
ar
X

iv
:1

01
2.

54
89

v1
  [

m
at

h.
A

P]
  2

5 
D

ec
 2

01
0 N-Laplacian equations in RN with subcritical and

critical growth without the Ambrosetti-Rabinowitz

condition.

Nguyen Lam and Guozhen Lu

Abstract. Let Ω be a bounded domain in RN . In this paper, we consider the following
nonlinear elliptic equation of N -Laplacian type:

(0.1)

{
−∆Nu = f (x, u)

u ∈ W
1,2
0

(Ω) \ {0}

when f is of subcritical or critical exponential growth. This nonlinearity is motivated by
the Moser-Trudinger inequality. In fact, we will prove the existence of a nontrivial non-
negative solution to (0.1) without the Ambrosetti-Rabinowitz (AR) condition. Earlier
works in the literature on the existence of nontrivial solutions to N−Laplacian in RN

when the nonlinear term f has the exponential growth only deal with the case when f

satisfies the (AR) condition. Our approach is based on a suitable version of the Moun-
tain Pass Theorem introduced by G. Cerami [11, 12]. This approach can also be used
to yield an existence result for the p-Laplacian equation (1 < p < N) in the subcritical
polynomial growth case.

1. Introduction

Let Ω be a bounded smooth domain in RN and we consider the following class of
nonlinear elliptic equations

(1.1)

{
−∆pu = f (x, u) in Ω,

u ∈ W 1,p
0 (Ω) \ {0}

where −∆pu = −div (|∇u|p−2∇u) is the p−Laplacian. It is well known that problems
involving the p−Laplacian appear in many contexts. Some of these problems come from
different areas of applied mathematics and physics. For example, they may be found in
the study of non-Newtonian fluids, nonlinear elasticity and reaction-diffusions. The main
purpose of this paper is to establish existence results of nontrivial nonnegative solutions
to the above problem of N−Laplacian when the nonlinear term f has the exponential
growth but without satisfying the Ambrosetti-Rabinowitz condition. In these cases, the

1991 Mathematics Subject Classification. 35B38, 35J92, 35B33, 35J62.
Key words and phrases. Mountain pass theorem, critical point theory, Ambrosetti-Rabinowitz con-

dition, Moser-Trudinger inequality, subcritical and critical exponential growth.
Corresponding Author: G. Lu at gzlu@math.wayne.edu.
Research is partly supported by a US NSF grant #DMS0901761.

1

http://arxiv.org/abs/1012.5489v1


2 NGUYEN LAM AND GUOZHEN LU

original version of the Mountain Pass Theorem of Ambrosetti-Rabinowitz [7, 32] is not
sufficient for our purpose. Therefore, we will adapt a suitable version of Mountain Pass
Theorem introduced by Cerami [11, 12] to accomplish our goal. Our approach also yields
an existence result of nontrivial nonnegative solutions when 1 < p < N and f satisfies a
certain subcritical polynomial growth condition weaker than those in the literature.

In the case p = N , motivated by the Trudinger-Moser inequality (see Lemma 3),
existence of nontrivial solutions to N−Laplacian when f has the exponential growth have
been studied by many authors. See for example, Carleson-Chang [10], Atkinson-Peletier
[8], Adimurthi et al [1, 2, 3, 4, 5, 6], Marcos Do O et al [27, 28, 29, 30], de Figueiredo
et al [15, 16], etc. using the classical Critical Point Theory first developed by Ambrosetti-
Rabinowitz in their celebrated work [7], see also [32]. The key issue in using such a theory
is the verification of conditions which allow the use of the Palais-Smale condition.

When 1 < p < N , there have been substantial amount of works to study the existence
of the nontrivial solution for (1.1). Nevertheless, almost all of the works involve the
nonlinear term f(x, u) of a subcritical (polynomial) growth, say,

(SCP ) : There exist positive constants c1 and c2 and q0 ∈ (p− 1, p∗ − 1) such that

0 ≤ f(x, t) ≤ c1 + c2t
q0 for all t ≥ 0 and x ∈ Ω

where p∗ = Np/(N − p) denotes the critical Sobolev exponent. In this case, we can treat
the problem (1.1) variationally in the Sobolev space W 1,p

0 (Ω) thanks to the standard
Mountain Pass Theorem. Since Ambrosetti and Rabinowitz proposed the Mountain-pass
Theorem in their celebrated paper [7], critical point theory has become one of the main
tools for finding solutions to elliptic equations of variational type. Indeed, if we define the
Euler-Lagrange function associated to problem (1.1):

J : W 1,p
0 (Ω) → R

J(u) =
1

p

∫

Ω

|∇u|p dx−

∫

Ω

F (x, u)dx

where

F (x, u) =

u∫

0

f(x, s)ds

then the critical point of J are precisely the weak solutions of problem (1.1). One of
the main conditions that appeared in many works is the so-called Ambrosetti-Rabinowitz
condition:

(AR) : There are constants θ > p and s0 > 0 such that

0 < θF (x, s) ≤ sf(x, s), |s| ≥ s0, ∀x ∈ Ω

In fact, the (AR) condition is quite natural and plays an important role in studying
problem (1.1), for example, it ensures the boundedness of the Palais-Smale sequence.
On the other hand, this condition is very restrictive and eliminates many interesting and
important nonlinearities. We recall that (AR) condition implies another weaker condition

f is p-superlinear at infinity, i.e., lim
n→∞

f(x, t)

|t|p−1 = +∞, uniformly in x ∈ Ω.
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However, there are many functions which satisfy the p-superlinearity at infinity, but do
not satisfy the (AR) condition. An example of such functions is

f(x, t) = |t|p−2 t log(1 + |t|).

