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Abstract In this paper, we prove the existence of nontrivial nonnegative solutions
to a class of elliptic equations and systems which do not satisfy the Ambrosetti–
Rabinowitz (AR) condition where the nonlinear terms are superlinear at 0 and of
subcritical or critical exponential growth at ∞. The known results without the AR
condition in the literature only involve nonlinear terms of polynomial growth. We
will use suitable versions of the Mountain Pass Theorem and Linking Theorem in-
troduced by Cerami (Istit. Lombardo Accad. Sci. Lett. Rend. A, 112(2):332–336,
1978 Ann. Mat. Pura Appl., 124:161–179, 1980). The Moser–Trudinger inequality
plays an important role in establishing our results. Our theorems extend the results
of de Figueiredo, Miyagaki, and Ruf (Calc. Var. Partial Differ. Equ., 3(2):139–153,
1995) and of de Figueiredo, do Ó, and Ruf (Indiana Univ. Math. J., 53(4):1037–1054,
2004) to the case where the nonlinear term does not satisfy the AR condition. Exam-
ples of such nonlinear terms are given in Appendix A. Thus, we have established the
existence of nontrivial nonnegative solutions for a wider class of nonlinear terms.
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1 Introduction

Let Ω be a bounded smooth domain in R
N . In this paper, we consider the following

class of semilinear elliptic problems.{−�u = f (x,u)

u ∈ W
1,2
0 (Ω) \ {0} (1.1)

This kind of equation arises naturally in various contexts of physics; for instance,
in the study of propagation phenomena of solitary waves, Newtonian fluids, non-
Newtonian fluids and nonlinear elasticity problems. It also appears in the search for
solitons of certain Lorentz-invariant nonlinear field equations.

The main goal of this paper is to establish the existence of nontrivial nonnegative
solutions to the above equation in R

2 when the nonlinear term f has subcritical or
critical exponential growth and does not satisfy the AR condition. In contrast to the
case when f has polynomial growth but without the AR condition, the usual Moun-
tain Pass Theorem of Ambrosetti–Rabinowitz [5, 37] does not seem to be applicable
in dealing with the existence of nontrivial nonnegative solutions in our case. As a
result, we will apply a suitable version of the Mountain Pass Theorem which was
introduced by G. Cerami [12, 13] in a different context. Thus, our results extend the
work of de Figueiredo, Miyagaki, and Ruf [17] to the case when the nonlinear term
does not satisfy the AR condition.

In the case N = 2, motivated by the Moser–Trudinger inequality (see Lemma 3),
existence of nontrivial solutions to problems of the above type when f has expo-
nential growth has been studied by many authors; see, for example, Carleson–Chang
[9], Atkinson–Peletier [6], Shaw [40], Adimurthi et al. [1–4], Cao [8], do Ó et al.
[34, 35], de Figueiredo et al. [16, 17], Y.X. Li et al. [25–27], Ruf [38], Lu and
Yang [30, 31], etc. using the classical Critical Point Theory as first developed by
Ambrosetti–Rabinowitz in their celebrated work [5]. The key issue in using such
a theory is the verification of conditions which allow the use of the Palais–Smale
condition by using the crucial AR condition. In [17], de Figueiredo, Miyagaki, and
Ruf studied problem (1.1) in R

2 where the nonlinearity f (x,u) has the maximal
growth on u and satisfies the AR condition which allows them to treat problem (1.1)
variationally in the Sobolev space W

1,2
0 (Ω). More precisely, they treat the so-called

subcritical case and also the critical case. Let us now list some of the assumptions
used in [17].

(H1) f : Ω × R → R is continuous, f (x,0) = 0.
(H2) ∃t0 > 0,∃M > 0 such that ∀|u| ≥ t0,∀x ∈ Ω ,

0 < F(x,u) =
∫ u

0
f (x, t)dt ≤ M

∣∣f (x,u)
∣∣.

(H3) 0 < F(x,u) ≤ 1
2f (x,u)u,∀u ∈ R � {0},∀x ∈ Ω .

(SG) f has subcritical growth on Ω at +∞(−∞), i.e.,

lim
u→+∞(−∞)

|f (x,u)|
exp(α|u|2) = 0, uniformly on x ∈ Ω for all α > 0.
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(CG) f has critical growth on Ω at +∞(−∞), i.e., there exists α0 > 0 such that

lim
u→+∞(−∞)

|f (x,u)|
exp(α|u|2) = 0, uniformly on x ∈ Ω, ∀α > α0

and

lim
u→+∞(−∞)

|f (x,u)|
exp(α|u|2) = +∞, uniformly on x ∈ Ω, ∀α < α0.

It is well known that there exists the smallest eigenvalue λ1(Ω) > 0 to the Dirichlet
problem on Ω , and in fact λ1(Ω) can be variationally characterized as

λ1(Ω) = inf

{∫ |∇u|2dx∫ |u|2dx
: u ∈ W

1,2
0 (Ω) \ {0}

}
.

Then the authors of [17] have established the following result.

Theorem 1 Assume (H1), (H2), (H3), and that f has subcritical growth (SG) at both
+∞ and −∞. Furthermore, suppose that

(H4) lim
t→0

sup
2F(x, t)

t2
< λ1, uniformly in (x, t).

Then problem (1.1) has a nontrivial solution.

Theorem 2 Assume (H1), (H2), (H3), and that f has critical growth (CG) at both
+∞ and −∞. Furthermore, assume (H4) and

(H5) lim
t→+∞f (x, t) exp

(−α0|t |2
)
t ≥ β >

4

3α0d2
, uniformly in (x, t),

where d is the inner radius of Ω , i.e., d := radius of the largest open ball ⊂ Ω . Then
problem (1.1) has a nontrivial solution.

Note that as a consequence of the conditions (H1) and (H2), we have the following
well-known Ambrosetti–Rabinowitz condition.

(AR) ∃R0 > 0,∃θ > 2 such that ∀|u| ≥ R0,∀x ∈ Ω ,

0 < θF(x,u) ≤ uf (x,u).

The AR condition has appeared in most of the studies for superlinear problems and
plays an important role in studying the existence of nontrivial solutions of many
nonlinear elliptic boundary value problems of Laplacian and p-Laplacian type. Since
Ambrosetti and Rabinowitz proposed the Mountain Pass Theorem in their celebrated
paper [5], critical point theory has become one of the main tools for finding solutions
to elliptic equations of variational type. In the subcritical (polynomial growth) case,
the AR condition ensures that the Euler–Lagrange functional associated with a (1.1)-
type problem has a mountain pass geometry and also guarantees the boundedness of



N. Lam, G. Lu

the Palais–Smale sequence, so we can get the nontrivial solution by using suitable
versions of the Mountain Pass Theorem.

On the other hand, there are many cases where the nonlinear term f (x,u) does
not satisfy the AR condition; see Appendix A. Thus it becomes interesting to know
if a nontrivial solution exists in such situations.

