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Abstract: In this paper, we aim to establish the sharp maximal pointwise estimates for the multilinear commu-
tators generated by multilinear strongly singular Calder6n-Zygmund operators and BMO functions or Lips-
chitz functions, respectively. As applications, the boundedness of these multilinear commutators on product
of weighted Lebesgue spaces are obtained. It is interesting to note that there is no size condition assumption
for the kernel of the multilinear strongly singular Calderén-Zygmund operator. Due to the stronger singular-
ity for the kernel of the multilinear strongly singular Calderén-Zygmund operator, we need to be more careful
in estimating the mean oscillation over the small balls to get the sharp maximal function estimates.
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1 Introduction

The strongly singular integral operator originated from a class of multiplier operator is defined by

ellél"
(Tapf) (&) = 9(€)Wf(€),
where0 < « < 1,0 < 8 < na/2 and 6(¢) is a standard smooth cut-off function near the origin. Its convolution
form can roughly be written as follows:

. ol
ilx-y|™*

e
Tap)0) = pv. | o= Yf)
where A = W and a' = {%;. Fefferman in [13] gave this operator the name weakly-strongly singular
Calder6n-Zygmund operator.
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For the bounded properties on Lebesgue spaces, Hirschman in [25] and Stein in [52] showed that Ty g
is bounded on LP (R") when |% - p%| < g [ "l/gi;"], and Wainger [54] proved that Tg,g is not bounded on LP (R")
when |1 - %| > g["l/ﬁ;"]. In the critical case where p, satisfies plo -1= /—;["/ﬁ;"], Fefferman in [13] obtained
the boundedness of Ty g from LP°(R") to the Lorentz space LPO’PQ(]R"), where pg is the dual exponent of py.
The weighted estimates for the classical linear strongly singular Calder6n-Zygmund operators were given by
Chanillo in [6]. Li and Lu in [30] gave a new proof to deal with the L? boundedness by the scale changing
method introduced by Carleson and Sj6lin in [5].

For the situation when B = na/2, by means of the duality relationship between the Hardy space H! and
the BMO space, Fefferman and Stein in [14] established the sharp endpoint estimate for this strongly singular
integral.

Another kind of strongly singular non-convolution operator was introduced by Alvarez and Milman in [1].
Its properties behaved similarly to those of the standard Calderon-Zygmund operator. However, the kernel
will be more singular near the diagonal than that of the standard case. The following is the specific definition

of the strongly singular non-convolution operator.

Definition 1.1. Let T: 8 — 8' be abounded linear operator. T is called a strongly singular Calderén-Zygmund
operator if the following conditions are satisfied:

(1) T can be extended into a continuous operator from L?(RR") into itself.

(2) There exists a function K(x, y) continuous away from the diagonal {(x, y) : x = y} such that

ly - 2/°

IK(x,y) — K(x, 2)| + |K(y, x) - K(z, X)| < Cm

if2ly-z|*<|x-z|forsome0<d<landO0< a < 1,and

(Tf, 8) = j j K y)f)g(x) dy dx

for f, g € 8 with disjoint supports.
(3) For some n(1-a)/2 < B <n/2,both T and its conjugate operator T* can be extended into continuous
operators from L9 to L2, where 1/q = 1/2 + /n.

Alvarez and Milman disclosed the relationship between the pseudo-differential operator and the strongly
singular Calderon-Zygmund operator. They verified that a class of pseudo-differential operators with sym-
bols in the Hérmander’s class S;B s»Where0 <6 <a<1landn(l-a)/2<p<n/2,isactually included in the
strongly singular Calderéon—Zygmund operator. This relationship indicates that strongly singular Calder6n—
Zygmund operators have their importance not only in the theory of singular integrals in harmonic analysis
but also in other related subjects in PDE.

The boundedness of the strongly singular Calder6n—-Zygmund operator on Lebesgue spaces was estab-
lished by Alvarez and Milman in [1, 2]. Lin [33], and Lin and S. Lu [37] gave the sharp maximal estimates and
endpoint estimates for the strongly singular Calderén-Zygmund operator, respectively. Furthermore, one can
refer to [33, 35-37, 39] for other boundedness properties involving strongly singular Calder6n-Zygmund op-
erators and their commutators.

In this paper, we will pay attention to the multilinear form of the strongly singular Calderén-Zygmund
operator.

Following the works of Coifman and Meyer in [9-11], in recent years, the topic of multilinear singular
integrals has received increasing attention. In particular, the theory of multilinear Calderé6n-Zygmund oper-
ators has been developed systemically by Grafakos and Torres in [20, 21], and Grafakos and Kalton in [18],
and the theory of multilinear fractional integrals has been treated by Kenig and Stein in [28]. There has been
extensive research in the multilinear theory of Fourier multipliers and singular integrals since then, and we
refer the reader to, e.g., [3, 4, 7, 8, 16, 17, 22-24, 26, 27, 29, 31, 40, 41, 43, 44, 46, 47, 49, 50]. The multi-
linear commutators generated by multilinear Calderén-Zygmund singular integrals or multilinear fractional
integrals have also been extensively studied, for example, in [12, 32, 38, 42, 48, 51, 53, 55, 56].