Over the years, many researchers studied problem (1.1) by trying to drop the (AR)
condition, see for instance [17, 18, 20, 21, 22, 23, 24, 25, 31, 34, 35, 37, 39]. For
example, the following assumption has been studied by many authors:

f(x, t)

|t|p−1 is non-decreasing with respect to |t|

(see [24, 25, 35] and references therein). Recently, the authors of [14] have used the
following condition:

There exists θ ≥ 1 such that θG(x, t) ≥ G(x, st) for all (x, t) ∈ Ω× R and s ∈ [0, 1]

where G(x, t) = f(x, t)t− pF (x, t), to compute the critical groups of the functional J at
infinity, and obtain one nontrivial solution of (1.1). This condition was first introduced by
Jeanjean [18], and then was used by numerous authors, for example, [21, 23, 25, 34, 37].

We note that except in [21], the other authors assumed the condition (SCP ) in their
works in order to get the existence results. One of the main reasons to assume this
condition (SCP) is that they can use the Sobolev compact embedding W 1,p

0 (Ω) →֒ Lq (Ω),
1 ≤ q < p∗.

In this paper, our first main result will be to study problem (1.1) in the improved
subcritical polynomial growth

(SCPI) : lim
s→+∞

f (x, s)

|s|p
∗−1 = 0

which is much weaker than (SCP ). Note that in this case, we don’t have the Sobolev
compact embedding anymore. Our work again is without the (AR)−condition. In fact,
this condition was studied by Liu and Wang in [21] in the case of Laplacian (i.e., p = 2) by
the Nehari manifold approach. However, we will show that we can use a suitable version
of the Mountain Pass Theorem to get the nontrivial solution to (1.1) in the general case
1 < p < N . This result is stronger than those in [17, 23, 25, 34].

Let us now state our result: Consider the problem:

(P)





−∆pu = f (x, u) in Ω,

u ∈ W 1,p
0 (Ω) \ {0}

u ≥ 0

Suppose that
(L1) : f : Ω × R → R is continuous, f (x, u) ≥ 0, ∀ (x, u) ∈ Ω × [0,∞) and

f (x, u) = 0, ∀ (x, u) ∈ Ω× (−∞, 0].

(L2) : lim
u→+∞

F (x,u)
up = +∞ uniformly on x ∈ Ω where F (x, u) =

u∫
0

f(x, t)dt.

(L3) : There is C∗ ≥ 0, θ ≥ 1 such that H(x, t) ≤ θH(x, s) + C∗ for all 0 < t <
s, ∀x ∈ Ω where H(x, u) = uf(x, u)− pF (x, u).

(L4) : lim sup
u→0+

pF (x,u)
|u|p

< λ1 (Ω), uniformly on x ∈ Ω.
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where

λ1 (Ω) = inf

{∫
|∇u|p dx∫
|u|p dx

: u ∈ W 1,p
0 (Ω) \ {0}

}

then

Theorem 1. Let 1 < p < N and assume that f has the improved subcritical polynomial
growth on Ω (condition (SCPI)) and satisfies (L1), (L2), (L3) and (L4). Then, problem
(P) has a nontrivial solution.

Since we are only concerned with the nonnegative solution, the condition (L1) is
natural. Moreover, condition (L2) is just a consequence of the p-superlinear at infinity
of f . The type of condition (L3) was first introduced by Jeanjean [18] and was used in
subsequent works, see [17, 23, 25, 34]. Finally, in earlier works (see e.g., [17, 23, 25]),
they also often assumed that

lim
u→0+

f (x, u)

up−1
= 0 uniformly on x ∈ Ω

which is stronger than our condition (L4).
In case of p = N , we have p∗ = +∞. In this case, every polynomial growth is admitted,

but one knows by easy examples that W 1,N
0 (Ω) * L∞ (Ω). Hence, one is led to look for

a function g(s) : R → R+ with maximal growth such that

sup
u∈W 1,N

0 (Ω), ‖u‖≤1

∫

Ω

g (u) dx < ∞

It was shown by Trudinger [36] and Moser [26] that the maximal growth is of expo-
nential type. So, we must redefine the subcritical (exponential) growth and the critical
(exponential) growth in this case as follows:

(SCE) : f has subcritical (exponential) growth on Ω, i.e, lim
u→+∞

|f(x,u)|

exp(α|u|N/(N−1))
= 0,

uniformly on x ∈ Ω for all α > 0.

(CG) : f has critical growth on Ω, i.e., there exists α0 > 0 such that

lim
u→+∞

|f (x, u)|

exp
(
α |u|N/(N−1)

) = 0, uniformly on x ∈ Ω, ∀α > α0

and

lim
u→+∞

|f (x, u)|

exp
(
α |u|N/(N−1)

) = +∞, uniformly on x ∈ Ω, ∀α < α0

When p = N and f has the subcritical exponential growth (SCE), again we can
use the Mountain Pass theorem together with the (AR) condition to get the nontrivial
solution to (1.1). Nevertheless, it seems that there are no works when the nonlinear term
f does not satisfy the (AR) condition in this case. Thus, the second main result of this
paper is to establish the existence of nontrivial nonnegative solutions to (P) when f has
the subcritical exponential growth (SCE). More precisely, we will study the existence of
the nonnegative nontrivial solution to problem (P) where we don’t need to use the (AR)
condition. Our result is as follows:
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Theorem 2. Let p = N and assume that f has the subcritical exponential growth on Ω
(condition (SCE)) and satisfies (L1), (L2), (L3) and (L4). Then, problem (P) has a
nontrivial solution.