In recent years, there has been some work in the absence of the Ambrosetti–
Rabinowitz condition when the nonlinear terms have polynomial growth. For ex-
ample, Miyagaki and Souto [32] studied a problem with parameter λ and adapted
some monotonicity arguments as in [41, 42]. In [19, 20, 36, 42, 45], the authors used
a more suitable version of the Mountain Pass Theorem to overcome this difficulty.
Nevertheless, the authors of these papers treated the equations with subcritical poly-
nomial growth of the nonlinearity f (x,u):

(SCP) There exist positive constants a and b such that
∣∣f (x, s)

∣∣ ≤ a + b|s|p,

where 0 ≤ p < 2∗ −1 = N+2
N−2 (= ∞ if N = 2). This condition implies that the growth

of F is less than or equal to p+1 (which is < 2∗), and it is needed in the above works
because it allows them to use the compact embedding W

1,2
0 (Ω) ↪→ Lp+1(Ω). Note

that from the condition (SCP), we can easily deduce a weaker condition,

(SCPI) lim
s→+∞

f (x, s)

|s|2∗−1
= 0,

where we no longer have the compact embedding W
1,2
0 (Ω) ↪→ L2∗

(Ω). In the case
of this subcritical polynomial growth (SCPI), Liu and Wang [28] can replace the
AR condition by the Nehari type condition and use the Nehari manifold approach
to derive the existence of a nontrivial solution. Such a Nehari type argument is also
used in [29] to produce ground states of superlinear Schrödinger equations, whose
nonlinearity does not satisfy AR.

Though there has been extensive work on the existence of nontrivial nonnegative
solutions to elliptic equations with nonlinear terms of polynomial growth without
the AR condition, not much has been done when the nonlinear term of subcriti-
cal or critical exponential growth without the AR condition. The primary purpose
of this paper is to establish the existence of a nontrivial nonnegative solution for
such a class of elliptic equations in R

2 using an appropriate version of the Moun-
tain Pass Theorem introduced by G. Cerami [12, 13]. Moreover, we will also pro-
vide a different approach from that of [28] for elliptic equations in R

N for N > 2
in the case of subcritical polynomial growth (SCPI), using this version of the Moun-
tain Pass Theorem instead of the Nehari manifold approach. The main ingredient
in this approach of using Cerami’s version of the Mountain Pass Theorem is to
show that a subsequence of the Palais–Smale sequence is bounded in W

1,2
0 (Ω).

Then we show that this subsequence converges weakly to a nontrivial solution in
W

1,2
0 (Ω).
In this paper, we will study the existence of the nontrivial solution to a problem of

type (1.1) without the AR conditions in both the subcritical and critical exponential
growth cases (SG) and (CG) defined above. More precisely, we consider the following
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problem in Ω ⊂ R
N : ⎧⎪⎨

⎪⎩
−�u = f (x,u)

u ∈ W
1,2
0 (Ω) \ {0}

u ≥ 0.

(P)

We now state our main conditions.

(L1) f : Ω × R → R is continuous, f (x,u) ≥ 0,∀(x,u) ∈ Ω × [0,∞) and
f (x,u) = 0,∀(x,u) ∈ Ω × (−∞,0].

(L2) limu→+∞ F(x,u)

u2 = +∞ uniformly on x ∈ Ω where F(x,u) = ∫ u

0 f (x, t)dt .
(L3) There is C∗ ≥ 0, θ ≥ 1 such that H(x, t) ≤ θH(x, s) + C∗ for all 0 < t < s,

∀x ∈ Ω where H(x,u) = uf (x,u) − 2F(x,u).
(SCE) f has subcritical (exponential) growth on Ω , i.e., limu→+∞ |f (x,u)|

exp(α|u|2) = 0,
uniformly on x ∈ Ω for all α > 0.

(CG) f has critical (exponential) growth on Ω , i.e., there exists α0 > 0 such that

lim
u→+∞

|f (x,u)|
exp(α|u|2) = 0, uniformly on x ∈ Ω,∀α > α0

and

lim
u→+∞

|f (x,u)|
exp(α|u|2) = +∞, uniformly on x ∈ Ω,∀α < α0.

The first main theorem of this paper is the following existence result when the
nonlinear term f has subcritical exponential growth without satisfying the AR con-
dition.

Theorem 3 In the case N = 2, assume that f has subcritical exponential growth on
Ω (condition (SCE)) and satisfies (L1), (L2), and (L3). Furthermore assume that

(L4) lim sup
u→0+

2F(x,u)

|u|2 < λ1(Ω), uniformly on x ∈ Ω.

Then, problem (P) has a nontrivial solution.

We notice that using our method as in the proof of Theorem 3, we can prove
a similar result when the nonlinear term satisfies the (SCPI) condition. It improves
results of Miyagaki and Souto [32] to the (SCPI) growth and also gives a different
approach from that of [28, 29].

Second, we study the existence of the nontrivial nonnegative solution to prob-
lem (P) when f has critical exponential growth (CG) without the condition of (H2)
in the case N = 2.

Before we state this last main result, we add one more (technical) condition.

(L6) f is in the class (L0), i.e., for any {un} in W
1,2
0 (Ω), if{

un ⇀ 0 in W
1,2
0 (Ω),

f (x,un) → 0 in L1(Ω),

then F(x,un) → 0 in L1(Ω) (up to a subsequence).
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Then we have the following result:

Theorem 4 Assume that (L1), (L2), (L4), (L6) hold and that f has critical expo-
nential growth (CG) on Ω , say, at α0. Assume also that (L3) holds with θ = 1 and
C∗ = 0. Furthermore, assume that

(L5) lim
t→+∞f (x, t) exp

(−α0|t |2
)
t ≥ β >

4

3α0d2
, uniformly in (x, t),

where d is the inner radius of Ω , i.e., d := radius of the largest open ball ⊂ Ω . Then,
problem (P) has a nontrivial solution.

We first note that the assumption (L2) is actually not needed in Theorem 5, since
by l’Hôpital’s rule (L2) follows from the critical exponential growth assumption on f .
We further remark here that in the critical exponential growth case (see the proof of
Theorem 5), we will use a different approach from that in the subcritical exponential
growth case. In fact, we cannot prove that the Euler–Lagrange functional satisfies
the Palais–Smale condition for all c ∈ R. Instead, we can prove the Euler–Lagrange
functional satisfies the Palais–Smale condition for a certain level using the extremal
function sequences related to the Moser–Trudinger inequality. See also [1, 34, 35] for
more details of such adaptation. Again, the AR condition ensures the boundedness
and so the weak convergence of the Palais–Smale sequence to our weak solution.
Then the condition of (H2) type guarantees the nontriviality of our weak solution.
As far as we know, there has not been any work in the literature without using the
condition (H2) (and so without the AR condition) in the case of critical exponential
growth.