Now we give a brief review to the definition of the multilinear Calder6n-Zygmund operator. Let m € N,
and let K(yo, y1, ..., ¥m) be a function defined away from the diagonal yg = y1 = --- = yn in (R")™*1, Let
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also T represent an m-linear operator, defined on a product of test function spaces related to the kernel func-
tion K, such that the following integral representation is valid:

m
T(fl’ ] ;fm)(x) = J j K(X,Yh .. ,)/m)l—[f]()/])d)’ld)/m, (1~1)
R" R j:l
wheref; (j = 1, ..., m) are smooth functions with compact support and x ¢ ﬂj"ll supp fj. In particular, we call

K a standard m-linear Calderon—Zygmund kernel if it satisfies the following size and smoothness conditions:

C
|K(Y0’)’1,-~-y)’ )lS (1~2)
T R v -y
for some C > O and all (yo, ¥1, ..., Ym) € (R")™?! away from the diagonal, and
Cly; - yil¢
|K()/O,---,J/j,---,Ym)—K(YO,---;y}",---,)’m)|5 ! (1'3)

(Y=o Vi = yilymne

for some € > 0, whenever 0 < j < mand [y; - y)fl < %maXOSkSmlyj = Vil

According to [21], if an m-linear operator T, defined by (1.1), is related to a standard m-linear Calderén-
Zygmund kernel K, and satisfies either of the following two conditions:
(C1) Tmaps Lt x...x Lim1into L6®if t > 1,
(C2) TmapsLivl x...xLimlinto Lift =1,
where tq, to, ..., ty, t are given numbers satisfying 1 < t1, t5, ..., tm, t<ocoand 1/t=1/t1 +1/to +. ..+ 1/t,
and L1, ..., Lim1 L6 are Lorentz spaces, then T will be called a standard m-linear Calderén—Zygmund
operator.

Let T be an m-linear operator defined by (1.1). Given a collection of locally integrable functions b =
(b1, ..., bn), the m-linear commutator of T with b is defined by

Ty(fis oo fm) = Y T,
j=1

where

TLF) = bT(frs oo fn) = T s+ St Bifis St s fn)-

The notation b € BMO™ will stand for bj e BMO(R") for j=1,...,m, and be LipZ’ will stand for
bj € Lipg(R") for j =1,..., m. We set [[b|pmom = maxij<ml|bjllemoarr) and [bllLipy = maxigj<m | bjllLip, &),
respectively.

In this paper, we will focus on the multilinear strongly singular Calder6n-Zygmund operator defined as
follows.

Definition 1.2. Let T be an m-linear operator defined by (1.1). Then T is called an m-linear strongly singular
Calderén—-Zygmund operator if the following conditions are satisfied:
(1) Forsomee>0and0O<a<1,

KOG Y15+ ym) = KOy, -y ym)| < Clx— x| (1.4)
s Y1seees Ym s Y1lseees¥Ym _(lX—yll+~--+|X—ym|)mn+8/a, .
whenever |x - x'|* < 1 max;<jem|X - yjl.
(2) For some given numbers 1 <ry,...,ry < oo, with 1/r=1/r; +---+ 1/rm, T maps L™ x--- x L™ into
L,
(3) Forsomegivennumbers1 <1y, ...,In < co,with1/l =1/l +---+ 1/l, Tmaps L% x --- x L'm into L%,

where 0 < l/q < a.

To compare the differences between the standard multilinear Calder6n-Zygmund operator and the multilin-
ear strongly singular Calderén-Zygmund operator, we give the following remarks.
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Remark 1.3. For the multilinear strongly singular Calderén-Zygmund operator in the special case a = 1, con-
dition (1.3) implies condition (1.4), and we cantakel; = rj,j = 1,..., m,and g = | = rin (3) of Definition 1.2.
Then condition (3) of Definition 1.2 is consistent with condition (2), thus we can remove condition (3) in this
situation. In this sense, we can say that the multilinear strongly singular Calder6n-Zygmund operator indeed
generalizes the standard case.

Remark 1.4. More attention should be paid to the case O < a < 1. In this situation, the kernel of the multilin-
ear strongly singular Calderén-Zygmund operator, defined by Definition 1.2, is more singular near the diag-
onal than that of the standard one. This fact force us to search for new techniques to overcome the stronger
singularities.

Remark 1.5. It also should be pointed out that there is no size condition like (1.2) needed for the kernel of
the multilinear strongly singular Calderéon-Zygmund operator. Thus, our results sharpen the known ones on
the multilinear commutators.

Recently, the first two authors of this paper established in [34] the sharp maximal pointwise estimate for the
multilinear strongly singular Calder6n-Zygmund operator and the boundedness of this operator on prod-
uct of weighted Lebesgue spaces and product of variable exponent Lebesgue spaces, respectively. They also
obtained its boundedness of L*®° x --- x L*® — BMO, BMO x - -- x BMO — BMO and LMO x - -- x LMO — LMO
types, respectively.

In this paper, we are interested in the multilinear commutators generated by multilinear strongly singu-
lar Calder6n-Zygmund operators and BMO functions or Lipschitz functions. We will discuss the sharp maxi-
mal pointwise estimates for these two kinds of multilinear commutators and establish their boundedness on
products of weighted Lebesgue spaces, respectively.

Here and in what follows, for 1 < p < oo, p’ will stand for the dual index of p, whichmeans 1/p + 1/p’ =
The letter C will denote constants which are independent of the main parameters and may change from one
occurrence to another. E€ = R" \ E will stand for the complementary set of E. Denote by B(x, R) the ball
with center x and radius R > 0, |B(x, R)| the Lebesgue measure of B(x, R), CB(x, R) = B(x, CR) for C > 0, and

fo®) = oery Jpoer fO)AY-
For any locally integrable function f, the sharp maximal function is defined by

M) (X)-sup Ilf(y)—fsldy sup inf —

up Jlf(y) ~aldx,

¢ |Bl

where the supremum is taken over all balls B containing x. It is easy to check that the above definition is
equivalent to the one of taking the supremum over all balls B centered at x. Let Mg(f)(x) = [M*(If1%)(x)] /8
for0 < 6 < co.

M will denote the Hardy-Littlewood maximal operator and, for 0 < p < co, Mp(f)(x) = [M(IfI? Y(x)] /P,
The fractional maximal operator is defined by

1 1/1
Ma,l(f)(X)=SUP(W J |f()’)|ld)’)

r>0
B(x,r)

for a, I > 0. It is easy to see that My i(f)(x) = [Mar,1(If")(x)]V/L.
We say that a non-negative measurable function w on R" is in the Muckenhoupt class A, with 1 < p < oo,
if there exists a constant C > 0 such that for any cube Q in R" with the side parallel to the coordinate axes,

(7 [ o0y [ weor an) " <.

