j , b j ], that
is, ˙̃ξ(t) = 0. The continuity of ξ̃ comes from that of ξ . Moreover, ˙̃ξ > 0 almost everywhere
in [0, 1 − ∑

j |I j |] as desired. This completes the proof of Lemma 3.1. ��
Lemma 3.2 For any compact set K ⊂ U, there exists a constant C > 0 depending on L, K
such that

sup
λ>0

Lip(Lλ
A; K × K ) ≤ C .

Consequently, limλ→0 Lλ
A = dA locally uniformly in U ×U.

Proof Let x, y, z ∈ K . If |y − z| ≥ 1
2 dist (K , ∂U ), by Lemma 3.1, we have

|Lλ
A(x, z) − Lλ

A(x, y)| ≤ 2 diam AK ≤ 4
diam AK

dist (K , ∂U )
|y − z|.

If |y − z| < 1
2 dist (K , ∂U ), choose ξ ∈ C(0, t; x, y;U ) for some t > 0 such that

Lλ
A(x, y) + |y − z| ≥

∫ t

0

[

1 + 1

4
〈A−1(ξ(s))ξ̇ (s), ξ̇ (s)〉

]

e−λ(t−s) ds.

Let η(s) = ξ(s) for s ∈ (0, t] and η(s) = y + (s − t) z−y
|y−z| for s ∈ (t, t + |y − z|). Then

η ∈ C(0, t + |y − z|; x, z;U ), and we have

Lλ
A(x, z) ≤

∫ t+|y−z|

0

[

1 + 1

4
〈A−1(η(s))η̇(s), η̇(s)〉

]

e−λ(t+|y−z|−s) ds

= e−λ|y−z|
∫ t

0

[

1 + 1

4
〈A−1(ξ(s))ξ̇ (s), ξ̇ (s)〉

]

e−λ(t−s) ds

+
∫ t+|y−z|

t

[

1 + 1

4
〈A−1(η(s))

z − y

|y − z| ,
z − y

|y − z| 〉
]

e−λ(t+|y−z|−s) ds

≤ e−λ|y−z|(Lλ
A(x, y) + |y − z|) + (1 + L)|y − z|

≤ Lλ
A(x, y) + (L + 2)|y − z|.

Changing the roles of y, z, we have Lλ
A(x, y) ≤ Lλ

A(x, z) + (L + 2)|y − z| and hence
|Lλ

A(x, z) − Lλ
A(x, y)| ≤ (L + 2)|y − z|.

By symmetry, we have

|Lλ
A(z, x) − Lλ

A(y, x)| ≤ C(L, K )|y − z|.
Therefore, for all x, y, z, w ∈ K , we have

|Lλ
A(x, z) − Lλ

A(y, w)| ≤ |Lλ
A(x, z) − Lλ

A(x, w)| + |Lλ
A(x, w) − Lλ

A(y, w)|
≤ C(L, K )[|w − z| + |x − y|].
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Combining this with the fact that limλ→0 Lλ
A(x, y) = dA(x, y) for all x, y ∈ U given by

Lemma 3.1, we conclude that limλ→0 Lλ
A = dA locally uniformly inU ×U . This completes

the proof of Lemma 3.2. ��
Below, for convenience, we set dA,x0 = dA(x0, ·) and Lλ

A,x0
= Lλ

A(x0, ·) for x0 ∈ U and
λ ≥ 0.

Lemma 3.3 (i) For all x0 ∈ U, AH [dA,x0 ] ≤ 0 in U\{x0} in viscosity sense.
(ii) If V � U, x0 ∈ ∂V and 0 < λ ≤ 1

2 diam AV
, then AH [−Lλ

A,x0
] ≥ λ

2 in V in viscosity
sense.

To prove Lemma 3.3, we need an approximation for Lλ
A via smoothing A. Let φ ∈

C∞(Rn), 0 ≤ φ ≤ 1,
∫

Rn φ(x) dx = 1 and suppφ ⊂ B(0, 2). For ε > 0, set φε(x) =
ε−nφ(ε−1x) for all x ∈ R

n . SetUε = {x ∈ U , dist (x, ∂U ) > ε} for ε > 0. For every ε > 0
and x ∈ U ,

(Aε)−1(x) =
∫

Rn

[

A−1(y)χU3ε (y) + L InχU�
3ε

(y)
]

φε(x − y) dy;

in particular, for x ∈ U5ε , Aε(x) = (A−1 ∗ φε(x))−1. Then (Aε)−1, Aε ∈ C2(U ,Rn×n) are
uniformly elliptic with the same constant L as A. For ε > 0 and λ > 0, define Lλ

Aε in the
same way of Lλ

A.

Lemma 3.4 For every λ > 0,

lim
ε→0

Lλ
Aε = Lλ

A locally uniformly in U ×U .

Proof Due to Lemma 3.2, it suffices to prove limε→0 Lλ
Aε (x, y) = Lλ

A(x, y) for all x, y ∈ U .
We first show lim infε→0 Lλ

Aε (x, y) ≥ Lλ
A(x, y). At each z ∈ Uε , we have

〈(Aε)−1(z)p, p〉 =
∫

Rn

[

〈A−1(y)p, p〉χU3ε + L|p|2χU�
3ε

]

φε(z − y) dy

≥
∫

Rn
〈A−1(z)p, p〉φε(z − y) dy

+
∫

Rn
〈(A−1(y) − A−1(z))p, p〉χU3ε φε(z − y) dy

≥ 〈A−1(z)p, p〉 − 2ε‖A−1‖C0,1(U ε )
|p|2,

which implies that

〈(Aε)−1(z)p, p〉 ≥ (1 − 2Lε‖A−1‖C0,1(U ε )
)〈A−1(z)p, p〉.

At each z ∈ U\Uε , we have

〈(Aε)−1(z)p, p〉 =
∫

Rn
L|p|2(y)φε(z − y) dy ≥ 〈A−1(z)p, p〉.

Therefore, for ξ ∈ C(0, t; x, y;U ), we have
∫ t

0

[

1 + 1

4
〈(Aε)−1(ξ(s))ξ̇ (s), ξ̇ (s)〉

]

e−λ(t−s) ds

≥ (1 − 2Lε‖A−1‖C0,1(U ε )
)

∫ t

0

[

1 + 1

4
〈A−1(ξ(s))ξ̇ (s), ξ̇ (s)〉

]

e−λ(t−s) ds.
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Taking infimum over all ξ ∈ C(0, t; x, y;U ), we deduce that

Lλ
Aε (x, y) ≥ (1 − 2Lε‖A−1‖C0,1(U ε )

)Lλ
A(x, y),

that is, lim infε→0 Lλ
Aε (x, y) ≥ Lλ

A(x, y) as desired.
To see lim supε→0 Lλ

Aε (x, y) ≤ Lλ
A(x, y), for any δ ∈ (0, 1), choose ξ ∈ C(0, t; x, y;U )

such that

(1 + δ)Lλ
A(x, y) ≥

∫ t

0

[

1 + 1

4
〈A−1(ξ(s))ξ̇ (s), ξ̇ (s)〉

]

e−λ(t−s) ds.

Observe that if ε < ε0 = min{δ, 1
5 dist (ξ, ∂U )}, then ∪s∈[0,t]B(ξ(s), 2ε) ⊂ U3ε ⊂ U3ε0 .

Thus (Aε)−1(ξ(s)) = A−1 ∗ φε(ξ(s)) and hence, at ξ(s),

|〈A−1 p, p〉 − 〈(Aε)−1 p, p〉|=|〈(A−1 − A−1 ∗ φε)p, p〉|≤2Lε‖A−1‖C0,1(U3ε0 )〈A−1 p, p〉
for all p ∈ R

n , that is,

(1 + 2Lε‖A−1‖C0,1(U3ε0 ))〈A−1 p, p〉 ≥ 〈(Aε)−1 p, p〉.
Thus,

(1 + 2Lε‖A−1‖C0,1(U3ε0 ))(1 + δ)Lλ
A(x, y)

≥
∫ t

0

[

1 + 1

4
〈(Aε)−1(ξ(s))ξ̇ (s), ξ̇ (s)〉

]

e−λ(t−s) ds

≥ Lλ
Aε (x, y).

Sending ε → 0 and δ → 0 in order, we conclude that lim supε→0 Lλ
Aε (x, y) ≤ Lλ

A(x, y) as
desired. ��

We also need the following fact, which was used in [30]. For convenience, we give the
details.

Lemma 3.5 Suppose that u ∈ C(U ) is semi-concave and is a viscosity solution to

〈ADu, Du〉 + λu = 1 in U (3.6)

for some λ > 0. Then u is a viscosity sup-solution to

AH [u] + λ〈ADu, Du〉 = 0 in U . (3.7)

Proof Step 1.We first prove that for almost all x ∈ U with Du(x) and D2u(x) existing,

AH [u](x) + λ〈A(x)Du(x), Du(x)〉 ≤ 0 (3.8)

holds in pointwise way and hence in viscosity sense.
Note that the semi-concavity of u implies that u ∈ C0,1(U ), differentiable almost every-

where and
〈ADu(y), Du(y)〉 + λu(y) = 1 (3.9)

whenever u is differentiable at y ∈ U . Moreover, the semi-concavity guarantees that there
exists E ⊂ U with full measure such that Du, D2u exist in E and for all x ∈ E ,

Du(y) = Du(x) + D2u(x) · (y − x) + o(|y − x |) for y ∈ E . (3.10)

Without loss of generality, we may let U = [0, 1]n . Applying the Fubini Theorem, there
exists E2 ⊂ [0, 1]n−1 with (n−1)-Lebesgue measure |E2| = 1 such that Ey′ = E ∩[0, 1]×
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{y′} has length 1 for all y′ ∈ E2. For each y′ ∈ E2, let Ẽy′ be the set of all density points
of Ey′ . Notice that Ẽ = {(t, y′)|y′ ∈ E2, t ∈ Ẽy′ } ⊂ E satisfies |Ẽ | = 1. If (t, x ′) ∈ Ẽ ,
there exists a family of points {tm}m≥1 ∈ Ey′ such that (tm, x ′) ∈ E and tm → t . Observe
that (3.9) holds whenever y is given by xm := (tm, x ′) or x := (t, x ′). By (3.10),

1

tm − t
[〈A(xm)Du(xm), Du(xm)〉 − 〈A(x)Du(x), Du(x)〉]

= 1

tm − t
〈[A(xm) − A(x)]Du(xm), Du(xm)〉

+ 1

tm − t
〈A(x)[Du(xm) − Du(x)], [Du(xm) + Du(x)]〉

= 〈[Dx1 A(x)]Du(xm), Du(xm)〉 + 〈A(x)D2u(x)e1, [Du(xm) + Du(x)]〉 + o(1)

→ 〈[Dx1 A(x)]Du(x), Du(x)〉 + 2〈A(x)D2u(x)e1, Du(x)〉

as m → ∞. On the other hand,

1

tm − t
[λu(x) − λu(xm)] = λu1(x) + o(1) → λu1(x), m → ∞.