When p = N and f has the critical exponential growth (CG), the study of the prob-
lem (1.1) becomes much more difficult than in the case of subcritical exponential growth.
Similar to the case of the critical polynomial growth in RN (N ≥ 3) for the Laplacian stud-
ied by Brezis and Nirenberg in their pioneering work [9]), our Euler-Lagrange functional
does not satisfy the Palais-Smale condition at all level anymore. Instead, the authors in
[1, 29, 30] used the extremal function sequences related to Moser-Trudinger inequality
to prove that J satisfies the Palais-Smale at a certain level. Moreover, this Palais-Smale
sequence was shown to be bounded and then derived a nontrivial solution. The idea of
choosing the testing functions which are extremal to the Moser-Trudinger inequality is
inspired by the work of Brezis and Nirenberg where the testing functions are extremal to
the Sobolev embedding inequality.

However, in the works [1, 29, 30], they need to assume a much more restrictive
condition

(ARR) : ∃t0 > 0, ∃M > 0 such that ∀ |u| ≥ t0, ∀x ∈ Ω, 0 < F (x, u) ≤ M |f (x, u)|

It’s clear that the condition (ARR) implies the (AR) condition.
Our third main purpose of this paper is to study problem (P) without using the (ARR)

condition or (AR) condition. Indeed, we get the following result:

Theorem 3. Let p = N and assume (L1), (L2), (L3) with θ = 1 and C∗ = 0, (L4) and
that f has critical growth on Ω (CG), say, at α0. Furthermore assume that

(L5): lim
t→+∞

f (x, t) exp
(
−α0 |t|

N/(N−1)
)
t ≥ β >

(
N
d

)N 1

MαN−1
0

, uniformly in (x, t)

where d is the inner radius of Ω, i.e. d := radius of the largest open ball ⊂ Ω;

M = lim
n→∞

n

1∫

0

exp n
(
tN/(N−1) − t

)
dt (≥ 2)

and

(L6): f is in the class (L0), i.e., for any {un} inW 1,N
0 (Ω) , if

{
un ⇀ 0 in W 1,N

0 (Ω)
f(x, un) → 0 in L1 (Ω)

,

then F (x, un) → 0 in L1 (Ω) (up to a subsequence).
Then, problem (P) has a nontrivial solution.

It is easy to see that condition (L2) in Theorem 3 is just a consequence of the critical
exponential growth condition (CG) and therefore it is automatically satisfied.

The following remarks are in order. First of all, in dimension two we have recently
established in [19] the existence of nontrivial nonnegative solutions to the Laplacian
equation (i.e., p = 2) when the nonlinear term f has the subcritical or critical exponential
growth of order exp(αu2) but without satisfying the Ambrosetti-Rabinowitz condition.
These results in dimension two in [19] extend those of [16] to the case when f does
not have the (AR) condition. Second, there have been many works in the literature in
which the (AR) condition was replaced by other alternative conditions when f has the
polynomial growth. Our results in this paper appear to be the first time in high dimension
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for N−Laplacian when f has the subcritical or critical exponential growth and without
(AR) condition.

As far as the case when the nonlinear term f has the polynomial growth is concerned,
we recall that, in [38], Willem and Zou used

H(x, s) is increasing in s, ∀x ∈ Ω; sf(x, s) ≥ 0 ∀s ∈ R,

sf(x, s) ≥ C0 |s|
µ , ∀ |s| ≥ s0 > 0, ∀x ∈ Ω

where µ > 2 and C0 > 0, instead of (AR). It’s clear that this condition is much stronger
than our conditions. Also, in [13], the authors replaced (AR) condition by

lim inf
s→∞

H (x, s)

|s|µ
≥ k > 0, uniformly a.e. x ∈ Ω,

where µ ≥ µ0 > 0. In [33], Schechter and Zou assumed that

H(x, s) is convex in s, ∀x ∈ Ω

or there are constants C > 0, µ > 2 and r ≥ 0, such that

µF (x, t)− tf (x, t) ≤ C
(
1 + t2

)
, |t| ≥ r.

As remarked in [25], the later condition is in fact equivalent to (AR) and it’s easy to
see that the convexity on H is much stronger than our condition. Indeed, observe that
function H(x, s) is a ”quasi-monotonic” function, and also if H is monotonic function in
s < 0 and s > 0, or a convex function in R, then it satisfies (L3) with θ = 1.

The organization of the paper is as follows. In section 2, we collect some known results
of Mountain Pass Theorem in critical point theory ([7], [32], [11], [12]). In particular, it is
necessary to adapt the appropriate version of the Mountain Pass Theorem due to Cerami
[11, 12] to remove the Ambrosetti-Rabinowitz condition. Section 3 provides the proof of
Theorem 1, i.e., the existence of nontrivial nonnegative solutions to Problem (P) when
the nonlinear term f has the improved subcritical polynomial growth (SCPI). Section 4
deals with the case when the nonlinear term f has the subcritical exponential growth and
gives the proof of Theorem 2. Section 5 contains the proof of Theorem 3 and establishes
the existence of nontrivial solutions when f has the critical exponential growth.