And for the case p = 1, we say that a non-negative measurable function w on R" belongs to A, if there exists
a constant C > 0 such that for any cube Q in R",

1
— | w(y)dy < Cw(x) fora.e.x € Q.
|Ql !
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A locally integrable non-negative function w on R" is said to belong to the weight class A(p, q),
1 < p, @ < 00, if there exists a constant C > 0 such that for any cube Q,

(|(12I JW(X)q dx)l/q(|Q| JW(X) s dx)l/p, <C.

Let Ay = Up21 Ap. Itis well known thatif w € Ap, with 1 < p < co,thenw € A, forallr > p,and w € A,
forsome 1 < g < p.

This paper will be organized as follows. The sharp maximal pointwise estimates and the boundedness
on products of weighted Lebesgue spaces for the multilinear commutators of multilinear strongly singular
Calder6n-Zygmund operators will be established as main results in Section 2. Before proving them, some
necessary lemmas will be given in Section 3. Finally, the details of the proof of our main results will appear
in Section 4.

2 Main results

Firstly, we will give the pointwise estimates for the sharp maximal functions of multilinear commutators
generated by the multilinear strongly singular Calder6n-Zygmund operators and BMO functions or Lipschitz
functions, respectively.

Theorem 2.1. Let T be an m-linear strongly singular Calderon-Zygmund operator and 0 < l/q < a in (3) of
Definition1.2. Let s = max{r1, ..., 'm, l1, ..., Im}, whererj and l; are given as in Definition 1.2,j =1, ..., m.
IfB € BMO™,0<8<1/m,6 <t<ooandsg< s < oo, then

MET5PE0) < Clbllswor (MUTEH) + [ [ Mot )
j=1

for all m-tuplesf = (f1, ..., fm) of bounded measurable functions with compact support.

Theorem 2.2. Let T be an m-linear strongly singular Calderon—Zygmund operator and let so = max{ry, ..., I'm,
li, ..., In}, whererj and lj are given as in Definition 1.2,j =1, ..., m. IfB € Lipg', 0<fB<1land0<d<1/m,
then

n N N m R m
ME(T5(FH() < ClBlLipy Z(Mﬁ,a(T(f))(X) + Mg, ()0 ] Mso(ﬂ')(X))
j=1 i=1,i%j
forall m—tuplesf = (f1, ..., fm) of bounded measurable functions with compact support.

Then, as applications of the maximal function estimates, we can establish the boundedness of multilinear
commutators generated by multilinear strongly singular Calderén-Zygmund operators and BMO functions
or Lipschitz functions on products of weighted Lebesgue spaces, respectively.

Theorem 2.3. Let T be an m-linear strongly singular Calderon—Zygmund operator and O < l/q < ain (3) of Def-
inition 1.2. Let so = max{r1,...,Im, li, ..., lm}, where rj and l; are given as in Definition 1.2, j=1,...,m.
IfB € BMO™, then for any so < P1,...,Pm < 00, With 1/p =1/p1 +---+1/pm, T; can be extended into a
bounded operator from LP*(w1) x --- x LPm(wy,) into LP(w), where (W1, ..., Wm) € (Ap,/sgs + - - » Apnssy) and

W= l—[]rr=|1 W;”/Pi.

Theorem 2.4. Let T be an m-linear strongly singular Calderon—Zygmund operator and let so = max{ry, ..., 'm,

li, ..., n}, wherer; andlj are given asin Definition 1.2,j =1, ..., m.SupposeE € Lip;;",O < B <min{1, n/so},

So<pj<n/B, 1/gj=1/pj-B/n, j=1,...,m, p>1, 1/p= 1/p1 ++--+1/pm and 1/q =1/p - B/n. Then

T3 can be extended into a bounded operator from LP1(wq) x - me(wm) into L9(w), where w;j € Aps,,
WP ¢ Api/so, qilso)j=1,....m,w =TT wi'™ and w'/e ¢ Ap.g)
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3 Necessary lemmas

Before proving our main results, we need some necessary lemmas.

Lemma 3.1 ([37]). Let f be a function in BMO. Suppose 1 < p < 0o, x € R" and r1, r, > 0. Then

<—|B(x% a I If¥) = Fora P dy)l/p < C(l + lln %an"BMO,

X,r1

where C > 0 is independent of f, x, r1 and r.

Lemma 3.2 ([15, 29]). LetO < p < g < 0o, then there exists a positive constant C = Cp 4 such that for any mea-
surable function f, one has
1QIPIflr @ < CIQITY N fllLaw()-

Lemma 3.3. Given € > 0, we have

1
Inx < Exg forall x > 1.
Let (x) =lnx - %xs , X > 1. The above result can be deduced from the monotone property of the function ¢.

Lemma 3.4. Let§ > 0,x € R", and let f be a locally integrable function. Then for any ball B = B(xg, r) contain-
ing x with r > 0, we have

J Ify)l dy < CréM(f)(x),

4 Xo—ypme

where C is a positive constant independent of f, x, xo and r.
We omit the proof of Lemma 3.4, since it is conventional.

Lemma 3.5 ([29]). Let0 < p, 6 < coand w € A,. Then there exists a constant C > 0 depending only on the A,
constant of w such that

[ 500 weo dx < ¢ [ rheoopweo dx
]RH IRH
for every function f such that the left-hand side is finite.

Lemma 3.6 ([19]). For (W1,...,Wm) € (Ap,,...,Ap, ), With1 <pi,...,pm <0o,andfor0 < 01,...,0, <1
such that 01 + --- + 6, = 1, we have w?l ~--wf,,’" € Amax{ps,....pm}-

Lemma 3.7 ([34]). Let T be an m-linear strongly singular Calderén—Zygmund operator and let so = max{ry, ...,

'ms 1, ..., lm}, Wwhere rj and l; are given as in Definition 1.2,j =1, ..., m.If0 < § < 1/m, then

m
ME(T(H)00) < [ Ms, ()0
j=1
for all m-tuplesfC = (f1, ..., fm) of bounded measurable functions with compact support.