Thus,

〈[Dx1 A(x)]Du(x), Du(x)〉 + 2〈A(x)D2u(x)e1, Du(x)〉 + λu1(x) = 0.

Here and below, for k ∈ {1, . . . , n} we write ek as the vector whose kth element is 1 and
others are 0.

Similarly, we can show that there exists a set Ẽ (n) ⊂ Ẽ (1) ⊂ E such that |Ẽ (n)| = 1, D2u
and Du exist on Ẽ (n) and for each x ∈ Ẽ (n) and k ∈ {1, . . . , n}, we have

〈[Dxk A(x)]Du(x), Du(x)〉 + 2〈A(x)D2u(x)ek, Du(x)〉 + λuk(x) = 0

which times ADu(x) yields that (3.8) as desired.

Step 2.Now we prove that u is a viscosity sup-solution to (3.7), that (3.8) holds for all x ∈ U
in viscosity sense.

Suppose that φ ∈ C2(U ) and u − φ attains strictly minimal at x̂ ∈ U . Since u − φ is
semi-concave, owing to Lemma A.3 in [12], for any r , δ > 0, there exists xr ,δ ∈ B(x̂, r) and
pr ,δ ∈ B(0, δ) such that u−φ−〈pr ,δ, x〉 has a local minimal at xr ,δ, u is twice differentiable
at xr ,δ, and

AH [u](xr ,δ) + λ〈A(xr ,δ)Du(xr ,δ), Du(xr ,δ)〉 ≤ 0

in the viscosity sense.
Obviously, we have Dφ(xr ,δ) = Du(xr ,δ) − pr ,δ and D2φ(xr ,δ) ≤ D2u(xr ,δ). So due to

the ellipticity of A, we have

AH [φ + 〈pr ,δ, x〉](xr ,δ) + λ〈A(xr ,δ)[Dφ(xr ,δ) + pr ,δ], [Dφ(xr ,δ + pr ,δ)]〉 ≤ 0.
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Sending r = δ to 0 and noting (xr ,δ, pr ,δ) → (x̂, 0), we arrive at (3.8) with x = x̂ as
desired. ��
Proof of Lemma 3.3 Thanks to Lemma 3.2, we know that (i) follows from (ii). Belowwe show
(ii). Let {Aε}ε>0 be as in Lemma 3.3. Denote by H ε(x, p) = 〈Aε p, p〉. Then ‖D2Aε‖C(U ) �
1
ε2
. Thanks to Lions [22, pp. 134–135], Lλ

Aε ,x0
is semi-concave and a viscosity solution to

〈AεDu, Du〉 − 1 + λu = 0 in U\{x0},
and, by Lemma 3.5, is a viscosity sup-solution to

AH ε [u] + λ〈AεDu, Du〉 = 0 in U\{x0}.
Note that limε→0 Lλ

Aε = Lλ
A locally uniformly inU as given by Lemma 3.3. Sending ε → 0,

we know that Lλ
A,x0

is a viscosity solution to

〈ADu, Du〉 − 1 + λu = 0 in U\{x0}, (3.11)

and also is a viscosity sup-solution to

AH [u] + λ〈ADu, Du〉 = 0 in U\{x0}. (3.12)

Assume that Lλ
A,x0

− φ attains a minimum at x̄ ∈ V \{x0} for some φ ∈ C2(U ). Since u
is a viscosity solution to (3.11), we know that

〈A(x̄)Dφ(x̄), Dφ(x̄)〉 − 1 + λLλ
A(x0, x̄) ≥ 0.

If λ ≤ 1
2 diam AV

, since Lλ
A(x0, x̄) ≤ dA(x0, x̄) ≤ diam AV by Lemma 3.1, we have

〈A(x̄)Dφ(x̄), Dφ(x̄)〉 ≥ 1 − λdA(x0, x̄) ≥ 1/2,

Considering (3.12), we conclude that AH [φ](x̄) ≤ − λ
2 in V in viscosity sense as

desired. ��

4 Uniqueness

We always assume that f ∈ C(U ) with | f | > 0 and A ∈ C1(U ;Rn×n) is symmetric and
uniformly elliptic.

Theorem 4.1 For any g ∈ C(∂U ) there exists at most one viscosity solution u ∈ C(U ) to
the Dirichlet problem:

AH [u] = f in U ; u|∂U = g.

To prove Theorem 4.1, we need a comparison principle as below.

Lemma 4.2 Let ε ≥ 0. Suppose that f1, f2 ∈ C(U ) satisfy f1 < f2, and that u1 ∈ USC(U )

is a viscosity sup-solution to
AH [u] + εdiv(ADu) = f1 (4.1)

and u2 ∈ LSC(U ) is a viscosity sub-solution to

AH [u] + εdiv(ADu) = f2. (4.2)
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If either u1 ∈ C0,1(U ) or u2 ∈ C0,1(U ), then

max
U

[u2 − u1] = max
∂U

[u2 − u1].

Proof of Theorem 4.1 Let u, v ∈ C(U ) be viscosity solutions to AH [u] = f with u|∂U = g.
We may assume that f > 0 up to considering −u,−v. For any ε > 0, set uε = (1 + ε)u −
ε‖g‖L∞(∂U ) on U . Then

AH [uε] = (1 + ε)3 f > f = AH [v]
in U in viscosity sense and uε ≤ u = v on ∂U . Since AH [uε] ≥ 0 in U in viscosity sense,
by Lemma 2.3, we know that uε ∈ C0,1(U ). Applying Lemma 4.2, we have uε ≤ v in U
for all ε > 0. By sending ε → 0, it follows that u ≤ v in U . Similarly, we have u ≥ v.
Therefore u = v as desired. ��

To proveLemma4.2, we recall the notion of jets in [12, Section 2]. Define the second-order
superjet J 2, +U u(x0) of a function u at x0 as the collection of all (Dφ(x0), D2φ(x0)) satisfying

that φ ∈ C2(U ) and u−φ taking its local maximum at x0. Denote by J
2, +
U u(x0) its closure,

that is, the collection of (p, X), for which there exists xm ∈ U and (pm, Xm) ∈ J 2,+U u(x0)
such that (xm, u(xm), pm, Xm) → (x0, u(x0), p, X). Similarly, define the second-order sub-

jet J 2, −U u(x0) and its closure J
2,−
U u(x0) in the samemannerwith the localmaximum replaced

by the local minimum.

Proof of Lemma 4.2 We may assume that max∂U [u2 − u1] = 0 up to considering u1 −
max∂U [u2 − u1] instead of u1. It suffices to prove u2 ≤ u1 in U . Suppose that this is not
correct. Then

M0 := sup
x∈U

[u2(x) − u1(x)] > 0.

For any small δ > 0, define

wδ(x, y) = u2(x) − u1(y) − 1

2δ
|x − y|2 ∀ (x, y) ∈ U ×U

and let

Mδ = sup
x, y∈U

wδ(x, y) = wδ(xδ, yδ)

for some xδ, yδ ∈ U .
Obviously, Mδ ≥ M0 for all δ > 0. By Lemma 3.1 of [12], M0 = limδ→0 Mδ and

xδ, yδ ∈ U1 � U for all δ > 0 sufficient small. Moreover,

|xδ − yδ| ≤ C(U1)δ. (4.3)

Indeed, if u2 ∈ C0,1(U ), by Mδ ≥ M0, we have

u2(xδ) − u1(yδ) − 1

2δ
|xδ − yδ|2 ≥ u2(yδ) − u1(yδ),

which leads to that

|xδ − yδ| ≤ 2δ
u2(yδ) − u2(xδ)

|xδ − yδ| ≤ ‖u2‖C0,1(U1)
δ,
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that is, (4.3). If u1 ∈ C0,1(U ), similarly, we have (4.3). By [12, Lemma 3.1] again, there
exist X , Y ∈ S n×n such that

(
1

δ
(xδ − yδ), X

)

∈ J
2,+
U1

u2(xδ),

(
1

δ
(xδ − yδ), Y

)

∈ J
2,−
U1

u1(yδ)

and

− 3

δ

(

In 0
0 In

)

≤
(

X 0
0 −Y

)

≤ 3

δ

(

In −In
−In In

)

. (4.4)

Let p = 1
δ
(xδ − yδ). Since (p, X) ∈ J

2,+
U1

u2(xδ), there exists a sequence (zm, pm, Xm)

with (pm, Xm) ∈ J 2,+U1
u2(zm) approximating (xδ, p, X). For each (pm, Xm) ∈ J 2,+U1

u2(zm)

we can find φm ∈ C2 such that pm = Dφm(zm), Xm = D2φm(zm) and um − φm attaining
its local maximum at zm . From the definition of viscosity sub-solution, we deduce that

AH [φm](zm) + ε div (A(zm)Dφm(zm)) ≥ f2(zm).

