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Abstract In this paper, we will establish Poincaré inequalities in variable exponent non-isotropic

Sobolev spaces. The crucial part is that we prove the boundedness of the fractional integral operator on

variable exponent Lebesgue spaces on spaces of homogeneous type. We obtain the first order Poincaré

inequalities for vector fields satisfying Hörmander’s condition in variable non-isotropic Sobolev spaces.

We also set up the higher order Poincaré inequalities with variable exponents on stratified Lie groups.

Moreover, we get the Sobolev inequalities in variable exponent Sobolev spaces on whole stratified Lie

groups. These inequalities are important and basic tools in studying nonlinear subelliptic PDEs with

variable exponents such as the p(x)-subLaplacian. Our results are only stated and proved for vector

fields satisfying Hörmander’s condition, but they also hold for Grushin vector fields as well with obvious

modifications.
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1 Introduction

Poincaré type inequalities for vector fields satisfying Hörmander’s condition have been exten-
sively studied for the past two decades (see [2, 12, 17–19, 25] etc.). Such a Poincaré inequality
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is of the following form:
(

1
|B|

∫
B

|f(x) − fB |qdx

) 1
q

≤ cr

(
1
|B|

∫
B

( ∑
j

|〈Xj ,∇f(x)〉|2
) p

2

dx

) 1
p

(1.1)

in Euclidean space R
N for 1 ≤ p < ∞ and certain values q > p, where {Xj} is a collection

of smooth vector fields which satisfy the Hörmander condition (see [16]). Here, B denotes any
suitably restricted ball of radius r relative to a metric ρ which is naturally associated with the
vector fields {Xj} as, e.g., in [7, 26], fB = |B|−1

∫
B

f(x)dx, ∇f is the usual gradient of f and c

is a constant independent of f and B. One can show similar results also hold for more general
domains as well, such as Bomain chain domains.

Inequality (1.1) was first established by Jerison in [17] for q = p and 1 ≤ p < ∞, and this
result was improved by Lu in the case p > 1 in [18, 19] by showing that the estimate holds
for 1 < p < Q and q = pQ

Q−p , where Q (≥ N) denotes the homogeneous dimension of R
N

associated with the vector fields {Xj} (see [12, §2] for the definition). Sharpened results hold
for all 1 ≤ p < Q with q = pQ

Q−p , and this was proved by Franchi et al. [12] through establishing
a stronger representation formula than that in [18] and using a truncation argument (see also
the work by Maheux and Saloff-Coste through a self-improving argument [25]). Two-weighted
Poincaré inequalities were also established in [12] when two weights satisfy a certain balance
condition as introduced in Chanillo and Wheeden [3]. It was further proved in [13] that such
a representation formula proved in [12] is actually equivalent to L1 → L1 Poincaré’s inequality
in spaces of homogeneous type.

The results of Poincaré type in [12] are based on a new representation formula for a function
in terms of the vector fields {Xj}. One form of the representation formula states that if ρ denotes
the metric corresponding to the vector fields {Xj}, then

|f(x) − fB | ≤ C

∫
cB

|Xf(y)| ρ(x, y)
|B(x, ρ(x, y))|dy, x ∈ B, (1.2)

where B is any suitably small ρ-ball. Here, C > 0 and c ≥ 1 are appropriate constants,
|Xf |2 =

∑
j |〈Xj , ∇f〉|2, fB is the Lebesgue average |B|−1

∫
B

fdy, B(x, r) is the metric ball
with center x and radius r, and cB denotes B(x, cr) if B = B(x, r).

Inequality (1.2) was shown to be true on graded nilpotent Lie groups for the left invari-
ant vector fields by Lu in [18] (see Lemma 3.1 there). For general Hörmander vector fields,
(1.2) improves significantly an analogous (but weaker) fractional integral estimate in [18] (see
Lemma 3.2 there) for their “lifted” versions {X̃j} and ρ̃ as defined in Rothschild and Stein [27].
A subsequent point wise estimate was also given in [2]. It was further proved in [22] that the
constant c in the integral domain in (1.2) can be taken as 1.

Though extensive investigation for Poincaré inequalities for vector fields satisfying Hörman-
der’s condition has been made in Lp Lebesgue spaces, none has been done in the variable
exponent Lp(x) spaces. This is the main motivation of our paper.

In order to state our results more precisely, we now introduce some additional notation.
Let Ω be an open, connected set in R

N . Let X1, . . . , Xm be real C∞ vector fields which satisfy
Hörmander’s condition, i.e., the rank of the Lie algebra generated by X1, . . . , Xm equals N at
each point of a neighborhood Ω0 of Ω̄. As is well known, it is possible to naturally associate
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with {Xj} a metric ρ(x, y) for x, y ∈ Ω. The geometry of the metric space (Ω, ρ) is described
in Fefferman, Phong [7] and Nagel et al. [26], Sanchez-Calle [28]. In particular, the ρ-topology
and the Euclidean topology are equivalent in Ω, each metric ball

B(x, r) = {y ∈ Ω : ρ(x, y) < r}, x ∈ Ω, r > 0,

contains some Euclidean ball with center x, and if K is a compact subset of Ω and r0 > 0, there
is a constant CD such that

|B(x, 2r)| ≤ CD|B(x, r)|, x ∈ K, 0 < r < r0, (1.3)

where |E| denotes the Lebesgue measure of a measurable set E. This doubling property of
Lebesgue measure is crucial for our results. With this doubling property, the space (Ω, ρ, | · |)
becomes a homogenous space in the sense of Coifman and Weiss [5] (see Section 2 for more
details).

If B = B(x, r), we will use the notation r(B) for the radius r of B.
By [26], given a ball B = B(x, r), x ∈ K, r < r0, there exist positive constants γ and c,

depending on B, such that

|J | ≤ c

(
r(J)
r(I)

)Nγ

|I| (1.4)

for all balls I, J with I ⊂ J ⊂ B. We will call γ the (local) doubling order of Lebesgue measure
for B. In fact, by [26], Nγ lies somewhere in the range N ≤ Nγ ≤ Q, where Q = log2 CD is
the homogeneous dimension (CD is the constant in (1.3)). We can always choose Nγ = Q, but
smaller values may arise for particular vector fields, and these values may vary with B(x, r)
and will give sharper results for the Poincaré inequalities.