Lemma 3.8 ([34]). Let T be an m-linear strongly singular Calderén—Zygmund operator and let so = max{ry, ...,

Im, Ui, ..., lm}, whererj and l; are given as in Definition 1.2,j = 1, ..., m. Then for any so < p1,...,Pm < 00,
with 1/p = 1/p1 +---+ 1/pm, T can be extended into a bounded operator from LP1(wy) X - -+ x LPm(wy,) into
LP(w), where (W1, . .., W) € (Ap, /sys + + +» Ap,/s,) and w = [T, wf/p".

Lemma 3.9. For1 < p,q < oo, w € A(p, q) ifand only if w9 € Ag/pr41.
The result of Lemma 3.9 directly comes from the definitions of the two kinds of weights.

Lemma 3.10 ([45]). f O<a<n,1<p<n/a,1/q=1/p-a/nand w € A(p, q), then there exists a constant
C > 0, independent of f, such that

(| Maathoowen® dx)l/q < ¢( [ roaweor dx)l/p

R R"
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4 Proof of main results

Proof of Theorem 2.1. Without loss of generality, we will only consider the case m = 2 and omit all other
situations, since there are similarities.

Let f1, f> be bounded measurable functions with compact support. Then for any ball B = B(xq, rg) con-
taining x, with rg > 0, we consider two cases.

Case 1:rg > 1. Write

fi = fixas + fixesy = fi +fi,

(4.1)
fo = foxzs + foXesy =f +f3
and
T%(f)(z) = (b1(2) - bp)T(f1, f)(2) - T((b1 - bR)f1, f)(2)
— T((b1 - bRfT, f3)(2) - T((b1 - bR)fE, £5)(2) - T((b1 - bp)ft, f3)(2), (4.2)
where
1
1_ =
b= 5 Jbl(z) dz.
B
Take
c1 = T((b1 - bRfL, f3)(x0) + T((b1 - bR)fE, f3)(x0) + T((b1 - bR)f}, £2)(x0).
Then
R 1/6 1/6
(g7 [ mir@ + cattdz) < o o [Itha(a) - b T )@ )
B B

1
C
"B
1 12 £2 12 £2 6 1/e
+ (5 |11~ bR )@ - T(1 - y)f )0 diz)
=Y 1. (4.3)
j=1

Since0 < 6§ < 1/mand 6 < t < co, there exists u such that 1 < u < min{%, 1—16}. Then 8u < tand 6u’ > 1.
By Holder’s inequality, we have

1 e NV 1 J s o\ 1/
L= (o [Ia@-bh dz) (o [1T )2 dz)
B B

1

1/t
< cnblumvm(E j|T(f1,f2)(Z)|tdZ)
B

< Clb1llemoMe(T(F))(x).
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Set v = s/s¢. Since sg < s < 0o, we have 1 < v < co. Notice that 0 < § < r < co, where r is given as in Def-
inition 1.2. From Definition 1.2 (2) and Lemmas 3.1-3.2, it follows that

I < CIBI™°| T((b1 = b)Y, £3)1s(s) < CIBITY|T((b1 = b)Y, £3)

L"(B)

(|213| j|b1(y1)—bl|’l|f1(y1)|“ dyl)m (I2BI j|fz(yz>| dy2>1m

1 iy 1/(r1v") 1 J oy 1/(r1v)
<C<|2B|J|b1()/1) bgl d}’) (|2B| If1(y1)l dyl) M., (f2)(x)

< CliballemoMr,v(f1) ()M, (f2)(x)
< ClIb1llBmoMs (f1) ()M (f2) (x).

For z € B and y, € (2B)¢, and for the center of the ball xq, we have |z — xo|* < rg <rpg< %Iyz - Xol|. By
Holder’s inequality, the condition of the kernel in Definition 1.2 (1) and Lemma 3.4, we have

I < c| B j|T((b1 - bRt f3)(2) - T((b1 - b1, f3)(x0)| dz

< CE JlK(Z, Y1,¥2) = K(x0, y1, y2)lIb1(y1) = ballfi(yD)IIf2(y2)| dy1 dy, dz
B (2B)° 2B

e [ ] 12 = Xol" Ib1(y1) - bYI0Ilf02)] dyr dyz dz

=B (X0 — y1] + IXo — yal)2re/a 1V 61 6y2

B (2B)c 2B

< cri( [0 - paisooIan (| R ana)
(2B)¢

|XO _ 2|2n+e/o¢
2B y

< criy( o [ 1100 - B d )1/5( L (hord )USIBIM(f el
<(ry |ZB| 11 V1 |2B| 11 1 2 B

< C||b1||BMoM (F)OM(f2) (0rs/®
< ClIballsmoMs (f1) (xX)Ms(f2)(x).

For z € Band y; € (2B)¢, and for the center of the ball xo, we have |z — xo|* < %Iyl — Xgl|. From Hélder’s
inequality, Definition 1.2 (1) and Lemma 3.1, it follows that

lo<Crp le(bl bp)ft: £1)@) = T((b1 - bp)ff. f3)(xo)l dz

1 |z — xol* 1
_C—I J J [b1(y1) = bpllifi(yDllf2(y2)l dy1 dy> dz
B _ _ 2n+ela B
|BJ 3 38 Oy (Ixo = y1l + Ix0 = y21)

SCr%( I Ib1(y1) - byllfa(y1)l dy1>< jlfz()’z)ldYZ)

IXo — yq|2m+ela

2B)c 2B
S [b1(y1) - bElIf1(y1)l

ey oyt M) WIB
k:12k+lB\sz

&) 1 , 1/s'
<0y Y @4y (e [ b - b )
k=1 2k+1B
1 1/s
(e | rO0Fdn) " IBM@E) 0

|2k+1B|
2k+1B

< CllblmmoMs (1) OM(f2) ()rg Z kg~ knrela)
k=1

< Clib1llemoMs (f1)(x)Ms(f2)(x).
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Forz € Bandyy, y» € (2B)¢, and for the center of the ball xo, we have |z — xo|* < %Iyl —Xo|and |z—xp|* <
%lyz - Xo|. By Holder’s inequality, Definition 1.2 (1), and Lemmas 3.1 and 3.4, we have