2. Preliminaries and Mountain Pass Theorems

Let Ω be a bounded domain in RN . We denote

‖u‖ =

(∫

Ω

|∇u|p dx

)1/p

‖u‖p =

(∫

Ω

|u|p dx

)1/p

λ1 (Ω) = inf

{
‖u‖p

‖u‖pp
: u ∈ W 1,p

0 (Ω) \ {0}

}

d = radius of the largest open ball ⊂ Ω
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Define the Euler-Lagrange functional associated to problem (P):

J(u) =
1

p
‖u‖p −

∫

Ω

F (x, u)dx, u ∈ W 1,p
0 (Ω)

From the hypotheses on f , by the standard arguments and the Moser-Trudinger inequality
(see Lemma 3), we can easily see that J is well-defined. Also, it’s standard to check that
J is C1

(
W 1,p

0 (Ω) ,R
)
and

DJ(u)v =

∫

Ω

|∇u|p−2∇u∇vdx−

∫

Ω

f(x, u)vdx, v ∈ W 1,p
0 (Ω)

Thus, the critical point of J are precisely the weak solutions of problem (P). We will
prove the existence of such critical points by the Mountain Pass Theorem.

Definition 1. Let (X, ‖·‖X) be a real Banach space with its dual space (X∗, ‖·‖X∗) and
I ∈ C1 (X,R). For c ∈ R, we say that I satisfies the (PS)c condition if for any sequence
{xn} ⊂ X with

I (xn) → c, DI (xn) → 0 in X∗

there is a subsequence {xnk
} such that {xnk

} converges strongly in X. Also, we say that
I satisfies the (C)c condition if for any sequence {xn} ⊂ X with

I (xn) → c, ‖DI (xn)‖X∗ (1 + ‖xn‖X) → 0

there is a subsequence {xnk
} such that {xnk

} converges strongly in X.

We have the following versions of the Mountain Pass Theorem (see [7, 11, 12, 23]):

Lemma 1. Let (X, ‖·‖X) be a real Banach space and I ∈ C1 (X,R) satisfies the (C)c
condition for any c ∈ R, I(0) = 0 and

(i) There are constants ρ, α > 0 such that I|∂Bρ ≥ α.
(ii) There is an e ∈ X \Bρ such that I(e) ≤ 0.
Then c = inf

γ∈Γ
max
0≤t≤1

I(γ (t)) ≥ α is a critical value of I where

Γ =
{
γ ∈ C0 ([0, 1] , X) , γ(0) = 0, γ (1) = e

}
.

Lemma 2. Let (X, ‖·‖X) be a real Banach space and I ∈ C1 (X,R) satisfies I(0) = 0 and
(i) There are constants ρ, α > 0 such that I|∂Bρ ≥ α.
(ii) There is an e ∈ X \Bρ such that I(e) ≤ 0.
Let CM be characterized by

CM = inf
γ∈Γ

max
0≤t≤1

I(γ (t))

where

Γ =
{
γ ∈ C0 ([0, 1] , X) , γ(0) = 0, γ (1) = e

}
.

Then I possesses a (C)CM
sequence.

As we remarked earlier, our results are motivated by the so-called Moser-Trudinger
inequality which can be found in [26]. As we know, if Ω ⊂ RN (N > p) is a bounded
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domain, then the Sobolev imbedding theorem states that W 1,p
0 (Ω) ⊂ Lq (Ω), for 1 ≤ q ≤

p∗ = pN
N−p

, or equivalently,

sup
u∈W 1,p

0 (Ω), ‖u‖≤1

∫

U

|u|q dx ≤ C (Ω) , for 1 ≤ q ≤ p∗,

while the supremum is infinite for q > p∗. In the case p = N , it was shown by Trudinger
[36] and Moser [26] that the maximal growth is of exponential type. More precisely, we
have the following lemma:

Lemma 3. Let u ∈ W 1,N
0 (Ω), then exp(|u|N/(N−1)) ∈ Lq (Ω) for all 1 ≤ q < ∞. Moreover,

sup
u∈W 1,N

0 (Ω), ‖u‖≤1

∫

Ω

exp(α |u|N/(N−1))dx ≤ C (Ω) for α ≤ αN .

The inequality is optimal: for any growth exp(α |u|N/(N−1)) with α > αN the corresponding
supremum is +∞.

3. The improved subcritical polynomial growth (SCPI)-Proof of Theorem 1

In this section, we study the problem (P) in the case 1 < p < N . As we mentioned
earlier, there have been a lot of papers about the existence of nontrivial nonnegative
solutions without the the (AR)-condition in the case of subcritical polynomial growth.
Nevertheless, almost all of them consider the problem (P) under the nonlinear term f
satisfies the condition (SCP ) which is stronger than our condition (SCPI). In [21], the
authors had a similar result to ours by using the Nehari condition type to replace for the
(AR) condition. Here, we will show that we can use a suitable Mountain Pass Theorem
to get our desired result.

Lemma 4. Let f satisfy (L1), (L2), (L4), (SCPI). Then J satisfies the conditions (i)
and (ii) of Lemma 1.

Proof. Let u ∈ W 1,p
0 (Ω) \ {0} , u ≥ 0. By (L2), for all M, there exists d such that

for all (x, s) ∈ Ω× R+

(3.1) F (x, s) ≥ Msp − d.

