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Abstract Let H
n = C

n × R be the n-dimensional Heisenberg group, Q = 2n + 2 be the
homogeneous dimension of H

n . We extend the well-known concentration-compactness prin-
ciple on finite domains in the Euclidean spaces of Lions (Rev Mat Iberoam 1:145–201, 1985)
to the setting of the Heisenberg group H

n . Furthermore, we also obtain the corresponding
concentration-compactness principle for the Sobolev space HW1,Q(Hn) on the entire Heisen-
berg group H

n . Our results improve the sharp Trudinger–Moser inequality on domains of
finite measure in H

n by Cohn and Lu (Indiana Univ Math J 50(4):1567–1591, 2001) and
the corresponding one on the whole space H

n by Lam and Lu (Adv Math 231:3259–3287,
2012). All the proofs of the concentration-compactness principles for the Trudinger–Moser
inequalities in the literature even in the Euclidean spaces use the rearrangement argument
and the Polyá–Szegö inequality. Due to the absence of the Polyá–Szegö inequality on the
Heisenberg group, we will develop a different argument. Our approach is surprisingly simple
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and general and can be easily applied to other settings where symmetrization argument does
not work. As an application of the concentration-compactness principle, we establish the
existence of ground state solutions for a class of Q- Laplacian subelliptic equations on H

n :

−div
(
|∇Hu|Q−2 ∇Hu

)
+ V (ξ) |u|Q−2 u = f (u)

ρ(ξ)β

with nonlinear terms f of maximal exponential growth exp(αt
Q

Q−1 ) as t → +∞. All the
results proved in this paper hold on stratified groups with the same proofs. Our method in
this paper also provide a new proof of the classical concentration-compactness principle
for Trudinger-Moser inequalities in the Euclidean spaces without using the symmetrization
argument.

Mathematics Subject Classification 46E35 · 35J92 · 35H20

1 Introduction

Let � ⊆ R
n and W 1,q

0 (�) be the usual Sobolev space, that it, the completion of C∞
0 (�) with

the norm

‖u‖W 1,q (�) =
(∫

�

(|u|q + |∇u|q) dx

) 1
q

.

If 1 ≤ q < n, the classical Sobolev embedding says that W 1,q
0 (�) ↪→ Ls(�) for 1 ≤ s ≤ q∗,

where q∗ := nq
n−q . When q = n, it is known that

W 1,n
0 (�) ↪→ Ls(�) for any n ≤ s < +∞,

but W 1,n
0 (�) � L∞(�). When � is of finite measure, the analogue of the Sobolev

embedding is the well-known Trudinger’s inequality, which was established independently
by Yudovič [58], Pohožaev [52], and Trudinger [56]. In 1971, Moser sharpened in [51]
Trudinger’s inequality, and proved the following inequality:

sup
u∈W 1,n

0 (�)

‖∇u‖Ln (�)≤1

∫

�

eα|u| n
n−1

dx < ∞ iff α ≤ αn = nω
1

n−1
n−1, (1.1)

where ωn−1 is the n − 1 dimensional surface measure of the unit ball in R
n and |�| < ∞.

Inequality (1.1) is known as the Trudinger–Moser inequality. In 1985, Lions [42] established
the concentration-compactness principle associated with (1.1), which tells us that, if {uk} is
a sequence of functions in W 1,n

0 (�) with ‖∇uk‖n = 1 such that uk ⇀ u weakly in W 1,n(�),

then for any 0 < p < Mn,u := (1 − ‖∇u‖n
n

)−1/(n−1), one has

sup
k

∫

�

eαn p|uk | n
n−1 dx < ∞. (1.2)

This conclusion gives more precise information and is stronger than (1.1) when uk ⇀ u 
= 0
weakly in W 1,n

0 (�).
When |�| = +∞, the inequality (1.1) is meaningless. In this case, the first related

inequalities have been considered by Cao [6] in the case N = 2 and for any dimension by do
Ó [16] and Adachi-Tanaka [1]. For two-weighted subcritical Trudinger–Moser inequalities,
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see [21,23]. Note that, unlike (1.1), all these results have been proved in the subcritical
growth case, that is α < αn . In [54], Ruf showed that in the case N = 2, the exponent
α2 = 4π becomes admissible if the Dirichlet norm

∫
�

|∇u|2 dx is replaced by W 1,2 norm∫
�

(|u|2 + |∇u|2) dx. Later, Li and Ruf [40] established the same critical inequality as in [54]
in arbitrary dimensions. These critical and subcritical inequalities have been proved to be
equivalent by Lam et al. in [36]. The asymptotic estimates for the supremums for subcritical
and critical Trudinger–Moser inequalities and their relationship established in [36] have
been found useful in proving the existence and nonexistence of extremal functions for the
Trudinger–Moser inequalities (see [21,25–27]).

While there has been much progress for Trudinger–Moser type inequalities and the
concentration-compactness phenomenon on the Euclidean spaces, much less is known on
the Heisenberg group. We recall that most of the proofs for Trudinger–Moser inequalities
in the Euclidean space are based on the rearrangement argument. When one considers the
Trudinger–Moser inequalities in the subelliptic setting, one often attempts to use the radial
non-increasing rearrangement u∗ of functions u. Unfortunately, it is not known to be true
that the L p norm of the subelliptic gradient of the rearrangement of a function is dominated
by the L p norm of the subelliptic gradient of the function. In other words, the Pólya-Szegö
type inequality in the subelliptic setting like

∥∥∇Hu∗∥∥
L p ≤ ‖∇Hu‖L p (1.3)

is not available. Actually, from the work of Jerison and Lee [24] on sharp L2 to L
2Q

Q−2

inequality on the Heisenberg group with applications to the solution to the CR Yamabe
problem, we know that this inequality fails to hold for the case p = 2 in Heisenberg groups.

The sharp Trudinger–Moser inequality on Heisenberg groups was due to Cohn and
Lu [10] and has been extended to the Heisenberg type groups and Carnot groups in [45]
and [5] and with singular weights in [33]. Furthermore, Lam and Lu developed in [29,30] a
rearrangement-free argument by considering the level sets of the functions under considera-
tion, this argument enables them to deduce the global critical Trudinger–Moser inequalities
on the entire space from the local ones on the level sets (see also work by Lam et al. [34] for
subcritical inequalities and [43] for adaptation of such an argument). Therefore, both sharp
critical and subcritical Trudinger–Moser inequalities are established on the entire Heisenberg
group in [29,34].

More recently, Černý et al. in [8] discover a new approach to obtain and sharpen Lions’s
concentration compactness principles (1.2) as well as fill in a gap in [42]. This approach was
further extended to study the concentration-compactness principle for the whole space R

n by
do Ó et al. in [18]. Their results can be stated as follows: let {uk} be a sequence of functions
in W 1,n

0 (Rn) with ‖uk‖W 1,n(Rn) = 1 such that uk ⇀ u weakly in W 1,n (Rn), then for any

0 < p < M̃n,u :=
(

1 − ‖u‖n
W 1,n(Rn)

)−1/(n−1)

,

sup
k

∫

Rn
eαn p|uk | n

n−1
dx < ∞. (1.4)

Furthermore, M̃n,u is sharp in the sense that there exists a sequence {uk} satisfying
‖uk‖W 1,n(Rn) = 1 and uk ⇀ u weakly in W 1,n (Rn) such that the supremum (1.4) is infinite

for p > M̃n,u .1 We also quote a recent work on sharp Trudinger–Moser type inequalities in
the spirit of Lions’ work on the whole spaces [35].

1 The sequence {uk } constructed in [17] cannot show that the supremum (1.4) is infinite for p = M̃n,u (see
Remark 1).
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Nevertheless, we mention that arguments of [8,17] still rely on the Polyá–Szegö inequality
in the Euclidean spaces and such an inequality is not available in the subelliptic setting.