Is < c@ j|T((b1 “BLf2, £2)(2) - T((by - L), F2)(xo)| dz

1 |z - xol*
< C—j J j [b1(y1) - ballfi(yD)IIf2(v2)l dy1 dy, dz
B _ _ 2n+e/a B

|B 3 2By 0By (Ixo = y1l + Ixo = y2)

%( J Ib1(y1) - ballIfi(y)l dy1>< J If2(y2)l d)/z)

xo — ya el 2e) X0 — y|+e/Ce)
(2B)° (2B)¢

( J Ib1(y1) = bgllfi(y1)l

xo — yq|mrel22)

I/\

I/\

dyy )M(f2)0ry "

2k+1B\2kB

£ = k., \-€/Qa) 1 18 us'
< CTB 2(2 B) (m J [bi(y1) - b3| d)/1)
k=1 2k+1B

1 s 1/s e/
(grig | nooran) B M0

2k+1B

< Cllb1llsmoMs (f1) OM(f2) ()rg ' Z ka~ke/2e
k=1

< Clib1liBmoMs (f1) () Ms(f2)(x).

Case2: 0 <rg < 1. Since O < l/q < a, there exists 0 such that I/g < 0 < a. Set B = B(xo, rg) and write

fi=Ffixop + fixapy =F +F1, for=Fxop +FoXapy =F +F3 (4.4)
and
TH()(2) = (b1(2) - bR T(f1, f2)(2) - T((b1 = bRf}, 3)(2)
= T((by - bp)f{, f3)(@) - T((b1 - bPFT, F3)(2) - T((b1 - bp)ff, f3)(2). (4.5)
Take
&1 = T((h1 - bp)f}, f3)(x0) + T((b1 - bPFE, F3)(x0) + T((b1 — bp)ff, f3) (Xo).
Then

(5 j|T1(f>(z>+c1|"dz) Tec (|B|j|<b1(z> bYT( )@ dz)

1/6
(|B| J'T (b1 - bR )@ dz)

1/6

|T((b1 - bY)FL, F2)(2) - T((b1 - BYFL, F2)(x0)[° dz)

1/6

1/6

B
(]
S L1y Flyy TR
+C(|B| jIT((bl b2, FH)(z) - T((by - bRFZ, 1) (x0))| dz)
B
(- {1t - bRz, Yo - 701 - R By )
B
5
::Zﬁj' (4.6)

For the same estimate of I;, we have

11 < Clb1lsmoM(T(F)(x).
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10 — Y.Lin,G.LuandS. Lu, Sharp maximal estimates for multilinear commutators DE GRUYTER

Set v =s/sgpand €1 = n(6/1-1/q). Thenv > 1 and &; > 0. Since 0 < § < g < oo, from Definition 1.2 (3),
and Lemmas 3.1-3.3, it follows that

I, < CIBITYO | T((b1 - b)F P o)
< CIBI™ Y9\ T((b1 - bR, F3)l ooy

1/q 811/1 141 1 Vb1 i L
< C|BI"V4|B] (|z 5 j|b1(y1)—b A" dys ) (ﬁ j|fz(yz)|2dyz)
2 2B

1/q) 1/l 1Ly ICYONA | . /()
< C|BI""4|B| (|2 Bl J|b1(J’1) byl dYI) <® J|f1()/1)|1 dy1> My, (f2)(x)
2B 2B

< crier- ”‘”||b1||BMo(1+(1 6)In — )levdl)(x)Mzz(fz)(x)

< Cri® VD b o Miyy (1) (0O M, (F2) (%)
< ClIb1 llmmoMs (F1) () M (£2) (X).

For z € B and y, € (2B)¢, and for the center of the ball xo, we have |z — xo|* < rg < rg < %Iyz - Xo|. Set
&, = &(a—0)/a. Then &, > 0. By Holder’s inequality, Definition 1.2 (1), and Lemmas 3.1, 3.3 and 3.4, we
have

I < C% j|T((b1 YL F2)(@) - T((b1 - BYFL, F2)(xo)l dz
B

1 z - Xxpl¢
_cﬁj j j <|xO—y1||+ |X00_|y2|)2n+£/a|b1(Y1)—b%;||f1(J’1)||f2(Y2)|dY1d)’de
B (2B)c2

gCrg(j|b1(y1>—b}gufl(ylndyl)( | LY ay)

|xo — ya|2m+ela
2B 2By

1 1/s' ;4 Us
CTB(|2 B Jlbl(y1)—b1|s d)/1) <|2 J|f1(y1)|s d}/1) |B|M(fz)(X)(rg)_("+5/‘7‘)

2B 2B
e/a)(a— 1
< Ccrglo ‘”llbluBMo(l +(1-6)In E)Ms(fl)(x)M(fz)(x)
< CriE/™@ O b o M (f1) COM(F2) (X)
< Cllbllpvo M (F1) () Ms (f2) ().

For z € B and y; € (2B)¢, and for the center of the ball x, we have |z — xo|% < %Iyl — Xo|. From Holder’s
inequality, Definition 1.2 (1), and Lemmas 3.1 and 3.3, it follows that

I,<ct j |T((b1 - bp)fE, f3)(2) - T((b1 - bR}, f3)(x0)| dz

1BI
1 z - Xolf
< cﬁj | | o _y1|'+ |xOO—| P 0 - BIAGI02) dya dya dz
B 2B (2B)c

IN
o
o &

. ( J Ib1(y1) - byllfi(y1)l dy1>< J|f2()’2)|d}/2)

J |X0 _ yl|2n+s/a |
(2B)¢ 2B

o] b -p ~
SCY}E(Z J |b1(y1) — byllfi(y1)l dy1>M(fz)(X)|B|

o — y1[2mrel

2k+1B\2kB

0
<Cr % Z(Zkre) (n+e/a) <
k=1

, 1/s’ 1/s |
J o -pit an) (g [ nooran) B

|2k+IB| i B
2k+1B 2k+1B
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< Ay llao( 1+ (1.~ 0)In = I COM(2)(0 Y ka-kinsero
k=1

< CrE 0@ 0E b o M (f1) COM(F2) (X)
< Cllb1 llpmo Ms (F1) ()M (f2) ().