Given any real-valued function f ∈ Lip(Ω), we denote

Xjf(x) = 〈Xj(x),∇f(x)〉, j = 1, . . . , m,

and

|Xf(x)|2 =
m∑

j=1

|Xjf(x)|2,

where ∇f is the usual gradient of f and 〈·, ·〉 is the usual inner product on R
N .

We now recall the Poincaré estimate proved in the unweighted case in [12].

Theorem 1.1 Let K be a compact subset of Ω. There exists r0 depending on K, Ω and
{Xj} such that if B = B(x, r) is a ball with x ∈ K and 0 < r < r0, and if 1 ≤ p < Nγ and
1/q = 1/p − 1/(Nγ), where γ is defined by (1.4) for B, then

(
1
|B|

∫
B

|f(x) − fB|qdx

) 1
q

≤ cr

(
1
|B|

∫
B

|Xf(x)|pdx

) 1
p

for any f ∈ Lip(B̄). The constant c depends on K, Ω, {Xj}, and the constants c and γ in (1.4).
Also, fB may be taken to be the Lebesgue average of f , i.e., fB = |B|−1

∫
B

f(x)dx.

As mentioned earlier, we may always choose Nγ = Q, and then with p > 1, we obtain the
principal result of [19].
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As the proof of Theorem 1.1 shows (see [12]), if the conclusion is weakened by replacing
the integration over B on the right by integration over an appropriate larger ball cB for some
c > 1, then (1.4) may be replaced by the condition

|B| ≤ c

(
r(B)
r(I)

)Nγ

|I|

for all balls I with center in cB and r(I) ≤ r(B).
Some weighted versions of Poincaré inequality for Hörmander vector fields are proved in

[12, 18].
A weight function w(x) on Ω is a nonnegative function on Ω which is locally integrable with

respect to Lebesgue measure. We say that a weight w ∈ Ap (= Ap(Ω, ρ, dx)), 1 ≤ p < ∞, if
(

1
|B|

∫
B

w dx

) (
1
|B|

∫
B

w−1/(p−1)dx

)p−1

≤ C when 1 < p < ∞,

1
|B|

∫
B

w dx ≤ C →
B

ess inf w when p = 1

for all metric balls B ⊂ Ω. The fact that Lebesgue measure satisfies the doubling condition (1.3)
allows us to develop the usual theory of such weight classes as in [1], at least for balls B = B(x, r)
with 0 < r < r0 and x belonging to a compact subset of Ω. It follows easily from the definition
and (1.3) that if w ∈ Ap, then

w(B(x, 2r)) ≤ Cw(B(x, r))

if 0 < r < r0 and x ∈ K ⊂ Ω, K compact, with C = C(r0, K), where we use the standard
notation w(E) =

∫
E

wdx. We say that any such weight is doubling. All the weights we shall
consider will be doubling weights.

Given two weight functions w1, w2 on Ω and 1 ≤ p < q < ∞, we will assume that the
following local balance condition holds for w1, w2 and a ball B with center in K and r(B) < r0:

r(I)
r(J)

(
w2(I)
w2(J)

) 1
q

≤ c

(
w1(I)
w1(J)

) 1
p

(1.5)

for all metric balls I, J with I ⊂ J ⊂ B. Note that in the case of Lebesgue measure (w1 =
w2 = 1), (1.5) reduces to (1.4) when 1/q = 1/p − 1/(Nγ).

Then the weighted Poincaré inequalities proved in [12] read as follows:

Theorem 1.2 Let K be a compact subset of Ω. Then there exists r0 depending on K, Ω and
{Xj} such that if B = B(x, r) is a ball with x ∈ K and 0 < r < r0, and if 1 ≤ p < q < ∞ and
w1, w2 are weights satisfying the balance condition (1.5) for B, with w1 ∈ Ap(Ω, ρ, dx) and w2

doubling, then
(

1
w2(B)

∫
B

|f(x) − fB |qw2(x)dx

) 1
q

≤ cr

(
1

w1(B)

∫
B

|Xf(x)|pw1(x)dx

) 1
p

for any f ∈ Lip (B̄), with fB = w2(B)−1
∫

B
f(x)w2(x)dx. The constant c depends only on K,

Ω, {Xj} and the constants in the conditions imposed on w1 and w2.

This result includes Theorem 1.1 and the weighted results in [18].
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Remark 1.3 As pointed out in [12], Theorem 1.2 has an analogue in case q = p and 1 ≤ p <

∞. In fact, the theorem remains true as stated if 1 < p < ∞ and q = p provided w1 ∈ Ap and
there exists s > 1 such that ws

2 is a doubling weight and the balance condition (1.5) is replaced
by the condition (

r(I)
r(J)

)p As(I, w2)
w2(J)

≤ c
w1(I)
w1(J)

for all balls I, J with I ⊂ J ⊂ B, where

As(I, w2) = |I|
(

1
|I|

∫
I

ws
2dx

) 1
s

.

Note that w2(I) ≤ As(I, w2) for s > 1 by Hölder’s inequality, and, as is well known, w2(I) and
As(I, w2) are equivalent if w2 belongs to some Ap0 class and s is sufficiently close to 1.

Poincaré estimates on domains other than balls were also obtained in [12, 19]. In particular,
this can be done for domains which satisfy the Boman chain condition, see [12, 19, 23].

The validity of global Poincaré inequalities of higher order on the nilpotent stratified Lie
groups has also been discussed (see [20, 21, 23, 24], etc.). Now we recall some preliminaries
concerning stratified Lie groups (or so-called Carnot groups) (see [8]). Assume

g =
s⊕

i=1

Vi,

with [Vi, Vj ] ⊂ Vi+j for i + j ≤ s and [Vi, Vj ] = 0 for i + j > s. Let X1, . . . , Xl be the basis
for V1 and suppose that X1, . . . , Xl generate g as a Lie algebra. Then for 2 ≤ j ≤ s, we can
choose a basis {Xij}, 1 ≤ i ≤ kj , for Vj consisting of commutators of length j. We set k1 = l

and Xi1 = Xi, i = 1, . . . , l, and we call Xi1 a commutator of length 1.
If G is the simply connected Lie group associated with g, then the exponential mapping is a

global diffeomorphism from g to G. Thus, for each g ∈ G, there is x = (xij) ∈ R
N , 1 ≤ i ≤ kj ,

1 ≤ j ≤ s, N =
∑s

j=1 kj such that

g = exp
( ∑

xijXij

)
.