Then

J(tu) ≤
tp

p
‖u‖p −Mtp

∫

Ω

|u|p dx+O(1)

= tp
(
‖u‖p

p
−M

∫

Ω

|u|p dx

)
+O(1)

Now, choose M > ‖u‖p

p‖u‖pp
, we have J(tu) → −∞ as t → ∞, so J satisfies (ii) of Lemma 1.

Next, by (L4) and (SCPI) , there exist C, τ > 0 such that

(3.2) F (x, s) ≤
1

p
(λ1 − τ) |s|p + C |s|p

∗

, ∀ (x, s) ∈ Ω× R

Thus by the definition of λ1 (Ω) and the Sobolev embedding:
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J(u) ≥
1

p

(
1−

(λ1 − τ)

λ1

)
‖u‖p − C ‖u‖p

∗

Since τ > 0 and p∗ > p, we may choose ρ, δ > 0 such that J(u) ≥ δ if ‖u‖ = ρ and so, J
satisfies (i) of the Lemma 1. �

Next, we will check that J satisfies the (C)c for all real numbers c.

Lemma 5. Assume (L1), (L2), (L3) and (L4) hold. If f has the improved subcritical
polynomial growth on Ω (SCPI), then J satisfies (C)c for all c ∈ R.

Proof. Let {un} be a Cerami sequence in W 1,p
0 (Ω) such that

(1 + ‖un‖) ‖DJ(un)‖ → 0

J(un) → c

i.e.

(1 + ‖un‖)

∣∣∣∣
∫

Ω

|∇un|
p−2∇un∇vdx−

∫

Ω

f(x, un)vdx

∣∣∣∣ ≤ εn ‖v‖(3.3)

1

p
‖un‖

p −

∫

Ω

F (x, un)dx → c

where εn
n→∞
→ 0. We first show that {un} is bounded which is our main purpose in this

paper. Indeed, suppose that

(3.4) ‖un‖ → ∞

Setting

vn =
un

‖un‖

then ‖vn‖ = 1 so we can suppose that vn ⇀ v in W 1,p
0 (Ω). We may similarly show that

v+n ⇀ v+ in W 1,p
0 (Ω), where w+ = max {w, 0} . Since Ω is bounded, Sobolev’s imbedding

theorem implies that

{
v+n (x) → v+(x) a.e. in Ω
v+n → v+ in Lq (Ω) , ∀1 ≤ q < p∗

. We wish to show that v+ = 0

a.e. Ω. Indeed, if Ω+ = {x ∈ Ω : v+ (x) > 0} has a positive measure, then in Ω+, we have

lim
n→∞

u+
n (x) = lim

n→∞
v+n (x) ‖un‖ = +∞

and thus by (L2) :

lim
n→∞

F (x, u+
n (x))

|u+
n (x)|

p = +∞ a.e. in Ω+

This means that

(3.5) lim
n→∞

F (x, u+
n (x))

|u+
n (x)|

p

∣∣v+n (x)
∣∣p = +∞ a.e. in Ω+

and so

(3.6)

∫

Ω+

lim inf
n→∞

F (x, u+
n (x))

|u+
n (x)|

p

∣∣v+n (x)
∣∣p dx = +∞
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Also, by (3.3), we see that

‖un‖
p = pc+ p

∫

Ω

F (x, u+
n (x))dx+ o(1)

which implies that ∫

Ω

F (x, u+
n (x))dx → +∞

and

lim inf
n→∞

∫

Ω

F (x, u+
n (x))

‖un‖
p dx(3.7)

= lim inf
n→∞

∫
Ω+ F (x, u+

n (x)) dx

pc+ p
∫
Ω
F (x, u+

n (x))dx+ o(1)

=
1

p

Now, note that F (x, s) ≥ 0, by Fatou’s lemma and (3.6) and (3.7), we get a contradiction.
So v ≤ 0 a.e.

Letting tn ∈ [0, 1] such that

J (tnun) = max
t∈[0,1]

J (tun)

For all R > 0, by (SCPI), there exists C > 0 such that

(3.8) F (x, s) ≤ C |s|+
1

Rp∗
sp

∗

, ∀ (x, s) ∈ Ω× R.

Also since ‖un‖ → ∞, we have for n sufficient large:

(3.9) J (tnun) ≥ J

(
R

‖un‖
un

)
= J (Rvn)

and by (3.8) with note that
∫
Ω
F (x, vn) dx =

∫
Ω
F (x, v+n ) dx:

pJ (Rvn) ≥ Rp − pC

∫

Ω

∣∣Rv+n (x)
∣∣ dx−

p

Rp∗

∫

Ω

∣∣Rv+n
∣∣p∗ dx(3.10)

= Rp − pRC

∫

Ω

∣∣v+n (x)
∣∣ dx− p

∫

Ω

∣∣v+n
∣∣p∗ dx

Since v+n ⇀ 0 weakly in W 1,p
0 (Ω), thus

∫
Ω
|v+n |

p∗
dx is bounded by a universal constant

C (Ω) > 0 and also
∫
Ω
|v+n (x)| dx → 0. Thus if we let n → ∞ in (3.10), and then let

R → ∞ and using (3.9), we get

(3.11) J (tnun) → ∞

Note that J(0) = 0 and J(un) → c, we can suppose that tn ∈ (0, 1). Thus DJ(tnun)tnun =
0, i.e.,

tpn ‖un‖
p =

∫

Ω

f (x, tnun) tnundx
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Also, by (3.3)
∫