Forz € Band y., y» € (2B)¢, and for the center of the ball x¢, we have |z — xo|% < %Iyl - xpland |z—xg|* <
%Iyz - Xo|. By Holder’s inequality, Definition 1.2 (1), Lemmas 3.1, 3.3 and 3.4, we have

Is < C% j|T((b1 - b, F2)(2) - T((b1 - bp)f}, f3)(x0)| dz
B

1 z — Xol¢
ce [ | ] (|X0_y1||+|X0°_|y2|)2n+£/alb1(yl)—béllfl(yl)llfz()/z)ldyldedz

B (2B)c (2B)°

SCrE( J |b1(y1) - ballIfi(y)l dy1)< J If2(v2)l dyz)

xo — ya|rrel2e) X0 — y|+e/ )
2B) 2By

00 b _ bl
< Cr%( z J |b1(y1) B||f1()’1)| dy1>M(fz)(X)(r§)7s/(za)

= |xo — y1|n+s/(2a)

2k+1B\2kB

o0
< cry Y @kryeren(

1/s'
1s'
) vl ARy

2k+1B

1 s s o100
(g | ho0ran) Mg

2k+1B

- 1 ©
< Cr" bl 1+ (1 - 0)In — )M(LOM2)0 Y. k2@
k=1

< P02 o M (f) 0OM(f2) ()
< Clib1llBmoMs (f1) )M (f2) (x).
Similarly, to estimate T1 (f)(z), ifrg > 1, then

(IBI JITZ(f)(Z) + el dZ) < Clballamo(M(T(F)(x) + Ms(f1)(0OMs(f2)(x)),

where
2 = T(f1, (by — b3)f3)(x0) + T(fZ, (b2 — b2)f3)(x0) + T(f}, (by — b3)f3)(X0),
and if 0 < rg < 1, then
1/6

(5 jm(f)(z) +&alfdz) < Clbalawo(Md(TE)C) + Mo(f)OMs(£2)()),

where
¢ = T(fl, (b2 - b3)f3)(x0) + T(FZ, (b2 — bA)F3 )(x0) + T(f}, (b2 — b3)f3)(X0).
Ifrg > 1, then

1nf(|B| J||TB(f)(z)|5—a|dz> <C< JIT%(?)(Z)+C1|6dz> +c(|B| JlT;(f)(z)+cz|5dz)1/8

B

< Cllbllgmoz(Mt(T(f))(X) + Ms(f1) 0OM;(f2)(0),

and if 0 < rg < 1, then

1nf(|B| J||T5(f)(z)|5—a|dz) < C<|B| J|T;1)(f)(z)+&1|5dz> e +c(|B| j|T§(f)(z)+éz|5dz)l/6

< CIIbIIBMOZ(Mt(T(f))(X) + Ms(f1) () Ms (f2)(x)).
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12 — Y.Lin,G.LuandS. Lu, Sharp maximal estimates for multilinear commutators DE GRUYTER

Combining the above two cases, we have
1/6

5 /
MyT; P00 ~ sup inf (e JIIT;,(f)(Z)I‘S )

B

< CIIbIIBMOZ(Mt(T(f))(X) + Ms(f1) COMs(f2)(x)).
This completes the proof of Theorem 2.1. O

Proof of Theorem 2.2. In order to simplify the proof, we only consider the case m = 2. Actually, a similar pro-
cedure works for all other situations.

Let f1, f> be bounded measurable functions with compact support. Then for any ball B = B(xg, rg) with
center xo and radius rg > 0, we consider two cases.

Case 1: rg = 1. Using the same decompositions as in (4.1)-(4.2) and taking the same c¢;, we can also
dominate

(| 5 JITl(f)(Z) ¥ c1|5dz)w

by five terms, still denoted by I;,j =1, ..., 5, asin (4.3).
In this theorem, b € Lipg'. We can estimate the five terms as follows. By the definition of the Lipschitz
function, we have

1/6
I < cublumpﬁr’;(l 5 J|T(fl,f2)(2)|6d2>

[y dz)”zs

= CHblHLipﬁ(W
B

< Cllb1llLip, Mp. 6 (T(F)) (Xo).

Note that 0 < 6§ < r < co, where r is given as in Definition 1.2. Then, by Lemma 3.2 and Definition 1.2 (2),
we have

I, < CIBIY®| T((by - b%;)fll’le)"L&(B)
< CIBI™Y"| T((b1 - BRFL. f3)

L1 (B)

< (g jun(yl) B G dy) (i J|f2(J’2)I'2 )

1/ra

1/r1
j|f1<y1)|’1 dy1) " M (f)(xo)

1
< Clbslhiny "5 55
2B

1 1/s0
|2B|1-Bso/n Jlfl(y1)|50 dyl) M, (f2)(xo0)
2B

< Clb up,
< ClIb lipy Mp.s0 (1) (X0)Ms, (f2)(X0)-

For z € B and y, € (2B)¢, and for the center of the ball x(, we have |z — x¢|% < %Iyz — Xg|. From Holder’s
inequality, Definition 1.2 (1) and Lemma 3.4, it follows that

|z — xol®

I < IJ J b1(yy) - b dy, dy, dz

3< |B| (|X0—)/1|+|Xo—y2|)2”+£/“| 1(y1) = bllfi (yDIIf2(y2)l dy1 dy2
B (2B)° 2B

< Clbaln, 5 [1rrotay)( [ Y2 ay,)
(

|xo — ya|2n+ela
2B 2B)C

s /s ~(n+e/a)
< Clbilin, (g j|f1<y1)|°dy1) IBIM(F2)(xo)"

|2B]
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e-egla
= Clib1lLip, 7

1/s0
(W Jlf1<yl>ls° dyl) M(f)(xo)
2B

< Clib1llLip, Mp,s, (f1) (x0)Ms, (f2) (X0).