The higher order Poincaré inequalities on the nilpotent stratified Lie groups were established
by Lu [20, 21], Lu and Wheeden [23, 24] and Cohn et al. [4]. We state a theorem from [4].

Theorem 1.4 Let m be a positive integer, p ≥ 1, f ∈ Wm,p
loc (G) and Xmf ∈ Lp(G). Then

there exists a unique polynomial P ∈ Pm such that, for any integer j with 0 ≤ j < m,
( ∫

G

|Xj(f − P )|qmjdx

) 1
qmj ≤ C

( ∫
G

|Xmf(x)|pdx

) 1
p

(1.6)

for all 1 ≤ p < Q
m−j and qmj = pQ

Q−(m−j)p , where C is independent of f , Pm denotes the
polynomials of homogeneous degree less than m for each positive integer m and

|Xmf | =
( ∑

I:d(I)=m

|XIf |2
) 1

2

.

More details, see [4] or Section 5 in this paper.
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As for the variable exponent version, the Poincaré inequalities on bounded John domain
were proved in variable Sobolev spaces (the definition of variable Sobolev spaces can be found
in [6]) by Harjulehto and Hästö [14] with some assumptions on the exponents, i.e., p(·) is
continuous on Ω. They also gave an example that p(·) ordinarily needs some regularity and
proved a version when p(·) has no regularity but has limited oscillation, i.e., (p−)∗ ≥ p+.

Theorem 1.5 ([14]) Let D ⊂ R
n be a bounded John domain, with constant λ. If p+

D ≤ (p−D)∗

or p−D ≥ n and p+
D < ∞, then there exists a constant C = C(n, p−D, p+

D, λ) such that, for every
f ∈ W 1,p(·)(D),

‖f − fD‖Lp(·)(D) ≤ C(1 + |D|)2|D|
1
2+ 1

p
+
D

− 1
p
−
D ‖∇f‖Lp(·)(D), (1.7)

here, p+
D := ess supx∈D p(x), p−D := ess infx∈D p(x).

The result also holds for stronger hypotheses on the exponent p(·), a suitable boundedness
for the Hardy–Littlewood maximal function on the variable exponent Lebesgue spaces.

Theorem 1.6 ([6]) Given a bounded convex set Ω ⊂ R
n with diameter D, let p(·) : Ω →

[1, +∞] be such that p+ < ∞ and the maximal operator M is bounded on Lp′(·)(Ω). Then for
all f ∈ W 1,p(·)(Ω),

‖f − fΩ‖Lp(·)(Ω) ≤ C‖∇f‖Lp(·)(Ω), (1.8)

here, C is only dependent on n, p(·) and D, ‖M‖Lp′(·)(Ω) and the measure of Ω.

In this paper, we consider the Poincaré inequalities in variable exponent non-isotropic
Sobolev spaces. First, we set up the first order Poincaré inequalities for vector fields satis-
fying Hörmander’s condition. To this end, we introduce the notion of Boman chair domains in
a metric space of homogeneous type (X, ρ, μ) (see Section 2 for more details).

Definition 1.7 A domain (i.e., an open connected set) Ω in X is said to satisfy the weak
Boman chain condition of type σ, Λ, or to be a member of F(σ, Λ), if there exist constants
σ = 1, Λ > 0, and a family F of metric balls B ⊂ Ω such that

(i) Ω =
⋃

B∈F B;
(ii)

∑
B∈F χσB(x) ≤ ΛχΩ(x) for all x ∈ G;

(iii) there is a “central ball” B0 ∈ F such that, for each ball of B ∈ F , there is a positive
integer k = k(B) and a chain {Bj}k

j=0 for balls for which Bk = B and each Bj ∩Bj+1 contains
a ball Dj with Bj ∪ Bj+1 ⊂ ΛDj ;

(iv) B ⊂ ΛBj for all j = 0, . . . , k(B).

Our first theorem is concerning the first order Poincaré inequality on variable exponent
non-isotropic Sobolev spaces associated with the vector fields satisfying Hörmander’s condition
on domains Ω satisfying the Boman chain condition (with respect to the metric associated with
the vector fields satisfying Hörmander’s condition).

Theorem 1.8 Given a weak Boman chain domain Ω and p(·) ∈ P(Ω) such that 1 ≤ p− ≤
p+ < Q, suppose that the maximal operator M is bounded on L(p∗(·)/Q′)′(Ω). Then, for every
f ∈ Lip(Ω),

‖f − fΩ‖Lp∗(·)(Ω) ≤ C‖Xf‖Lp(·)(Ω).

Here, p∗(x) = Qp(x)
Q−p(x) and Q is the homogeneous dimension.
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As is well known, the metric balls associated with the vector fields satisfying Hörmander’s
condition are Boman chain domains, the above theorem holds for balls as well.

Next, we set up the higher order Poincaré inequalities on variable exponent Sobolev space
on stratified Lie groups G. LH(Ω) means the class of log-Hölder continuous functions (see
Section 2 for definitions).

Theorem 1.9 Let m be an integer and let p(·) satisfy 1 ≤ p− ≤ p+ < Q/m and p(·) ∈ LH(Ω).
Assume Ω is a weak Boman chain domain in a stratified group G with a central ball B, and
f ∈ W m,p(·)(Ω). Then there exists a unique polynomial p ∈ Pm such that

‖f − P‖Lp∗
m(·)(Ω) ≤ C‖Xmf‖Lp(·)(Ω), (1.9)

with p∗m(x) = Qp(x)
Q−mp(x) . Here, Pm is the polynomials of homogeneous degree less than m for

each positive integer m.

Finally, we establish the Sobolev inequalities in variable Sobolev spaces on whole stratified
Lie groups.

Theorem 1.10 Suppose that m is a positive integer and let p(·) satisfy 1 ≤ p− ≤ p+ < Q/m

and p(·) ∈ LH(G), f ∈ W m,p(·)(G). Then

‖f‖Lp∗
m(·)(G) ≤ C‖Xmf‖Lp(·)(G), (1.10)

with p∗m(x) = Qp(x)
Q−mp(x) .

We end this introduction with the following remark. The Poincaré inequalities for Grushin
type vector fields on variable exponent spaces can be established using the same method em-
ployed in this paper. The representation formula for Grushin vector fields were established by
Franchi et al. (see [9–11]).