We should stress that the proof of Theorem 5 in the case of critical exponential
growth is motivated by the ideas introduced by H. Brezis and L. Nirenberg [7] in their
pioneering work on the solvability of equations with critical growth in dimensions
larger than 2. Indeed, our functional under consideration satisfies the Palais–Smale
condition only at certain levels. In order to assure that the constructed minimax levels
are inside the Palais–Smale region, we use test functions associated with the optimal
Moser–Trudinger inequality (while Brezis–Nirenberg used test functions associated
with the optimal Sobolev embedding).

Finally, we study the existence of nontrivial solutions for the following Hamil-
tonian-type systems. ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−�u = g(v) in Ω

−�v = f (u) in Ω

u > 0, v > 0 in Ω

u = v = 0 on ∂Ω.

(S)

Such systems have been widely studied in recent years for bounded domains
in R

N,N ≥ 3; see the recent survey paper [15].
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In [18], de Figueiredo, do Ó, and Ruf studied this system when the nonlinearities
have the same type of subcritical and critical exponential growth. More precisely,
with the following conditions:

(K1) f,g : [0,∞) → [0,∞) are continuous functions;
(K2) f (s) = o(s) and g(t) = o(t) near the origin;
(K3) there exist constants θ > 2 and t0 > 0 such that for all t ≥ t0, one has

0 < θF(t) ≤ tf (t) and 0 < θG(t) ≤ tg(t)

where

F(u) =
∫ u

0
f (t)dt and G(u) =

∫ u

0
g(t)dt.

(K4) there exist M > 0 and t1 > 0 such that for all t ≥ t1, one has

0 < F(t) ≤ Mf (t) and 0 < G(t) ≤ Mg(t),

then [18] has the following result.

Theorem 5 Let f , g have subcritical (SCE) or critical exponential growth (SG) at
α0, and let (K1)–(K4) be satisfied. Moreover, assume that

(K5) lim
t→∞

tf (t)

exp(α0t2)
>

4

α0d2
and lim

t→∞
tg(t)

exp(α0t2)
>

4

α0d2
,

where d is the inner radius of the set Ω . Then (S) possesses a nontrivial weak solu-
tion.

Notice that in the above result, the authors required the AR condition for both
nonlinear terms f and g. Thus our third goal is that we will prove this result without
the AR condition. More precisely, we prove that

Theorem 6 Let f , g have subcritical (SCE) or critical exponential growth (SG)
at α0, and let (K1), (K2), and (K5) be satisfied. Moreover, assume that

(K3′) there exist constants θ > 2 and t0 > 0 such that for all t ≥ t0, one has

0 < 2F(t) ≤ tf (t) and 0 < θG(t) ≤ tg(t);
(K4′) f , g are in class (L0) (in the case both f and g are critical).

Then (S) possesses a nontrivial weak solution.

Since our system (S) is a special case of a Hamiltonian system, many basic diffi-
culties appear; for example, the associated functional is strongly indefinite, and the
nonlinearities f , g can have critical growth. To overcome these difficulties, we will
use the Linking Theorem. Fortunately, the Deformation Lemma still works for the Ce-
rami sequence and thus we can use the Linking Theorem with the Cerami sequence
instead of the Palais–Smale condition. This is also our main approach.
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Now we make some comments for our conditions. Note that we assume (L1),
since we are interested in positive solutions. Also, the AR condition implies a weaker
condition

F(x, s) ≥ c|s|θ − d with c, d > 0, x ∈ Ω, s > 0, and θ > 2

and this above condition implies our much weaker condition (L2). Moreover, the
condition (L2) is just a consequence of the superlinearity of f at ∞:

lim|u|→+∞
f (x,u)

u
= +∞.

The above condition is often assumed in many works; see [19], for example. Finally,
our condition (L3) can be implied by the following stronger condition, which is as-
sumed in many other papers, as in [19, 32]:

There exists s0 > 0 such that
f (x, s)

s
is increasing in s ≥ s0, ∀x ∈ Ω.

Let us finish this section by comparing our conditions with others in the literature
which were used to replace the AR condition in the case of nonlinear terms with
polynomial growth. We recall that, in [44], Willem and Zou used

H(x, s) is increasing in s, ∀x ∈ Ω; sf (x, s) ≥ 0.∀s ∈ R,

sf (x, s) ≥ C0|s|μ, ∀|s| ≥ s0 > 0,∀x ∈ Ω,

where μ > 2 and C0 > 0, instead of AR. It is easy to see that this condition is stronger
than our conditions. In [14], the authors replaced the AR condition by

lim inf
s→∞

H(x, s)

|s|μ ≥ k > 0, uniformly a.e. x ∈ Ω,

where μ ≥ μ0 > 0. In [39], Schechter and Zou assumed that

H(x, s) is convex in s, ∀x ∈ Ω,

or there are constants C > 0, μ > 2, and r ≥ 0, such that

μF(x, t) − tf (x, t) ≤ C
(
1 + t2), |t | ≥ r.

As remarked in [32], the latter condition is in fact equivalent to AR, and it’s easy
to see that the convexity on H is much stronger than our condition. Indeed, observe
that function H(x, s) is a “quasi-monotonic” function, and also if H is a monotonic
function in s < 0 and s > 0, or a convex function in R, then it satisfies (L3) with
θ = 1.

Finally, we remark that existence and multiplicity results of nontrivial nonnegative
solutions to N -Laplacian equations in R

N with nonlinear terms of critical exponential

growth exp(α|u| N
N−1 ) and without the AR condition have been recently established
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by the authors in [21, 22]. Existence of nontrivial and nonnegative solutions to poly-
harmonic equations of exponential growth and without the AR condition has also
been carried out in [23]. We also refer the reader to the article [24] where the authors
study a number of classes of nonlinear PDEs of exponential growth in the elliptic and
subelliptic setting as applications of the Moser–Trudinger and Adams inequalities in
bounded and unbounded domains.

Our paper is organized as follows: In Sect. 2, we give some useful definitions and
lemmas. In Sect. 3, we deal with subcritical exponential growth in dimension 2 and
give the proof of Theorem 3. In Sect. 4, we deal with the existence of a nontrivial
nonnegative solution when the nonlinear term f has critical exponential growth in
dimension 2 and provide the proof of Theorem 4. The result about the system is
proved in Sect. 5. In Appendix A, we discuss what conditions (H2) in [17] and our
condition (L3) mean and provide examples to show that our (L3) is weaker than
condition (H2) in [17]. Moreover, we discuss some different situations of critical
growth in this section.

2 Preliminary Results

Let Ω be a bounded domain in R
2. We denote

‖u‖ =
(∫

Ω

|∇u|2dx

)1/2

‖u‖2 =
(∫

Ω

|u|2dx

)1/2

λ1(Ω) = inf

{‖u‖2

‖u‖2
2

: u ∈ W
1,2
0 (Ω) \ {0}

}
d = radius of the largest open ball ⊂ Ω

Define the Euler–Lagrange functional associated with problem (P):

J (u) = 1

2
‖u‖2 −

∫
Ω

F(x,u)dx, u ∈ W
1,2
0 (Ω).