Now, it is fairly natural to ask whether the concentration-compactness principles (1.2) and
(1.4) still holds for the subelliptic setting in spite of its absence of the Polyá–Szegö inequality
in such a setting. In this paper, we will give an affirmative answer to this question. More pre-
cisely, we first prove a concentration-compactness principle for domains with finite measure
on Heisenberg groups (Theorem 2.1), and then prove the concentration-compactness princi-
ple for the horizontal Sobolev space HW1,Q (Hn) (Theorem 2.2, for definition of HW1,Q (Hn)

see Sect. 2). Theorem 2.1 sharpens the Trudinger–Moser inequality by Cohn and Lu [10] and
recent one of Lam et al. [33], Theorem 2.2 improves the sharp Trudinger–Moser inequality
by Lam and Lu [29].

In the proof of the concentration-compactness principles on Heisenberg groups, though
our proof is an argument by contradiction as done in the Euclidean spaces, our method is sub-
stantially different from those in [8,17]. Using the Polyá–Szegö inequality, in the Euclidean
space one can reduce the problem to radial functions and then the radial lemmas play an
important role. In our setting of the Heisenberg group, for the proof on the bounded domain,
instead of dealing with the upper and lower bound of the radial symmetric rearrangement
[8], we directly consider the Dirichlet norms of each part under the truncation (the way of
truncation will be defined in the proof of the main theorems) while taking weak convergence.
This is based on the fact that the constant Mn,u only depends on ||∇u||n . For the proof on
the whole space, on the one hand, in order to localize the problem as well as to get rid of the
rearrangement argument, we in the spirit apply the technique of level set argument developed
in [29] (see also [30]). On the other hand, due to the different type of inequalities considered
here from those in [29,30], the level sets used here are different from those in [29]. It is
worthwhile to note that our approach can be easily applied to the other subelliptic setting
such as Carnot groups with virtually no modifications.

As an application of concentration-compactness principles on Heisenberg groups, we
study the existence of positive ground state solution to a class of partial differential equations
with exponential growth on H

n of the form:

− div
(
|∇Hu|Q−2 ∇Hu

)
+ V (ξ) |u|Q−2 u = f (u)

ρ(ξ)β
(1.5)

for any 0 ≤ β < Q, where V : Hn → R is a continuous potential, and f : R → R behaves

like exp
(
αt

Q
Q−1

)
when t → ∞ (for the meaning of ∇H and ρ(ξ) see Sect. 2).

We remark that the Trudinger–Moser type inequalities play an important role in the study
of the existence of solutions to nonlinear partial differential equations of exponential growth
in Euclidean spaces. A good deal of works have been done and we just quote some of
them on this subject, which are a good starting point for further bibliographic references:
[3,4,7,14–19,22,28,31,38,39,41,46–49,55,57,60], etc.

Existence and multiplicity of nontrivial nonnegative solutions to the equations (1.5) on the
Heisenberg groups have been proved in a series of papers [12,29,33,34]. In their argument,
they apply the Trudinger–Moser inequality in the whole space H

n (Lemma 2.3 in Sect. 2)
combined with mountain-pass theorem, minimization and Ekelands variational principle.
Nevertheless, the existence of ground state solutions to the sub-elliptic equation (1.5) on
the Heisenberg groups has not been established yet so far. The concentration-compactness
principles on Heisenberg groups proved in this paper makes it possible to establish such an
existence result.
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We end this introduction by mentioning recent works on concentration-compactness prin-
ciple for singular Trudinger–Moser inequalities in R

n [59] and singular Adams inequality [2]
for bi-Laplacians in R

4 [9]. In particular, a completely symmetrization-free argument has been
developed in a more recent work [37] on concentration-compactness principle for Trudinger–
Moser’s inequalities on Riemannian manifolds and stratifies groups. We note that in [37] we
avoid completely even a weak form of Polyá–Szegö inequality which is not known to be true
on Riemannian manifolds. We also note that sharp weighted Trudinger–Moser inequalities
on the gradient terms have also been proved using a quasi-conformal type mapping and a
symmetrization lemma associated with power weights to reduce the weighted inequalities to
the non-weighted ones (see [20,21,32]). These are cases where the Polyá–Szegö inequality
fails to hold with weights.

This paper is organized as follows: in Sect. 2 we recall some basic facts about Heisenberg
Groups and state precisely our main results; in Sect. 3 we first prove the concentration
compactness principles for Trudinger–Moser inequalities on domains with finite measure—
Theorem 2.1, and then we give the proof for the concentration compactness principles for
horizontal Sobolev space HW1,Q (Hn) (Theorem 2.2). As an application, in Sect. 4, we
consider the equations (1.5) and establish the existence of the ground state solutions and
prove Theorem 2.3 by using the minimax argument and Theorem 2.2.

2 Preliminaries and statement of the results

2.1 Background on Heisenberg groups

Let H
n = C

n × R be the n-dimensional Heisenberg group, whose group structure is given
by

(x, t) ◦ (x ′, t ′
) = (x + x ′, t + t ′ + 2im

(
x · x̄ ′)) .

The Lie algebra of H
n is generated by the left invariant vector fields

Xi = ∂

∂xi
+ 2yi

∂

∂t
, Yi = ∂

∂yi
− 2xi

∂

∂t
, T = ∂

∂t
,

for i = 1, . . . , n. These generators satisfy the non-commutative relationship [Xi , Yi ] =
− 4δi j T . Moreover, all the commutators of length greater than two vanish, and thus this is a
nilpotent, graded, and stratified group of step two.

For each real number r > 0, there is a dilation naturally associated with the Heisenberg
group structure which is usually denoted as δr (x, t) = (r x, r2t

)
. The Jacobian determinant

of δr is r Q , where Q = 2n + 2 is the homogeneous dimension of H
n .

We will use ξ = (x, t) to denote any point (x, t) ∈ H
n , then the anisotropic dilation

structure on H
n introduces a homogeneous norm |ξ | = (|x |4 + t2

)1/4
. Let

Br = {ξ : |ξ | < r}
be the metric ball of center 0 and radius r in H

n . Since the Lebesgue measure in R
2n+1 is

the Haar measure on H
n , one has (writing |A| for the measure of A)

|Br | = ωQr Q,

where ωQ is a positive constant only depending on Q (see [10]).
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We write |∇Hu| to express the norm of the subelliptic gradient of the function u : H
n →

R :
|∇Hu| =

√∑
(Xi u)2 + (Yi u)2.

Let � be an open set in H
n and p > 1. We define the horizontal Sobolev spaces

HW1,p(�) =
{

u ∈ L p(�) : ‖u‖HW1,p(�) < ∞
}

with the norm

‖u‖HW1,p(�) =
(∫

�

(|∇Hu (z, t)|p + |u (z, t)|p) dxdt

)1/p

.

Also, we define the space H W 1,p
0 (�) as the closure of C∞

0 (�) in the norm of HW1,p(�).
For Sobolev embedding and compact embedding theorems for vector fields satisfying Hör-
mander’s condition, which includes the Heisenberg groups as a special case, we refer the
reader to e.g., [11,44]. These embedding theorems are needed in proving the existence of the
ground state solutions to the quasi-linear subelliptic equations with nonlinearity of exponen-
tial growth.

2.2 Some useful known results on Heisenberg groups

In this subsection, we collect some known results which will be used in the following.

Lemma 2.1 [10] Let ρ = |ξ | be the homogeneous norm of the element ξ = (x, t) ∈ H
n,

and g(ξ) = g (ρ) be a C1 radial function on H
n. Then

|∇Hg(ξ)| = g′ (ρ)

ρ
|x | .

Lemma 2.2 [33] Let αQ = Q

(
2πn

( 1
2

)

(

Q−1
2

)

(

Q
2

)−1
 (n)−1

) 1
Q−1

, 0 ≤ β < Q.