The organization of this paper is as follows. In Section 2, we will give some preliminaries.
Then, we will establish the boundedness of the fractional integral operator in variable Lebesgue
spaces in Section 3. In Section 4, we will prove Theorem 1.8. Then we will prove the high order
Poincaré inequalities on stratified Lie groups (Theorem 1.9) in Section 5. Finally, we obtain
the Sobolev inequalities in variable exponent Lebesgue spaces on whole stratified Lie groups
(Theorem 1.10) in Section 6.

2 Preliminaries

2.1 Variable Exponent Non-isotropic Sobolev Spaces

Here, we first give the definition of homogeneous spaces. We say X is the quasi-metric space
with the quasi-metric d, if the function d : X × X → [0, ∞) satisfies:

(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x);
(iii) d(x, y) ≤ K[d(x, z) + d(z, y)] for some constant K ≥ 1.
A positive measure μ is a doubling measure on X if for some positive C,

μ(B(x, 2r)) ≤ Cμ(B(x, r)), x ∈ X, r > 0,

where B(x, r) = {y ∈ X : d(x, y) < r} is the ball of radius r and centered in x. Then, the quasi-
metric space X matched with a doubling measure μ on it is extended to general homogeneous
spaces, and we denote it by (X, μ).
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The Hardy–Littlewood maximal operator and the fractional integral operator of order α on
homogeneous spaces are defined respectively by

Mf(x) = sup
x∈B

1
μ(B)

∫
B

f(y)dμ(y),

Iαf(x) =
∫

X

f(y)
d(x, y)α

μ(B(x, d(x, y)))
dμ(y).

Next, we define the Ap weight on homogeneous spaces (X, μ).
We say ω ∈ Ap, 1 < p < ∞, if[ ∫

B

ω(x)dμ(x)
][ ∫

B

ω(x)−1/(p−1)dμ(x)
]p−1

≤ Cωμ(B)p

for all balls B ⊂ Ω. And we say ω ∈ A1, if∫
B

ω(x)dμ(x) ≤ Cωμ(B) ess inf
x∈B

ω(x)

for all balls B.
The following basic properties for ω ∈ Ap, 1 < p < ∞, are well known and can be verified

easily.

Lemma 2.1 Suppose ω ∈ Ap, 1 < p < ∞. Then
(1) if p1 ≤ p2, 1 ≤ p1 < p2, then Ap1 � Ap2 ;
(2) if ω ∈ Ap (1 ≤ p < ∞), 0 < α < 1, then,

ω− 1
p−1 ∈ Ap′ , ωα ∈ Aαp+1−α;

(3) ω ∈ Ap if and only if ω− 1
p−1 ∈ Ap′ ;

(4) if ω ∈ Ap, then ωdμ satisfies the doubling measure condition.

We are ready to give the definition of the variable exponent non-isotropic Sobolev spaces
associated with the vector fields satisfying the Höremainder condition. First, we define the
variable Lebesgue space on homogeneous spaces.

Definition 2.2 Given a homogeneous space (X, μ), an open set Ω ⊂ X and a μ-measurab-
le function p(·) : Ω → [1,∞], let Lp(·)(Ω) denote the Banach function space of μ-measurable f

on Ω such that ∫
Ω

|f(x)|p(x)dμ(x) < ∞,

with norm

‖f‖Lp(·)(Ω) = inf
{

λ > 0 :
∫

Ω

( |f(x)|
λ

)p(x)

dμ(x) ≤ 1
}

.

If there is no ambiguity over the domain Ω, we will often write ‖f‖p(·) instead of ‖f‖Lp(·)(Ω).

For brevity, hereafter let

P(Ω) = {p(·) : Ω → [1,∞] is a μ-measurable function}.
p−(E) := ess inf

x∈E
p(x) and p+(E) := ess sup

x∈E
p(x).

If the domain is clear, we will simply write p− = p−(E), p+ = p+(E). Given p(·), we define the
conjugate exponent function p′(·) by

1
p(x)

+
1

p′(x)
= 1, x ∈ Ω,
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with the convention that 1/∞ = 0.
In classical Lp space, the Hardy–Littlewood maximal operator M is bounded in Lp (p > 1).

However, the boundedness of M on variable Lebesgue space Lp(·) is not trivial. In particular,
in spaces of homogeneous type, there are many conditions that guarantee M is bounded on
variable Lebesgue space Lp(·), see [15]. Here we give the common condition known as log-
Hölder continuity condition as follows:

Definition 2.3 Given a set Ω ⊂ X and a function p(·) ∈ P(Ω), we say that p(·) ∈ LH(Ω), if
there exists a constant C0 such that for all x, y ∈ Ω, |d(x, y)| < 1/2,

|p(x) − p(y)| ≤ C0

− log(d(x, y))
.

Now, we can define variable non-isotropic Sobolev spaces for vector fields satisfying Hörman-
der’s condition.

Definition 2.4 Let Ω be open, connected set in R
N , and X1, X2, . . . , Xm be real C∞ vector

fields which satisfy Hörmander’s condition. Given p(·) ∈ P(Ω), we define the Sobolev space
W 1,p(·)(Ω) for p+(Ω) < ∞ as follows :

W 1,p(·)(Ω) =
{

f ∈ Lp(·)(Ω), |Xf | ∈ Lp(·)(Ω) :
∫

Ω

|f(x)|p(x) + |Xf(x)|p(x)dx < ∞
}

,

equipped with the norm

‖f‖W 1,p(·)(Ω) = ‖f‖Lp(·)(Ω) + ‖Xf‖Lp(·)(Ω).

If there is no ambiguity about the domain, we often write ‖f‖1,p(·) instead of ‖f‖W 1,p(·)(Ω).

2.2 Some Important Lemmas for the Proof of Our Main Theorem

In this subsection, we state some lemmas which will be used in the proof of our main theorem.
First, we state an extrapolation lemma which will be very useful. The following lemma in
Euclidean spaces was proved in [6, Theorem 5.28]. Our proof here is an adaptation to the
homogeneous spaces for the sake of completeness.