Ω

[f (x, un) un − pF (x, un)] dx = ‖un‖
p + pc− ‖un‖

p + o(1)

= pc+ o(1)

So by (L3) :

pJ (tnun) = tpn ‖un‖
p − p

∫

Ω

F (x, tnun) dx

=

∫

Ω

[f (x, tnun) tnun − pF (x, tnun)] dx

≤ θ

∫

Ω

[f (x, un)un − pF (x, un)] dx+O(1)

≤ O(1)

which is a contraction to (3.11). This proves that {un} is bounded in W 1,p
0 (Ω). Without

loss of generality, we can suppose that



un ⇀ u in W 1,p
0 (Ω)

un (x) → u (x) a.e. Ω
un −→ u in Lq (Ω) , ∀1 ≤ q < p∗.

Now, since f has the subcritical growth on Ω, for every ε > 0, we can find a constant
C(ε) > 0 such that

f (x, s) ≤ C(ε) + ε |s|p
∗−1 , ∀ (x, s) ∈ Ω× R

then∣∣∣∣
∫

Ω

f (x, un) (un − u) dx

∣∣∣∣

≤C(ε)

∫

Ω

|(un − u)| dx+ ε

∫

Ω

|(un − u)| |un|
p∗−1 dx

≤C(ε)

∫

Ω

|(un − u)| dx+ ε

(∫

Ω

(
|un|

p∗−1
)p∗/(p∗−1)

dx

)(p∗−1)/p∗ (∫

Ω

|un − u|p
∗

dx

)1/p∗

≤C(ε)

∫

Ω

|(un − u)| dx+ εC (Ω)

Similarly, since un ⇀ u in W 1,p
0 (Ω) ,

∫
Ω
|(un − u)| dx → 0. Since ε > 0 is arbitrary, we

can conclude that
∫
Ω
f (x, un) (un − u) dx → 0. Thus we can conclude that

(3.12)

∫

Ω

(f (x, un)− f (x, u)) (un − u) dx
n→∞
→ 0

By (3.3), we have

(3.13) 〈DJ(un)−DJ(u), (un − u)〉
n→∞
→ 0

From (3.12) and (3.13), we get
∫

Ω

(
|∇un|

p−2∇un − |∇u|p−2∇u
)
(∇un −∇u) → 0
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Using an elementary inequality

22−p |b− a|p ≤
〈
|b|p−2 b− |a|p−2 a, b− a

〉
, ∀a, b ∈ Rp

we can deduce that
∇un → ∇u in Lp (Ω)

So we have un
n→∞
→ u strongly in W 1,p

0 (Ω) which means that J satisfies (C)c. �

3.1. Proof of Theorem 1. Combing Lemma 5 and Mountain Pass Theorem (Lemma
1), we can easily deduce that the problem (P) has a nontrivial weak solution.

4. The subcritical exponential growth-Proof of Theorem 2

In this section, we will study the problem (P) in the case p = N ≥ 3 and f satisfies
the (SCE). As far as we know, this appears to be the first work with the (AR)-condition
free in the subcritical exponential growth.

4.1. The geometry of the functional J. In this subsection, we will check the
Mountain Pass properties of the functional J . Similar to Lemma 4, we have the following
lemma:

Lemma 6. Let f satisfy (L2). Then J(tu) → −∞ as t → ∞ for all nonnegative function

u ∈ W 1,N
0 (Ω) \ {0} .

This means that the condition (i) in Lemma 1 is satisfied. Now, we will check the
second one:

Lemma 7. Let f satisfy (L1), (L4), (SCE). Then there exist δ, ρ > 0 such that

J(u) ≥ δ if ‖u‖ = ρ

Proof. By (L4) and (SCE) , there exist κ, τ > 0 and q > N such that

F (x, s) ≤
1

N
(λ1 − τ) |s|N + C exp

(
κ |s|N/(N−1)

)
|s|q , ∀ (x, s) ∈ Ω× R

By Holder’s inequality and the Moser-Trudinger embedding, we have:

∫

Ω

exp
(
κ |u|N/(N−1)

)
|u|q dx ≤

(∫

Ω

exp

(
κr ‖u‖N/(N−1)

(
|u|

‖u‖

)N/(N−1)
)
dx

)1/r (∫

Ω

|u|r
′q dx

)1/r′

≤ C

(∫

Ω

|u|r
′q dx

)1/r′

if r > 1 sufficiently close to 1 and ‖u‖ ≤ σ, where κrσN/(N−1) < αN . Thus by the
definition of λ1 and the Sobolev embedding:

J(u) ≥
1

N

(
1−

(λ1 − τ)

λ1

)
‖u‖N − C ‖u‖q

Since τ > 0 and q > N , we may choose ρ, δ > 0 such that J(u) ≥ δ if ‖u‖ = ρ. �

Again, it’s very important to check that J satisfies the (C)c for all real numbers c.
Similar to what we have shown in the previous section, we have the following lemma:
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Lemma 8. Assume (L1), (L2), (L3) and (L4) hold. If f has subcritical exponential
growth on Ω (SCE), then J satisfies (C)c for all c ∈ R.

Proof. Let {un} be a Cerami sequence in W 1,N
0 (Ω) such that

(1 + ‖un‖) ‖DJ(un)‖ → 0

J(un) → c

i.e.

