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Abstract

In this paper, we deal with the existence of solutions to the nonuniformly elliptic equation of the form

−div
(
a(x,∇u)

) + V (x)|u|N−2u = f (x,u)

|x|β + εh(x) (0.1)

in RN when f : RN ×R → R behaves like exp(α|u|N/(N−1)) when |u| → ∞ and satisfies the Ambrosetti–
Rabinowitz condition. In particular, in the case of N -Laplacian, i.e., a(x,∇u) = |∇u|N−2∇u, we obtain
multiplicity of weak solutions of (0.1). Moreover, we can get the nontriviality of the solution in this case
when ε = 0. Finally, we show that the main results remain true if one replaces the Ambrosetti–Rabinowitz
condition on the nonlinearity by weaker assumptions and thus we establish the existence and multiplicity
results for a wider class of nonlinearity, see Section 7 for more details.
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1. Introduction

In this paper, we consider the existence and multiplicity of nontrivial weak solution u ∈
W 1,N (RN) (u � 0) for the nonuniformly elliptic equations of N -Laplacian type of the form:

−div
(
a(x,∇u)

) + V (x)|u|N−2u = f (x,u)

|x|β + εh(x) in RN (1.1)

where, in addition to some more assumptions on a(x, τ ) and f which will be specified later in
Section 2, we have

∣∣a(x, τ )
∣∣ � c0

(
h0(x) + h1(x)|τ |N−1)

for any τ in RN and a.e. x in RN , h0 ∈ LN/(N−1)(RN) and h1 ∈ L∞
loc(R

N) and f satisfies
critical growth of exponential type such as f : RN ×R → R behaves like exp(α|u|N/(N−1)) when
|u| → ∞ and when f either satisfies or does not satisfy the Ambrosetti–Rabinowitz condition.

A special case of our equation in the whole Euclidean space when a(x,∇u) = |∇u|N−2∇u

has been studied extensively, both in the case N = 2 (the prototype equation is the Laplacian
in R2) and in the case N > 3 in RN for the N -Laplacian, see for example [10,2,3,26,18,14–16,
5], etc. We should mention that problems involving Laplacian in bounded domains in R2 with
critical exponential growth have been studied in [4,18,8,7,11,29], etc. and for N -Laplacian in
bounded domains in RN (N > 2) by the authors of [2,14,26].

The problems of this type are important in many fields of sciences, notably the fields of elec-
tromagnetism, astronomy, and fluid dynamics, because they can be used to accurately describe
the behavior of electric, gravitational, and fluid potentials. They have been extensively studied
by many authors in many different cases: bounded domains and unbounded domains, differ-
ent behavior of the nonlinearity, different types of boundary conditions, etc. In particular, many
works focus on the subcritical and critical growth of the nonlinearity which allows us to treat the
problem variationally using general critical point theory.

In the case p < N , by the Sobolev embedding, the subcritical and critical growth mean that
the nonlinearity cannot exceed the polynomial of degree p∗ = Np

N−p
. The case p = N is special,

since the corresponding Sobolev space W
1,N
0 (Ω) is a borderline case for Sobolev embeddings:

one has W
1,N
0 (Ω) ⊂ Lq(Ω) for all q � 1, but W

1,N
0 (Ω) � L∞(Ω). So, one is led to ask if there

is another kind of maximal growth in this situation. Indeed, this is the result of Pohozaev [27],
Trudinger [32] and Moser [25], and is by now called the Moser–Trudinger inequality: it says that
if Ω ⊂ RN is a bounded domain, then

sup
u∈W

1,N
0 (Ω),‖∇u‖

LN �1

1

|Ω|
∫
Ω

eαN |u| N
N−1

dx < ∞

where αN = Nw
1

N−1
N−1 and wN−1 is the surface area of the unit sphere in RN . Moreover, the

constant αN is sharp in the sense that if we replace αN by some β > αN , the above supremum is
infinite.

This well-known Moser–Trudinger inequality has been generalized in many ways. For in-
stance, in the case of bounded domains, Adimurthi and Sandeep proved in [3] that the following
inequality
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sup
u∈W

1,N
0 (Ω),‖∇u‖

LN �1

∫
Ω

eαN |u| N
N−1

|x|β dx < ∞

holds if and only if α
αN

+ β
N

� 1 where α > 0 and 0 � β < N .
On the other hand, in the case of unbounded domains, B. Ruf when N = 2 in [28] and Y.X. Li

and B. Ruf when N > 2 in [23] proved that if we replace the LN -norm of ∇u in the supremum
by the standard Sobolev norm, then this supremum can still be finite under a certain condition
for α. More precisely, they have proved the following:

sup
u∈W

1,N
0

(
RN

)
,‖u‖N

LN +‖∇u‖N

LN �1

∫
RN

(
exp

(
α|u|N/(N−1)

) − SN−2(α,u)
)
dx

{� ∞ if α � αN,

= +∞ if α > αN,

where

SN−2(α,u) =
N−2∑
k=0

αk|u|kN/(N−1)

k! .

We should mention that for α < αN when N = 2, the above inequality was first proved by
D. Cao in [10], and proved for N > 2 by Panda [26] and J.M. do Ó [14,15] and Adachi and
Tanaka [1].

Recently, Adimurthi and Yang generalized the above result of Li and Ruf [23] to get the
following version of the singular Trudinger–Moser inequality (see [5]):

Lemma 1.1. For all 0 � β < N , 0 < α and u ∈ W 1,N (RN), there holds

∫
RN

1

|x|β
{
exp

(
α|u|N/(N−1)

) − SN−2(α,u)
}

< ∞.

Furthermore, we have for all α � (1 − β
N

)αN and τ > 0,

sup
‖u‖1,τ �1

∫
RN

1

|x|β
{
exp

(
α|u|N/(N−1)

) − SN−2(α,u)
}

< ∞

where ‖u‖1,τ = (
∫

RN (|∇u|N + τ |u|N)dx)1/N . The inequality is sharp: for any α > (1 − β
N

)αN ,
the supremum is infinity.