There exists a uniform constant c depending only on Q, β such that for all � ⊂ H
n with

|�| < ∞ and α ≤ αQ,β = αQ

(
1 − β

Q

)
, one has

sup
u∈H W 1,Q

0 (�)

‖∇Hu‖L Q ≤1

∫

�

exp
(
αu(ξ)

Q
Q−1

)

ρ(ξ)β
dξ < c. (2.1)

The constant αQ,β is the best possible in the sense that if α > αQ,β , then the supremum
above is infinite.

Lemma 2.3 [29] Let 0 ≤ β < Q. There exists a uniform constant c depending only on Q, β

such that for all α ≤ αQ,β , one has

sup
f ∈HW1,Q (Hn)

‖ f ‖HW1,Q (Hn)
≤1

∫

Hn

�
(
α f (ξ)

Q
Q−1

)

ρ(ξ)β
dξ < c. (2.2)

where �(t) = et − ∑Q−2
j=0

t j

j ! . The constant αQ,β is the best possible in the sense that if
α > αQ,β , then the supremum in the inequality (2.2) is infinite.
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2.3 Statement of the main results

Now, we are ready to state precisely the main results of this paper.

Theorem 2.1 (Concentration compactness for domains with finite measure)Let 0 ≤ β < Q.
Assume that {uk} is a sequence in H W 1,Q

0 (�) with |�| < ∞, such that ‖∇Huk‖Q = 1 and

uk ⇀ u 
= 0 in H W 1,Q
0 (�). If

0 < p < MQ,u := 1(
1 − ‖∇Hu‖Q

Q

)1/(Q−1)

then

sup
k

∫

�

eαQ,β pu
Q

Q−1
k

ρ(ξ)β
dξ < ∞.

Moreover, MQ,u is sharp in the sense that there exists a sequence {uk} satisfying ‖∇Hu‖Q
Q = 1

and uk ⇀ u 
= 0 in H W 1,Q
0 (�) such that the supremum is infinite for p ≥ MQ,u.

Theorem 2.2 (Concentration compactness for HW1,Q (Hn)) Let 0 ≤ β < Q. Assume that
{uk} is a sequence in HW1,Q (Hn) such that ‖uk‖Q

HW1,Q (Hn)
= 1 and uk ⇀ u 
= 0 in

HW1,Q (Hn). If

0 < p < M̃Q,u := 1(
1 − ‖u‖Q

HW1,Q (Hn)

)1/(Q−1)
,

then

sup
k

∫

Hn

�

(
αQ,β pu

Q
Q−1
k

)

ρ(ξ)β
dξ < ∞, (2.3)

where �(t) = et −∑Q−2
j=0

t j

j ! . Furthermore, M̃Q,u is sharp in the sense that there exists a

sequence {uk} satisfying ‖uk‖Q
HW1,Q (Hn)

= 1 and uk ⇀ u 
= 0 in HW1,Q (Hn) such that the

supremum is infinite for p > M̃Q,u .

The following natural question still remains open at this time.

Problem 1 Does (2.3) still hold when p = M̃Q,u?

Now, Let us give the definition of the ground state solution of (1.5):

Definition 1 (Ground state solution) A function u is said to be the ground state solution of
(1.5), if u is positive and minimizes the energy functional associated to the Eq. (4.1) defined
by

J (u) = 1

Q

∫

Hn

(
|∇Hu|Q + V (ξ) |u|Q

)
dξ −

∫

Hn

F(u)

ρ(ξ)β
dξ

within the set of nontrivial solutions of (1.5).

For the Eq. (4.1), we obtain the following
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Theorem 2.3 Under the hypotheses of (H1) and (H2) in Sect. 4, the Q-sub-Laplacian equa-
tions (1.5) has a positive ground state solution.

Throughout this paper, denote by the letter c some positive constant which may vary from
line to line.

3 Concentration-compactness principles on Heisenberg groups

3.1 Concentration-compactness principle for domains with finite measure

In this subsection, we give the

Proof of Theorem 2.1 Since ‖∇Hu‖Q ≤ lim
k

‖∇Huk‖Q = 1, we split the proof into two
cases.

Case 1: ‖∇Hu‖Q < 1. We assume by contradiction for some p1 < MQ,u , we have

sup
k

∫

�

exp

(
αQ,β p1u

Q
Q−1
k

)

ρ(ξ)β
dξ = +∞.

Set

�k
L = {ξ ∈ � : uk(ξ) ≥ L} ,

where L is some constant. Let vk = uk − L . Then for any ε > 0, one has

u
Q

Q−1
k ≤ (1 + ε) v

Q
Q−1

k + C (ε, Q) L
Q

Q−1 . (3.1)

Since 0 ≤ β < Q, we have

∫

�

exp

(
αQ,β p1u

Q
Q−1
k

)

ρ(ξ)β
dξ =

∫

�k
L

exp

(
αQ,β p1u

Q
Q−1
k

)

ρ(ξ)β
dξ+

∫

�\�k
L

exp

(
αQ,β p1u

Q
Q−1
k

)

ρ(ξ)β
dξ

≤
∫

�k
L

exp

(
αQ,β p1u

Q
Q−1
k

)

ρ(ξ)β
dξ

+ c exp
(
αQ,β p1L

Q
Q−1

) ∫

�

1

ρ(ξ)β
dξ

≤
∫

�k
L

exp

(
αQ,β p1u

Q
Q−1
k

)

ρ(ξ)β
dξ + c (L , Q, |�|, β) ,

and then

sup
k

∫

�k
L

exp

(
αQ,β p1u

Q
Q−1
k

)

ρ(ξ)β
dξ = ∞.
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By (3.1) we have

∫

�k
L

exp

(
αQ,β p1u

Q
Q−1
k

)

ρ(ξ)β
dξ ≤ exp

(
αQ,β p1C (ε, Q) L

Q
Q−1

)

×
∫

�k
L

exp

(
(1 + ε) αQ,β p1v

Q
Q−1

k

)

ρ(ξ)β
dξ.

Thus

sup
k

∫

�k
L

exp

(
p̄1αQ,βv

Q
Q−1

k

)

ρ(ξ)β
dξ = ∞,

where p̄1 = (1 + ε) p1 < MQ,u .

Now, we define

T L(u) = min {L , u} and TL(u) = u − T L(u)

and choose L such that
1 − ‖∇Hu‖Q

Q

1 − ∥∥∇HT L u
∥∥Q

Q

>

(
p̄1

MQ,u

)Q−1

. (3.2)

We claim that

lim sup
k

∫

�k
L

|∇Hvk |Q dξ <

(
1

p̄1

)Q−1

.

If not, then up to a subsequence, one has
∫

�k
L

|∇Hvk |Q dξ =
∫

�

|∇HTL uk |Q dξ ≥
(

1

p̄1

)Q−1

+ ok (1) . (3.3)

Thus,
(

1

p̄1

)Q−1

+
∫

�

∣∣∣∇HT L uk

∣∣∣
Q

dξ + ok (1) ≤
∫

�

|∇HTL uk |Q dξ +
∫

�\�k
L

|∇Huk |Q dξ

=
∫

�k
L

|∇Huk |Q dξ +
∫

�\�k
L

|∇Huk |Q dξ = 1.

For L > 0 fixed, T L uk is also bounded in HW1,Q(�). Hence, up to a subsequence, T L uk ⇀

T L u in HW1,Q(�) and T L uk → T L u almost everywhere in �. By the lower semicontinuity
of the norm in HW1,Q(�) and the above inequality, we have

p̄1 ≥ 1
(

1 − lim inf
k→∞

∥∥∇HT L uk
∥∥Q

Q

) 1
Q−1

≥ 1
(

1 − ∥∥∇HT L u
∥∥Q

Q

) 1
Q−1

,

combining with (3.2), we derive

p̄1 ≥ 1
(

1 − ∥∥∇HT L u
∥∥Q

Q

) 1
Q−1

>
p̄1

MQ,u

1
(

1 − ‖∇Hu‖Q
Q

) 1
Q−1

= p̄1,
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which is a contradiction. Therefore

lim sup
k

∫

�k
L

|∇Hvk |Q dξ <

(
1

p̄1

)Q−1

.