For z € B and y; € (2B)¢, and for the center of the ball xo, we have |z - xo|* < 5 Ly — xol|. By Holder’s
inequality and Definition 1.2 (1), we have

1 |z — xol*
I sc—” J bi(y1) - b dy, dy, dz
4 IBlBZB(ZB)C (Ixo—y1|+|x0—y2|)2"+f/“| 1(v1) = bllfi (yOlIf2(y2) dy1 dy2

SC||1?1||Lip,;f%< J Mdn)( I|f2(YZ)|dYZ>

Ixo — yq|2m+ela
(2B)¢ 2B

(o0}

—_v.|B
<clbilury(Y [ POy o

|xo — yq|2m+e/a

k:12k+1B\2kB
S . 1
< Cllballuip,rg Y (2°15) ("+£/“)(W J |f1(J’1)|dY1>|B|M(fZ)(XO)
k=1 2k+1B
1

1/50
< Cllbillip, 7§ ' Z 2 Kmsela | rordn) M0

2k+1B|1—ﬁso/n
2k+1B

< Clib1llLip, Mp,s, (f1) (X0) Ms, (f2) (X0)-

Forz e Bandy1, y» € (2B)¢, and for the center of the ball xo, we have |z — xo|* < %Iyl - xoland |z—xg|* <
%Iyz - Xo|. From Hoélder’s inequality, Definition 1.2 (1) and Lemma 3.4, it follows that

1 |z — xol¢ 1

Is < b -b dy,dy, d

s<e | [ Ty Sy 0~ BRIAGDIL 02l dys dy2 dz
B (2B)¢ (2B)¢

o - y1Ifi )] ) [ LY ay,)

< e Xo = yil"V1ty1)l _ W2
<y | S RERES an)( | e
(2B)¢ (2B)¢

(o)

—y,|P
< Clbihugrs( Y. | o Va4, Vareryycorre! >

- [xo — y|+el/a)
k_12k+1B\2kB

1

|2k+1B|1’£ J Ifiyol dyl)M(fz)(Xo)r;/(Z“)

o0
< Clbiluip, s Y. (2%ra) /e (
k=1 2k+1B

1

,Eela —ke/(2a)
< Clibi luip, 75 kzlz (|zk+13|1—ﬁsO -

1/50
j FF dys) M) (o)

2k+1pB
< Clib1llLip, M, s, (f1) (x0)Ms, (f2) (x0).

Case 2: 0 <rg< 1. Set B=B(xo, r%). Using the same decompositions as in (4.4)—-(4.5) and taking the
same C1, we can also dominate

(IBI IITl(f)(z) +c1|5dz)1/6

by five terms, still denoted by I;,j =1, ..., 5, asin (4.6).
In this theorem, b ¢ Lipg’. Then we can estimate the five terms as follows. As the same estimate of I,
we have
I < ClIby lLip, Mg, 5(T(F) (xo0)-
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14 = Y.Lin, G.LuandS. Lu, Sharp maximal estimates for multilinear commutators DE GRUYTER

Notethat0 < § < ¢ < coand O < l/g < a, where [ and q are given as in Definition 1.2. Then, by Lemma 3.2
and Definition 1.2 (3), we have

I < CIBIP| (b1 ~ bp)ft . o)l o sy

< CIBIT| T((b1 = bR, F3) | Laco ()

1/l

1/h
< ClBi B D | o =Bt v )

2B

#l (110201 dys )
2B

2B |2B

1

1/
] j|f1<y1)| dy) " My (£)(x0)

< Clbxluip, BI/7 B (——

1/50
< Clbluip, 52 [iroore ) Mo

|zB|1—ﬂso/n
2B

< Clib1liLip, Mp, s, (f1) (X0) Ms, (f2) (Xo0)-

For z € Band y, € (2B)¢, and for the center of the ball xg, we have |z — x|* < %Iyz — Xg|. From Holder’s
inequality, Definition 1.2 (1) and Lemma 3.4, it follows that

} 1 |z — xol® 1

L <C— b -b dy1dy, d

s<e | J(|xO—y1|+|xO—yz|>2n+e/a' 1) = DI 0DNfav2)l dys dys dz
B (2B)c 2B

< bl 5™ [1Romian )( [ 2V )

2B 2By

E+a

1/50_~
< Clbaluin, 5 (== [1a00 dyr)  BIM@) o) (rg) e

2B

<IZBI

1/so
! j|f1(y1>|so dyi) MF)0x0)

= C||b1||Lipﬁ(W
2B

< Clib1llLip, Mp,s, (f1) (X0) Ms, (f2) (o).

For z € B and y; € (2B)¢, and for the center of the ball xo, we have |z — xo|* < %lyl — Xo|. By Holder’s
inequality and Definition 1.2 (1), we have

1 |z = xol¢
I < ” j bi(y1) - b dy, dy, dz
4 < |B| ) (IXo—y1|+|Xo—yz|)2"*8/“| 1(y1) = bllifi (yDIIf2(y2)l dy1 dy2
B 2B (2B)c

< Clbilup75( | Md}’l)([lfz(h)ldh)

) Ixq - yq|?nHela |
QB 2B

(o) X0 — B B
<Ol Y, | PO gy i
= J i |X0 _ )/1| n+e/a
2k+1B\2kB
N (oK pa\-(ntefa) 1 2
. £ a\—(n+e/a
< Clbrlui, 7 3, (2°75) (g | rontdy B