Motivated by this Trudinger–Moser inequality, do Ó [14,15] and do Ó, Medeiros and
Severo [16] studied the quasilinear elliptic equations when β = 0 and Adimurthi and Yang [5]
studied the singular quasilinear elliptic equations for 0 � β < N , both with the maximal growth
on the singular nonlinear term f (x,u)

|x|β which allows them to treat the equations variationally in a
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subspace of W 1,N (RN). More precisely, they can find a nontrivial weak solution of mountain-
pass type to the equation with the perturbation

−div
(|∇u|N−2∇u

) + V (x)|u|N−2u = f (x,u)

|x|β + εh(x).

Moreover, they proved that when the positive parameter ε is small enough, the above equation
has a weak solution with negative energy. However, it was not proved in [5] if those solutions are
different or not. We should also stress that they need a small nonzero perturbation εh(x) in their
equation to get the nontriviality of the solutions.

In this paper, we will study further about the equation considered in the whole space [2,14–
16,5]. More precisely, we consider the existence and multiplicity of nontrivial weak solution for
the nonuniformly elliptic equations of N -Laplacian type of the form:

−div
(
a(x,∇u)

) + V (x)|u|N−2u = f (x,u)

|x|β + εh(x) (1.2)

where

∣∣a(x, τ )
∣∣ � c0

(
h0(x) + h1(x)|τ |N−1)

for any τ in RN and a.e. x in RN , h0 ∈ LN/(N−1)(RN) and h1 ∈ L∞
loc(R

N). Note that the equa-
tion in [5] is a special case of our equation when a(x,∇u) = |∇u|N−2∇u. In fact, the elliptic
equations of nonuniform type is a natural generalization of the p-Laplacian equation and were
studied by many authors, see [17,19,31,34,30]. As mentioned earlier, the main features of this
class of equations are that they are defined in the whole RN and with the critical growth of the
singular nonlinear term f (x,u)

|x|β and the nonuniform nonlinear operator of p-Laplacian type. In
spite of a possible failure of the Palais–Smale compactness condition, in this paper, we still use
the mountain-pass approach for the critical growth as in [14,5,15,16] to derive a weak solution
and get the nontriviality of this solution thanks to the small nonzero perturbation εh(x).

In the case of N -Laplacian, i.e.,

a(x,∇u) = |∇u|N−2∇u,

our equation is exactly the equation studied in [5]:

−div
(|∇u|N−2∇u

) + V (x)|u|N−2u = f (x,u)

|x|β + εh(x). (1.3)

Using the Radial Lemma, Schwarz symmetrization and a modified result of Lions [24] about the
singular Moser–Trudinger inequality, we will prove that two solutions derived in [5] are actually
different. Thus as our second main result, we get the multiplicity of solutions to Eq. (1.3). Our
existence result extends that in [5] to the nonuniformly elliptic type of equations. The multiplicity
of nontrivial solutions was considered in [16] when β = 0 using a rearrangement inequality
which does not hold in general. We will give a substantially different proof here and establish the
multiplicity in all the singular cases 0 � β < N . (See Remark 5.2 in Section 5 for more details.)
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Our next concern is about the existence of solution of the equation without the perturbation

−div
(|∇u|N−2∇u

) + V (x)|u|N−2u = f (x,u)

|x|β . (1.4)

Using an approach as in [14–16], we prove that we don’t even require the nonzero perturbation
as in [5] to get the nontriviality of the mountain-pass type weak solution.

Our main tool in this paper is critical point theory. More precisely, we will use the mountain-
pass theorem that is proposed by Ambrosetti and Rabinowitz in the celebrated paper [6]. Critical
point theory has become one of the main tools for finding solutions to elliptic equations of vari-
ational type. We stress that to use the mountain-pass theorem, we need to verify some types of
compactness for the associated Lagrange–Euler functional, namely the Palais–Smale condition
and the Cerami condition. Or at least, we must prove the boundedness of the Palais–Smale or
Cerami sequence [12,13]. In almost all of works, we can easily establish this condition thanks
to the Ambrosetti–Rabinowitz (AR) condition, see (f 2). However, there are many interesting
examples of nonlinear terms f which do not satisfy the Ambrosetti–Rabinowitz condition. Thus
our next result is that we will show the main results remain true when one replaces the (AR) con-
dition by weaker assumptions (see Section 7). For the N -Laplacian equation or polyharmonic
operators in a bounded domain in RN , such a result of existence has been established by the
authors in [20] and [22].

We mention in passing that the study of the existence and multiplicity results of nonuniformly
elliptic equations of N -Laplacian type are motivated by our earlier work on the Heisenberg
group [21]. Our assumptions on the potential V are exactly those considered in [14–16,5], namely
V (x) � V0 > 0 in RN and V −1 ∈ L1(RN). Very recently, Yang has established in [33] when
a(x,∇u) = |∇u|N−2∇u the multiplicity of solutions when the nonlinear term f satisfies the
Ambrosetti–Rabinowitz condition and the potential V is under a stronger assumption than ours.

More precisely, it is assumed in [33] that V −1 ∈ L
1

N−1 (RN) which implies V −1 ∈ L1(RN) when
V (x) � V0 > 0 in RN . The stronger assumption of integrability on V −1 in [33] guarantees that
the embedding E → Lq(RN) is compact for all 1 � q < ∞. The argument in [33], as pointed
out by the author of [33], depends crucially on this compact embedding for all 1 � q < ∞. The
assumption on the potential V in our paper only assures the compact embedding E → Lq(RN)

for q � N . Nevertheless, this compact embedding for q � N is sufficient for us to carry out the
proof of the multiplicity of solutions to Eq. (1.3) and existence of solutions to Eq. (1.4) without
the perturbation term. (See Proposition 5.2 and Remark 5.2 in Section 5 for more details.)

The paper is organized as follows: In the next section, we give the main assumptions which
are used throughout this paper except the last section and our main results. In Section 3, we prove
some preliminary results. Section 4 is devoted to study the existence of nontrivial solutions for
the nonuniformly elliptic equations of N -Laplacian type (1.2). The multiplicity of nontrivial
solutions to Eq. (1.3) is investigated in Section 5. Section 6 is about the existence of nontrivial
solutions to the equation without the perturbation (1.4). Finally, in Section 7 we study the results
in Sections 5 and 6 without the Ambrosetti–Rabinowitz (AR) condition.