By the Trudinger–Moser inequality (2.1), we derive

sup
k

∫

�k
L

exp

(
p̄1αQ,βv

Q
Q−1

k

)

ρ(ξ)β
dξ < ∞,

which is also a contradiction. The proof is finished in this case.
Case 2: ‖∇Hu‖Q = 1. We can iterate the procedure as in Case 1 and get

sup
k

∫

�k
L

exp

(
p̄1αQ,βv

Q
Q−1

k

)

ρ(ξ)β
= ∞,

where p̄1 = (1 + ε) p1. Then we have

lim sup
k

∫

�k
L

|∇Hvk |Q dξ = lim sup
k

∫

�

|∇HTL uk |Q dξ ≥
(

1

p̄1

)Q−1

,

thus,
∥∥∥∇HT L u

∥∥∥
Q

Q
≤ lim inf

k

∫

�

∣∣∣∇HT L uk

∣∣∣
Q

dξ = 1

−lim sup
k

∫

�

|∇HTL uk |Q dξ ≤ 1 −
(

1

p̄1

)Q−1

.

On the other hand, since ‖∇Hu‖Q = 1, we can take L large enough such that

∥∥∥∇HT L u
∥∥∥

Q

Q
> 1 − 1

2

(
1

p̄1

)Q−1

,

which is contradiction, and the proof is finished in this case.
Now, we prove the sharpness of MQ,u . For some r > 0, we defined ωk(ξ) by

ωk(ξ) =

⎧⎪⎪⎨
⎪⎪⎩

Q
1−Q

Q
(
cQ
)− 1

Q k
Q−1

Q if |ξ | ∈
[
0, re− k

Q

]

Q
1
Q
(
cQ
)− 1

Q log
(

r
|ξ |
)

k− 1
Q if |ξ | ∈

[
re− k

Q , r
]

0 if |ξ | ∈ [r,∞] ,

(3.4)

where cQ = ∫
�

|x∗|Q dξ x∗ = x
|ξ | and � is the unit sphere on H

n .

We can verify that ωk(ξ) ∈ H W 1,Q
0 (�). Actually, from Lemma 2.1 we have

∫

�

|∇Hωk(ξ)|Q dξ =
∫

�

∫ r

re
− k

Q

∣∣∣∣Q
1
Q
(
cQ
)− 1

Q k− 1
Q

|x∗|
ρ(ξ)

∣∣∣∣
Q

ρ(ξ)Q−1dρ(ξ)dμ
(
x∗)

= Q

cQ

1

k
cQ

∫ r

re
− k

Q
ρ−1dρ = 1

and ωk(ξ) ⇀ 0 in H W 1,Q
0 (�).
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Now, for R = 3r , we define

u =
⎧
⎨
⎩

A if |ξ | ∈ [0, 2R
3

]
3A − 3A

R |ξ | if |ξ | ∈ [ 2R
3 , R

]
0 if |ξ | ∈ [R + ∞] ,

(3.5)

where A > 0 is chosen in such a way that ‖∇Hu‖L Q (�) = δ < 1. Defining

uk = u +
(

1 − δQ
)1/Q

ωk . (3.6)

Observing that ∇Hu and ∇Hωk have disjoints supports, we have

‖∇Huk‖Q
L Q (�)

= ‖∇Hu‖Q
L Q (�)

+ (1 − δQ)

= 1,

moreover, uk ⇀ u in H W 1,Q
0 (�).

Consequently,

∫

�

exp

(
αQ,β MQ,uu

Q
Q−1
k

)

ρ(ξ)β
dξ =

∫

�

exp

⎛
⎝ αQ,βu

Q
Q−1

k

(1−δQ)
1/(Q−1)

⎞
⎠

ρ(ξ)β
dξ

≥
∫

Br exp

(
− k

Q

)

exp

⎛
⎝αQ,β

(
A+(1−δQ

)1/Q
ωk

) Q
Q−1

(1−δQ)
1/(Q−1)

⎞
⎠

ρ(ξ)β
dξ

=
∫

Br exp

(
− k

Q

)
exp
(
αQ,β (C + ωk)

Q
Q−1

)

ρ(ξ)β
dξ

≥ exp

⎛
⎜⎝
(

C ′ +
((

1 − β

Q

)
k

) Q−1
Q
) Q

Q−1

⎞
⎟⎠
∫

Br exp

(
− k

Q

)
1

ρ(ξ)β
dξ

≥ C ′′ exp

⎛
⎜⎝
(

C ′ +
((

1 − β

Q

)
k

) Q−1
Q
) Q

Q−1

−
(

1 − β

Q

)
k

⎞
⎟⎠→ ∞,

for some positive constant C, C ′, C ′′, and the theorem is finished. ��
3.2 Concentration-compactness principle for the whole space H

n

In order to prove Theorem 2.2, we need the following

Lemma 3.1 Let {uk} be a sequence in HW1,Q (Hn) strongly convergent. Then there exist
a subsequence

{
uki

}
of {uk} and ω(ξ) ∈ HW1,Q (Hn) such that

∣∣uki

∣∣ ≤ ω(ξ) almost
everywhere on H

n.
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Proof The proof is similar as [17, Proposition 1], and we omit it. ��
Now, we give the

Proof of Theorem 2.2 As in the proof of Theorem 2.1, we split the proof into two cases.
Case 1: ‖u‖HW1,Q (Hn) < 1. We assume by contradiction for some p1 < M̃Q,u , we have

sup
k

∫

Hn

�

(
αQ,β p1u

Q
Q−1
k

)

ρ(ξ)β
dξ = +∞.

Set

A (uk) = 2− 1
Q(Q−1) ‖uk‖L Q (Hn) , � (uk) = {ξ ∈ H

n : uk(ξ) > A (uk)
}

and

�k
L = {ξ ∈ H

n, uk(ξ) ≥ L
}
,

where L is some constant which will be determined later. We can easily verify that

A (uk) < 1 and |�(uk)| ≤ 2
1

Q−1 .

Now, we write

∫

Hn

�

(
αQ,β p1u

Q
Q−1
k

)

ρ(ξ)β
dξ =

(∫

�(uk )

+
∫

Hn\�(uk )

) �

(
αQ,β p1u

Q
Q−1
k

)

ρ(ξ)β
dξ,

Similar to the proof of [29, Theorem 1.6], we can show that

∫

Hn\�(uk )

�

(
αQ,β p1u

Q
Q−1
k

)

ρ(ξ)β
dξ ≤ c (p1, Q, β) .

Therefore, we have

sup
k

∫

�(uk )

�

(
αQ,β p1u

Q
Q−1
k

)

ρ(ξ)β
dξ = ∞

Let vk = uk − L . Then for any ε > 0, one has

u
Q

Q−1
k ≤ (1 + ε) v

Q
Q−1

k + c (ε, Q) L
Q

Q−1 . (3.7)

By (3.7), we have

∫

�(uk )

�

(
αQ,β p1u

Q
Q−1
k

)

ρ(ξ)β
dξ ≤ exp

(
αQ,β p1c (ε, Q) L

Q
Q−1

)

∫

�(uk )

exp

(
(1 + ε) αQ,β p1v

Q
Q−1

k

)

ρ(ξ)β
dξ.
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Thus

sup
k

∫

�(uk )

exp

(
αQ p̄1v

Q
Q−1

k

)

ρ(ξ)β
dξ = ∞,

where p̄1 = (1 + ε) p1 < M̃Q,u .