2k+1 B
1

1/so
_— So
T T [ ronedy) Mo

o0
< Clbiluip, Y, 2740/
k=1 2k+IB

< Clib1llLip, Mp, s, (f1) (X0) Ms, (f2) (Xo0)-
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Forz € Band y,, y» € (2B)¢, and for the center of the ball x¢, we have |z — xo|% < %Iyl —Xo|and |z—xp|* <
%lyz - Xo|. From Holder’s inequality, Definition 1.2 (1) and Lemma 3.4, it follows that

. 1 |z - xol® 1

e | [ | bi(y1) - b dyy dy, dz

5<CE ) ) ) (|x0—y1|+|x0—y2|)2"+8/“| 1(y1) = bgllfs(yDIlf2(y2)l dy1 dy2
B (2B)c (2B)°

scnblnupﬁ@( j Mdh)( j Mdh)

X0 — ya[mre/2e) X0 — y|+e/ )
2By (2B
o0

Ixo = y1lPlfi (1)l -¢/Qa)
< cnblnup,;rg(kz | e M o)/
_12k+1B\2kB

o0
_ 1
< Clbiluip, g Y. (24rf) =/ (
k=1

—-£/2
SEg | hovlan Mo,

2k+1 B

1/50
j FF dys) M) (o)

2k+1 B

1

(e8]
< Clbiluip, Y, 274000 (—
1 lpﬁk; [2k+1B|1-pso/n

< Clib1llLip, Mp,s, (f1) (X0) Ms, (f2) (xo0)-

Tl% (f) can be dealt with by using the same method. Finally, combining the above two cases, we have

. 1/6
j T3 - af dz)

B(xo,rp)

MY (T () (xo) ~ su inf(—
o(T(N)(xo) ~ sup I\t o 7o)

2

2
< ClBliigz Y(Ma.s(TH)0x0) + Mpso()(0) [ Ma(fi)x0))-

j=1 i=1,i%f

This completes the proof of Theorem 2.2. O

Proof of Theorem 2.3. It follows from Lemma 3.6 that w € Amaxip, /s,
0< 6 <t<1/m.ByLemmas 3.5 and 3.7, we have

pm/so} € Aco. Take 6 and ¢ such that

.....

IMAT s = CUMETEirn = €| [ [ M5, "
j=1 o

For every j=1,...,m, since w; € Ay s,, there exists t; such that 1 < t; < pj/so and w; € Ay,. It fol-
lows from sg < pj/t;j that there exists s; such that so < sj < pj/tj < pj. Let s = mini<j<m Sj. Then so < s < pj,
j=1,...,m.

Since tj < pj/sj < pj/s, we have wj € Ay, C Ay s, and M is bounded on LP/S(wj), j=1,..., m. From
Lemma 3.5, Theorem 2.1 and Holder’s inequality, it follows that

175 Pllzoew) < IMs(TyFDlioy < CIME(T; )l

m
< ClBllswor (IMTE o + | [ ] M)
j=1

LP(W))
LP(w))

m m
[TMs| < Clblaor [ [IMs (s
j=1 LP(w) j=1

< ClBlwor

[ [Ms, )
j=1

e
j=1

Lr(w)

< ClIbllgmom

m m
= CllBlemor [ [IMASINL, < Clbliwor [ [
j=1

j=1 L wy) = L7 (w))

m
= Clibllemor | JUfillzes owy»
j=1

which completes the proof of Theorem 2.3. O
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Proof of Theorem 2.4. From the fact that w!/? € A(p, q) and Lemma 3.9, it follows that w € Ag/pr+1.Takea 6
such that 0 < § < 1/m. By Lemma 3.5 and Theorem 2.2, we have

IT5P)llzacwy < IMs(T(F)lLagw) < CIME(T;(F)llzaqw)

< bl 3 (1M5.6T s + M) T Mss], W)

j=1 i=1,i#j

Sincew € Ay/p+1, thereexists ssuch that1 < s < g/p' + 1andw € Ag.Sett = p(s—“q Thens = (g//f), +1,
1<t<p<n/Band w e Ay/m/p/+1- Let/i’ Bt,p=p/tand g=¢q/t. ThenO < f < n,1 < p < n/fand

1/G = 1/p - B/n. 1t follows from Lemma 3.9 that w'/4 € A(p, ). By Lemmas 3.8 and 3.10, we have
Mg, 6 (TN zaw < IMp,e(T()zaew) = 1Mz, ATEND Lo

f G1d 1/(gt)
B < J[MB,1(|T(f)|‘)(x)w(x)1/q]qdx)
]Rn
f Y, 1/(pt)
T

]RH
N m
= CITP)zoworay < C [ T Ifillzor o -
i=1
Foreveryj =1,...,m,since 1/g; = 1/pj - B/n, we have 1/q = 1/q; + ¥, ;,; 1/pi. By Holder’s inequal-
ity, we get

[0 11"1[# Mo, < s Gl HﬂuMso(f.)uw

Set Bj = Bso, Pj = pj/so and §j = gj/so. Then 0 < Bj < n, 1 < p; < n/B; and 1/g; = 1/p; - P;/n. The fact
that W;O/Pf € A(pj/so, gj/So) means w].l/pf € A(pj, G;)- By Lemma 3.10, we have

”Mﬁ,so(f])”Lq}( ‘11/1’1 ”M[;i,l('fj'so)l/so ||Lq]( q,/p,)
. Ui o\ @)
= ([ 145,205 0w 00171 ax)
IR"
. 1/(pjso)
< of [ W w o ax)
IRH
= Clfilricw-
Foreveryi=1,...,mandi # j, since w; € Ap,/s, and p; > So, we have that M is bounded on LPi/So(wy).
Thus,
WMy (Flls oy = IMUSI 155 oy < CUFI N2 ) = Clfillzicnn

Therefore, foreveryj=1,...,m,

m
|M5.5,5) I Mso(m|| 1§ (s
i=1

i=1,i#j

In conclusion,
- - m
1T llLaqw) < CIIbIILip;; Hllﬂ'lle(W,-)-
=

This completes the proof of Theorem 2.4. O
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