Sending m → ∞, by (zm, pm, Xm) → (xδ, p, X) and the continuity of DA, A and f , we
obtain

f2(xδ) ≤ 〈X A(xδ)p, A(xδ)p〉 + 〈〈DA(xδ)p, p〉, A(xδ)p〉 + εai j (xδ)Xi j + εai ji (xδ)p j .

Similarly, we also have

f1(yδ) ≥ 〈Y A(yδ)p, A(yδ)p〉 + 〈〈DA(yδ)p, p〉, A(yδ)p〉 + εai j (yδ)Yi j + εai ji (yδ)p j .

Below we show that for arbitrary η > 0, f2(xδ) ≤ f1(yδ) + Cη whenever δ ∈ (0, η) is
sufficiently small. If this is true, sending η → 0, we have f2(x0) ≤ f1(x0) for some x0 ∈ U1

which is contradiction with f1(x0) < f2(x0), as desired.
To see f2(xδ) ≤ f1(yδ) + Cη, by (4.3) and (4.4) we have

〈X A(xδ)p, A(xδ)p〉 − 〈Y A(yδ)p, A(yδ)p〉
= 3

δ
(A(xδ)p − A(yδ)p)

T (A(xδ)p − A(yδ)p)

= 3

δ
|A(xδ)p − A(yδ)p|2

≤ 3

δ
|A(xδ) − A(yδ)|2| xδ − yδ

δ
|2

≤ C(U1, A)δ

≤ C(U1, A)η

whenever δ < η. Let A1/2 = (bi j )ni, j=1. For each k, the same argument leads to

bki (xδ)Xi j b
jk(xδ) − bki (yδ)Yi j b

jk(yδ) ≤ C(U1, A)δ ≤ C(U1, A)η

when δ < η, and hence

ai j (xδ)Xi j − ai j (yδ)Yi j =
n

∑

k=1

[bki (xδ)Xi j b
jk(xδ) − bki (yδ)Yi j b

jk(yδ)] ≤ C(U1, A)η.
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Moreover, using (4.3) again, we have

〈〈DA(xδ)p, p〉, A(xδ)p〉 − 〈〈DA(yδ)p, p〉, A(yδ)p〉
≤ |〈[DA(xδ) − DA(yδ)]p, p〉||A(xδ)p|

+ |〈DA(yδ)p, p〉||[A(xδ) − A(yδ)]p|
≤ C |DA(xδ) − DA(yδ)| + Cδ,

which, by the continuity of DA, will be less than Cη when δ ∈ (0, η) is small enough.
Similar arguments lead to that

ai ji (xδ)p j − ai ji (yδ)p j ≤ Cη

when δ ∈ (0, η) is small enough. Combining all above estimates, we conclude for arbitrary
η > 0, f2(xδ) ≤ f1(yδ) + Cη whenever δ ∈ (0, η) is small enough. This completes the
proof. ��

5 Existence

We always assume that A ∈ C1(U ;Rn×n) is symmetric and uniformly elliptic in this section.

Theorem 5.1 Let V � U and f ∈ C(V ) be bounded. For arbitrary g ∈ C(∂V ), there exists
a viscosity solution u ∈ C(V ) to the Dirichlet problem:

AH [u] = f in V ; u|∂V = g.

Proof Denote by S +
f ,g the set of all viscosity sup-solutions v ∈ C(V ) to the Dirichlet

problem:

AH [u] = f in V ; u|∂V ≥ g.

Notice thatS +
f ,g 
= ∅. Indeed, for any x0 ∈ V , 0 < λ < 1

2 diam AV
andC > (2‖ f ‖C(V )/λ)1/3,

by Lemma 3.3, we have

AH [CLλ
A,x0 + ‖g‖C(∂V )] = C3AH [Lλ

A,x0 ] ≤ −C3λ/2 ≤ −‖ f ‖C(V ) ≤ f in V

in viscosity sense. Thus CLλ
A,x0

+ ‖g‖C(∂V ) ∈ S +
f ,g . Set

u(x) = inf{v(x)|v ∈ S +
f ,g} ∀x ∈ V .

We claim that u is the desired viscosity solution.
To prove the claim, we observe that u ∈ USC(V ), u ≥ g on ∂V and by [12, Lemma 4.2],

AH [u] ≤ f in V in the viscosity sense. Moreover, similarly define

û(x) = sup{w(x)|w ∈ S −
f ,g} ∀x ∈ V ,

where S −
f ,g is the set of all viscosity sub-solutions v ∈ C(V ) to the Dirichlet problem:

AH [u] = f in V ; u|∂V ≤ g.

Note thatS −
f ,g 
= ∅. Indeed, for any x0 ∈ ∂V , 0 < λ < 1

2 diam AV
andC > (2‖ f ‖C(V )/λ)1/3,

letting b ∈ R with −CLλ
A,x0

+ b ≤ ‖g‖C(∂V ), by Lemma 3.3, we have

AH [−CLλ
A,x0 + b] = C3AH [−Lλ

A,x0 ] ≥ C3λ/2 ≥ ‖ f ‖C(V ) ≥ f in V
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8 Page 18 of 37 G. Lu et al.

in viscosity sense. Thus −CLλ
A,x0

+ b ∈ S −
f ,g . Note that û ∈ LSC(V ), û ≤ g on ∂V and

by [12, Lemma 4.2], AH [û] ≥ f in V in the viscosity sense.
Now we are ready to prove the claim by 3 steps.

Step 1. AH [u] = f in V in the viscosity sense.
It suffices to prove AH [u] ≥ f in V in the viscosity sense. Suppose this is not true. Then

there exist ϕ ∈ C2(V ) and a point x0 ∈ V such that u − ϕ attains its local maximum at x0,
but AH [ϕ](x0) < f (x0). Without loss of generality, we may assume that u(x0) = ϕ(x0).

For any small ε > 0, we define

ϕε(x) = ϕ(x) + ε|x − x0|2.
Since AH [ϕ](x0) < f (x0), if ε is small enough, we have AH [ϕε](x0) < f (x0), and hence,
by the continuity of f and DA, we have

AH [ϕε](x) < f (x)

for all x in some small open neighborhood of x0, say V (x0) . Moreover, x0 is a strict local
maximum point of u − ϕε ; indeed, this follows from the fact that u − ϕ attains its local
maximum at x0 and ϕ − ϕε attains its strictly local maximum at x0. Observing u(x0) =
ϕ(x0) = ϕε(x0), we know that ϕε(x) > u(x) for x ∈ V1(x0)\{x0}, where V1(x0) ⊂ V (x0)
is some open neighborhood of x0.

Let δ > 0 be sufficiently small so that the closure of

V2(x
0) := {x ∈ V1(x0)|ϕε(x) − δ < u(x)}

is contained in V1(x0), and hence, ϕε − δ ≥ u in V1(x0)\V2(x0). Set

v̂ = min(ϕε − δ, u) =
{

ϕ̂(x) x ∈ V2(x0)
u(x) x ∈ V \V2(x0).

Then v̂ = u ≥ g on ∂V . Since AH [u] ≤ f in V and AH [ϕ̂] < f in V1(x0) ⊇ V2(x0)
in viscosity sense, we conclude that AH [v̂] ≤ f in V in the viscosity sense. Therefore,
v̂ ∈ S +

f ,g . However, v̂ = ϕε − δ < u in V2(x0), which is a contradiction with u ≤ v̂ by
definition.

Step 2. u = g = û on ∂V .
Let x0 ∈ ∂V . For any ε > 0, there exists r ∈ (0, ε) such that |g(x) − g(x0)| < ε for all

x ∈ BA(x0, r) ∩ ∂V . Let C1 > 2
r ‖g‖C(∂V ) and define

v = g(x0) + ε + C1dA,x0 .

Then

v(x) ≥ g(x0) + ε ≥ g(x) ∀x ∈ BA(x0, r) ∩ ∂V

and

v(x) ≥ g(x0) + ε + C1r ≥ ‖g‖C(∂V ) ≥ g(x) ∀x ∈ ∂V \BA(x0, r).

By Lemma 3.3, AH [v] ≤ 0 ≤ f in V in viscosity sense, and hence v ∈ S +
f ,g . Thus

g(x0) ≤ u(x0) ≤ v(x0) = g(x0) + ε,

which together with the arbitrariness of ε > 0 yields that u(x0) = g(x0).
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On the other hand, by Lemma 3.2 and V � U , for all sufficiently small λ > 0 we have

Lλ
A,x0(x) ≥ 1

2
dA(x0, x) ≥ r/2 ∀x ∈ V \BA(x0, r).

Define

w = g(x0) − ε − C2Lλ
A,x0

where C2 satisfying C2r/2 ≥ 2‖g‖C(∂V ) and C3
2λ/2 ≥ ‖ f ‖C(V ). If λ > 0 small enough,

Lemma 3.3 leads to that

AH [w] ≥ C3
2λ/2 ≥ ‖ f ‖C(V ) ≥ f in V

in viscosity sense. Observe that

w(x) ≤ g(x0) − ε < g(x) ∀x ∈ ∂V ∩ BA(x0, r)

and

w(x) ≤ −‖g‖C(∂V ) − ε < g(x) ∀x ∈ ∂V \BA(x0, r).

We know that w ∈ S −
f ,g . Therefore,

g(x0) ≥ û(x0) ≥ w(x0) = g(x0) − ε,

which together with the arbitrariness of ε > 0 implies û(x0) = g(x0).
Step 3.We prove u ∈ C(V ).

Since u ∈ USC(V ) and AH [u] ≥ f in V in the viscosity sense, by Lemma 2.4, u ∈
C0,1(V ) and hence u ∈ C(V ). It suffices to prove that u is continuous up to ∂V . Since
u ∈ USC(V ) and u|∂V = g, we only need to show that u ∈ LSC(V ). To this, applying
Lemma 4.1 to every pair of v ∈ S −

f ,g and w ∈ S +
f ,g , we have w ≤ v on V , which yields

that u ≤ û on V . Since û|∂V = g given in Step 2, we conclude that

lim inf
V�x→x0

u(x) ≤ lim inf
V�x→x0

û(x) ≤ g(x0)

for every point x0 ∈ ∂V , that is, u ∈ LSC(V ) as desired. ��

6 Linear approximation property

We always assume that f ∈ C(U ) and A ∈ C1(U ;Rn×n) is symmetric and uniformly elliptic
in this section.