Lemma 2.5 Given Ω ⊂ X, suppose that for some p0, q0, 1 ≤ p0 ≤ q0, the family F is such
that, for all ω ∈ A1,

(∫
Ω

F (x)q0ω(x)dμ(x)
)1/q0

≤ C0

(∫
Ω

G(x)p0ω(x)p0/q0dμ(x)
)1/p0

, (F, G) ∈ F . (2.1)

Given p(·) ∈ P(Ω) such that p0 ≤ p− ≤ p+ < p0q0
q0−p0

, define q(·) by

1
p(x)

− 1
q(x)

=
1
p0

− 1
q0

. (2.2)

If the Hardy–Littlewood maximal operator M is bounded on L(q(·)/q0)
′
(Ω), then

‖F‖q(·) ≤ Cp(·)‖G‖p(·) for (F, G) ∈ F . (2.3)

Proof Fix p(·), q(·) : Ω → [1,∞) as in the hypotheses, and let

p(x) = p(x)/p0, q(x) = q(x)/q0.
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By the assumption, the Hardy–Littlewood maximal operator is bounded on Lq′(·)(Ω). Define
an iteration algorithm R on Lq′(·)(Ω) by

Rh(x) =
∞∑

k=0

Mkh(x)
2k‖M‖k

Lq′(·)(Ω)

,

where, for k ≥ 1, Mk = M ◦M ◦ · · · ◦M denotes k iterations of the Hardy–Littlewood maximal
operator M and M0h = |h|. Then, we have

(a) for all x ∈ Ω, |h(x)| ≤ Rh(x);
(b) R is bounded on Lp(·)(Ω) and ‖Rh‖p(·) ≤ 2‖h‖q′(·);
(c) Rh ∈ A1 and [Rh]A1 ≤ 2‖M‖Lq′(·)(Ω).

For further details, see Lemma 2.7.
Fix a pair (F, G) ∈ F such that F ∈ Lq(·) (i.e., so that the left-hand side of (2.3) is finite).

Then we have

‖F‖q0

Lq(·)(Ω)
= ‖F q0‖Lq(·)(Ω) ≤ k−1

p(·) sup
∫

Ω

F (x)q0h(x)dμ(x),

where the supremum is taken over all non-negative h ∈ Lq′(·)(Ω) with ‖h‖q′(·) = 1.

For any such function h, we will show that∫
Ω

F (x)q0h(x)dμ(x) ≤ C‖G‖q0

Lp(·)(Ω)
,

with the constant C independent of h.
First note that by property (a), we have∫

Ω

F (x)q0h(x)dμ(x) ≤
∫

Ω

F (x)q0Rh(x)dμ(x). (2.4)

We want to apply our hypothesis (2.1) to the term on the right-hand side of (2.4).
To do so, we have to show that it is finite.
In fact, ∫

Ω

F (x)q0Rh(x)dμ(x) ≤ Kp(·)‖F q0‖q(·)‖Rh‖q′(·)

≤ 2Kp(·)‖F‖q0
q(·)‖h‖q′(·)

< ∞.

Therefore, by property (c), (2.1) holds with ω = Rh. Furthermore, the constant C0 is
independent of h. Hence,

∫
Ω

F (x)q0Rh(x)dμ(x) ≤ Cq0
0

(∫
Ω

G(x)p0Rh(x)p0/q0dμ(x)
)q0/p0

≤ Cq0
0 ‖Gp0‖q0/p0

p(·) ‖Rhp0/q0‖q0/p0
p′(·)

= Cq0
0 ‖G‖q0

p(·)‖Rhp0/q0‖q0/p0
p′(·) .

To complete the proof, we need to show that ‖Rhp0/q0‖q0/p0
p′(·) is bounded by a constant

independent of h. By the definition of q(·),

p′ =
p(x)

p(x) − p0
=

q0

p0

q(x)
q(x) − q0

=
q0

p0
q′(x).
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Therefore,
‖Rhp0/q0‖q0/p0

p′(·) = ‖Rh‖q′(·) ≤ 2‖h‖q′(·) = 2.

This completes our proof of our Lemma 2.5. �
Secondly, we state a particular extrapolation lemma.

Lemma 2.6 Given Ω ⊂ X, suppose that for some p0 ≥ 1, the family F is such that, for all
ω ∈ A1, ∫

Ω

F (x)p0ω(x)dμ(x) ≤ C0

∫
Ω

G(x)p0ω(x)dμ(x), (F, G) ∈ F .

Given p(·) ∈ P(Ω) such that p0 ≤ p− ≤ p+ < ∞, and the maximal operator M is bounded on
L(p(·)/p0)′(Ω), then

‖F‖p(·) ≤ Cp(·)‖G‖p(·), (F, G) ∈ F .

Then, we will construct an A1 weight which will be used when we apply Lemma 2.5.

Lemma 2.7 Given Ω ⊂ X and h ∈ Lp(·)(Ω), define

Rh(x) =
∞∑

k=0

Mkh(x)
2k‖M‖k

Lp(·)(Ω)

,

where, for k ≥ 1, Mk = M ◦M ◦ · · · ◦M denotes k iterations of operator and M0h = |h|. Then
this operator has the following properties :

(a) for all x ∈ Ω, |h(x)| ≤ Rh(x);
(b) R is bounded on Lp(·)(Ω) and ‖Rh‖p(·) ≤ 2‖h‖p(·);
(c) Rh ∈ A1 and [Rh]A1 ≤ 2‖M‖Lp(·)(Ω).

Proof Property (a) immediately follows from the definition. Since

‖Rh‖p(·) ≤
∞∑

k=0

‖Mkh‖p(·)
2k‖M‖k

Lp(·)(Ω)

≤ ‖h‖p(·)
∞∑

k=0

2−k = 2‖h‖p(·).

We get property (b).
And property (c) follows by the subadditivity and homogeneity of the maximal operator:

M(Rh)(x) ≤
∞∑

k=0

Mk+1h(x)
2k‖M‖k

Lp(·)(Ω)

≤ 2‖M‖Lp(·)

∞∑
k=0

Mk+1h(x)
2k+1‖M‖k+1

Lp(·)(Ω)

≤ 2‖M‖Lp(·)Rh(x). �

Finally, we state a result for us to test the condition (2.1) in Lemma 2.5.