From the hypotheses on f , by the standard Moser–Trudinger inequality (see
Lemma 3), we can easily see that J is well defined. Also, it’s standard to check
that J is C1(W

1,2
0 (Ω),R) and

DJ(u)v =
∫

Ω

∇u∇vdx −
∫

Ω

f (x,u)vdx, v ∈ W
1,2
0 (Ω).

Thus, the critical points of J are precisely the weak solutions of problem (P). We will
prove the existence of such critical points by the Mountain Pass Theorem.

Definition 1 Let (X,‖ · ‖X) be a real Banach space with its dual space (X∗,‖ · ‖X∗)
and I ∈ C1(X,R). For c ∈ R, we say that I satisfies the (PS)c condition if for any
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sequence {xn} ⊂ X with

I (xn) → c, DI (xn) → 0 in X∗

there is a subsequence {xnk
} such that {xnk

} converges strongly in X. Also, we say
that I satisfies the (C)c condition if for any sequence {xn} ⊂ X with

I (xn) → c,
∥∥DI (xn)

∥∥
X∗

(
1 + ‖xn‖X

) → 0

there is a subsequence {xnk
} such that {xnk

} converges strongly in X.

We have the following versions of the Mountain Pass Theorem (see [5, 10, 12, 13]):

Lemma 1 Let (X,‖ · ‖X) be a real Banach space and let I ∈ C1(X,R) satisfy the
(C)c condition for any c ∈ R, I (0) = 0 and

(i) There are constants ρ,α > 0 such that I |∂Bρ ≥ α.
(ii) There is an e ∈ X \ Bρ such that I (e) ≤ 0.

Then c = infγ∈Γ max0≤t≤1 I (γ (t)) ≥ α is a critical value of I where

Γ = {
γ ∈ C0([0,1],X)

, γ (0) = 0, γ (1) = e
}
.

Lemma 2 Let (X,‖ · ‖X) be a real Banach space and let I ∈ C1(X,R) satisfy
I (0) = 0 and

(i) There are constants ρ,α > 0 such that I |∂Bρ ≥ α.
(ii) There is an e ∈ X \ Bρ such that I (e) ≤ 0.

Let CM be characterized by

CM = inf
γ∈Γ

max
0≤t≤1

I
(
γ (t)

)
,

where

Γ = {
γ ∈ C0([0,1],X)

, γ (0) = 0, γ (1) = e
}
.

Then I possesses a (C)CM
sequence.

What motivates our work is the so-called Moser–Trudinger inequality which can
be found in [33]. As we know, if U ⊂ R

N is a bounded domain, then the Sobolev
embedding theorem states that W

1,2
0 (U) ⊂ Lp(U), for 1 ≤ p ≤ 2∗ = 2N

N−2 , or equiv-
alently,

sup
u∈W

1,2
0 (U),‖u‖≤1

∫
U

|u|pdx ≤ C(U), for 1 ≤ p ≤ 2∗,

while the supremum is infinite for p > 2∗. In the case N = 2, every polynomial
growth is admitted, but one knows by easy examples that W

1,2
0 (U) � L∞(U). Hence,
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one is led to look for a function g(s) : R → R
+ with maximal growth such that

sup
u∈W

1,2
0 (U),‖u‖≤1

∫
U

g(u)dx < ∞.

It was shown by Trudinger [43] and Moser [33] that the maximal growth is of expo-
nential type. More precisely, we have the following lemma.

Lemma 3 Let u ∈ W
1,2
0 (Ω); then exp(|u|2) ∈ Lp(Ω) for all 1 ≤ p < ∞. Moreover,

sup
u∈W

1,2
0 (Ω),‖u‖≤1

∫
Ω

exp
(
α|u|2)dx ≤ C(Ω) for α ≤ 4π.

The inequality is optimal: For any growth exp(α|u|2) with α > 4π , the corresponding
supremum is +∞.

We also refer to the interested reader to the survey papers of A.S.Y. Chang and
P. Yang [11] and the authors [24] for more applications of Moser–Trudinger inequal-
ities in different directions.

3 Subcritical Exponential Growth—Proof of Theorem 3

In this section, we will study the problem (P) in the case N = 2 and f satisfies the
(SCE). As far as we know, this is the first work without using the AR condition in
subcritical exponential growth.

3.1 The Geometry of the Functional J

In this subsection, we will check the Mountain Pass properties of the functional J .

Lemma 4 Let f satisfy (L2). Then J (tu) → −∞ as t → ∞ for all nonnegative
functions u ∈ W

1,2
0 (Ω) \ {0}.

Proof Let u ∈ W
1,2
0 (Ω) \ {0}, u ≥ 0. By (L2), there exist M >

‖u‖2

2‖u‖2
2

> 0 and A such

that for all (x, s) ∈ Ω × R
+

F(x, s) ≥ Ms2 − A. (3.1)

Then

J (tu) ≤ t2

2
‖u‖2 − Mt2

∫
Ω

|u|2dx + O(1)

= t2
(‖u‖2

2
− M

∫
Ω

|u|2dx

)
+ O(1).

Since M >
‖u‖2

2‖u‖2
2
, we have J (tu) → −∞ as t → ∞. �
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Lemma 5 Let f satisfy (L1), (L4), and (SCE). Then there exist δ,ρ > 0 such that

J (u) ≥ δ if ‖u‖ = ρ.

Proof By (L4) and (SCE), there exist κ, τ > 0 and q > 2 such that

F(x, s) ≤ 1

2
(λ1 − τ)|s|2 + C exp

(
κ|s|2)|s|q, ∀(x, s) ∈ Ω × R. (3.2)

By Hölder’s inequality and the Moser–Trudinger embedding, we have

∫
Ω

exp
(
κ|u|2)|u|qdx ≤

(∫
Ω

exp

(
κr‖u‖2

( |u|
‖u‖

)2)
dx

)1/r(∫
Ω

|u|r ′qdx

)1/r ′

≤ C

(∫
Ω

|u|r ′qdx

)1/r ′

,

if r > 1 sufficiently close to 1 and ‖u‖ ≤ σ , where κrσ 2 < 4π . Thus by the definition
of λ1 and the Sobolev embedding,

J (u) ≥ 1

2

(
1 − (λ1 − τ)

λ1

)
‖u‖2 − C‖u‖q .

Since τ > 0 and q > 2, we may choose ρ, δ > 0 such that J (u) ≥ δ if ‖u‖ = ρ. �

The following is the main lemma in this paper.

Lemma 6 Assume that (L1), (L2), (L3), and (L4) hold. If f has subcritical growth
on Ω (SCE) then J satisfies (C)c for all c ∈ R.