Theorem 6.1 If u ∈ C(U ) is a viscosity solution to (1.3), then u ∈ C0,1(U ) and enjoys the
linear approximation property.

Instead of u, we consider the function ũ(̃x) = u(x) + 2xn+1 for x̃ = (x, xn+1) ∈ Ũ =
U ×R. Then the local Lipschitz regularity and linear approximation property of u will follow
from those of ũ. Observe that AH̃ [̃u] = f̃ in Ũ in viscosity sense, where f̃ (̃x) = f (x) and
H̃ (̃x, p) = 〈 Ã(̃x)p, p〉 with Ã(̃x) = diag{A(x), 1} for all x̃ ∈ Ũ and p ∈ R

n+1.
Moreover, ũ has the following property

S±
A,r (̃u)(̃x) := sup

{±[̃u(ỹ) − ũ(̃x)]
r

∣
∣
∣ dÃ,̃x (ỹ) ≤ r

}

≥ 2,
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for all x̃ ∈ Ũ and all possible r > 0, which is required in the following lemmas. Below we
write ũ, Ã, f̃ , Ũ as u, A, f ,U correspondingly.

For λ ≥ 0 and x ∈ U and r ∈ (0, dist A(x, ∂U )), define

S±
Lλ

A,r
(u)(x) := sup

{±[u(y) − u(x)]
r

∣
∣
∣ Lλ

A,x (y) ≤ r

}

.

When λ = 0, we have S±
L0

A,r
(u)(x) = S±

A,r (u)(x). For ε > 0, set

Uε := {x ∈ U , dA(x, ∂U ) > ε}.
Lemma 6.2 For any ε > 0 and λ > 2‖ f ‖C(Uε ), there exists rε,λ ∈ (0, ε) such that for all
x ∈ U2ε , the maps r ∈ (0, rε,λ) → S±

Lλ
A,r

(u)(x) are increasing.

Proof Let

rε,λ = min{ε/2, η−1(ε), η−1(1/4λ), (ln
√
2)/λ},

where η(t) = e4λt t . By Lemma 3.1, we have

dA,x (y) ≤ η(Lλ
A,x (y))

whenever Lλ
A,x (y) < (ln

√
2)/λ. Thus for all x ∈ U2ε and 0 < r ≤ rε,λ, we have

{y ∈ U : Lλ
A,x (y) < r} ⊂ BA(x, η(r)) ⊂ BA(x, ε) ⊂ Uε .

Given x ∈ U2ε and 0 < r ≤ rε,λ, set

v±(y) = ±S±
Lλ

A,r
(u)(x)Lλ

A,x (y).

Then

−v−(y) ≤ u(y) − u(x) ≤ v+(y) when Lλ
A,x (y) = r or y = x .

By Lλ
A,x (y) ≤ dA,x (y) for all x, y ∈ U , we have

S±
Lλ

A,r
(u)(x) ≥ S±

A,r (u)(x) ≥ 2 ∀x ∈ U and r ∈ (0, dist A(x, ∂U )).

Since rε,λ ≤ η−1(1/4λ) implies that

diam A{y : Lλ
A,x (y) < r} ≤ 2η(r) ≤ 1/2λ,

applying Lemma 3.3 we have

AH [v+] ≤ −λ/2 < − f and AH [v−] ≥ λ/2 > f in {y : Lλ
A,x (y) < r}.

Notice that AH [u − u(x)] = f in {y : Lλ
A,x (y) < r}. By Lemma 4.2, we have

v− ≤ [u − u(x)] ≤ v+ in {y : Lλ
A,x (y) ≤ r}.

In particular, when Lλ
A,x (y) ≤ s < r , we have

−sS−
Lλ

A,r
(u)(x) ≤ u(y) − u(x) ≤ sS+

Lλ
A,r

(u)(x),

which implies that

S±
Lλ

A,s
(u)(x) ≤ S±

Lλ
A,r

(u)(x)

as desired. ��
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Corollary 6.3 We have u ∈ C0,1(U ) and

S±
A (u)(x) := lim

r→0
S±
A,r (u)(x) = lim

r→0
S±
Lμ

A,r
(u)(x) ∀x ∈ U , μ > 0.

Moreover, LipdAu = S±
A (u) ∈ USC(U ).

Proof Note that u ∈ C0,1(U ) is given by Lemma 2.4. Here we would like to give a different
proof via Lemma 6.2. For ε > 0 sufficiently small, let λ and rε,λ be as in Lemma 6.2. Let
x, y ∈ U2ε with dA(x, y) = r for r < rε,λ. Then Lλ

A(x, y) ≤ dA(x, y) ≤ r and hence, by
Lemma 6.2,

|u(y) − u(x)| ≤ r [S+
Lλ

A,r
(u)(x) + S−

Lλ
A,r

(u)(x)] ≤ r [S+
Lλ

A,rε,λ
(u)(x) + S−

Lλ
A,rε,λ

(u)(x)]
Since

S+
Lλ

A,rε,λ
(u)(x) + S−

Lλ
A,rε,λ

(u)(x) ≤ 4

rε,λ
‖u‖C(U ε )

,

we have

|u(y) − u(x)| ≤ dA(x, y)
4

rε,λ
‖u‖C(U ε )

.

This holds trivially when x, y ∈ U2ε with dA(x, y) ≥ rε,λ. Thus u ∈ C0,1(U 2ε).
Moreover, by Lemma 3.1,

BA(x, r) ⊂ {z ∈ U : Lλ
A,x (z) < r} ⊂ BA(x, η(r)) ⊂ BA(x, ε) ⊂ Uε

whenever x ∈ U2ε and r < rε,λ. This implies that

{z : Lλ
A,x (z) ≤ η−1(r)} ⊂ BA(x, r) ⊂ {z : Lλ

A,x (z) ≤ r}
and hence

η−1(r)

r
S±
Lλ

A,η−1(r)
(u)(x) ≤ S±

A,r (u)(x) ≤ S±
Lλ

A,r
(u)(x).

Recall that η(t) = e4λt t . By limr→0 η−1(r) = 0, we have

lim
r→0

η−1(r)

r
= lim

r→0
e−4λη−1(r) = 1,

and hence

lim inf
r→0

S±
Lλ

A,η−1(r)
(u)(x) ≤ lim inf

r→0
S±
A,r (u)(x) ≤ lim sup

r→0
S±
A,r (u)(x) ≤ lim sup

r→0
S±
Lλ

A,r
(u)(x).

Since the map r �→ S±
Lλ

A,r
u(x) is increasing as given by Lemma 6.2, we have

lim sup
r→0

S±
Lλ

A,r
(u)(x) = lim inf

r→0
S±
Lλ

A,η−1(r)
(u)(x) = inf

r∈(0,rε,λ)
S±
Lλ

A,r
(u)(x),

which yields that

S±
A (u)(x) := lim

r→0
S±
A,r (u)(x) = lim

r→0
S±
Lλ

A,r
(u)(x) = inf

r∈(0,rε,λ)
S±
Lλ

A,r
(u)(x).

This together with S±
Lλ

A,r
(u) ∈ C(U ) tells that S±

A,r (u) ∈ USC(U ε).
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For 0 < μ < λ, by Lλ
A ≤ Lμ

A ≤ dA we have

BA(x, r) ⊂ {y : Lμ
A,x (y) ≤ r} ⊂ {y : Lλ

A,x (y) ≤ r},

and hence

S±
A,r (u)(x) ≤ S±

Lμ
A,r

(u)(x) ≤ S±
Lλ

A,r
(u)(x).

Therefore limr→0 S
±
Lμ

A,r
(u)(x) = S±

A (u)(x).

Finally, we show that S±
A (u)(x) = LipdAu(x) for x ∈ U2ε . Obviously S±

A (u)(x) ≤
LipdAu(x). On the other hand, for any t ∈ (0, rε,λ), by Lemma 3.1, Lemma 6.2 and the
continuity of S±

Lλ
A,t

(u), we have

LipdAu(x) ≤ lim
r→0

sup

{ |u(z) − u(w)|
dA(z, w)

|z, w ∈ BA(x, r)

}

≤ lim
r→0

sup

{

|u(z) − u(w)|
Lλ
A(z, w)

|z, w ∈ BA(x, r)

}

≤ lim
r→0

sup

{

sup
s∈(0,2r)

S±
Lλ

A,s
(u)(w)|w ∈ BA(x, r)

}

≤ lim
r→0

sup

{

S±
Lλ

A,t
(u)(w)|w ∈ BA(x, r)

}

≤ S±
Lλ

A,t
(u)(x).

Therefore,

LipdAu(x) ≤ lim
t→0

S±
Lλ

A,t
(u)(x) = S±

A (u)(x)

as desired. ��

Lemma 6.4 Assume that 0 ∈ U and let Ar (x) = A(r x) and ur (x) = u(r x)
r for all possible

r > 0 and x ∈ 1
r U . For all possible r > 0, s > 0 and x ∈ U, we have

S±
A,sr (u)(r x) = S±

Ar ,s
(ur )(x) = S±

Asr ,1
(urs)(x/s).

Proof Let dAr be the intrinsic distance determined by Ar . Note that

dA(r x, ry) = rdAr (x, y) ∀x, y ∈ 1

r
U . (6.1)
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Indeed, by (A−1)r (z) = (Ar )
−1(z) for z ∈ 1

r U , we have

dA(r x, ry)

= inf

{(∫ 1

0
〈A−1(ξ(s))ξ̇ (s), ξ̇ (s)〉 ds

)1/2 ∣
∣
∣ξ ∈ C(0, 1; r x, ry;U )

}

= r inf

{(∫ 1

0
〈(A−1)r ((

1

r
ξ)(s))(

1

r
ξ)′(s), (1

r
ξ)′(s)〉 ds

)1/2 ∣
∣
∣(
1

r
ξ) ∈ C(0, 1; x, y; 1

r
U )

}

= r inf

{(∫ 1

0
〈(Ar )

−1(η(s))η′(s), η′(s)〉 ds
)1/2 ∣

∣
∣η ∈ C(0, 1; x, y; 1

r
U )

}

= rdAr (x, y) ∀x, y ∈ 1

r
U .