Lemma 2.8 ([29]) Suppose 1 < p ≤ q < ∞, (X, d) is a quasi-metric space, μ is a doubling
measure on X, and ω(x) and ν(x) are nonnegative μ-measurable functions on X. Let ϕ(B) be
given by

ϕ(B) = sup{K(x, y) : x, y ∈ B, d(x, y) ≥ C(K)r(B)},
where K(x, y) is the kernel of Iα, r(B) is the radius of B, and C(K) = K−4/9. If p < q, ωdμ

and ν1−p′
dμ are doubling measures, then the following weighted inequality(∫

X

[Iαf(x)]qω(x)dμ(x)
)1/q

≤
(∫

X

f(x)pν(x)dμ(x)
)1/p

(2.5)
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holds if the condition

ϕ(B)
(∫

B

ωdμ

)1/q (∫
B

ν1−p′
dμ

)1/p′

≤ C for all balls B ⊂ X (2.6)

holds.

Now, we give a weak type inequality in a metric space of homogeneous type (Ω, ρ, μ). Since
our main interest is to prove the Poincaré inequalities for vector fields satisfying Hörmander’s
condition, we assume the doubling order of the metric space is Q, the homogenous dimension
(see (1.4) for its definition).

Lemma 2.9 Given Ω, suppose that for some p0, q0, 1 ≤ p0 ≤ q0, the family F is such that
for all ω ∈ A1,

ω ({x ∈ Ω : F (x) > t}) ≤ C0

(
1

tp0

∫
Ω

G(x)p0ω(x)p0/q0dμ(x)
)q0/p0

, (F, G) ∈ F . (2.7)

Given p(·) ∈ P(Ω) such that p0 < p− ≤ p+ < p0q0
q0−p0

, define q(·) by

1
p(·) − 1

q(·) =
α

Q

and assume that the Hardy–Littlewood maximal operator M is bounded on L(q(·)/q0)
′
(Ω), then

for all t > 0,
‖tχ{x∈Ω:F (x)>t}‖Lq(·)(Ω) ≤ Cp(·)‖G|Lp(·)(Ω), (F, G) ∈ F . (2.8)

Proof Define a new family F̃ consisting of the pairs

(Ft, G) = (tχ{x∈Ω:F (x)>t}, G), (F, G) ∈ F , t > 0.

Then we can restate (2.7) as follows: for every ω ∈ A1,

‖Ft‖Lq0 (ω) = tω({x ∈ Ω : F (x) > t})1/q0 ≤ C
1/q0
0 ‖G‖Lp0ωp0/q0 , (Ft, G) ∈ F̃ .

Therefore, we can apply Lemma 2.5 to the family F̃ to conclude that

‖Ft‖Lp(·)(Ω) ≤ Cp(·)‖G‖Lp(·)(Ω),

which is exactly (2.8). �

3 An Inequality for Fractional Integrals in Variable Lebesgue Spaces on Spaces
of Homogeneous Type

In order to prove Theorem 1.8, we need the following important lemma which describes the
boundedness for fractional integrals in variable Lebesgue spaces on spaces of homogeneous type.
A similar lemma in Euclidean spaces was proved in [6, Theorem 5.46]).

Lemma 3.1 Fix α, 0 < α < Q. Given p(·) ∈ P(X) such that 1 < p− ≤ p+ < Q/α, define
q(·) by

1
p(x)

− 1
q(x)

=
α

Q
.

If there exists q0 > Q
Q−α such that M is bounded on L(q(·)/q0)

′
(X), then

‖Iαf‖Lq(·) ≤ C‖f‖Lp(·) . (3.1)
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If p− = 1 and if the operator M is bounded on L(q(·)/q0)
′
(X) when q0 = Q

Q−α , then for every
t > 0,

‖tχ{x∈X:μ(Iαf(x))>t}‖Lq(·) ≤ C‖f‖Lp(·) . (3.2)

Here, Q is homogeneous dimension (the doubling order as defined in (1.4)), M is the Hardy–
Littlewood maximal operator on homogeneous spaces, and Iα is the fractional integral operator
on homogeneous spaces with index α.

Proof We only need to prove the case α = 1. The general case is similar. First, we show that(∫
Ω

I1f(x)q0ω(x)dμ(x)
)1/q0

≤ C0

(∫
Ω

f(x)p0ω(x)p0/q0dμ(x)
)1/p0

. (3.3)

In fact, by Lemma 2.8, we only need to prove that (2.6) holds for ν = ωp/q. Since ω ∈ A1 ⊂ Ap,
i.e., [∫

B

ω(x)dμ(x)
] [∫

B

ω(x)−1/(p−1)dμ(x)
]p−1

≤ Cωμ(B)p. (3.4)

And k(x, y) = d(x,y)
μ(B(x,d(x,y))) , so

ϕ(B) = sup{K(x, y) : x, y ∈ B, d(x, y) ≥ C(K)r(B)} ≤ Cμ(B)
1
Q−1.

Therefore, by Hölder inequality (noticing that p < q), the Ap condition, we have

ϕ(B)
(∫

B

ωdμ

)1/q (∫
B

ν1−p′
dμ

)1/p′

= ϕ(B)
(∫

B

ωdμ

)1/q (∫
B

ω
p
q (− 1

p−1 )dμ

) p−1
p

≤ ϕ(B)
(∫

B

ωdμ

)1/q [(∫
B

ω
p
q (− 1

p−1 ) q
p dμ

) p
q

μ(B)1−
p
q

] p−1
p

≤ Cμ(B)
1
Q−1

(∫
B

ωdμ

)1/q (∫
B

ω− 1
p−1 dμ

) p−1
q

μ(B)(1−
p
q )(1− 1

p )

≤ Cμ(B)
1
Q−1μ(B)

p
q +(1− p

q )(1− 1
p )

≤ Cμ(B)
p
q +(1− p

q )(1− 1
p )−Q−1

Q .

We can easily calculate that

p

q
+

(
1 − p

q

)(
1 − 1

p

)
− Q − 1

Q
= 0.

It is not hard to show that ωdμ is a doubling measure by ω ∈ A1 ⊂ Ap. And, by ω− 1
p−1 ∈ Ap′ ,

we also have
ν1−p′

= ω
p
q (1−p′) = ω

p
q (− 1

p−1 ) ∈ A p
q p′+1− p

q
.

Therefore, ν1−p′
dμ is also a doubling measure. Thus, by Lemma 2.8, we get (2.6).

So, by Lemma 2.8, we have(∫
X

[Iαf(x)]qω(x)dμ(x)
)1/q

≤
(∫

X

f(x)pω(x)p/qdμ(x)
)1/p

.