2. Assumptions and main results

Motivated by the Trudinger–Moser inequality in Lemma 1.1, we consider here the maximal
growth on the nonlinear term f (x,u) which allows us to treat Eq. (1.2) variationally in a subspace
of W 1,N (RN). We assume that f : RN × R → R is continuous, f (x,0) = 0 and f behaves like
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exp(α|u|N/(N−1)) as |u| → ∞. More precisely, we assume the following growth conditions on
the nonlinearity f (x,u) as in [14–16,5]:

(f 1) There exist constants α0, b1, b2 > 0 such that for all (x,u) ∈ RN × R+,

0 < f (x,u) � b1|u|N−1 + b2
[
exp

(
α0|u|N/(N−1)

) − SN−2(α0, u)
]
,

where

SN−2(α0, u) =
N−2∑
k=0

αk
0

k! |u|kN/(N−1).

(f 2) There exists p > N such that for all x ∈ RN and s > 0,

0 < pF(x, s) = p

s∫
0

f (x, τ ) dτ � sf (x, s).

This is the well-known Ambrosetti–Rabinowitz condition.
(f 3) There exist constants R0,M0 > 0 such that for all x ∈ RN and s � R0,

F(x, s) � M0f (x, s).

Since we are interested in nonnegative weak solutions, it is convenient to define

f (x,u) = 0 for all (x,u) ∈ RN × (−∞,0]. (2.1)

Let A be a measurable function on RN × R such that A(x,0) = 0 and a(x, τ ) = ∂A(x,τ)
∂τ

is a
Caratheodory function on RN ×R. Assume that there are positive real numbers c0, c1, k1 and two
nonnegative measurable functions h0, h1 on RN such that h1 ∈ L∞

loc(R
N), h0 ∈ LN/(N−1)(RN),

h1(x) � 1 for a.e. x in RN and the following conditions hold:

(A1) |a(x, τ )| � c0(h0(x) + h1(x)|τ |N−1), ∀τ ∈ RN , a.e. x ∈ RN,

(A2) c1|τ − τ1|N � 〈a(x, τ ) − a(x, τ1), τ − τ1〉 ∀τ, τ1 ∈ RN , a.e. x ∈ RN,

(A3) 0 � a(x, τ ).τ � NA(x, τ) ∀τ ∈ RN , a.e. x ∈ RN,

(A4) A(x, τ ) � k0h1(x)|τ |N ∀τ ∈ RN , a.e. x ∈ RN .

Then A verifies the growth condition:

∣∣A(x, τ)
∣∣ � c0

(
h0(x)|τ | + h1(x)|τ |N ) ∀τ ∈ RN, a.e. x ∈ RN. (2.2)

Next, we introduce some notations:
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E =
{
u ∈ W

1,N
0

(
RN

)
:

∫
RN

h1(x)|∇u|N dx +
∫

RN

V (x)|u|N < ∞
}
,

‖u‖E =
( ∫

RN

(
h1(x)|∇u|N + 1

k0N
V (x)|u|N

)
dx

)1/N

, u ∈ E,

λ1(N) = inf

{ ‖u‖N
E∫

RN
|u|N
|x|β dx

: u ∈ E \ {0}
}
.

We also assume the following conditions on the potential as in [14–16,5]:

(V 1) V is a continuous function such that V (x) � V0 > 0 for all x ∈ RN , we can see that E is a
reflexive Banach space when endowed with the norm

‖u‖E =
( ∫

RN

(
h1(x)|∇u|N + 1

k0N
V (x)|u|N

)
dx

)1/N

and for all N � q < ∞,

E ↪→ W 1,N
(
RN

)
↪→ Lq

(
RN

)
with continuous embedding. Furthermore,

λ1(N) = inf

{ ‖u‖N
E∫

RN
|u|N
|x|β dx

: u ∈ E \ {0}
}

> 0 for any 0 � β < N. (2.3)

In order to get the compactness of the embedding

E ↪→ Lp
(
RN

)
for all p � N

we also assume the following conditions on the potential V :

(V 2) V (x) → ∞ as |x| → ∞; or more generally, for every M > 0,

μ
({

x ∈ RN : V (x) � M
})

< ∞,

or

(V 3) The function [V (x)]−1 belongs to L1(RN).

Now, from (f 1), we obtain for all (x,u) ∈ RN × R,

∣∣F(x,u)
∣∣ � b3

[
exp

(
α1|u|N/(N−1)

) − SN−2(α1, u)
]
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for some constants α1, b3 > 0. Thus, by Lemma 1.1, we have F(x,u) ∈ L1(RN) for all u ∈
W 1,N (RN). Define the functionals J,Jε : E → R by

Jε(u) =
∫

RN

A(x,∇u)dx + 1

N

∫
RN

V (x)|u|N dx −
∫

RN

F (x,u)

|x|β dx − ε

∫
RN

hudx,

J (u) = 1

N

∫
RN

|∇u|N dx + 1

N

∫
RN

V (x)|u|N dx −
∫

RN

F (x,u)

|x|β dx

then the functionals J,Jε are well defined by Lemma 1.1. Moreover, J,Jε are the C1 functional
on E and ∀u,v ∈ E,

DJε(u)v =
∫

RN

a(x,∇u)∇v dx +
∫

RN

V (x)|u|N−2v dx −
∫

RN

f (x,u)v

|x|β dx − ε

∫
RN

hv dx,

DJ(u)v =
∫

RN

|∇u|N−2∇u∇v dx +
∫

RN

V (x)|u|N−2v dx −
∫

RN

f (x,u)v

|x|β dx.

Note that in the case of N -Laplacian: A(x, τ) = 1
N

|τ |N , we choose

a(x, τ ) = |τ |N−2τ, k0 = 1

N
, h1(x) = 1.

We next state our main results.