By (6.1), we know that 1
r BA(x, s) = BAr (x/r , s/r) for all possible x, y, r , s.

By the definition,

S±
Ar ,s

(ur )(x) = max
y∈BAr (x,s)

±[ur (y) − ur (x)]
s

= max
y∈BAr (x,s)

±[urs(y/s) − urs(x/s)].

By (6.1), we have

dAr (x, y) = sdArs (x/s, y/s).

Hence, dAr (x, y) ≤ s implies that dArs (x/s, y/s) ≤ 1. So

S±
Ar ,s

(ur )(x) = max
z∈BArs (x/s,1)

±[urs(z) − urs(x/s)] = S±
Ars ,1

(urs)(x/s).

Similarly, we have S±
Ar ,s

(ur )(x) = S±
A,rs(u)(r x). ��

We also need the following result, which can be found in [10]. When A = In andU = R
n

(in this case, dA is the Euclidean distance), we write S±
A,r (u) as S±

r (u) respectively.

Lemma 6.5 Suppose that u is a viscosity solution to �∞u = 0 in R
n and

S±
r (u)(0) = S±(u)(0), S±

r (u)(y) ≤ S±(u)(0) ∀y ∈ R
n and r > 0.

Then u is a linear function.

With those lemmas above, we are ready to prove that all blow-ups are linear.

Proof of Theorem 6.1 Fix x0 ∈ U2ε for any ε > 0. Up to dilations and translations, we may
assume that x0 = 0, A(0) = In and u(x0) = 0. Let Ar (x) = A(r x) and ur (x) = u(r x)

r for
all x ∈ 1

r U and r < rε,λ
Let x, y ∈ BAr (0,

rε,λ
2r ). By (6.1), r x, ry ∈ BA(0, rε,λ/2) ⊂ Uε . Hence, by Lemma 6.3,

|ur (x)| = |u(r x)|
r

≤ C
1

r
dA(r x, 0) = CdAr (x, 0) ≤ CL|x |,

|ur (x) − ur (y)| = |u(r x) − u(ry)|
r

≤ C
1

r
dA(r x, ry) ≤ CdAr (x, y) ≤ CL|x − y|.

For each sequence {r j } with r j → 0 as j → ∞, by the Arzela–Ascoli lemma, there is a
subsequence {r jk } and v such that ur jk → v locally uniformly in R

n as k → ∞. For short
we write {r jk } as {r j } below. Obviously, v(0) = 0. By the compactness of viscosity solutions
and A(0) = In , we have �∞v = 0 in R

n in viscosity sense.
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We claim that S±
s (v)(0) = S±(v)(0) = S±

A (u)(0) and S±
s (v)(x) ≤ S±(v)(0) for all s > 0

and x ∈ R
n . If this is true, then Lemma 6.5 implies that v is linear. Theorem 6.1 then follows

from this and Corollary 6.3.
To see the claim, observe that lim j→∞ ur j = v and limr→0 dAr = |·−·| locally uniformly

in R
n (see [20]). This implies that

lim
j→∞ S±

Ar j ,s
(ur j )(x) = lim

j→∞ sup
x∈BAr j

(x,s)

±ur j (x)

s
= sup

x∈B(x,s)

±v(x)

s
= S±

s (v)(x).

By Corollary 6.3, for every s > 0 we have

lim
j→∞ S±

Ar j ,s
(ur j )(0) = lim

j→∞ S±
A,sr j

(u)(0) = S±
A (u)(0).

Hence, S±
s (v)(0) = S±

A (u)(0) for all s > 0. Moreover, for all x ∈ R
n , if R ∈ (0, rε,λ) and

r j < R/s, since the maps r → S±
Lλ

A,r
(u)(r j x) are increasing when λ > 2‖ f ‖C(Uε ), we have

S±
Ar j ,s

(ur j )(x) = S±
A,sr j

(u)(r j x) ≤ S±
Lλ

A,sr j
(u)(r j x) ≤ S+

Lλ
A,R

(u)(r j x).

Letting j → ∞ first and R → 0 later, by Corollary 6.3 we arrive at

S±
s (v)(x) ≤ S±

A (u)(0) = S±(v)(0)

as desired. ��

7 Approximation equations

In this section, we always let f , g ∈ C∞(U ), and A ∈ C∞(U ;Rn×n) being symmetric and
uniformly elliptic. Assume that V = B(0, 3) � U and f > 0 in V . For ε ∈ (0,∞), we
consider the approximation equations:

AH [v] + ε div (ADv) = f in V ; v = g on ∂V . (7.1)

Lemma 7.1 For each ε ∈ (0, ∞), there exists a classical solution uε ∈ C∞(V ) ∩ C(V )

solves (7.1).

Assume that {uε}ε>0 are (viscosity) solutions to (7.1) as given in Lemma 7.1. We have the
following uniform estimates for uε , locally uniform estimates for Duε and locally uniform
flat estimates for |Duε |2 − uε

n . Write LV ≥ 1 as the elliptic constant of A in V , that is,

1

LV
|p|2 ≤ 〈A(x)p, p〉 ≤ LV |p| ∀x ∈ V p ∈ R

n .

Lemma 7.2 Assume that 1 ≤ LV < 21/4.

(i) There exists δ0 > 0 such that if ‖DA‖C(V ) ≤ δ0, then

sup
ε∈(0,1]

max
V

|uε | ≤ C,

where C ≥ 1 depends on ‖g‖C(∂V ), ‖ f ‖C(V ).
(ii) Moreover, for any γ ∈ (0, 1), there exists δγ such that if ‖DA‖C(V ) ≤ δγ , then

sup
ε∈(0,1]

|uε(x) − g(x0)| ≤ C |x − x0|γ , ∀ x0 ∈ ∂V and x ∈ V , (7.2)

where C ≥ 1 depends on γ, ‖g‖C0,1(V ), ‖ f ‖C(V ).
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Lemma 7.3 Assume that 1 ≤ LV < 21/4. For each W � V , there exists a constant
C ≥ 1 depending on ‖g‖C(∂V ), ‖ f ‖C(V ), ‖Df ‖C(V ), ‖A‖C(V ), ‖DA‖C(V ), ‖D2A‖C(V )

and dist (W , ∂V ) such that

sup
ε∈(0,1]

max
W

|Duε | ≤ C .

Lemma 7.4 Assume that 1 ≤ LV < 2
1
4 . and A(0) = In. Suppose that, for some small

constant λ > 0,

‖DA‖C(V ) + ‖D2A‖C(V ) + ‖Df ‖C(V ) ≤ λ

and

max
x∈B(0,2)

|uε(x) − xn | ≤ λ.

Then there exists a constant C > 0 depending ‖ f ‖C(V ), ‖g‖C(∂V ) but independent of λ such
that

|Duε(x)|2 ≤ uε
n(x) + Cλ1/2 ∀ x ∈ B(0, 1) and ε ∈ (0, 1].

Lemma 7.1 follows from the elliptic theory (see [17, Chapters 13&14]).

Proof of Lemma 7.1 To show that (7.1) has a solution u ∈ C∞(V )∩C(V ), due to the elliptic
theory, it suffices to show this equation has a solution u ∈ C2,α(V ) ∩ C(V ) for some
α ∈ (0, 1). Indeed, if Du is bounded locally in V , and hence the above equation is a uniform
elliptic equation in each subdomain W � V , then the elliptic theory yields that u ∈ C∞(W )

as desired.
For convenience, we only consider the case ε = 1; the case ε 
= 1 is similar. Rewrite (7.1)

with ε = 1 as

ai j (x, Dv)vi j + b(x, Dv) = 0 in V ; v = g on ∂V

where

ai j (x, p) = 2aik(x)pka
j
(x)p
 + ai j (x),

b(x, p) = − f (x) + ai jk (x)pi p j a
k
(x)p
 + ai ji (x)pi .

We always use the Einstein summation convention and also write vi = ∂
∂xi

v and vi j =
∂2

∂xi ∂x j
v. Obviously ai j (x, p) ∈ C∞(V × R

n) and b(x, p) ∈ C∞(V × R
n). Set

�(x, p) = L(1 + 2L|p|2)
and

E(x, p) = ai j (x, p)pi p j = ai j (x)pi p j + 2[ai j (x)pi p j ]2
for all x ∈ V and p ∈ R

n . Then

1

L
|p|2 ≤ E(x, p) ≤ �(x, p)|p|2.

By [17, Theorem 13.8], the existence of a solution u ∈ C2,α(V ) ∩ C(V ) is reduced to
proving that if vσ ∈ C2,α(V ) are a solution to the equation

n
∑

i, j=1

ai j (x, Dv)vi j + σb(x, Dv) = 0 in V ; v = σ g on ∂V
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for each σ ∈ [0, 1], then there exists a constant C ≥ 1 independent of σ such that

sup
V

|vσ | + sup
V

|Dvσ | ≤ C .