Proof Let {un} be a Cerami sequence in W
1,2
0 (Ω) such that(

1 + ‖un‖
)∥∥DJ(un)

∥∥ → 0

J (un) → c,

i.e.,

(
1 + ‖un‖

)∣∣∣∣
∫

Ω

∇un∇vdx −
∫

Ω

f (x,un)vdx

∣∣∣∣ ≤ εn‖v‖

1

2
‖un‖2 −

∫
Ω

F(x,un)dx → c,

(3.3)

where εn
n→∞→ 0. We first show that {un} is bounded, which is our main purpose in

this paper. Indeed, suppose that

‖un‖ → ∞. (3.4)
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Setting

vn = un

‖un‖ ,

then ‖vn‖ = 1, so we can suppose that vn ⇀ v in W
1,2
0 (Ω). We may similarly show

that v+
n ⇀ v+ in W

1,2
0 (Ω), where w+ = max{w,0}. Since Ω is bounded, Sobolev’s

embedding theorem implies that{
v+
n (x) → v+(x) a.e. in Ω

v+
n → v+ in Lp(Ω), ∀p ≥ 1.

We will prove that v+ = 0 a.e. Ω . Indeed, suppose that μ(Ω+) = μ{x ∈ Ω :
v+(x) > 0} > 0. Then in Ω+, we have

lim
n→∞u+

n (x) = lim
n→∞v+

n (x)‖un‖ = +∞,

and thus by (L2),

lim
n→∞

F(x,u+
n (x))

|u+
n (x)|2 = +∞ a.e. in Ω+.

This means that

lim
n→∞

F(x,u+
n (x))

|u+
n (x)|2

∣∣v+
n (x)

∣∣2 = +∞ a.e. in Ω+. (3.5)

Also, by (3.3), we see that

‖un‖2 = 2c + 2
∫

Ω

F
(
x,u+

n (x)
)
dx + o(1), (3.6)

which implies that ∫
Ω

F
(
x,u+

n (x)
)
dx → +∞. (3.7)

Now, note that F(x, s) ≥ 0, by Fatou’s lemma and (3.5), (3.6), and (3.7):

+∞ =
∫

Ω+
lim inf
n→∞

F(x,u+
n (x))

|u+
n (x)|2

∣∣v+
n (x)

∣∣2
dx

≤ lim inf
n→∞

∫
Ω+

F(x,u+
n (x))

|u+
n (x)|2

∣∣v+
n (x)

∣∣2
dx

≤ lim inf
n→∞

∫
Ω

F(x,u+
n (x))

‖un‖2
dx

= lim inf
n→∞

∫
Ω+ F(x,u+

n (x))dx

2c + 2
∫
Ω

F(x,u+
n (x))dx + o(1)

= 1

2
.

This is a contradiction. So we get v ≤ 0 a.e.
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In fact, we have v = 0 a.e. Indeed, since

(
1 + ‖un‖

)∣∣DJ(un)v
∣∣ = (

1 + ‖un‖
)∣∣∣∣

∫
Ω

∇un∇vdx −
∫

Ω

f (x,un)vdx

∣∣∣∣ ≤ εn‖v‖,

we get ∫
Ω

∇un∇vdx ≤
∫

Ω

∇un∇vdx −
∫

Ω

f (x,un)vdx ≤ εn‖v‖
(1 + ‖un‖) → 0

by noticing that since v ≤ 0, f (x,un)v ≤ 0 a.e. Ω , thus − ∫
Ω

f (x,un)v ≥ 0. So we
have ∫

Ω

∇vn∇vdx =
∫
Ω

∇un∇vdx

‖un‖ ≤ εn‖v‖
(1 + ‖un‖)‖un‖ → 0.

On the other hand, since vn ⇀ v in W
1,2
0 (Ω),∫

Ω

∇vn∇vdx →
∫

Ω

|∇v|2dx,

which implies v = 0.
Next, let tn ∈ [0,1] such that

J (tnun) = max
t∈[0,1]

J (tun).

For all R > 0, by (SCE), there exists C > 0 such that

F(x, s) ≤ C|s| + exp

(
4π

R2
s2

)
, ∀(x, s) ∈ Ω × R. (3.8)

Also, since ‖un‖ → ∞, we have

J (tnun) ≥ J

(
R

‖un‖un

)
= J (Rvn), (3.9)

and by (3.8) and noting that ‖vn‖ = 1,

2J (Rvn) ≥ R2 − 2CR

∫
Ω

∣∣vn(x)
∣∣dx − 2

∫
Ω

exp
(
4πv2

n(x)
)
dx. (3.10)

By the Moser–Trudinger inequality (Lemma 3),
∫
Ω

exp(4πv2
n(x))dx is bounded by a

constant C(Ω) > 0. Also, since vn ⇀ 0 in W
1,2
0 (Ω),

∫
Ω

|vn(x)|dx → 0. Thus if we
let n → ∞ in (3.10), and then let R → ∞ and using (3.9), we get

J (tnun) → ∞. (3.11)

Note that J (0) = 0 and J (un) → c; we can then suppose that tn ∈ (0,1). Since
DJ(tnun)tnun = 0, we have

t2
n‖un‖2 =

∫
Ω

f (x, tnun)tnundx.
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Also, by (3.3),∫
Ω

[
f (x,un)un − 2F(x,un)

]
dx = ‖un‖2 + 2c − ‖un‖2 + o(1)

= 2c + o(1).

So by (L3),

2J (tnun) = t2
n‖un‖2 − 2

∫
Ω

F(x, tnun)dx

=
∫

Ω

[
f (x, tnun)tnun − 2F(x, tnun)

]
dx

≤ θ

∫
Ω

[
f (x,un)un − 2F(x,un)

]
dx + O(1)

≤ O(1),

which is a contradiction to (3.11). This proves that {un} is bounded in W
1,2
0 (Ω).

Without loss of generality, we can suppose that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

‖un‖ ≤ K

un ⇀ u in W
1,2
0 (Ω)

un(x) → u(x) a.e. Ω

un −→ u in Lp(Ω), ∀p ≥ 1.

Now, since f has subcritical growth on Ω , we can find a constant cK > 0 such that

f (x, s) ≤ cK exp

(
2π

K2
|s|2

)
, ∀(x, s) ∈ Ω × R.