Theorem 2.1. Suppose that (V 1) and (V 2) (or (V 3)) and (f 1)–(f 2) are satisfied. Furthermore,
assume that

(f 4) lim sup
s→0+

F(x, s)

k0|s|N < λ1(N) uniformly in x ∈ RN.

Then there exists ε1 > 0 such that for each 0 < ε < ε1, problem (1.2) has a nontrivial weak
solution of mountain-pass type.

Theorem 2.2. Suppose that (V 1) and (V 2) (or (V 3)) and (f 1)–(f 3) are satisfied. Furthermore,
assume that

(f 4) lim sup
s→0+

NF(x, s)

|s|N < λ1(N) uniformly in x ∈ RN.

and there exists r > 0 such that

(f 5) lim
s→∞ sf (x, s) exp

(−α0|s|N/(N−1)
)

>
1

[ rN−β

N−β
e(αN d(N−β)/N) + CrN−β − rN−β

N−β
]

(
N − β

α0

)N−1

> 0
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uniformly on compact subsets of RN where d and C will be defined in Section 3. Then there exists
ε2 > 0, such that for each 0 < ε < ε2, problem (1.3) has at least two nontrivial weak solutions
and one of them has a negative energy.

Theorem 2.3. Under the same hypotheses in Theorem 2.2, the problem without the perturba-
tion (1.4) has a nontrivial weak solution.

As we remarked earlier in the introduction, the main theorems above remain to hold when the
nonlinear term f satisfies weaker assumptions than the Ambrosetti–Rabinowitz condition. As a
result, we then establish the existence and multiplicity of solutions when the nonlinear term is in
a wider class. See Section 7 for more details.

3. Preliminary results

First, we recall what we call the Radial Lemma (see [9,16]) which asserts:

∣∣u(x)
∣∣N � N

ωN−1

‖u‖N
N

|x|N , ∀x ∈ RN \ {0}

for all u ∈ W 1,N (RN) radially symmetric. Using this Radial Lemma, we can prove the following
two lemmas with an easy adaptation from Lemma 2.2 and Lemma 2.3 in [16] for β = 0 and
Lemma 4.2 in [5].

Lemma 3.1. For κ > 0, 0 � β < N and ‖u‖E � M with M sufficiently small and q > N , we
have ∫

RN

[exp(κ|u|N/(N−1)) − SN−2(κ,u)]|u|q
|x|β dx � C(N,κ)‖u‖q

E.

Lemma 3.2. Let κ > 0, 0 � β < N , u ∈ E and ‖u‖E � M such that MN/(N−1) < (1 − β
N

)
αN

κ
,

then ∫
RN

[exp(κ|u|N/(N−1)) − SN−2(κ,u)]|u|
|x|β dx � C(N,M,κ)‖u‖p′

for some p′ > N .

Next, we have the following

Lemma 3.3. Let {wk} ⊂ W 1,N (Ω) where Ω is a bounded open set in RN , ‖∇wk‖LN(Ω) � 1.
If wk → w 
= 0 weakly and almost everywhere, ∇wk → ∇w almost everywhere, then
exp{α|wk |N/(N−1)}

|x|β is bounded in L1(Ω) for 0 < α < (1 − β
N

)αN(1 − ‖∇w‖N
LN(Ω)

)−1/(N−1).

Proof. Using the Brezis–Lieb Lemma in [9], we deduce that

‖∇wk‖N
LN(Ω)

− ‖∇wk − ∇w‖N
LN(Ω)

→ ‖∇w‖N
LN(Ω)

.
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Thus for k large enough and δ > 0 small enough:

0 < α(1 + δ)‖∇wk − ∇w‖N/(N−1)

LN (Ω)
< αN

(
1 − β

N

)
.

By the singular Trudinger–Moser inequality on bounded domains [3], we get the conclusion. �
In the next two lemmas we check that the functional Jε satisfies the geometric conditions

of the mountain-pass theorem. Then, we are going to use a mountain-pass theorem without a
compactness condition such as the one of the (PS) type to prove the existence of the solution.
This version of the mountain-pass theorem is a consequence of Ekeland’s variational principle.

Lemma 3.4. Suppose that (V 1), (f 1) and (f 4) hold. Then there exists ε1 > 0 such that for
0 < ε < ε1, there exists ρε > 0 such that Jε(u) > 0 if ‖u‖E = ρε . Furthermore, ρε can be chosen
such that ρε → 0 as ε → 0.

Proof. From (f 4), there exist τ, δ > 0 such that |u| � δ implies

F(x,u) � k0
(
λ1(N) − τ

)|u|N (3.1)

for all x ∈ RN . Moreover, using (f 1) for each q > N , we can find a constant C = C(q, δ) such
that

F(x,u) � C|u|q[
exp

(
κ|u|N/(N−1)

) − SN−2(κ,u)
]

(3.2)

for |u| � δ and x ∈ RN . From (3.1) and (3.2) we have

F(x,u) � k0
(
λ1(N) − τ

)|u|N + C|u|q[
exp

(
κ|u|N/(N−1)

) − SN−2(κ,u)
]

for all (x,u) ∈ RN × R. Now, by (A4), Lemma 3.2, (2.3) and the continuous embedding E ↪→
LN(RN), we obtain

Jε(u) � k0‖u‖N
E − k0

(
λ1(N) − τ

) ∫
RN

|u|N
|x|β dx − C‖u‖q

E − ε‖h‖∗‖u‖E

� k0

(
1 − (λ1(N) − τ)

λ1(N)

)
‖u‖N

E − C‖u‖q
E − ε‖h‖∗‖u‖E.

Thus

Jε(u) � ‖u‖E

[
k0

(
1 − (λ1(N) − τ)

λ1(N)

)
‖u‖N−1

E − C‖u‖q−1
E − ε‖h‖∗

]
. (3.3)

Since τ > 0 and q > N , we may choose ρ > 0 such that k0(1 − (λ1(N)−τ)
λ1(N)

)ρN−1 − Cρq−1 > 0.
Thus, if ε is sufficiently small then we can find some ρε > 0 such that Jε(u) > 0 if ‖u‖ = ρε and
even ρε → 0 as ε → 0. �
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Lemma 3.5. There exists e ∈ E with ‖e‖E > ρε such that Jε(e) < inf‖u‖=ρε Jε(u).