Note that supV |vσ | ≤ C follows from the maximum principle (see [17, Theorem 10.3])
due to

|σb(x, p)|
E(x, p)

≤ μ1|p| + μ2

|p|2 ∀x ∈ V and p ∈ R
n

for some constant μ1, μ2 ≥ 1 independent of σ .
Moreover, sup∂V |Dvσ | ≤ C follows from [17, Theorem14.1] since there exists a constant

μ ≥ 1 independent of σ such that

|p|�(x, p) + |σb(x, p)|
≤ L|p|(1 + 2L|p|2) + ‖ f ‖C(V ) + n2‖DA‖C(V )|p|(1 + n‖A‖C(V )|p|2)
≤ μ

1

L
|p|2(1 + 1

L
|p|2)

≤ μE(x, p)

whenever |p| ≥ μ, x ∈ V and σ ∈ [0, 1].
Finally, we prove that supV |Dvσ | ≤ C . We consider the following quantities

α(x, p) = 1

E(x, p)

{

(

n
∑

i=1

pi Dpi − 1)E(x, p)

}

βA(x, p) = 1

E(x, p)

n
∑

i=1

{|p|−2 pi Dxi E(x, p) + σ(pi Dpi − 1)b(x, p)}

γA(x, p) = 1

E(x, p)

{

|p|2
4/L

n
∑

k=1

[|p|−2 pka
i j
k (x)] + σ

n
∑

i=1

pi Dpi b(x, p)

}

that is, r = −1, s = 0, δ = |p|−2 ∑n
i=1 pi Dxi , δ = ∑n

i=1 pi Dpi , a
i j∗ (x, p) = ai j (x) and

λ∗ = 1/L in [17, (15.27)]. With the aid of sup∂V |Dvσ | ≤ C , supV |Dvσ | ≤ C follows from
Theorem 15.2 of [17] if we can show that lim supp→∞ α(x, p) and lim supp→∞ βA(x, p) are
uniformly in x ∈ V and are uniformly bounded in σ ∈ [0, 1], and lim supp→∞ γA(x, p) = 0.
Observing that

pi Dpi E(x, p) =
n

∑

k=1

pk Dpk {ai j (x)pi p j + 2[ai j (x)pi p j ]2}

= 2ai j (x)pi p j + 8[ai j (x)pi p j ]2,
we know that lim supp→∞ α(x, p) = 3 uniformly in x ∈ V . Moreover, by E(x, p) =
O(|p|4), A ∈ C1(V ;Rn×n), we have

n
∑

i=1

pi Dxi E(x, p) =
n

∑

k=1

pk Dxk {ai j (x)pi p j + 2[ai j (x)pi p j ]2}

=
n

∑

k=1

pka
i j
k (x)pi p j [1 + 2ak
(x)pk p
]

≤ O(|p|5),
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and
n

∑

i=1

pi Dpi b(x, p) = 3ai jk (x)pi p j a
k
(x)p
 + ai ji (x)p j ≤ O(|p|3),

we obtain lim supp→∞ βA(x, p) = lim supp→∞ γA(x, p) = 0 uniformly in x ∈ V and
σ ∈ [0, 1] as desired. ��

Lemma 7.2 follows from Lemma 4.2.

Proof of Lemma 7.2 Proof of (i) Let v = ‖g‖C(∂V ) be a constant function. Since f > 0, by
Lemma 4.2, we know that uε ≤ ‖g‖C(∂V ) in V .

To get the lower bound of uε in V , it suffices to find w ∈ C(V ) such that w ≤ g on ∂V ,

w ≥ −C(‖ f ‖C(V ), ‖g‖C(∂V )) in V , (7.3)

and
AH [w] + ε div (ADw) ≥ ‖ f ‖C(V ) in V . (7.4)

Indeed, if such an w exists, then by Lemma 4.2, w ≤ uε in V and hence

uε ≥ w ≥ −C(‖g‖C(∂V ), ‖ f ‖C(V )) in V

as desired.
We take w(x) = −λ|x − x0|γ − ‖g‖C(∂V ) where γ ∈ (0, 1) and x0 ∈ ∂V , but the value

of λ > 1/γ will be determined later. Then w ≤ g on ∂V . It is easy to see that

2aik(x)wk(x)a
j
(x)w
(x) = 2λ2γ 2|x − x0|2γ−4aik(x)(xk − x0k )a

j
(x)(x
 − x0
 )

and

−wi j (x) = λγ (γ − 2)|x − x0|γ−4(xi − x0i )(x j − x0j ) + λγ |x − x0|γ−2δi j .

Then

−2aik(x)wk(x)a
j
(x)w
(x)wi j (x) − εai j (x)wi j (x)

= 2λ3γ 3(γ − 2)|x − x0|3γ−8[aik(x)(xk − x0k )(xi − x0i )]2
+ ελγ (γ − 2)|x − x0|γ−4ai j (x)(x j − x0j )(xi − x0i )

+ 2λ3γ 3|x − x0|3γ−6aik(x)ai
(x)(xk − x0k )(x
 − x0
 )]
+ ελγ |x − x0|γ−2ai jδi j

≤ 2λ3γ 3(γ − 2)|x − x0|3γ−4 1

L2 + ελγ (γ − 2)|x − x0|γ−2

+ L2λ3γ 3|x − x0|3γ−4 + nLλεγ |x − x0|γ−2.

By L4 < 2, we have 2
L2 (2 − γ ) + L2 ≤ 2

L2 (γ − 1), and moreover, we can choose λ large
enough such that

nL ≤ 1

L2 λ2γ 2(1 − γ )62γ−2.

Thus

−2aik(x)wk(x)a
j
(x)w
(x)wi j (x) − εai j (x)wi j (x) ≤ 1

L2 λ3γ 3(γ − 1)|x − x0|3γ−4.
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Moreover,

| − f (x) + ai jk (x)wi (x)w j (x)a
k
(x)w
(x) + εai ji (x)wi (x)|

≤ ‖ f ‖C(V ) + n2‖DA‖C(V )L|Dw|3 + εn2‖DA‖C(V )|Dw|
≤ ‖ f ‖C(V ) + n2δ0Lλ3γ 3|x − x0|3γ−3 + n2δ0λγ |x − x0|γ−1.

If δ0 ≤ (1 − γ )/8n262γ−3, then

n2δ0Lλ3γ 3|x − x0|3γ−3 + εn2δ0λγ |x − x0|γ−1 ≤ 1

2L2 λ3γ 3(γ − 1)|x − x0|3γ−4.

Combining these estimates, we arrive at

AH [w] + ε div (ADw) ≥ 1

2L2 λ3γ 3(1 − γ )|x − x0|3γ−4 − ‖ f ‖C(V ) ≥ ‖ f ‖C(V )

if we let λ be large enough such that

1

L2 λ3γ 3(1 − γ )63γ−4 ≥ 4‖ f ‖C(V ).

This gives (7.4).

Proof of (ii). Take a point x0 ∈ ∂V . Define w(x) = −λ|x − x0|γ , the value of λ will be
determined later. First, since g ∈ C0,1(∂V ), we can choose λ > ‖g‖C0,1(∂V ) such that

w + g(x0) ≤ g ≤ g(x0) − w on ∂V .

Moreover, following the procedure in (i), if ‖DA‖C(V ) ≤ δγ = (1 − γ )/8n262γ−3, and λ is
large enough (depending on ‖ f ‖C(V )), we have

AH [w] + ε div (ADw) ≥ ‖ f ‖C(V ).

Applying Lemma 4.2, we conclude that

w + g(x0) ≤ uε ≤ g(x0) − w in V .

That is, |uε(x) − g(x0)| ≤ C |x − x0|γ as desired. ��
The proofs of Lemmas 7.3 and 7.4 are similar to those of [28, Theorem 3.1 and Theorem

3.3] respectively, where f = 0. Here we only sketch it by omitting several details, but
pointing out that the additional terms comes from f 
= 0 can be controlled.

Proof of Lemma 7.3 We let all the notation be the same as in the proof of [28, Theorem 3.1]
except that we write Aε, H ε, f ε, gε, uε there as A, H , f , g, u here for simple.

Recall that

AH [u] = 2aikukui j a
j
u
 + ai jk ui u j a

k
u
.

We always use the Einstein summation convention. Taking ∂
∂s of the equation AH [u] +

ε div (ADu) = f , we obtain

2aikukui jsa
j
u
+4aiks ukui j a

j
u
+4aikuksui j a
j
u
+ai jksui u j a

k
u
+2ai jk uisu j a
k
u


+ ai jk ui u j a
k

s u
 + ai jk ui u j a

k
u
s + ε div(ADus) + ε div(AsDu) = fs . (7.5)

Set
Gm := 4aimui j a

j
u
 + 2amj
k u j a

k
u
 + ai jk ui u j a
km, (7.6)
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and

Fs := 4aiks ukui j a
j
u
 + ai jk ui u j a

k

s u
 + ai jksui u j a

k
u
 + ε div(AsDu). (7.7)

Define the operator Lε by

Lεv := 2aikukvi j a
j
u
 +

n
∑

m=1

Gmvm + ε div(ADv). (7.8)

Then (7.5) can be written as
− Lε(us) = Fs + fs . (7.9)

Set v := 1
2 |Du|2. Then, by (7.9) and an argument similar to [28, Theorem 3.1] we have

Lεv = 2|D2uADu|2 +
n

∑

s=1

[

εai j usi us j − us Fs − us fs
]

. (7.10)

Set z := 1
2 (u)2. Then, byAH [u]+ε div (ADu) = f and an argument similar to [28, Theorem

3.1] we have

Lεz = 2〈Du, ADu〉2 + ε〈ADu, Du〉 + u f

+ 4u〈ADu, D2uADu〉 + 2u〈〈Du, DADu〉, ADu〉,
where 〈Du, DADu〉 is interpreted as the vector (〈Du, AkDu〉)k with Ak being the element-
wise derivative of A.

Choose φ ∈ C∞
0 (V ) such that φ = 1 in V , 0 ≤ φ ≤ 1, and, for β > 0 to be determined

later, define the auxiliary function w by

w := φ2v + βz.