Since |�(uk)| ≤ 2
1

Q−1 , we have

sup
k

∫

�k
L

exp

(
αQ,β p̄1v

Q
Q−1

k

)

ρ(ξ)β
dξ = ∞.

Now, we define

T L(u) = min {L , u} and TL(u) = u − T L(u).

and choose L such that

1 − ‖u‖Q
HW1,Q (Hn)

1 − ∥∥T L u
∥∥Q

HW1,Q (Hn)

>

(
p̄1

M̃Q,u

)Q−1

. (3.8)

We claim that

lim sup
k

∫

�k
L

|∇Hvk |Q dξ <

(
1

p̄1

)Q−1

.

If not, up to a subsequence, one has

∫

�k
L

|∇Hvk |Q dξ =
∫

Hn
|∇HTL uk |Q dξ ≥

(
1

p̄1

)Q−1

+ ok (1) . (3.9)

Thus,
(

1

p̄1

)Q−1

+
∫

Hn

∣∣∣∇HT L uk

∣∣∣
Q

dξ +
∫

Hn

∣∣∣T L uk

∣∣∣
Q

dξ + ok (1)

≤
(

1

p̄1

)Q−1

+
∫

Hn

∣∣∣∇HT L uk

∣∣∣
Q

dξ +
∫

Hn
|uk |Q dξ + ok (1)

≤
∫

Hn
|∇HTL uk |Q dξ +

∫

Hn\�k
L

|∇Huk |Q dξ +
∫

Hn
|uk |Q dξ

=
∫

�k
L

|∇Huk |Q dξ +
∫

�\�k
L

|∇Huk |Q dξ +
∫

Hn
|uk |Q dξ = 1.

For L > 0 fixed, T L uk is also bounded in HW1,Q (Hn). Hence, up to a subsequence,
T L uk ⇀ T L u in HW1,Q (Hn) and T L uk → T L u almost everywhere on H

n . By the lower
semicontinuity of the norm in HW1,Q (Hn) and the above inequality, we have

p̄1 ≥ 1
(

1 − lim inf
k→∞

∥∥T L uk
∥∥Q

HW1,Q (Hn)

) 1
Q−1

≥ 1
(

1 − ∥∥T L u
∥∥Q

HW1,Q (Hn)

) 1
Q−1

,
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combining with (3.8), we have

p̄1 ≥ 1
(

1 − ∥∥T L u
∥∥Q

HW1,Q (Hn)

) 1
Q−1

>
p̄1

M̃Q,u

1
(

1 − ∥∥T L u
∥∥Q

HW1,Q (Hn)

) 1
Q−1

= p̄1,

which is a contradiction. Therefore

lim sup
k

∫

�k
L

|∇Hvk |Q dξ <

(
1

p̄1

)Q−1

.

By the Trudinger–Moser inequality (2.1), we have

sup
k

∫

�k
L

exp

(
αQ,β p̄1v

Q
Q−1

k

)

ρ(ξ)β
dξ < ∞,

which is also a contradiction. The proof is finished in this case.
Case 2: ‖u‖HW1,Q (Hn) = 1. Since HW1,Q (Hn) is uniformly convex Banach space and

uk ⇀ u weakly in HW1,Q (Hn), by Radon’s Theorem, we have uk → u strongly in
HW1,Q (Hn). Using Lemma 3.1, there exists some ω(ξ) ∈ HW1,Q (Hn), such that up to
a subsequence, |uk | ≤ ω(ξ) a.e. in H

n . Therefore

∫

Hn

�

(
αQ,β p1u

Q
Q−1
k

)

ρ(ξ)β
dξ ≤

∫

Hn

�
(
αQ,β p1ω(ξ)

Q
Q−1

)

ρ(ξ)β
dξ.

Now, we show
∫

Hn

�
(
αQ,β p1ω(ξ)

Q
Q−1

)

ρ(ξ)β
dξ < ∞. (3.10)

Set �(ω) = {ξ ∈ H
n : ω > 1}, we have

∫

Hn
|ω(ξ)|Q dξ ≥

∫

�(ω)

|ω(ξ)|Q dξ

≥ |�(ω)| .
Similar as [29], we can derive

∫

Hn\�(ω)

�
(
αQ,β p1ω(ξ)

Q
Q−1

)

ρ(ξ)β
dξ < C (p1, Q, β) .

Now, we only need to show

∫

�(ω)

exp
(
αQ,β p1ω(ξ)

Q
Q−1

)

ρ(ξ)β
dξ < ∞.

Let ω∗(ξ) be the non-increasing rearrangement of ω(ξ) in � (ω). Then

∫

�(ω)

exp
(
αQ,β p1ω(ξ)

Q
Q−1

)

ρ(ξ)β
dξ =

∫

BR

exp
(
αQ,β p1ω

∗(ξ)
Q

Q−1

)

ρ(ξ)β
dξ,
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where |BR | = |�(ω)|. We introduce the variable t by ρ(ξ)Q = RQe−t , and set

ϕ(t) = Q1− 1
Q c

1
Q
Q ω∗(ξ).

Then by Lemma 2.1 and the result of Manfredi and Vera De Serio [50] that there exists a
constant c ≥ 1 depending only on Q such that,

∫ ∞

0

∣∣ϕ′(t)
∣∣Q dt =

∫

BR

∣∣∇Hω∗(ξ)
∣∣Q dξ ≤ c

∫

�(ω)

|∇Hω(ξ)|Q dξ < ∞.

Moreover, we have

∫

�(ω)

exp
(
αQ,β p1ω(ξ)

Q
Q−1

)

ρ(ξ)β
dξ ≤

∫

�(ω)

exp
(
αQ,β p1ω

∗(ξ)
Q

Q−1

)

ρ(ξ)β
dξ

= |�(ω)| · R−β

∫ ∞

0
exp

((
1 − β

Q

)(
p1ϕ(t)

Q
Q−1 − t

))
dt.

This follows from the Hardy–Littlewood inequality by noticing that the rearrangement of
ρ(ξ)−β is just itself.

Since
∫∞

0

∣∣ϕ′(t)
∣∣Q dt < ∞, then for all ε > 0, there exists T = T (ε) such that

∫ ∞

T

∣∣ϕ′(t)
∣∣Q dt < εQ .

Hence, by Hölder’s inequality

ϕ(t) = ϕ (T ) +
∫ t

T
ϕ′(t)dt

≤ ϕ (T ) +
(∫ t

T

∣∣ϕ′(t)
∣∣Q dt

) 1
Q

· |t − T | Q−1
Q

≤ ϕ (T ) + ε |t − T | Q−1
Q .

There exists T̃ such that

p1ϕ(t)
Q

Q−1 ≤ t

2
for all t > T̃ .

Therefore
∫
�(ω)

exp

(
αQ,β p1ω(ξ)

Q
Q−1

)

ρ(ξ)β
dξ < ∞, and the proof is finished in this case.

Now, we prove the sharpness of M̃Q,u . For some r > 0 and R = 3r , we define
ωk(ξ), u ∈ HW1,Q (Hn) as (3.4),(3.5), respectively. The constant A is chosen in such a

way that ‖u‖HW1,Q (Hn) = δ < 1. Defining

uk = u +
(

1 − δQ
)1/Q

ωk .

We can easily verify that

‖ωk‖L p(Hn) → 0, for any p ≥ 1,

‖∇Huk‖Q
L Q(Hn)

= ‖∇Hu‖Q
L Q (Hn)

+
(

1 − δQ
)

, (3.11)
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and

uk ⇀ u weakly in HW1,Q (
H

n) .