Proof. Let u ∈ E \ {0}, u � 0 with compact support Ω = supp(u). By (f 2), we have that for
p > N , there exists a positive constant C > 0 such that

∀s � 0, ∀x ∈ Ω: F(x, s) � csp − d. (3.4)

Then by (2.2), we get

Jε(tu) � Ct

∫
Ω

h0(x)|∇u|dx + CtN‖u‖N
E − Ctp

∫
Ω

|u|p
|x|β dx + C + εt

∣∣∣∣
∫
Ω

hudx

∣∣∣∣.
Since p > N , we have Jε(tu) → −∞ as t → ∞. Setting e = tu with t sufficiently large, we get
the conclusion. �

Now, we define the Moser Functions which have been frequently used in the literature (see,
for example, [14,16,5]):

m̃l(x, r) = 1

ω
1/N

N−1

⎧⎪⎪⎨
⎪⎪⎩

(log l)(N−1)/N if |x| � r
l
,

log r
|x|

(log l)1/N if r
l
� |x| � r,

0 if |x| � r.

We then immediately have m̃l(., r) ∈ W 1,N (RN), the support of m̃l(x, r) is the ball Br , and

∫
RN

∣∣∇m̃l(x, r)
∣∣N dx = 1, and ‖m̃l‖N

W 1,N (RN)
= 1 + 1

log l

(
(N − 1)!

NN
rN + ol(1)

)
. (3.5)

Then

‖m̃l‖N
E � 1 + max|x|�r V (x)

log l

(
(N − 1)!

NN
rN + ol(1)

)
.

Consider ml(x, r) = m̃l(x, r)/‖m̃l‖E , then we can write

m
N/(N−1)
l (x, r) = ω

−1/(N−1)

N−1 log l + dl for |x| � r/ l. (3.6)

Using (3.5), we conclude that ‖m̃l‖ → 1 as l → ∞. Consequently,

dl

log l
→ 0 as l → ∞,

d = lim inf
l→∞ dl,

d � −max
|x|�r

V (x)ω
−1/(N−1)

N−1
(N − 2)!

NN
rN . (3.7)
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Next we will adapt the idea from J.M. do Ó’s works [14,16] when no singular term is present
to establish the minimax level in our case. See also [21] for a similar result on the Heisenberg
group.

Lemma 3.6. Suppose that (V 1) and (f 1)–(f 5) hold. Then there exists k ∈ N such that

max
t�0

{
tN

N
−

∫
RN

F (x, tmk)

|x|β dx

}
<

1

N

(
N − β

N

αN

α0

)N−1

.

Proof. Choose r > 0 as in the assumption (f 5) and β0 > 0 such that

lim
s→∞ sf (x, s) exp

(−α0|s|N/(N−1)
)

� β0 >
1

[ rN−β

N−β
e(αN d(N−β)/N) + CrN−β − rN−β

N−β
]

(
N − β

α0

)N−1

, (3.8)

where

C = lim
k→∞ ζk logk

ζ−1
k∫

0

exp
[
(N − β) log k

(
sN/(N−1) − ζks

)]
ds > 0, ζk = ‖m̃k‖,

C � 1 − e−(N−β) logn

N − β
.

Suppose, by contradiction, that for all k we get

max
t�0

{
tN

N
−

∫
RN

F (x, tmk)

|x|β dx

}
� 1

N

(
N − β

N

αN

α0

)N−1

where mk(x) = mk(x, r). By (3.4), for each k there exists tk > 0 such that

tNk

N
−

∫
RN

F (x, tkmk)

|x|β dx = max
t�0

{
tN

N
−

∫
RN

F (x, tmk)

|x|β dx

}
.

Thus

tNk

N
−

∫
RN

F (x, tkmk)

|x|β dx � 1

N

(
N − β

N

αN

α0

)N−1

.

From F(x,u) � 0, we obtain

tNk �
(

N − β

N

αN

α0

)N−1

. (3.9)
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Since at t = tk we have

d

dt

(
tN

N
−

∫
RN

F (x, tmk)

|x|β dx

)
= 0

it follows that

tNk =
∫

RN

tkmk

f (x, tkmk)

|x|β dx =
∫

|x|�r

tkmk

f (x, tkmk)

|x|β dx. (3.10)

Using hypothesis (f 5), given τ > 0 there exists Rτ > 0 such that for all u � Rτ and |x| � r , we
have

uf (x,u) � (β0 − τ) exp
(
α0|u|N/(N−1)

)
. (3.11)

From (3.10) and (3.11), for large k, we obtain

tNk � (β0 − τ)

∫
|x|� r

k

exp(α0|tkmk|N/(N−1))

|x|β dx

= (β0 − τ)
ωN−1

N − β

(
r

k

)N−β

exp
(
α0t

N/(N−1)
k ω

−1/(N−1)

N−1 log k + α0t
N/(N−1)
k dk

)
.

Thus, setting

Lk = α0N logk

αN

t
N/(N−1)
k + α0t

N/(N−1)
k dk − N log tk − (N − β) logk

we have

1 � (β0 − τ)
ωN−1

N − β
rN−β expLk.

Consequently, the sequence (tk) is bounded. Otherwise, up to subsequences, we would have
limk→∞ Lk = ∞ which leads to a contradiction. Moreover, by (3.7), (3.9) and

tNk � (β0 − τ)
ωN−1

N − β
rN−β exp

[(
N

α0t
N/(N−1)
k

αN

− (N − β)

)
logk + α0t

N/(N−1)
k dk

]

it follows that

tNk
k→∞−−−→

(
N − β

N

αN

α0

)N−1

. (3.12)

Set
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Ak = {x ∈ Br : tkmk � Rτ } and Bk = Br \ Ak.