If w attains its maximum on ∂V , then

sup
V

v ≤ sup
V

w(x) ≤ max
V

w = max
∂V

w = β

2
max
∂V

u2,

as desired. Thus we may assume w attains its maximum at an interior point x0 ∈ V . This
gives Dw(x0) = 0 and D2w(x0) ≤ 0, so that

− Lεw(x0) = −(2aikuka
j
u
 + εai j )wi j

∣
∣
∣
x=x0

≥ 0. (7.11)

On the other hand, by (7.10) and (7.11), similarly to the proof of [28, Theorem 3.1] we have
that, at x = x0,

0 ≤ −Lεw(x0) = −Lε(φ
2v) − βLεz

=
[

−2φ2|D2uADu|2 − εφ2
n

∑

s=1

ai j usi us j − 2β〈Du, ADu〉2 − εβ〈Du, ADu〉 − βu f

]

−
[

4βu〈ADu, D2uADu〉 + 2βuamj
k u j uma

k
u


]

−
[

8φaikuka
j
u
φi

n
∑

r=1

ur j ur +4εφ
n

∑

m=1

φi a
i j umj um

]

+φ2
n

∑

s=1

us[Fs+ fs]−vLε(φ
2)

= I1 + I2 + I3 + I4 + I5.
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Observe that the terms I2, I3, I5 are exactly the same as in the proof of [28, Theorem 3.1].
So the same argument as there leads to that

I2 ≤ β4/3|D2uADu|4/3 + C |Du|4 + C(β),

I3 ≤ 1

8
|D2uADu|2φ2 + ε

16L
|D2u|2φ2 + C |Du|4 + C,

I5 ≤ 1

8
|D2uADu|2φ2 + C |Du|4 + C,

Comparing I1 and I4 with those in the proof of [28, Theorem 3.1], we get additional terms
βu f in I1 and φ2 ∑n

s=1 us fs in I4 here. But applying an argument similar to proof of [28,
Theorem 3.1], we also have

I1 ≤ −2φ2|D2uADu|2 − ε

L
φ2|D2u|2 − 2β

L2 |Du|4 + C(β)

I4 ≤ 1

8
|D2uADu|2φ2 + C |Du|4 + ε

16L
φ2|D2u|2 + C .

Above C > 0 denotes constants depending only on n, L , ‖A‖C1,1(V ), ‖ f ‖C1(V ), ‖u‖C(V ),‖ f ‖C(V ) and dist(V , ∂V ).
Combining all these estimates with (7.11) yields that, at x = x0,

2φ2|D2uADu|2 + ε

L
φ2|D2u|2 + 2

L2 β|Du|4

≤ |D2uADu|2φ2 + C |Du|4 + Cβ4/3|D2uADu|4/3 + ε

8L
φ2|D2u|2 + C(β),

so that

|D2uADu|2φ2 + 2

L2 β|Du|4 ≤ C |Du|4 + Cβ4/3|D2uADu|4/3 + C(β).

We may choose β > 1 sufficiently large so that

|D2uADu|2φ2 + β

L2 |Du|4 ≤ Cβ4/3|D2uADu|4/3 + C(β).

Multiplying both sides of this inequality by φ4 and applying Young’s inequality implies

|D2uADu|2φ6 + β

L2 |Du|4φ4 ≤ Cβ4/3|D2uADu|4/3φ4 + C(β)

≤ 1

2
|D2uADu|2φ6 + C(β).

Hence we have |Du(x0)|4φ(x0)4 ≤ C .

This finishes the proof. ��
Proof of Lemma 7.4 We let all the notation be the same as in the proof of [28, Theorem 3.3]
except that we write Aε, f ε, uε as A, f , u for simplicity.

Set �(p) := (|p|2 − pn)2+ = max{|p|2 − pn, 0}2. Let φ ∈ C∞
0 (B(0, 3)) be such that

φ = 1 in B(0, 1), φ = 0 outside B(0, 2), 0 ≤ φ ≤ 1, and |Dφ| ≤ 2.

Define

v = φ2�(Du) + β(u − xn)
2 + λ|Du|2,
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where β > 0 is a sufficiently large number whose value will be determined later. Applying
Lemmas 7.2 and 7.3, we have |u| + |Du| ≤ C in B(0, 2). If maxB(0, 2) v is attained on
∂B(0, 2), then by the same argument as in [28], we have the desired estimate. Therefore we
may assume that v attains its maximum at an interior point x0 ∈ B(0, 2). Moreover, we can
also assume

(|Du|2 − un
)

(x0) > 0.
To estimate v(x0), let Lε and Fs be given by (7.8) and (7.7). We need to compute Lεv at

x0. Using

AH [u] + ε div (ADu) = 2aikukui j a
j
u
 + ai jk ui u j a

k
u
 + ε div (ADu) = f ,

similarly to [28, Theorem 3.3] we obtain

−Lε((u − xn)
2) = −4

(〈Du, ADu〉 − ankuk
)2 − 2ε〈Du − en, A(Du − en)〉

− 8aik(uk − δkn)ui j a
j
u
(u − xn)

− 4ai jk (ui − δin)u ja
k
u
(u − xn)

+ 2ai jk ui u j a
k
δ
n(u − xn) + 2ε

n
∑

i=1

aini (u − xn) − 2(u − xn) f

= J1 + J2 + J3 + J4 + J5 + J6 + J7,

where we denote en = (0, . . . , 0, 1). Comparing the formula of −Lε((u − xn)2) as in that
appeared in the proof of [28, Theorem 3.3], we will see that the terms J1 through J6 are
the same and J7 is new here due to f 
= 0. Regards of the terms J1 to J6, with the aid of
Theorem 7.2 and by exactly the same argument as in the proof of [28, Theorem 3.3], we have

J2 ≤ − ε

L

∣
∣Du − en

∣
∣2, |J3| ≤ Cλ|D2uADu|, |J4| + |J5| ≤ Cλ, |J6| ≤ Cελ,

and

J1 ≤ −4
∣
∣|Du|2 − un

∣
∣2 + Cλ,

where we use ‖DA‖L∞ ≤ λ and A(0) = In . It is easy to see that |J7| ≤ Cλ. Therefore, we
arrive at

− Lε

(

(u − xn)
2) ≤ −4

(|Du|2 − un
)2 − 2ε

L
|Du − en |2 + Cλ(1 + |D2uADu|).(7.12)

Moreover, similarly to the proof of [28, Theorem 3.1], by (7.10) we have

1

2
Lε

(|Du|2) ≥ |D2uADu|2 + ε

L
|D2u|2 − C . (7.13)
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Nextweneed to estimate Lε(φ
2�(Du)). As explained earlier,wemay assume |Du|2 > un

at x0 ∈ B(0, 2). As in the proof of [28, Theorem 3.3] for Lε(�(Du)), we write, at x = x0,

Lε(�(Du)) = 4aikuka
j
u


(

2
n

∑

s=1

us j us − unj
)(

2
n

∑

s=1

usi us − uni
)

+ 8
(|Du|2 − un

)

aikuka
j
u


( n
∑

s=1

usi us j
)

+ 2εai j
(

2
n

∑

s=1

usi us − uni
)(

2
n

∑

s=1

us j us − unj
)

+ 4εai j
(

|Du|2 − un
)( n

∑

s=1

us j us j
)

+ 2
(|Du|2 − un

)(

2
n

∑

s=1

us Lε(us) − Lε(un)
)

= K1 + K2 + K3 + K4 + K5.

(7.14)

Here Gm is as defined in (7.6). The estimate of K1, . . . , K4 are exactly the same as in the
proof of [28, Theorem 3.3], that is,

K1 = 4
[

2〈Du, D2uADu〉 − 〈(D2u)n, ADu〉
]2

,

K2 = 8(|Du|2 − un)|D2uADu|2,

K3 ≥ 2ε

L

n
∑

i=1

(

2
n

∑

s=1

usi us − uni
)2

,

K4 ≥ 4ε

L

(|Du|2 − un
)∣
∣D2u

∣
∣2,

where (D2u)n denotes the nth-row of D2u. Regards of K5, by (7.5), we have

K5 = 2
(|Du|2 − un

)(
n

∑

s=1

2us Fs + us fs − Fn − fn
)

.

Applying Lemma 7.3, we obtain

∣
∣K5

∣
∣ ≤ (|Du|2 − un

)(

Cλ|D2uADu| + ε

4L
|D2u|2 + Cλ

)

.

Putting these estimates into (7.14) gives

Lε(�(Du)) ≥ 8
(|Du|2 − un

)(|D2uADu|2 + ε

4L
|D2u|2

)

+ 4
[

2〈Du, D2uADu〉 − 〈(D2u)n, ADu〉
]2

+ 2ε

L

n
∑

i=1

(

2
n

∑

s=1

usi us − uni
)2

− Cλ(|Du|2 − un)|D2uADu| − Cλ. (7.15)
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Applying this and using the arguments same as in the proof of [28, Theorem 3.3], we
conclude that

Lε

(

φ2�(Du)
) ≥ −C(|Du|2 − un)

2 − Cλ(|Du|2 − un) − Cλ. (7.16)

Combining the estimates (7.12), (7.13), with (7.16) yields that, at x = x0,

0 ≤ −Lε

(

v
) = −Lε

(

φ2�(Du)
) − βLε

(

(u − xn)
2) − λLε

(|Du|2)

≤ C
(|Du|2 − un

)2 + Cλ
(|Du|2 − un

) + Cλ

− 4β
(|Du|2 − un

)2 − 2εβ

L

∣
∣Du − en

∣
∣
2 + Cβλ + Cβλ

∣
∣D2uADu

∣
∣

+ 2λ
(

− |D2uADu|2 − ε

L2 |D2u|2 + C
)

.

Thus we have that, at x = x0,

(4β − C)
(|Du|2 − un

)2 + 2λ
∣
∣D2uADu

∣
∣2 + 2λε

L2

∣
∣D2u

∣
∣2

≤ Cλ
(|Du|2 − un

) + C(1 + β)λ + Cβλ
∣
∣D2uADu

∣
∣.

Choosing β > C and applying Young’s inequality, we obtain

β
(|Du|2 − un

)2 ≤ Cλ + 2β2λ.

Thus we conclude that |Du(x0)|2 − un(x0) ≤ C
√

λ as desired. ��

8 Everywhere differentiability

In this section we always assume that A ∈ C1,1(U ;Rn×n) is symmetric and uniform sym-
metric, and f ∈ C0,1(U ).