Moreover, from (3.11) we have

∫

Hn
|uk |Q dξ =

∫

Hn

∣∣∣∣u +
(

1 − δQ
)1/Q

ωk

∣∣∣∣
Q

dξ

=
∫

Hn
|u|Q dξ + ξk,

where ξk → O
(( 1

k

)1/Q
)

, and then we have ‖uk‖Q
HW1,Q (Hn)

= 1 + ξk . Set vk = uk

(1+ξk )1/Q ,

we have

vk ⇀ u weakly in HW1,Q (
H

n) with ‖vk‖Q
HW1,Q (Hn)

= 1.

Consequently, for any ε0 > 0 and p = (1 + ε0) M̃Q,u , one has

∫

Hn

�

(
αQ,β M̃Q,uv

Q
Q−1

k

)

ρ(ξ)β
dξ ≥

∫

B
r exp

(
− k

Q

)
1

ρ(ξ)β
exp

⎛
⎝ (1 + ε0) αQ,βv

Q
Q−1

k(
1 − δQ

)1/(Q−1)

⎞
⎠ dξ

(using the fact that ξk → 0)

∫

Hn

�

(
αQ,β M̃Q,uv

Q
Q−1

k

)

ρ(ξ)β
dξ

≥
∫

B
r exp

(
− k

Q

)
1

ρ(ξ)β
exp

⎛
⎜⎜⎝

αQ,β

((
1 + ε′

0

) (
A + (1 − δQ

)1/Q
ωk

)) Q
Q−1

(
1 − δQ

)1/(Q−1)

⎞
⎟⎟⎠ dξ

=
∫

B
r exp

(
− k

Q

)
1

ρ(ξ)β
exp

(
αQ,β

[(
1 + ε′

0

)
(C + ωk)

] Q
Q−1

)
dξ

≥
∫

B
r exp

(
− k

Q

)
1

ρ(ξ)β
exp

((
1 − β

Q

)[(
1 + ε′

0

) (
C ′ + k

Q−1
Q

)] Q
Q−1

)
dξ

≥ C ′′ exp

([(
1 − β

Q

) (
1 + ε′

0

) (
C ′ + k

Q−1
Q

)] Q
Q−1 −

(
1 − β

Q

)
k

)
→ ∞

for some positive constant ε′
0, C, C ′, C ′′, and the theorem is finished. ��

123



Concentration-compactness Principles and its application... Page 17 of 26 84

Remark 1 The sequence {vk} is not enough to show that the supremum (2.3) is infinite when
p = M̃Q,u . Actually, we have

∫

B
r exp

(
− k

Q

)

�

(
αQ,β M̃Q,uv

Q
Q−1

k

)

ρ(ξ)β
dξ =

∫

B
r exp

(
− k

Q

)
1

ρ(ξ)β
exp

⎛
⎝ αQ,βv

Q
Q−1

k(
1 − δQ

)1/(Q−1)

⎞
⎠ dξ

≤
∫

B
r exp

(
− k

Q

)
1

ρ(ξ)β
exp

⎛
⎜⎜⎝

αQ,β

((
(1 + ξk)

−1/Q) (A + (1 − δQ
)1/Q

ωk

)) Q
Q−1

(
1 − δQ

)1/(Q−1)

⎞
⎟⎟⎠ dξ

≤
∫

B
r exp

(
− k

Q

)
1

ρ(ξ)β
exp

((
1 − β

Q

)[(
(1 + ξk)

−1/Q
) (

C ′ + k
Q−1

Q

)] Q
Q−1

)
dξ

(
since 1 − (1 + ξk)

−1/Q = O

((
1

k

)1/Q
))

≤
∫

B
r exp

(
− k

Q

)
1

ρ(ξ)β
exp

⎛
⎝
(

1 − β

Q

)[(
1 − C ′′

(
1

k

)1/Q
)(

C ′ + k
Q−1

Q

)] Q
Q−1
⎞
⎠ dξ

≤
∫

B
r exp

(
− k

Q

)
1

ρ(ξ)β
exp

((
1 − β

Q

)[
k

Q−1
Q − C ′′k

Q−2
Q

] Q
Q−1

)
dξ

≤ C ′′′′ exp

((
1 − β

Q

)
k
[
1 − C ′′′k

−1
Q

]
−
(

1 − β

Q

)
k

)

≤ C ′′′′ exp

(
−C ′′′

(
1 − β

Q

)
k

Q−1
Q

)
< ∞

for some positive constant C ′,C ′′,C ′′′ and C ′′′′. We remark that this argument is also suitable

for the sequence constructed in [18] for the sharpness of M̃n,u = (1 − ‖u‖W 1,n(Rn)

)−1/(n−1).

4 Q-sub-Laplacian equations of exponential growth on H
n.

In this section, let’s consider the following nonlinear partial differential equations on H
n :

− div
(
|∇Hu|Q−2 ∇Hu

)
+ V (ξ) |u|Q−2 u = f (u)

ρ(ξ)β
, (4.1)

where 0 ≤ β < Q.
The main features of this class of equations (4.1) are that it is defined in the whole space

H
n and involves critical growth and the nonlinear operator is Q-sub-Laplacian. In spite of

a possible failure of the Palais–Smale (PS) compactness condition, we apply the mini-max
argument based on the concentration-compactness principle for HW1,Q (Hn)—Theorem 2.2
as in [18].

The basic assumptions about f and V are collected in the following:
(H1) Assumptions for potential V

The potential V : H
n → R is a continuous potential, and satisfies:
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(V1) V is a continuous function such that V (ξ) ≥ 1 for all ξ ∈ H
n , and one of the

following two conditions:
(V2) V (ξ) → ∞ as ρ(ξ) → ∞; or more generally, for every M > 0

∣∣{ξ ∈ H
n :

V (ξ) > M
}∣∣ < ∞;

(V3) the function V (ξ)−1 belongs to L1(Hn).

(H2) Assumptions for f

The function f (t) : R → R behaves like exp
(
αt

Q
Q−1

)
when |t | → ∞. Precisely, we

assume that f satisfies the following conditions:

(f1) there exist constants α0, b0, b1 > 0 such that for all t ∈ R,

f (t) ≤ b0t Q−1 + b1�
(
α0t

Q
Q−1

)
;

(f2) there exists λ > Q such that for all ξ ∈ H
n and t > 0,

0 < λF(t) := λ

∫ t

0
f (s) ds ≤ t f (t);

(f3) there exist constant R0, M0 > 0 such that for all ξ ∈ H
n and t > R0,

0 ≤ F(t) ≤ M0 f (t);
(f4) there exist constant μ > Q and Cμ such that for all t ≥ 0,

f (t) ≥ Cμtμ−1 (4.2)

with Cμ satisfying

Cμ >

(
αQ,β

α0

) (Q−μ)(Q−1)
Q

(
μ − Q

μ

) μ−Q
Q

λμ/Q
μ ,

where

λμ := inf
u∈S\0

‖u‖Q

∫
Hn

|u|μ
ρ(ξ)β

dξ
;

(f5) lim sup
t→0+

F(t)
k0|s|Q < λQ := inf

u∈S\0

‖u‖Q

∫
Hn

|u|Q
ρ(ξ)β

dξ
.

Since we are interested in nonnegative weak solutions, we also suppose the following
(f6) F(t) = 0 if t ≤ 0.

From condition (f1), we conclude that for all t ∈ R ,

F(t) ≤ b2�
(
α1t

Q
Q−1

)

for some constant b2, α1 > 0. From (3.10), we have F(u)

ρ(ξ)β
∈ L1 (Hn) for all u ∈ S.