(1 + ‖un‖)

∣∣∣∣
∫

Ω

|∇un|
N−2∇un∇vdx−

∫

Ω

f(x, un)vdx

∣∣∣∣ ≤ εn ‖v‖(4.1)

1

N
‖un‖

N −

∫

Ω

F (x, un)dx → c

where εn
n→∞
→ 0. We will show that {un} is bounded. Again, suppose that

(4.2) ‖un‖ → ∞

Setting

vn =
un

‖un‖

then ‖vn‖ = 1. We can then suppose that vn ⇀ v in W 1,N
0 (Ω) (up to a subsequence) .

We may similarly show that v+n ⇀ 0 in W 1,N
0 (Ω), where w+ = max {w, 0} .

Again, let tn ∈ [0, 1] such that

J (tnun) = max
t∈[0,1]

J (tun)

For any given R > 0, by (SCE), there exists C = C(R) > 0 such that

(4.3) F (x, s) ≤ C |s|+ exp
( αN

RN/(N−1)
sN/(N−1)

)
, ∀ (x, s) ∈ Ω× R.

Also since ‖un‖ → ∞, we have

(4.4) J (tnun) ≥ J

(
R

‖un‖
un

)
= J (Rvn)

and by (4.3), ‖vn‖ = 1 and the fact that
∫
Ω
F (x, vn) dx =

∫
Ω
F (x, v+n ) dx, we get

NJ (Rvn) ≥ RN −NCR

∫

Ω

∣∣v+n (x)
∣∣ dx−N

∫

Ω

exp
(
αN

∣∣v+n (x)
∣∣N/(N−1)

)
dx(4.5)

≥ RN −NCR

∫

Ω

∣∣v+n (x)
∣∣ dx−N

∫

Ω

exp
(
αN |vn(x)|

N/(N−1)
)
dx

Since ‖vn‖ = 1, we have that
∫
Ω
exp

(
αN |vn(x)|

N/(N−1)
)
dx is bounded by a universal

constant C (Ω) > 0 by the Moser-Trudinger inequality (Lemma 3). Also, since v+n ⇀ 0 in

W 1,N
0 (Ω), we have that

∫
Ω
|v+n (x)| dx → 0. Thus using (4.4) and letting n → ∞ in (4.5),

and then letting R → ∞, we get

(4.6) J (tnun) → ∞
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Note that J(0) = 0 and J(un) → c, we can suppose that tn ∈ (0, 1). Thus since
DJ(tnun)tnun = 0,

tNn ‖un‖
N =

∫

Ω

f (x, tnun) tnundx

So by (L3) :

NJ (tnun) = tNn ‖un‖
N −N

∫

Ω

F (x, tnun) dx

=

∫

Ω

[f (x, tnun) tnun −NF (x, tnun)] dx

≤ θ

∫

Ω

[f (x, un)un −NF (x, un)] dx+O(1)

Also, by (3.3), we have
∫

Ω

[f (x, un) un −NF (x, un)] dx = ‖un‖
N +Nc− ‖un‖

N + o(1)

= Nc + o(1)

which is a contraction to (3.11). This proves that {un} is bounded in W 1,N
0 (Ω). Without

loss of generality, suppose that



‖un‖ ≤ K

un ⇀ u in W 1,N
0 (Ω)

un (x) → u (x) a.e. Ω
un −→ u in Lp (Ω) , ∀p ≥ 1.

Now, since f has the subcritical exponential growth (SCE) on Ω, we can find a constant
cK > 0 such that

f (x, s) ≤ cK exp
( αN

2KN/(N−1)
|s|N/(N−1)

)
, ∀ (x, s) ∈ Ω× R

then by the Moser-Trudinger inequality,∣∣∣∣
∫

Ω

f (x, un) (un − u) dx

∣∣∣∣ ≤
∫

Ω

|f (x, un) (un − u)| dx

≤

(∫

Ω

|f (x, un)|
2 dx

)1/2(∫

Ω

|un − u|2 dx

)1/2

≤ C

(∫

Ω

exp
( αN

KN/(N−1)
|un|

N/(N−1)
)
dx

)1/2

‖un − u‖2

≤ C

(∫

Ω

exp

(
αN

KN/(N−1)
‖un‖

N/(N−1)

∣∣∣∣
un

‖un‖

∣∣∣∣
N/(N−1)

)
dx

)1/2

‖un − u‖2

≤ C ‖un − u‖2
n→∞
→ 0.

Similarly, since un ⇀ u in W 1,N
0 (Ω) ,

∫
Ω
f (x, u) (un − u) dx → 0. Thus we can conclude

that

(4.7)

∫

Ω

(f (x, un)− f (x, u)) (un − u) dx
n→∞
→ 0
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Also, by (4.1) we have

(4.8) 〈DJ(un)−DJ(u), (un − u)〉
n→∞
→ 0

From (3.12) and (3.13), we get
∫

Ω

(
|∇un|

N−2∇un − |∇u|N−2∇u
)
(∇un −∇u) → 0

Using an elementary inequality

22−N |b− a|N ≤
〈
|b|N−2 b− |a|N−2 a, b− a

〉
, ∀a, b ∈ RN

we can deduce that

∇un → ∇u in LN (Ω)

So we have un
n→∞
→ u strongly in W 1,N

0 (Ω) which shows that J satisfies (C)c. �

4.2. Proof of Theorem 2. Again, by Lemma 8 andMountain Pass Theorem (Lemma
1), we can easily deduce that the problem (P) has a nontrivial weak solution.