Theorem 8.1 If u ∈ C(U ) is a viscosity solution toAH [u] = f in U, then u is differentiable
everywhere in U.

Assume that B(0, 3) � U and f > 0 in B(0, 3). Write V = B(0, 3). Denote by LV the

ellipticity constant of A in V , and assume that 1 ≤ LV < 2
1
8 . It is a standard fact that there

exist {Aε}ε>0 ⊂ C∞(U ;Rn×n), { f ε}ε>0, {gε}ε>0 ⊂ C∞(U ), and constant ε0 ∈ (0, 1) such
that

(A1) Aε(0) = A(0), and Aε is symmetric and uniformly elliptic with constant L2
V for all

ε ∈ (0, ε0)
(A2)

∥
∥DAε

∥
∥
C(V )

≤ 2
∥
∥DA

∥
∥
C(V )

and
∥
∥D2Aε

∥
∥
C(V )

≤ 2
∥
∥D2A

∥
∥
L∞(V )

for all ε ∈ (0, ε0)

(A3) for any α ∈ (0, 1), Aε → A in C1,α(V ) as ε → 0,
(A4) f ε > 0,

∥
∥Df ε

∥
∥
C(V )

≤ 2
∥
∥Df

∥
∥
C(V )

and
∥
∥Dgε

∥
∥
C(V )

≤ 2
∥
∥Du

∥
∥
L∞(V )

for all ε ∈
(0, ε0),

(A5) for any α ∈ (0, 1), f ε → f in C0,α(U ) and gε → u in C0,α(V ) as ε → 0.

For ε ∈ (0, ε0) let uε be the smooth solution to the approximation equation

AH ε [v] + ε div (AεDv) = f ε in V ; v = gε on ∂V (8.1)

as given in Lemma 7.1. We have the following approximation property.
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Lemma 8.2 There exists a constant δ̂ > 0 such that if ‖DA‖C(V ) ≤ δ̂, then uε → u locally
uniformly in V .

Proof Fix a γ ∈ (0, 1) and assume ‖DA‖C(V ) < δ̂ = min{δγ , δ0}/2 where δγ and δ0 are the
same as in Lemma 7.2. Then ‖DAε‖C(V ) < 2δ̂ for ε ∈ (0, ε0]. Notice that Aε has the same
elliptic constant L2

V < 21/4. By Lemma 7.2, we have

sup
ε∈(0,ε0]

‖uε‖C(V ) � ‖u‖C(V ) (8.2)

and
sup

ε∈(0,ε0]
|uε(x) − u(x0)| ≤ C |x − x0|γ , ∀ x0 ∈ ∂V and x ∈ V . (8.3)

Moreover, due to (A1)–(A5) again, applying Lemma 7.3 we know that for any compact
subset K � V , there exists a constant C > 0 such that

sup
ε∈(0,ε0]

∥
∥Duε

∥
∥
C(K )

≤ C .

By this and (8.2) one has that, up to some subsequence, uε → û locally uniformly in V for
some û ∈ C0,1(V ). From this and (8.3), it follows that

|û(x) − u(x0)| ≤ C |x − x0|γ , ∀ x ∈ V and x0 ∈ ∂V .

Thus, û ∈ C(V ) and û ≡ u on ∂V . By [12, Lemma 6.1], we know that û ∈ C(V ) is a
viscosity solution to the Aronsson equation (1.1). Since û ≡ u on ∂V and f > 0 in V , by
Theorem 1.1, we have û = u. Therefore, uε → u locally uniformly in V as desired. ��

With the aid of Lemma 8.2 and Lemma 7.4, Theorem 7.1 follows from an argument similar
to those of [16, Theorem 1.1], [28, Theorem 1.1] and [21, Theorem1.2].

Proof of Theorem 8.1 For each fixed point x0 ∈ U , we need to show the differentiability
of u at x0. Up to consider ũ(̃x) = u(x) + C |xn+1|4/3 for x̃ = (x, xn+1) ∈ U × R (see
e.g. [18, Theorem 1]), we may assume that f > 0 in B(x0, 1

2 dist A(x0, ∂U )). Indeed,
differentiability of u at x0 follows from that of ũ at (x0, 0). Moreover,AH̃ [̃u] = f̃ inU ×R,
where f̃ (̃x) = f (x) + C343/34 and H̃ (̃x, p) = 〈 Ã(̃x)p, p〉 with Ã(̃x) = diag{A(x), 1} for
all x̃ ∈ U × R and p ∈ R

n+1. If 4C/34/3 > ‖ f ‖C(V ), then f̃ > 0 in V .
Up to some scaling, rotation and translation (see [28, Lemma 4.2]), we may assume

that x0 = 0, u(x0) = 0, and A(x0) = In . Moreover, we assume that LipdAu(0) > 0
otherwise (8.4) holds with p0 = 0. Up to consider u/LipdAu(0), we may further assume that
LipdAu(0) = 1.

Now, it suffices to prove the existence of a vector p0 ∈ R
n such that

|u(h) − 〈p0, h〉| = o(|h|), ∀ h ∈ R
n . (8.4)

By Theorem 6.1, we need to show that for every pair of sequences r = {r j } and s = {sk} that
converge to 0, if

lim
j→∞ max

y∈B(0, 3r j )

1

r j
|u(y) − 〈a, y〉| = 0

and

lim
k→∞ max

y∈B(0, 3sk )

1

sk
|u(y) − 〈b, y〉| = 0
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for some a, b ∈ R
n , then a = b.

We prove the above claim by contradiction. Suppose that a 
= b. Recalling that

H(0, a) = 〈a, a〉 = LipdAu(0) = 〈b, b〉 = H(0,b)

as given in Theorem 6.1, we have |a| = |b| = 1. Up to a rotation, we may assume that
a = en . Since |b| = 1 and b 
= en , we have

θ := 1 − bn > 0.

Let C > 0 be the constant in Lemma 7.4 and choose λ > 0 such that

Cλ
1
2 = θ

4
.

Choose r ∈ {r j } such that f > 0 in B(0, 3r),

max
y∈B(0, 3r)

1

r
|u(y) − yn | ≤ λ

4
, (8.5)

and
{

2−1/8|p|2 ≤ 〈

A(x)p, p
〉 ≤ 21/8|p|2, x ∈ B(0, 3r), p ∈ R

n,

r
∥
∥DA

∥
∥
C(B(0,3)) + r2

∥
∥D2A

∥
∥
C(B(0,3)) + r‖Df ‖C(B(0,3)) ≤ 1

2 min
{

δ̂, λ
}

,
(8.6)

where δ̂ is the constant given by Lemma 8.2.
For x ∈ B(0, 3) ⊂ Ũ = 1

r U , let Ã(x) = A(r x), f̃ (x) = r f (r x) and ũ(x) = 1
r u(r x).

Then AH̃ [̃u] = f̃ in B(0, 3) in the viscosity sense. We also let { Ãε}ε>0, { f̃ ε}ε>0 and {g̃ε}
be smooth approximations of Ã, f̃ and ũ in Ũ as in the beginning of this section, and
hence satisfy (A1)–(A5). Observe that DÃ(x) = r(DA)(r x), D f̃ (x) = r2Df (r x) and
D2 Ã(x) = r2(D2A)(r x) for x ∈ B(0, 3). By (8.6), for ε < ε0

{

2−1/4|p|2 ≤ 〈

Ãε(x)p, p
〉 ≤ 21/4|p|2, x ∈ B(0, 3), p ∈ R

n,
∥
∥DÃε

∥
∥
C(B(0,3)) + ∥

∥D2 Ãε
∥
∥
C(B(0,3)) + ∥

∥D f̃ ε
∥
∥
C(B(0,3)) ≤ min

{

δ̂, λ
}

.

By Lemma 7.1, we denote by ũε ∈ C∞(B(0, 3))∩C(B(0, 3)) be smooth solutions to the
Dirichlet problem:

AH̃ ε [v] + ε div ( ÃεDv) = f̃ ε in B(0, 3); v = g̃ε on ∂B(0, 3).

Lemma 8.2 implies that ũε → ũ uniformly in B(0, 2). From (8.5), we also have

max
y∈B(0,2)

|̃u(y) − yn | ≤ λ

4
.

Hence there exists ε1 ∈ (0, ε0) such that for all ε < ε1,

max
y∈B(0,2)

∣
∣̃uε(y) − yn

∣
∣ ≤ λ

2
.

Applying Lemma 7.4, we arrive at
∣
∣Dũε

∣
∣
2 ≤ ũε

n + Cλ1/2 in B(0, 1).

On the other hand, set s̃k = sk/r . Then

lim
k→∞ max

y∈B(0,3s̃k )

1

s̃k
|̃u(y) − 〈b, y〉| = 0.
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Choose η = θ
48 and pick s ∈ {̃sk}, with 0 < s < 1, so that

max
y∈B(0, s)

1

s
|̃u(y) − 〈b, y〉| ≤ η

2
.

By Lemma 8.2 again, there exists ε2 > 0 such that for all ε < ε2,

max
y∈B(0, s)

1

s

∣
∣̃uε(y) − 〈b, y〉∣∣ ≤ η.

Applying [28, Lemma 4.3] to 1
s ũ

ε(s·), we can find a point x0 ∈ B(0, s) such that
∣
∣Dũε(x0) − b

∣
∣ ≤ 4η,

which, combined with |b| = 1, yields
{

ũε
n(x

0) ≤ bn + 4η ≤ 1 − θ + 4η,
∣
∣Dũε(x0)

∣
∣ ≥ 1 − 4η.

Thus

(1 − 4η)2 ≤ ∣
∣Dũε(x0)

∣
∣
2 ≤ ũε

n(x
0) + Cλ1/2 ≤ ũε

n(x
0) + θ

4
,

which gives

θ ≤ 12η + θ

4
≤ θ

2
,

this is impossible. The proof is complete. ��
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