Therefore, the associated functional to the Eq. (4.1) defined by

J (u) = 1

Q

∫

Hn

(
|∇Hu|Q + V (ξ) |u|Q

)
dξ −

∫

Hn

F(u)

ρ(ξ)β
dξ (4.3)

is well-defined. Moreover, J is a C1 functional on S with

DJ(u)v =
∫

Hn

(
|∇Hu|Q−2 ∇Hu∇Hv + V (ξ) |u|Q−2 uv

)
dξ −

∫

Hn

f (u)v

ρ(ξ)β
dξ
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for all v ∈ S. Thus, DJ(u) = 0 if and only if u ∈ S is a weak solution to equation
(4.1).
We define the following space associated with the potential V :

S =
{

u ∈ HW1,Q (
H

n) : ‖u‖ < ∞
}

with the norm ‖u‖ := (∫
Hn

(|∇Hu|Q + V (ξ) |u|Q
)

dξ
)1/Q

.

From the hypothesis (H1), we have the following compactness result:

Lemma 4.1 If V (ξ) satisfy the hypothesis (H1), then for all Q ≤ q < ∞, the embedding

S ↪→ Lq (
H

n)

is compact.

Proof Though the proof is analogous to the one for the Euclidean case in [13,53], we will
need to justify some conclusions on the Heisenberg groups. To this end, we will simply point
out the essential components and omit the details.

Let {uk} be a sequence such that ‖uk‖Q < C . In order to prove this result, we only need
to show that uk → 0 strongly in Lq (Hn) for any Q ≤ q < ∞, whenever uk ⇀ 0 weakly in
S, as k → ∞.

By the compact embedding theorem on the Heisenberg group proved in [45], we have for
any given p < Q, the embedding HW1,p (BR) ↪→ Lq (BR) is compact for any q <

pQ
Q−p . So

the embedding HW1,Q (BR) ↪→ Lq (BR) is compact for any q < ∞. The remaining proof
then follows from the classical proof in the Euclidean space.

For any ε > 0, from (V2), we can choose some R > 0 such that

V (ξ) ≥ 2C

ε
(4.4)

for all ξ satisfying ρ(ξ) ≥ R. Since the embedding HW1,Q (BR) ↪→ Lq (BR) is compact,
we know uk → 0 strongly in Lq (BR), and then there exists a integer N > 0 such that when
k > N , ∫

BR

|uk |Q dξ <
ε

2
. (4.5)

On the other hand, from (4.4) we have

2C

ε

∫

Hn\BR

|uk |Q dξ ≤
∫

Hn\BR

V (ξ) |uk |Q dξ < C,

that is ∫

Hn\BR

|uk |Q dξ <
ε

2
. (4.6)

Combining (4.5) and (4.6) we obtain
∫

Hn
|uk |Q dξ ≤ ε. (4.7)

For any q < p < ∞, we define

λ = Q (p − q)

q (p − Q)
and μ = p (q − Q)

q (p − Q)
.
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Then λ > 0 and μ > 0. By Hölder’s inequality, the Trudinger–Moser inequality (2.2) and
(4.7), we have

∫

Hn
|uk |q dξ ≤ cε

p−q
p−Q .

The proof is thus finished. ��
4.1 Palais–Smale compactness condition

In this subsection, we analyze the compactness of Palais–Smale sequences of the functional
J . This is the crucial step in the study of existence results for Eq. (4.1).

First, we recall the definition of Palais-Smale Condition:

Definition 2 (Palais–Smale condition) A sequence {uk} in S is called a local Palais–Smale
sequence at level d for the functional J ((P S)d sequence), if

J (uk) → d and ‖DJ (uk)‖ → 0, as k → ∞,

the functional J is said to satisfy the Palais–Smale condition at level d ((P S)d condition), if
any (P S)d sequence has a convergent subsequence.

Lemma 4.2 Under the hypotheses of (H1) and (H2). The functional J satisfies the Palais–

Smale condition at level d for any d < 1
Q

(
αQ,β

α0

)Q−1
.

Proof Though the general scheme of the proof is a combination of the ideas in [18, Proposition
4.1], the compact embedding theorem and ideas from [29, Lemma 5.5 and (6.7)], there are
a number key points that are required to be re-established on the Heisenberg groups and we
will sketch those major points and omit the details.

Let {uk} be a (P S)d sequence for J , that is,

J (uk) → d (4.8)

and |DJ (uk) v| → 0 for all v ∈ S, as k → ∞. Then
∫

Hn

f (uk) v

ρ(ξ)β
dξ −

∫

Hn

(
|∇Huk |Q−2 ∇Huk∇Hv + V (ξ) |uk |Q−2 ukv

)
dξ

≤ εk ‖v‖ (4.9)

for all v ∈ S, where εk → 0, as k → ∞.
Choosing v = uk in (4.9), by (4.8) we get

∫

Hn

f (uk) uk

ρ(ξ)β
−
∫

Hn

F (uk) λ

ρ(ξ)β
+ λ

Q
‖uk‖Q − dλ − ‖uk‖Q

≤ εk ‖uk‖ ,

From (f2), we have

λ − Q

Q
‖uk‖Q ≤ c + εk ‖uk‖ ,
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hence, uk is bounded in S. Since for any q ≥ Q, the embedding S ↪→ Lq (Hn) is compact,
we can assume that,

uk ⇀ u weakly in S,

uk → u strongly in Lq(Hn) for any q ≥ Q,

uk → u for almost all ξ ∈ H
n . (4.10)

From (4.10), we can verify that
∫

Hn

|uk − u|s
ρ(ξ)β

dξ → 0 as k → ∞ (4.11)

for any s ∈ [Q,∞) and β ∈ [0, Q).
Thanks to [29, Lemma 5.5 and (6.7)], we have
⎧
⎪⎪⎨
⎪⎪⎩

f (uk )

ρ(ξ)β
→ f (u)

ρ(ξ)β
in L1

loc (Hn)
F(uk )

ρ(ξ)β
→ F(u)

ρ(ξ)β
in L1(Hn)

|∇Huk |Q−2 ∇Huk ⇀ |∇Hu|Q−2 ∇Hu weakly in
(

L Q/(Q−1)

loc (Hn)
)2n

.

(4.12)

From this convergence and passing the limit in (4.9), we get
∫

Hn

f (u)v

ρ(ξ)β
dξ −

∫

Hn

(
|∇Hu|Q−2 ∇Hu∇Hv + V (ξ) |u|Q−2 uv

)
dξ = 0

for any v ∈ C∞
0 (Hn). By density, taking v = u, we have

∫

Hn

f (u)u

ρ(ξ)β
dξ −

∫

Hn

(
|∇Hu|Q + V (ξ) |u|Q

)
dξ = 0,

from (f2), we get
∫

Hn

(
|∇Hu|Q + V (ξ) |u|Q

)
dξ ≥ Q

∫

Hn

F(u)

ρ(ξ)β
dξ,

thus, J (u) ≥ 0.
Next, we prove the strong convergence of {uk}. For this purpose, we split the proof into

two cases:
Case 1: d = 0. From (4.12) and (4.8), we have

‖u‖Q ≤ lim
k

‖uk‖Q = Q
∫

Hn

F(u)

ρ(ξ)β
dξ,

hence J (u) ≤ 0. Therefore J (u) = 0 and lim
k

‖uk‖Q = ‖u‖Q . Since S is a uniformly convex

Banach space, by Radon’s Theorem, uk → u strongly in S.
Case 2: d 
= 0.
We can first prove that u 
= 0 by an argument of contradiction similar to the one given

in [18]. We will omit the details here.
Next, set ũk = uk‖uk‖ and ũ = u

lim
k

‖uk‖ . Then ‖uk‖ = 1 and ũk ⇀ ũ weakly in S. If

‖ũ‖ = 1, we have lim
k

‖uk‖ = ‖u‖, and then uk → u strongly in S.