From (3.10) and (3.11) we have

tNk � (β0 − τ)

∫
|x|�r

exp(α0|tkmk|N/(N−1))

|x|β dx +
∫
Bk

tkmkf (x, tkmk)

|x|β dx

− (β0 − τ)

∫
Bk

exp(α0|tkmk|N/(N−1))

|x|β dx. (3.13)

Notice that mk(x) → 0 and the characteristic functions χBk
→ 1 for almost everywhere x in Br .

Therefore the Lebesgue dominated convergence theorem implies

∫
Bk

tkmkf (x, tkmk)

|x|β dx → 0

and

∫
Bk

exp(α0|tkmk|N/(N−1))

|x|β dx → ωN−1

N − β
rN−β.

Moreover, using that

tNk
k→∞−−−→�

(
N − β

N

αN

α0

)N−1

we have

∫
|x|�r

exp(α0|tkmk|N/(N−1))

|x|β dx

�
∫

|x|�r

exp(αN |mk|N/(N−1)(N − β)/N)

|x|β dx

=
∫

|x|�r/k

exp(αN |mk|N/(N−1)(N − β)/N)

|x|β dx

+
∫

r/k�|x|�r

exp(αN |mk|N/(N−1)(N − β)/N)

|x|β dx

and
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∫
|x|�r/k

exp(αN |mk|N/(N−1)(N − β)/N)

|x|β dx

=
∫

|x|�r/k

exp[αNω
−1/(N−1)

N−1 log k(N − β)/N + dkαN(N − β)/N]
|x|β dx

= ωN−1

N − β

(
r

k

)N−β

k
(N−β+αN

dk
logk

(N−β)/N)

= ωN−1

N − β
rN−βk

(αN
dk

log k
(N−β)/N)

.

Now, using the change of variable

x = log( r
s
)

ζk logk
with ζk = ‖m̃k‖

by straightforward computation, we have

∫
r/k�|x|�r

exp(αN |mk|N/(N−1)(N − β)/N)

|x|β dx

= ωN−1r
N−βζk logk

ζ−1
k∫

0

exp
[
(N − β) logk

(
sN/(N−1) − ζks

)]
ds

which converges to CωN−1r
N−β as k → ∞ where

C = lim
k→∞ ζk logk

ζ−1
k∫

0

exp
[
(N − β) log k

(
sN/(N−1) − ζks

)]
ds > 0.

Finally, taking k → ∞ in (3.13), using (3.12) and using (3.7) (see [14,16]), we obtain

(
N − β

N

αN

α0

)N−1

� (β0 − τ)

[
ωN−1

N − β
rN−βe(αN d(N−β)/N) + CωN−1r

N−β − ωN−1

N − β
rN−β

]

which implies that

β0 � 1

[ rN−β

N−β
e(αN d(N−β)/N) + CrN−β − rN−β

N−β
]

(
N − β

α0

)N−1

.

This contradicts to (3.8), and the proof is complete. �
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4. The existence of solution for the problem (1.2)

It is well known that the failure of the (PS) compactness condition creates difficulties in study-
ing this class of elliptic problems involving critical growth and unbounded domains. In next
several lemmas, instead of (PS) sequence, we will use and analyze the compactness of Cerami
sequences of Jε .

Lemma 4.1. Let (uk) ⊂ E be an arbitrary Cerami sequence of Jε , i.e.,

Jε(uk) → c,
(
1 + ‖uk‖E

)∥∥DJε(uk)
∥∥

E′ → 0 as k → ∞.

Then there exists a subsequence of (uk) (still denoted by (uk)) and u ∈ E such that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f (x,uk)

|x|β → f (x,u)

|x|β strongly in L1
loc

(
RN

)
,

∇uk(x) → ∇u(x) almost everywhere in RN,

a(x,∇uk) ⇀ a(x,∇u) weakly in
(
L

N/(N−1)

loc

(
RN

))N
,

uk ⇀ u weakly in E.

Furthermore u is a weak solution of (1.2).

For simplicity, we will only sketch the proof where includes the nonuniform terms a(x,∇u)

and A(x,∇u).

Proof of Lemma 4.1. Let v ∈ E, then we have∫
RN

A(x,∇uk) dx + 1

N

∫
RN

V (x)|uk|N dx −
∫

RN

F (x,uk)

|x|β dx − ε

∫
RN

huk dx
k→∞−−−→ c (4.1)

and

∣∣DJε(uk)v
∣∣ =

∣∣∣∣
∫

RN

a(x,∇uk)∇v dx +
∫

RN

V (x)|uk|N−2ukv dx −
∫

RN

f (x,uk)v

|x|β dx − ε

∫
RN

hv dx

∣∣∣∣
� τk‖v‖E

(1 + ‖uk‖E)
(4.2)

where τk → 0 as k → ∞. Choosing v = uk in (4.2) and by (A3), we get

∫
RN

f (x,uk)uk

|x|β dx + ε

∫
RN

huk dx − N

∫
RN

A(x,∇uk) −
∫

RN

V (x)|uk|N−2uk dx

� τk

‖uk‖E

(1 + ‖uk‖E)
→ 0.

This together with (4.1), (f 2) and (A4) leads to
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(
p

N
− 1

)
‖uk‖N

E � C
(
1 + ‖uk‖E

)

and hence ‖uk‖E is bounded and thus

∫
RN

f (x,uk)uk

|x|β dx � C,

∫
RN

F (x,uk)

|x|β dx � C. (4.3)

Thanks to the assumptions on the potential V , the embedding E ↪→ Lq(RN) is compact for all
q � N, by extracting a subsequence, we can assume that

uk → u weakly in E and for almost all x ∈ RN.

Thanks to Lemma 2.1 in [18], we have

f (x,un)

|x|β → f (x,u)

|x|β in L1
loc

(
RN

)
. (4.4)

Next, up to a subsequence, we can define an energy concentration set for any fixed δ > 0,

Σδ =
{
x ∈ RN : lim

r→0
lim

k→∞

∫
Br(x)

(|uk|N + |∇uk|N
)
dx′ � δ

}
.