Finally, we can easily prove Lemma 3.1 by the extrapolation lemma on homogeneous spaces
(i.e., Lemma 2.5). And the weak type is very similar, here we omit it. �
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4 Proof of Theorem 1.8

First, we recall a representation formula given by Franchi et al. [12] and improved by Lu and
Wheeden in [22] which is crucial for the proof of Theorem 1.8.

Lemma 4.1 Suppose that μ, ν are doubling measures on a metric space (X, ρ) and give a
weak Boman chain domain Ω ⊂ X. And, there exists a constant a1 ≥ 1 such that, for all balls
B with a1B ⊂ Ω,

1
ν(B)

∫
B

|f − fB,ν |dν ≤ C
ρ(B)
μ(B)

∫
a1B

|Xf |dμ,

here, B is a ball of radius ρ(B). Then, for ν-a.e. x ∈ Ω,

|f(x) − fB0,ν | ≤ C

∫
Ω

|Xf(y)| ρ(x, y)
μ(B(x, ρ(x, y)))

dμ(y), (4.1)

where B0 is the central ball in Ω, fB0,ν = 1
ν(B0)

∫
B0

f(y)dν(y), and C is independent of f and
x ∈ Ω.

To apply extrapolation, we need the corresponding weighted norm inequality.

Lemma 4.2 Given a Boman chain domain Ω ⊂ X, and p, 1 ≤ p < Q, ω ∈ A1, there is a
contant C = C(Ω, p, [ω]A1) such that, for all f ∈ Lip(Ω),

(∫
Ω

|f(x) − fΩ|p∗
ω(x)dμ(x)

)1/p∗

≤ C

(∫
Ω

|Xf(x)|pω(x)p/p∗
dμ(x)

)1/p

,

where p∗ = Qp
Q−p .

Proof Fix f ∈ Lip(Ω). For each j ∈ Z, let

Ωj = {x ∈ Ω : 2j < |f(x) − fΩ| ≤ 2j+1},
and define the function fj by

fj(x) =

⎧⎪⎪⎨
⎪⎪⎩

|f(x) − fΩ| − 2j , x ∈ Ωj ,

2j , x ∈ Ωi, i > j,

0, otherwise.

It is easy to see that the function fj is weakly differentiable and |Xfj(x)| = |Xf(x)|χΩj
almost

everywhere. Furthermore, if x ∈ Ωj , by Lemma 4.1,

I1(Xfj−1)(x) ≥ C(Q)|fj−1(x) − fΩ| = C(Q)2j−1. (4.2)

By (4.2) and the weak type inequality

ω ({x ∈ Ω : μ(I1h(x)) > t}) ≤ C

(
1
tp

∫
Ω

|h(x)|pω(x)p/p∗
dμ(x)

)p∗/p

, (4.3)

with h = |Xfj−1|, we have∫
Ω

|f(x) − fΩ|p∗
ω(x)dμ(x)

=
∑

j

∫
Ωj

|f(x) − fΩ|p∗
ω(x)dμ(x)
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=
∑

j

∫
Ωj

2(j+1)p∗
ω(x)dμ(x)

= 4p∗
C(Q)−p∗ ∑

j

∫
Ωj

(C(Q)2(j−1))p∗
ω(x)dμ(x)

≤ C
∑

j

∫
{x∈Ω:I1(|Xfj−1|)(x)>C(Q)2j−1}

(C(Q)2(j−1))p∗
ω(x)dμ(x)

≤ C
∑

j

( ∫
Ω

|Xfj−1(x)|pω(x)p/p∗
dμ(x)

)p∗/p

≤ C
∑

j

( ∫
Ωj−1

|Xf(x)|pω(x)p/p∗
dμ(x)

)p∗/p

≤ C

( ∫
Ω

|Xf(x)|pω(x)p/p∗
dμ(x)

)p∗/p

.

This completes the proof. �
We are now ready to prove Theorem 1.8.

Proof of Theorem 1.8 First, we choose the central ball B of the Boman chain domain Ω. The
choice of such a central ball can be as given in, e.g., [12, 22].

We will deal with Theorem 1.8 in two cases.

Case 1 p− > 1. By Lemma 4.1 and the basic property of Lq(·)(Ω), it is not hard to obtain

‖f − fB‖Lq(·)(Ω) ≤ C‖I1(Xf)‖Lq(·)(Ω). (4.4)

Next, we will show that

‖f − fΩ‖Lq(·)(Ω) � ‖f − fB‖Lq(·)(Ω).

In fact, by the triangle inequality,

‖f − fΩ‖Lq(·)(Ω) ≤ ‖f − fB‖Lq(·)(Ω) + ‖fB − fΩ‖Lq(·)(Ω).

We estimate the second term by Hölder’s inequality:

‖fB − fΩ‖Lq(·)(Ω)

= |fB − fΩ|‖1‖Lq(·)(Ω)

= μ(Ω)−1‖f − fB‖L1(Ω)‖χΩ‖Lq(·)(Ω)

≤ c
‖χΩ‖Lq′(·)(Ω)‖χΩ‖Lq(·)(Ω)

μ(Ω)
‖f − fB‖Lq(·)(Ω).

Finally, fix λ = μ(Ω) + 1. Then
∫

Ω

(
χΩ

λ

)q(x)

dμ(x) =
∫

Ω

λ−q(x)dμ(x) ≤ λ−q−μ(Ω) ≤ λ−1(μ(Ω) + 1) = 1.

Therefore, ‖χΩ‖Lq(·)(Ω) ≈ ‖χΩ‖Lq′(·)(Ω) ≤ μ(Ω) + 1. Then, by Lemma 3.1, we have

‖f − fΩ‖Lq(·)(Ω) ≤ C‖Xf‖Lp(·)(Ω).