Then by the Moser–Trudinger inequality,∣∣∣∣
∫

Ω

f (x,un)(un − u)dx

∣∣∣∣ ≤
∫

Ω

∣∣f (x,un)(un − u)
∣∣dx

≤
(∫

Ω

∣∣f (x,un)
∣∣2

dx

)1/2(∫
Ω

|un − u|2dx

)1/2

≤ C

(∫
Ω

exp

(
4π

K2
|un|2

)
dx

)1/2

‖un − u‖2

≤ C

(∫
Ω

exp

(
4π

K2
‖un‖2

∣∣∣∣ un

‖un‖
∣∣∣∣
2)

dx

)1/2

‖un − u‖2

≤ C‖un − u‖2
n→∞→ 0.
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Similarly, since un ⇀ u in W
1,2
0 (Ω),

∫
Ω

f (x,u)(un − u)dx → 0. Thus we can con-
clude that ∫

Ω

(
f (x,un) − f (x,u)

)
(un − u)dx

n→∞→ 0. (3.12)

Also, by (3.3) we have

〈
DJ(un) − DJ(u), (un − u)

〉 n→∞→ 0. (3.13)

From (3.12) and (3.13), we get

‖un − u‖ n→∞→ 0.

Thus un
n→∞→ u strongly in W

1,2
0 (Ω), which means that J satisfies (C)c . �

3.2 Proof of Theorem 3

Using Lemmas 4, 5, 6, and the Mountain Pass Theorem (Lemma 1), we can easily
deduce that the problem (P) has a nontrivial weak solution.

4 The Case of Critical Exponential Growth—Proof of Theorem 4

4.1 Proof of Theorem 4

In this subsection, we study the problem (P) where Ω is the bounded domain in R
2

and f has critical growth (CG), say, at α0 > 0.
Note that the condition (L3) in this section is the condition (L3) in the previous

two sections with θ = 1 and C∗ = 0.

Proof Similar to the previous two sections, by our conditions, we see that our Euler–
Lagrange functional associated with the problem (P) has the Palais–Smale geometry
properties (Lemmas 4 and 5). Now we consider the Moser functions

M̃n(x) = 1√
2π

⎧⎪⎨
⎪⎩

√
logn, 0 ≤ |x| ≤ 1/n

log(1/|x|)√
logn

, 1/n ≤ |x| ≤ 1

0, 1 ≤ |x|.

We see that M̃n ∈ W
1,2
0 (B1(0)) and ‖M̃n‖ = 1,∀n ∈ N. Since d is the inner radius

of Ω , we can find x0 ∈ Ω such that Bd(x0) ⊂ Ω . Letting Mn(x) = M̃n(
x−x0

d
), which

are in W
1,2
0 (Ω),‖Mn‖ = 1, and suppMn = Bd(x0). As in the proof of Theorem 1.3

in [17], we can conclude that

max
{
J (tMn) : t ≥ 0

}
<

2π

α0
.
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Now thanks to Lemmas 4, 5, and 2, there exists a Cerami sequence {un} in W
1,2
0 (Ω)

such that (
1 + ‖un‖

)∥∥DJ(un)
∥∥ → 0

J (un) → CM <
2π

α0
.

(4.1)

We again want to show that {un} is bounded in W
1,2
0 (Ω). Indeed, if we again suppose

that {un} is unbounded, then similarly to the previous two sections, we can get that

vn ⇀ 0 in W
1,2
0 (Ω) where vn = un

‖un‖ .

Let tn ∈ [0,1] such that

J (tnun) = max
t∈[0,1]

J (tun).

Let R ∈ (0,

√
4π
α0

) and choose ε = 4π

R2 − α0 > 0; by (CG), there exists C > 0 such that

F(x, s) ≤ C|s| +
∣∣∣∣4π

R2
− α0

∣∣∣∣ exp
(
(α0 + ε)s2), ∀(x, s) ∈ Ω × R. (4.2)

Also, since ‖un‖ → ∞, we have

J (tnun) ≥ J

(
R

‖un‖un

)
= J (Rvn), (4.3)

and by (4.2) and note ‖vn‖ = 1,

2J (Rvn) ≥ R2 − 2CR

∫
Ω

∣∣vn(x)
∣∣dx − 2

∣∣∣∣4π

R2
− α0

∣∣∣∣
∫

Ω

exp
(
(α0 + ε)R2v2

n(x)
)
dx.

(4.4)
By the Moser–Trudinger inequality (Lemma 3),∫

Ω

exp
(
(α0 + ε)R2v2

n(x)
)
dx =

∫
Ω

exp

(
4π

R2
R2v2

n(x)

)
dx

is bounded by a universal constant C(Ω) > 0 thanks to the choice of ε and Lemma 3.
Also, since vn ⇀ 0 in W

1,2
0 (Ω),

∫
Ω

|vn(x)|dx → 0. Thus if we let n → ∞ in (4.4),

and then let R →
√

4π
α0

−
and using (4.3), we get

lim inf
n→∞ J (tnun) ≥ 2π

α0
> CM. (4.5)

Note that J (0) = 0 and J (un) → CM ; we can suppose that tn ∈ (0,1). Thus since
DJ(tnun)tnun = 0,

t2
n‖un‖2 =

∫
Ω

f (x, tnun)tnundx.
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Also, by (4.1)∫
Ω

[
f (x,un)un − 2F(x,un)

]
dx = ‖un‖2 + 2CM − ‖un‖2 + o(1)

= 2CM + o(1).

So by (L3),

2J (tnun) = t2
n‖un‖2 − 2

∫
Ω

F(x, tnun)dx

=
∫

Ω

[
f (x, tnun)tnun − 2F(x, tnun)

]
dx

≤
∫

Ω

[
f (x,un)un − 2F(x,un)

]
dx

= 2CM + o(1),

which is a contradiction to (4.5). This proves that {un} is bounded in W
1,2
0 (Ω). With-

out loss of generality, we can suppose that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

‖un‖ ≤ K

un ⇀ u in W
1,2
0 (Ω)

un(x) → u(x) a.e. Ω

un −→ u in Lp(Ω), ∀p ≥ 1.

Now, following the proof of Lemma 4 in [34] for the case N = 2, we can prove that
u is a weak solution of (P). So the last remaining thing that we need to show is the
nontriviality of u. However, we can get this thanks to our technical assumption (L6).
Indeed, suppose u = 0. Similarly as in [34] for the case N = 2, we get f (x,un) → 0
in L1(Ω). Thanks to (L6), F(x,un) → 0 in L1(Ω) and we can get

lim
n→∞‖un‖2 = 2CM <

4π

α0

and again, following the proof in [34], we have a contradiction. The proof is now
completed. �

5 System of Equations—Proof of Theorem 6

5.1 Abstract Framework

The functional associated with system (S) is

I : E := W
1,2
0 (Ω) × W

1,2
0 (Ω) → R
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I (u, v) =
∫

Ω

∇u∇v −
∫

Ω

F(u) −
∫

Ω

G(v).

The norm of an element z = (u, v) in E is defined by ‖z‖ = (‖u‖2 +‖v‖2)1/2. Again,
since we are interested in positive solutions, we define f and g to be zero on (−∞,0].
Moreover, it is easy to check that I is well defined and C1 with

DI (u, v)(ϕ,ψ) =
∫

Ω

[∇u∇ψ + ∇v∇ϕ]

−
∫

Ω

[
f (u)ϕ + g(v)ψ

]
dx, for all (ϕ,ψ) ∈ E.