If ‖ũ‖ < 1, by (4.8) and (4.12) and the fact that J (u) ≥ 0, one has

d + ok (1) ≥ J (uk) − J (u) → 1

Q

(
‖uk‖Q − ‖u‖Q

)
,
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thus,

‖uk‖Q

(
1 −

∥∥∥∥
u

‖uk‖
∥∥∥∥

Q
)

≤ Q (d + ok (1)) ,

that is

‖uk‖Q/(Q−1) <

αQ,β

α0
+ ok (1)

(
1 −

∥∥∥ u
‖uk‖

∥∥∥
Q
)1/(Q−1)

,

therefore when k large, we can choose some q > 1 close to 1 sufficiently such that

qα0 ‖uk‖Q/(Q−1) <
αQ,qβ(

1 − ‖ũ‖Q
)1/(Q−1)

. (4.13)

By Theorem 2.2,
�

(
qα0u

Q
Q−1

k

)

ρ(ξ)qβ is bounded in L1 (Hn).
By Hölder’s inequality, combining (f1), (4.10), (4.11), (4.13), we get

∣∣∣∣
∫

Hn

f (uk) (uk − u)

ρ(ξ)β
dξ

∣∣∣∣ ≤ c

(∫

Hn

uQ
k

ρ(ξ)β
dξ

) Q−1
Q
(∫

Hn

|uk − u|Q

ρ(ξ)β
dξ

) 1
Q

+ c

⎛
⎜⎜⎝
∫

Hn

�

(
qα0u

Q
Q−1
k

)

ρ(ξ)qβ
dξ

⎞
⎟⎟⎠

1/q

(∫

Hn
|uk − u|q ′

dξ

)1/q ′

→ 0.

(4.14)

Since DJ (uk) (uk − u) → 0, from (4.14) we derive
∫

Hn

(
|∇Huk |Q−2 ∇Huk∇H (uk − u) + V (ξ) |uk |Q−2 uk (uk − u)

)
dξ → 0. (4.15)

On the other hand, since uk ⇀ u in S, we have
∫

Hn

(
|∇Hu|Q−2 ∇Hu∇H (uk − u) + V (ξ) |u|Q−2 u (uk − u)

)
dξ → 0. (4.16)

Combining (4.15) and (4.16), we obtain there is a constant c > 0 so that

‖uk − u‖ ≤ c
∫

Hn

(
|∇Huk |Q−2 ∇Huk − |∇Hu|Q−2 ∇Hu

)
∇H (uk − u)

+ c
∫

Hn
V (ξ)

(
|uk |Q−2 uk − |u|Q−2 u

)
(uk − u) dξ → 0,

where we have used the inequality
(|a|Q−2 a − |b|Q−2 b

)
(a − b) ≥ 22−Q |a − b|Q , for all

a, b ∈ R
2n . The proof is finished. ��

From the proof of [29, Lemmas 5.1 and 5.2.], we have the following geometric conditions
of the mountain-pass theorem:

Lemma 4.3 Suppose that the hypotheses of (H1) and (H2) hold. Then
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(i) there exists r, δ > 0 such that J (u) ≥ δ if ‖u‖ = r;
(ii) there exists e ∈ S with ‖e‖ > r , such that J (e) < 0.

Now, we define the minimax level by

d∞ = inf
g∈

max
t∈[0,1]

J (g(t)) ,

where  = {g ∈ C ([0, 1] ,S) : g (0) = 0 and g (1) < 0}. From Lemma 4.3, we have d∞ >

0.

Lemma 4.4 Under the hypotheses of (H1) and (H2). We have d∞ < 1
Q

(
αQ,β

α0

)Q−1
.

Proof Let {vk} be in S with
∫
Hn

|vk |μ
ρ(ξ)β

dξ = 1 and ‖vk‖Q → λμ. Then {vk} is bounded in S.
Using the compactness of embedding S ↪→ Lq (Hn) for all q ≥ Q, up to a subsequence,
we have

vk ⇀ v0 weakly in S,

vk → v0 strongly in Lq(Hn) for all q ∈ [Q,∞)

vk → v0 for almost all ξ ∈ H
n . (4.17)

(4.11) implies that
∫
Hn

|v0|μ
ρ(ξ)β

dξ = lim
k

∫
Hn

|vk |μ
ρ(ξ)β

dξ = 1. By the semicontinuity of the norm

‖·‖, we infer that

‖v0‖Q ≤ lim inf
k

‖vk‖Q = λμ,

thus λμ is attained by v0, we may assume that v0 ≥ 0.

From (4.2), we know that F(t) ≥ Cμ

μ
tμ for some μ > Q. Hence,

J (tv0) ≤ t Q

Q

∫

Hn

(
|∇Hv0|Q + V (ξ) |v0|Q

)
dξ − Cμtμ

μ

∫

Hn

v
μ
0

ρ(ξ)β
dξ

→ −∞, as t → ∞.

Setting ṽ0(t) = t t0v0 with t0 sufficiently large, then ṽ0(t) ∈ . By (f4), we have

d∞ ≤ max
t∈[0,1]

J (ṽ0(t)) ≤ max
t∈[0,1]

(
(t0t)Q

Q
‖v0‖Q − Cμ (t0t)μ

μ

∫

Hn

v
μ
0

ρ(ξ)β
dξ

)

≤ max
t>0

(
t Q

Q
‖v0‖Q − Cμ

μ
tμ
∫

Hn

v
μ
0

ρ(ξ)β
dξ

)

≤ max
t>0

(
t Q

Q
λμ − Cμ

μ
tμ
)

= μ − Q

Qμ

λ
μ/(μ−Q)
μ

C Q/(μ−Q)
μ

<
1

Q

(
αQ,β

α0

)Q−1

,

and this completes the proof. ��
Finally, we come to the

Proof of Theorem 2.3 Let {uk} be a sequence in S such that

J (uk) → d∞
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and DJ (uk) → 0. By Lemmas 4.2 and 4.4, the sequence {uk} converges weakly to a weak
solution u0 of (4.1). Now, we show u0 > 0 in H

n .
Set u0+ := max {u0, 0} and u0− := max {−u0, 0}. Since u0 satisfies DJ (u0) = 0, we

have DJ (u0) u0− = 0, that is,

‖ u0−‖Q −
∫

Hn

f (u0) u0−
ρ(ξ)β

dξ = 0.

On the other hand, from (f6) we have
∫
Hn

f (u0)u0−
ρ(ξ)β

dξ = 0, and then ‖ u0−‖Q = 0. Therefore,
u0 ≥ 0 on H

n . From J (u0) = d∞ > 0, we know u0 is positive on H
n .

Now, let

M∞ := inf
u∈P\0

J (u),

where P := {u ∈ S : DJ(u) = 0}.
In order to show that u0 is a ground state solution of (4.1), we only need to prove d∞ ≤ M∞.

For any u ∈ P\0, we define m(t) by m(t) = J (tu). Since J ∈ C1 (S, R), we have m(t) is
differentiable and

m′(t) = DJ(tu)u = t Q−1 ‖u‖Q −
∫

Hn

f (tu)u

ρ(ξ)β
dξ,

for any t > 0.
From DJ(u)u = 0, we derive

m′(t) = t Q−1
∫

Hn

(
f (u)

uQ−1 − f (tu)

(tu)Q−1

)
uQ

ρ(ξ)β
dξ.

By (f2), we know f (t)
t Q−1 is increasing for all s > 0. From this and the fact m′ (1) = 0, we

know m′(t) > 0 if t ∈ (0, 1), and m′(t) < 0 if t ∈ (1,∞). Thus, J (u) = max
t≥0

J (tu).

Setting ũ(t) = t t0u with t0 sufficiently large, we get ũ(t) ∈ , and then

d∞ ≤ max
t∈[0,1]

J (ũ(t)) ≤ max
t≥0

J (tu) = J (u).

Therefore, d∞ ≤ M∞. The proof is completed. ��
Acknowledgements The authors would also like to thank the referee for his or her comments which improve
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