Case 2 p− = 1. Define the family F to be all pairs (|f − fΩ|, |Xf |) with f ∈ Lip(Ω).
Fix q(·) = p∗(·), and q0 = Q′. By the assumption, the maximal operator M is bounded on



1082 Li X., et al.

L(q(·)/q0)
′
(Ω). Therefore, by Lemma 4.2 (with p = 1) and Lemma 2.5, for all f ∈ Lip(Ω),

‖f − fΩ‖Lp∗(·)(Ω) ≤ C‖Xf‖Lp(·)(Ω),

provided the left-hand side is finite, but this is always the case.
In fact, the method we used in Case 2 also can be used to deal with Case 1, since the

strong type inequality for the fractional integral operator implies the corresponding weak type
inequality. �

5 The Higher Order Poincaré Inequalities on Stratified Groups

First, we recall the polynomials on stratified groups G by following Folland and Stein [8]. Let
X1, . . . , Xk be the generators of the Lie algebra g, and X1, . . . , Xk, . . . , XN be a basis of g.
We define d(Xj) = dj as the length of Xj as a commutator, and arrange the order so that
1 ≤ d1 ≤ · · · ≤ dN . Thus, it is easy to see dj = 1 for j = 1, . . . , k. Suppose ξ1, . . . , ξN are the
dual basis of g∗, and let ηi = ξi ◦ exp−1. Thus, η1, . . . , ηN are a system of global coordinates
on G. A function P on G is called a polynomial on G if P ◦ exp is a polynomial on g. By
this definition, η1, . . . , ηN are polynomials on G and generate the algebra of polynomials on G.
Therefore, every polynomial on G can be written uniquely as

P =
∑

I

aIη
I , ηI = ηi1

1 · · · ηiN

N , aI ∈ R,

where all but finitely many of the coefficients aI vanish. Clearly, ηI is homogeneous of degree
d(I) =

∑N
j=1 ijd(ij). If P =

∑
I aIη

I , then we define the homogeneous degree (or order) of P

to be max{d(I) : aI �= 0}. If we consider I = (i1, . . . , ik), 1 ≤ ij ≤ k, then d(I) = |I|.
Throughout this paper, we use Pk to denote the polynomials of homogeneous degree less

than k for each positive integer k.
Let m be a positive integer, 1 < p− ≤ p+ < ∞, and Ω be an open set in G. The Sobolev

space Wm,p(·)(Ω) associated with the vector fields X1, . . . , Xl is defined to consist of all functions
f ∈ Lp(·) with distributional derivatives XIf ∈ Lp(·)(Ω) for every XI defined by

XI = Xi1
1 · Xi2

2 · · · · · XiN

N

with d(I) ≤ m. Here, we say that the distributional derivatives XIf exists and equals a locally
integrable function gI if for every φ ∈ C∞

0 (Ω),∫
Ω

fXIφdx = (−1)d(I)

∫
Ω

gIφdx.

Wm, p(·)(Ω) is equipped with the norm

‖f‖W m, p(·)(Ω) = ‖f‖Lp(·)(Ω) +
∑

1≤d(I)≤m

‖XIf‖Lp(·)(Ω).

When Ω = G, we use ‖f‖m,p(·) to denote ‖f‖W m,p(·)(G).
To prove Theorem 1.9, we first recall the higher order representation formulas [23], which

is also very crucial for us to give the higher order result.

Lemma 5.1 Let Ω be a weak Boman chain domain in G with a central ball B0, and let
f ∈ Cm(Ω), the class of m-th order differentiable functions. Then for any m ≤ Q, there is a
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polynomial Pm(B0, f) of order less than m such that for x ∈ Ω,

|f(x) − Pm(B0, f)(x)| ≤ C

∫
Ω

|Xmf(y)| d(x, y)m

|B(x, d(x, y))|dy, (5.1)

here, C is independent of f and Q is the homogeneous dimension.

Then, we give the proof of Theorem 1.9.

Proof of Theorem 1.9 By Lemma 5.1, for any m ≤ Q and every f ∈ Cm(Ω), there is a
polynomial Pm(B0, f) of order less than m such that, for x ∈ Ω,

|f(x) − Pm(B0, f)(x)| ≤ C

∫
Ω

|Xmf(y)| d(x, y)m

|B(x, d(x, y))|dy.

Thus, by Lemma 3.1, we obtain

‖f(x) − Pm(B0, f)(x)‖p∗
m(·) ≤ C‖Xmf‖p(·).

So, we prove the result of higher order Poincaré inequality on stratified groups for f ∈ Cm(Ω).
In fact, the existence of such polynomial Pm(B0, f)(x) can also be proved for f ∈ Wm,p as

done in [20, 21]. Therefore, the above proof goes through for f ∈ Wm,p as well.
Finally, we write Pm(B0, f)(x) by P . This finishes the proof of Theorem 1.9. �

6 Sobolev Inequality on the Entire Stratified Lie Groups

In this section, we will prove a Sobolev inequality on the entire stratified Lie group G, first, we
need to recall the representation formula of Sobolev type [24].

Lemma 6.1 Suppose that m is any positive integer and f ∈ Wm,1
loc (G). Let Q be the homoge-

neous dimension of G. Then for a.e. x ∈ G,

|f(x)| ≤ C

∫
G

|Xmf(y)| d(x, y)m

|B(x, d(x, y))|dμ(y).

In the end, it is easy to prove Theorem 1.10 by Lemma 6.1 and the boundedness of the
fractional integral operator on whole stratified Lie groups. Now we sketch the proof of the
high-order Sobolev inequality on whole stratified Lie groups.

Proof of Theorem 1.10 By Lemma 6.1, we can immediately obtain

‖f‖Lp∗
m(·)(G) ≤ C‖Im(Xmf)‖Lp∗

m(·)(G). (6.1)

Then, we apply Lemma 3.1 with α = m to (6.1),

‖Im(Xmf)‖Lp∗
m(·)(G) ≤ C‖Xmf‖Lp(·)(G).

The theorem is completed.
In fact, this theorem can also be proceed by induction. If m = 1, then this follows from

representation formula and the boundedness of the fractional integral operator.
Now suppose that the result is true for some m. Fix f ∈ Wm+1,p(·)(G). For each I, d(I) = 1,

XIf ∈ Wm,p(·)(G), and∑
d(I)=1

‖XIf‖Lp∗
m(·)(G) ≤ C

∑
d(I)=1

‖XmXIf‖Lp(·)(G)

≤ C
∑

d(I)=m+1

‖XIf‖Lp(·)(G).
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The Sobolev exponent corresponding to p∗m(·) is

Qp∗m(x)
Q − p∗m(x)

=
Qp(x)

Q − (m + 1)p(x)
= p∗m+1(x).

Since p(·) ∈ LH(G), p∗m(·) ∈ LH(G), we can do it as we did when m = 1 to get

‖f‖
L

p∗
m+1 (G)

≤
∑

d(I)=1

‖XIf‖Lp∗
m (G).

If we combine these, we get the desired inequality.
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type. Math. Z., 226, 147–154 (1997)
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application. Rev. Mat. Iberoamericana, 8(3), 367–439 (1992)
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