As a consequence, the weak solutions of (S) are the critical points of I . We will find
these critical points using the Linking Theorem.

Lemma 7 The following inequality holds.

st ≤
{

(et2 − 1) + s(log+ s)1/2, for all t ≥ 0 and s ≥ e1/4

(et2 − 1) + 1
2 s2, for all t ≥ 0 and 0 ≤ s ≤ e1/4

For the proof of this lemma, see [18].

5.2 Proof of Theorem 6

By results in [18], we know that I satisfies the geometry of the Linking Theorem.
So now we will prove that under our new condition (K3′) instead of (K3), the Ce-
rami sequence is bounded. For the similar result with the Palais–Smale sequence, see
Proposition 2.3 in [18].

Lemma 8 Let (un, vn) ∈ E such that

(I1) I (un, vn) = c + δn, where δn → 0 as n → ∞.
(I2) (1+‖(un, vn)‖)|DI (un, vn)(ϕ,ψ)| ≤ εn‖(ϕ,ψ)‖ for (ϕ,ψ) ∈ E, where εn → 0

as n → ∞.

Then

‖un‖ ≤ C, ‖vn‖ ≤ C∫
Ω

f (un)un ≤ C,

∫
Ω

g(vn)vn ≤ C

∫
Ω

F(un) ≤ C,

∫
Ω

G(vn) ≤ C.

Proof From (I1), we have∫
Ω

∇un∇vn −
∫

Ω

F(un) −
∫

Ω

G(vn) = c + δn. (5.1)
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Choosing (ϕ,ψ) = (un,0) and (ϕ,ψ) = (0, vn), we get from (I2),∣∣∣∣
∫

Ω

∇un∇vn −
∫

Ω

f (un)un

∣∣∣∣ ≤ εn∣∣∣∣
∫

Ω

∇un∇vn −
∫

Ω

g(vn)vn

∣∣∣∣ ≤ εn.

(5.2)

Finally, choosing (ϕ,ψ) = (vn,0) and (ϕ,ψ) = (0, un), we receive∣∣∣∣‖vn‖2 −
∫

Ω

f (un)vn

∣∣∣∣ ≤ εn∣∣∣∣‖un‖2 −
∫

Ω

g(vn)un

∣∣∣∣ ≤ εn.

(5.3)

From (5.1) and (5.2), we have

2c + 2δn =
∫

Ω

∇un∇vn − 2
∫

Ω

F(un) +
∫

Ω

∇un∇vn − 2
∫

Ω

G(vn)

≥
∫

Ω

f (un)un − 2
∫

Ω

F(un) +
∫

Ω

g(vn)vn − 2
∫

Ω

G(vn) − 2εn.

Using (K3′), we get

O(1) ≥
∫

Ω

g(vn)vn − 2
∫

Ω

G(vn)

≥ O(1) +
(

1 − 2

θ

)∫
Ω

g(vn)vn,

which means that
∫
Ω

g(vn)vn is bounded.
Now, since f , g have subcritical or critical growth, we can find constants D,α > 0

such that f (t), g(t) ≤ Deαu2
,∀u ≥ 0.

Using Lemma 7 for t = un‖un‖ and s = g(vn)
D

and the Moser–Trudinger inequality,
we have ∫

Ω

g(vn)
un

‖un‖ = D

∫
Ω

g(vn)

D

un

‖un‖

≤ D

∫
Ω

exp

[(
un

‖un‖
)2]

+ D

∫
Ω∩{ g(vn)

D
≥e1/4}

g(vn)

D

[
log+ g(vn)

D

]1/2

dx

+ 1

2

∫
Ω∩{ g(vn)

D
≤e1/4}

(
g(vn)

D

)2

≤ O(1) + √
α

∫
Ω

g(vn)vn.

From this estimate and (5.3), we can conclude that ‖un‖ is bounded.
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So far, we have proved that
∫
Ω

g(vn)vn,
∫
Ω

f (un)un,
∫
Ω

F(un),
∫
Ω

G(vn), and
‖un‖ are bounded. It remains to prove that ‖vn‖ are bounded. Indeed, using Lemma 7
again with t = vn‖vn‖ and s = f (vn)

D
, we have by using the same argument as above that

∫
Ω

f (un)
vn

‖vn‖ ≤ O(1) + √
α

∫
Ω

f (un)un.

Again, using (5.3) and the fact that
∫
Ω

f (un)un is bounded, we get ‖vn‖ is bounded.
Thus, the proof is completed. �

Now, following the proof in [18], we can prove the existence of nontrivial solutions
to (S).

Appendix A: Examples of Weaker Nonlinearity

In this section, we will discuss and compare the conditions (H2) in [17] and (L3) in
our work and also give some examples to illustrate that our condition (L3) is weaker
than (H2) in [17] and the strict inequality of (A.2) of [1]: f ′(x,u) >

f (x,u)
u

. There-
fore, it is worthwhile to study the existence of nontrivial solutions to problem (P)
under our condition (L3).

Let us see what the condition (H2) in [17] really means. First, we recall the (H2)
condition:

(H2) ∃t0 > 0,∃M > 0 such that ∀|u| ≥ t0,∀x ∈ Ω ,

0 < F(x,u) =
∫ u

0
f (x, t)dt ≤ M

∣∣f (x,u)
∣∣.

From

0 < F(x,u) ≤ M
∣∣f (x,u)

∣∣,
we have

0 <
1

M
≤ |f (x,u)|

F(x,u)
,

which is [
ln

(
F(x,u)

eu/M

)]′
≥ 0 (A.1)

when f (x,u) is nonnegative. Thus the function F(x,u)

eCu is nondecreasing for some

small positive constant C when u is big enough. So, if F(x,u) = P(u)eαu2
where

P is a polynomial; the condition (H2) is satisfied since both terms P(u) and eαu2−cu

are increasing when u is big enough. However, if we have periodic terms or decreas-
ing terms in the nonlinear terms as the following example shows, (A.1) may not be
satisfied and thus the condition (H2) may not hold anymore.
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Example 1 The nonlinearity f (x,u) = eu cosu + (
√

2 + sinu)eu doesn’t satisfy the
condition (H2) in [17]. Indeed, it’s easy to see that in this case, F(u) = (

√
2 +

sinu)eu. So if there exists a constant M > 0 such that

(
√

2 + sinu)eu ≤ M(
√

2 + sinu + cosu)eu,

then √
2 + sinu ≤ M(

√
2 + sinu + cosu),

i.e.,

(1 − M) sinu − M cosu ≤ √
2(M − 1).

However, we can choose u such that[
(1 − M) sinu − M cosu

]2 ≈ [
(1 − M)2 + M2][sin2 u + cos2 u

]
= 2M2 − 2M + 1

> 2(M − 1)2,

which is a contradiction. This shows that f (x,u) does not satisfy condition (H2) in
[17].