Since (uk) is bounded, Σδ must be a finite set. Adapting an argument similar to [5] (we omit the
details here), we can prove that for any compact set K � RN \ Σδ ,

lim
k→∞

∫
K

|f (x,uk)uk − f (x,u)u|
|x|β dx = 0. (4.5)

Next we will prove that for any compact set K � RN \ Σδ ,

lim
k→∞

∫
K

|∇uk − ∇u|N dx = 0. (4.6)

It is enough to prove for any x∗ ∈ RN \ Σδ , and Br(x
∗, r) ⊂ RN \ Σδ , there holds

lim
k→∞

∫
Br/2(x

∗)

|∇uk − ∇u|N dx = 0. (4.7)

For this purpose, we take φ ∈ C∞
0 (Br(x

∗)) with 0 � φ � 1 and φ = 1 on Br/2(x
∗). Obviously

φuk is a bounded sequence. Choose h = φuk and h = φu in (4.2), then we have:
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∫
Br(x∗)

φ
(
a(x,∇uk) − a(x,∇u)

)
(∇uk − ∇u)dx

�
∫

Br(x∗)

a(x,∇uk)∇φ(u − uk) dx

+
∫

Br(x∗)

φa(x,∇u)(∇u − ∇uk) dx +
∫

Br(x∗)

φ(uk − u)
f (x,uk)

|x|β dx

+ τk‖φuk‖E + τk‖φu‖E − ε

∫
Br (x∗)

φh(uk − u)dx.

Note that by Holder’s inequality and the compact embedding of E ↪→ LN(Ω), we get

lim
k→∞

∫
Br(x∗)

a(x,∇uk)∇φ(u − uk) dx = 0. (4.8)

Since ∇uk ⇀ ∇u and uk ⇀ u, there holds

lim
k→∞

∫
Br (x∗)

φa(x,∇u)(∇u − ∇uk) dx = 0 and lim
k→∞

∫
Br (x∗)

φh(uk − u)dx = 0. (4.9)

This implies that

lim
k→∞

∫
Br(x∗)

φ(uk − u)f (x,uk) dx = 0.

So we can conclude that

lim
k→∞

∫
Br (x∗)

φ
(
a(x,∇uk) − a(x,∇u)

)
(∇uk − ∇u)dx = 0

and hence we get (4.7) by (A2). Thus we have (4.6) by a covering argument. Since Σδ is finite,
it follows that ∇uk converges to ∇u almost everywhere. This immediately implies, up to a sub-
sequence, a(x,∇uk) ⇀ a(x,∇u) weakly in (L

N/(N−1)

loc (RN))N−2. Using all these facts, letting
k tend to infinity in (4.2) and combining with (4.4), we obtain

〈
DJε(u), v

〉 = 0 ∀v ∈ C∞
0

(
RN

)
.

This completes the proof of the lemma. �
Now, we are ready to prove Theorem 2.1. The existence of the solution of (1.2) follows by a

standard “mountain-pass” procedure.
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4.1. The proof of Theorem 2.1

Proposition 4.1. Under the assumptions (V 1) and (V 2) (or (V 3)), and (f 1)–(f 4), there exists
ε1 > 0 such that for each 0 < ε < ε1, the problem (1.2) has a solution uM via mountain-pass
theorem.

Proof. For ε sufficiently small, by Lemmas 3.4 and 3.5, Jε satisfies the hypotheses of the
mountain-pass theorem except possibly for the (PS) condition. Thus, using the mountain-pass
theorem without the (PS) condition, we can find a sequence (uk) in E such that

Jε(uk) → cM > 0 and
(
1 + ‖uk‖E

)∥∥DJε(uk)
∥∥ → 0

where cM is the mountain-pass level of Jε . Now, by Lemma 4.1, the sequence (uk) converges
weakly to a weak solution uM of (1.2) in E. Moreover, uM 
= 0 since h 
= 0. �
5. The multiplicity results of the problem (1.3)

In this section, we deal with the problem (1.3). Note that this is the special case of the problem

(1.2) with A(x, τ) = |τ |N
N

. Some preliminary lemmas in the case β = 0 were treated in [14,16].
We have included details here. The key ingredient of this section is the proof of Proposition 5.2
which is substantially different from those in [14,16].

Lemma 5.1. There exist η > 0 and v ∈ E with ‖v‖E = 1 such that Jε(tv) < 0 for all 0 < t < η.
In particular, inf‖u‖E�η Jε(u) < 0.

Corollary 5.1. Under the hypotheses (V 1) and (f 1)–(f 5), if ε is sufficiently small then

max
t�0

Jε(tmk) = max
t�0

{
tN

N
−

∫
RN

F (x, tmk)

|x|β dx − t

∫
RN

εhmk dx

}
<

1

N

(
N − β

N

αN

α0

)N−1

.

Note that we can conclude by inequality (3.3) and Lemma 5.1 that

−∞ < c0 = inf‖u‖E�ρε

Jε(u) < 0. (5.1)

Next, we will prove that this infimum is achieved and generate a solution. In order to obtain
convergence results, we need to improve the estimate of Lemma 3.6.

Corollary 5.2. Under the hypotheses (V 1) and (f 1)–(f 5), there exist ε2 ∈ (0, ε1] and u ∈
W 1,N (RN) with compact support such that for all 0 < ε < ε2,

Jε(tu) < c0 + 1

N

(
N − β

N

αN

α0

)N−1

for all t � 0.
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Proof. It is possible to increase the infimum c0 by reducing ε. By Lemma 3.4, ρε
ε→0−−−→ 0.

Consequently, c0
ε→0−−−→ 0. Thus there exists ε2 > 0 such that if 0 < ε < ε2 then, by Corollary 5.1,

we have

max
t�0

Jε(tmk) < c0 + 1

N

(
N − β

N

αN

α0

)N−1

.

Taking u = mk ∈ W 1,N (RN), the result follows. �
Lemma 5.2. If (uk) is a Cerami sequence for Jε at any level with

lim inf
k→∞ ‖uk‖E <

(
N − β

N

αN

α0

)(N−1)/N

(5.2)

then (uk) possesses a subsequence which converges strongly to a solution u0 of (1.3).