5. The critical exponential growth-Proof of Theorem 3

In this section, we study the problem (P) where Ω is the bounded domain in RN and
f has the critical growth (CR), say, at α0 > 0. Recall that then we have

lim
u→+∞

|f (x, u)|

exp
(
α |u|N/(N−1)

) = 0, uniformly on x ∈ Ω, ∀α > α0

and

lim
u→+∞

|f (x, u)|

exp
(
α |u|N/(N−1)

) = +∞, uniformly on x ∈ Ω, ∀α < α0

We now start the proof of Theorem 3.

Proof. Similar to the previous two sections, by our conditions, we see that our
Euler-Lagrange function associated to the problem (P) has the Palais-Smale geometry
properties. Now we consider the Moser functions:

M̃n(x) = ω
−1/N
N−1





(log n)(N−1)/N , 0 ≤ |x| ≤ 1/n
log(1/|x|)

(logn)1/N
, 1/n ≤ |x| ≤ 1

0, 1 ≤ |x|

We see that M̃n ∈ W 1,N
0 (B1(0)) and

∥∥∥M̃n

∥∥∥ = 1, ∀n ∈ N. Since d is the inner radius of

Ω, we can find x0 ∈ Ω such that Bd(x0) ⊂ Ω. Letting Mn(x) = M̃n(
x−x0

d
), which are in

W 1,N
0 (Ω) , ‖Mn‖ = 1 and suppMn = Bd(x0). As in the proof of Theorem 1.3 in [16], we

can conclude that

max {J(tMn) : t ≥ 0} <
1

N

(
αN

α0

)N−1
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It can be checked easily by a similar argument to that in the previous section that J
satisfies the condition (i) and (ii) of Lemma 2 (See Lemmas 6 and 7). So, we can find a

Cerami sequence {un} in W 1,N
0 (Ω) such that

(1 + ‖un‖) ‖DJ(un)‖ → 0(5.1)

J(un) → CM <
1

N

(
αN

α0

)N−1

We again want to show that {un} is bounded inW 1,N
0 (Ω). Indeed, if we suppose that {un}

is unbounded, then using the same argument to that used in the previous two sections,
we can get that

v+n ⇀ 0 in W 1,N
0 (Ω) where vn =

un

‖un‖
.

Let tn ∈ [0, 1] such that

J (tnun) = max
t∈[0,1]

J (tun)

Let R ∈

(
0,
(

αN

α0

)(N−1)/N
)

and choose ε = αN

RN/(N−1)− α0 > 0, by condition (CG), there

exists C > 0 such that

(5.2) F (x, s) ≤ C |s|+
∣∣∣ αN

RN/(N−1)
− α0

∣∣∣ exp
(
(α0 + ε) sN/(N−1)

)
, ∀ (x, s) ∈ Ω× R.

Since ‖un‖ → ∞, we have

(5.3) J (tnun) ≥ J

(
R

‖un‖
un

)
= J (Rvn)

and by (5.2) and noticing ‖vn‖ = 1, we have
(5.4)

NJ (Rvn) ≥ RN−NCR

∫

Ω

∣∣v+n (x)
∣∣ dx−N

∣∣∣ αN

RN/(N−1)
− α0

∣∣∣
∫

Ω

exp
(
(α0 + ε)RN/(N−1)vN/(N−1)

n (x)
)
dx

By the Moser-Trudinger inequality (Lemma 3),
∫

Ω

exp
(
(α0 + ε)RN/(N−1)vN/(N−1)

n (x)
)
dx =

∫

Ω

exp
(
αNv

N/(N−1)
n (x)

)
dx

is bounded by an universal constant C (Ω) > 0 thanks to the choice of ε. Also, since

v+n ⇀ 0 in W 1,N
0 (Ω),

∫
Ω
|v+n (x)| dx → 0. Thus if we let n → ∞ in (5.4), and then let

R →

[(
αN

α0

)(N−1)/N
]−

and using (5.3), we get

(5.5) lim inf
n→∞

J (tnun) ≥
1

N

(
αN

α0

)N−1

> CM .

Note that J(0) = 0 and J(un) → CM , we can suppose that tn ∈ (0, 1). Thus since
DJ(tnun)tnun = 0,

tNn ‖un‖
N =

∫

Ω

f (x, tnun) tnundx
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Also, by (5.1)
∫

Ω

[f (x, un)un −NF (x, un)] dx = ‖un‖
N +NCM − ‖un‖

N + o(1)

= NCM + o(1)

So by (L3) :

NJ (tnun) = tNn ‖un‖
N −N

∫

Ω

F (x, tnun) dx

=

∫

Ω

[f (x, tnun) tnun −NF (x, tnun)] dx

≤

∫

Ω

[f (x, un)un −NF (x, un)] dx

= NCM + o(1)

which is a contraction to (5.5). This proves that {un} is bounded in W 1,N
0 (Ω). Now,

following the proof of Lemma 4 in [29], we can prove that u is a weak solution of (P). So
the last remaining point that we need to show is the nontriviality of u. However, we can
get this thanks to our assumption (L6). Indeed, suppose u = 0. Arguing as in [29], we
get f(x, un) → 0 in L1 (Ω). Thanks to (L6), F (x, un) → 0 in L1 (Ω) and we can get

lim
n→∞

‖un‖
N = NCM <

(
αN

α0

)N−1

and again, follows the proof in [29], we have a contradiction. The proof is now completed.

�
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