Next, let us discuss what our condition (L3) means. We recall that

(L3) There are C∗ ≥ 0, θ ≥ 1 such that H(x, t) ≤ θH(x, s) + C∗ for all 0 < t < s,
∀x ∈ Ω , where H(x,u) = uf (x,u) − 2F(x,u).

The condition (L3) suggests a sort of “weak” nondecreasing property of the func-
tion H(x, t). In particular, a nondecreasing function H(x, t) in t variable satisfies our
condition (L3) (with θ = 1 and C∗ = 0). Now suppose that f ′ (in terms of u) exists,
then H(x, t) being nondecreasing is equivalent to (uf (x,u)− 2F(x,u))′ ≥ 0, which
is in turn equivalent to

f
′
(x,u) ≥ f (x,u)

u
for all 0 < u, ∀x ∈ Ω. (A.2)

This kind of condition was assumed in the work of Adimurthi [1] with strict inequal-
ity in (A.2) in order to get the existence of positive solutions of the semilinear Dirich-
let problem with critical exponential growth. Indeed, as mentioned in [34], Adimurthi
assumed that f is C1 and satisfies f

′
(x,u) >

f (x,u)
u

for all u �= 0,∀x ∈ Ω in his pa-
per [1]. In other words, our condition (L3) (even with θ = 1 and C∗ = 0) is weaker
than the condition of Adimurthi. In the following example, we will give an example
of a nonlinearity which satisfies our condition (L3) but does not satisfy Adimurthi’s
condition.

Example 2 Consider the function f (x,u) = u(u − 1)3eu, which implies(
f (x,u)

)′ = [
u(u − 1)3 + (u − 1)3 + 3u(u − 1)2]eu.
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So we can see that f
′
(x,u) ≥ f (x,u)

u
for all 0 < u,∀x ∈ Ω . Therefore, f satisfies

(A.2) and thus our condition (L3). However, when u = 1, the equality holds, which
means that f does not satisfy Adimurthi’s condition of strict inequality [1].

If we further assume that f (x,u) is positive, then (A.2) gives

f
′
(x,u)

f (x,u)
≥ 1

u
for all 0 < u, ∀x ∈ Ω,

which thus implies that the function f (x,u)
u

is nondecreasing for all 0 < u,∀x ∈ Ω .

The assumption that the function f (x,u)
u

is nondecreasing for all 0 < u,∀x ∈ Ω is
also a standard condition and is assumed in many works. In fact, our condition (L3)
(even with θ = 1 and C∗ = 0) is weaker than this standard condition. Indeed, let
g(x,u) = f (x,u)

u
, which is nondecreasing for all 0 < u,∀x ∈ Ω . We get with 0 < u,

x ∈ Ω :

F(x,u) =
∫ u

0
sg(x, s)ds ≤ g(x,u)

∫ u

0
sds = u2g(x,u)

2
= uf (x,u)

2
,

which thus means that H(x,u) ≥ 0. Moreover, with 0 < u < v,x ∈ Ω , we have

2
∫ v

0
sg(x, s)ds − 2

∫ u

0
sg(x, s)ds = 2

∫ v

u

sg(x, s)ds

≤ 2g(x, v)

∫ v

u

sdx

= v2g(x, v) − u2g(x, v)

≤ v2g(x, v) − u2g(x,u),

from which we can conclude that

H(x,u) ≤ H(x, v).

Example 3 Consider the function F(x,u) = u2e
√

u and then f (x,u) = (2u +
u
√

u
2 )e

√
u. We have f (x,u)

u
= (2 +

√
u

2 )e
√

u, which is a nondecreasing function. This
shows that f (x,u) satisfies our condition (L3). Moreover, for every small positive
constant C, then F(x,u)

eCu = u2e
√

u(1−C
√

u) is not always increasing when u is big
enough. This means that f (x,u) does not satisfy the condition (H2).

In other words, from Example 3, we can see that there exist nonlinearities that
satisfy our condition (L3) but do not satisfy the condition (H2).

A.1 About the Critical Growth

We will finish this paper by analyzing the critical growth of the nonlinearity term
f (x,u). We will see that in some cases, we don’t need to assume the condi-
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tion (H2)-type or (H5)-type as in [17]. More precisely, we consider the follow-
ing three cases: limu→+∞ |f (x,u)|

exp(α0|u|2) = 0; limu→+∞ |f (x,u)|
exp(α0|u|2) = c ∈ (0,∞), and

limu→+∞ |f (x,u)|
exp(α0|u|2) = ∞.

A.1.1 Case 1

In this subsection, we will discuss the first case,

lim
u→+∞

f (x,u)

exp(α0|u|2) = 0, uniformly on x ∈ Ω.

This case is easy to study. Indeed, by l’Hôpital’s rule, we also get

lim
u→+∞

F(x,u)

exp(α0|u|2) = lim
u→+∞

f (x,u)

2α0u exp(α0|u|2) = 0, uniformly on x ∈ Ω.

Using l’Hôpital’s rule again, we get

lim
u→+∞

uF(x,u)

exp(α0|u|2) = lim
u→+∞

uf (x,u) + F(x,u)

2α0u exp(α0|u|2) = 0, uniformly on x ∈ Ω.

So if we have the condition of (H5) type, i.e.,

lim
u→+∞

uf (x,u)

exp(α0|u|2) ≥ β > 0, uniformly on x ∈ Ω,

we can easily deduce the condition of (H2) type (so we have the AR condition) by
noticing that

lim
u→+∞

uF(x,u)

exp(α0|u|2) = 0 < β ≤ lim
u→+∞

uf (x,u)

exp(α0|u|2) , uniformly on x ∈ Ω.

A.1.2 Case 2

Now we will consider the case

lim
u→+∞

f (x,u)

exp(α0|u|2) = c ∈ (0,∞), uniformly on x ∈ Ω.

In this case, it’s clear that

lim
u→+∞

uf (x,u)

exp(α0|u|2) = ∞, uniformly on x ∈ Ω,

which means that the condition of (H5) type is satisfied automatically. Also, by
l’Hôpital’s rule again, we get

lim
u→+∞

F(x,u)

exp(α0|u|2) = lim
u→+∞

f (x,u)

2α0u exp(α0|u|2) = 0, uniformly on x ∈ Ω,
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so the condition of (H2) type is also satisfied automatically by again noticing that

lim
u→+∞

F(x,u)

exp(α0|u|2) = 0 < c = lim
u→+∞

f (x,u)

exp(α0|u|2) , uniformly on x ∈ Ω.

A.1.3 Case 3

We consider the last case,

lim
u→+∞

f (x,u)

exp(α0|u|2) = ∞, uniformly on x ∈ Ω.

In this case, the condition of (H5) type is satisfied automatically.
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