Proof. See Lemma 4.6 in [5]. �
5.1. Proof of Theorem 2.2

The proof of the existence of the second solution of (1.3) follows by a minimization argument
and Ekeland’s variational principle.

Proposition 5.1. There exists ε2 > 0 such that for each ε with 0 < ε < ε2, Eq. (1.3) has a mini-
mum type solution u0 with Jε(u0) = c0 < 0, where c0 is defined in (5.1).

Proof. Let ρε be as in Lemma 3.4. We can choose ε2 > 0 sufficiently small such that

ρε <

(
N − β

N

αN

α0

)(N−1)/N

.

Since Bρε is a complete metric space with the metric given by the norm of E, convex and the
functional Jε is of class C1 and bounded below on Bρε , by Ekeland’s variational principle there
exists a sequence (uk) in Bρε such that

Jε(uk) → c0 = inf‖u‖E�ρε

Jε(u) and
∥∥DJε(uk)

∥∥ → 0.

Observing that

‖uk‖E � ρε <

(
N − β

N

αN

α0

)(N−1)/N

by Lemma 5.2 it follows that there exists a subsequence of (uk) which converges to a solution
u0 of (1.3). Therefore, Jε(u0) = c0 < 0. �
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Remark 5.1. By Corollary 5.2, we can conclude that

0 < cM < c0 + 1

N

(
N − β

N

αN

α0

)N−1

.

Proposition 5.2. If ε2 > 0 is sufficiently small, then the solutions of (1.4) obtained in Proposi-
tions 4.1 and 5.1 are distinct.

Remark 5.2. Before we give a proof of the proposition, we like to make some remarks. We note
the following Hardy–Littlewood inequality holds for nonnegative functions f and g in RN :∫

RN

f (x)g(x) dx �
∫

RN

f ∗(x)g∗(x) dx

where f ∗ and g∗ are symmetric and decreasing rearrangement of f and g respectively. However,
the following inequality, which has been used in [16] to derive the multiplicity of nontrivial
solutions in the case of β = 0,∫

|x|>R

f (x)g(x) dx �
∫

|x|>R

f ∗(x)g∗(x) dx,

does not hold for all R > 0 in general. Therefore, we will avoid using the symmetrization argu-
ment when we prove

∫
RN

F (x, vk)

|x|β dx →
∫

RN

F (x,u0)

|x|β dx.

Nevertheless, this can be taken care by a “double truncation” argument in both cases of β = 0
and 0 < β < N . This argument differs from those given in [14–16,33]. Using this argument, the
compact embedding E → Lq(RN) for q � N is sufficient and thus establish the multiplicity of
nontrivial solutions under our assumptions on the potential V .

Proof. By Propositions 4.1 and 5.1, there exist sequences (uk), (vk) in E such that

uk → u0, Jε(uk) → c0 < 0, DJε(uk)uk → 0

and

vk ⇀ uM, Jε(vk) → cM > 0, DJε(vk)vk → 0,

∇vk(x) → ∇uM(x) almost everywhere in RN.

Now, suppose by contradiction that u0 = uM . As in the proof of Lemma 4.1 we obtain

f (x, vk)

|x|β → f (x,u0)

|x|β in L1(BR) for all R > 0. (5.3)
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Moreover, by (f 2), (f 3)

F (x, vk)

|x|β � R0f (x, vk)

|x|β + M0f (x, vk)

|x|β

so by the Generalized Lebesgue’s Dominated Convergence Theorem,

F(x, vk)

|x|β → F(x,u0)

|x|β in L1(BR).

We will prove that

∫
RN

F (x, vk)

|x|β dx →
∫

RN

F (x,u0)

|x|β dx.

It’s sufficient to prove that given δ > 0, there exists R > 0 such that

∫
|x|>R

F(x, vk)

|x|β dx � 3δ and
∫

|x|>R

F(x,u0)

|x|β dx � 3δ.

To prove it, we recall the following facts from our assumptions on nonlinearity: there exists
c > 0 such that for all (x, s) ∈ RN × R+:

F(x, s) � c|s|N + cf (x, s),

F (x, s) � c|s|N + cR(α0, s)s,∫
RN

f (x, vk)vk

|x|β dx � C,

∫
RN

F (x, vk)

|x|β dx � C. (5.4)

First, we will prove it for the case β > 0.

We have that

∫
|x|>R
|vk |>A

F(x, vk)

|x|β dx � c

∫
|x|>R

|vk|N
|x|β dx + c

∫
|x|>R
|vk |>A

f (x, vk)

|x|β dx

� c

Rβ
‖vk‖N

E + c
1

A

∫
RN

f (x, vk)vk

|x|β dx.

Since ‖vk‖E is bounded and using (5.4), we can first choose A such that

c
1

A

∫
RN

f (x, vk)vk

|x|β dx < δ for all k

and then choose R such that
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c

Rβ
‖vk‖N

E < δ

which thus

∫
|x|>R
|vk |>A

F(x, vk)

|x|β dx � 2δ.

Now, note that with such A, we have for |s| � A:

F(x, s) � c|s|N + cR(α0, s)s

� c|s|N + c

∞∑
j=N−1

α
j

0

j ! |s|Nj/(N−1)+1

� |s|N
[
c + c

∞∑
j=N−1

α
j

0

j ! ANj/(N−1)+1−N

]

� C(α0,A)|s|N .

So we get

∫
|x|>R
|vk |�A

F(x, vk)

|x|β dx � C(α0,A)

Rβ

∫
|x|>R
|vk |�A

|vk|N dx

� C(α0,A)

Rβ
‖vk‖N

E .

Again, note that ‖vk‖E is bounded, we can choose R such that

∫
|x|>R
|vk |�A

F(x, vk)

|x|β dx � δ.

In conclusion, we can choose R > 0 such that

∫
|x|>R

F(x, vk)

|x|β dx � 3δ.

Similarly, we can choose R > 0 such that

∫
|x|>R

F(x,u0)

|x|β dx � 3δ.
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Now, if β = 0, similarly, we have

∫
|x|>R
|vk |>A

F(x, vk) dx � c

∫
|x|>R

|vk|N dx + c

∫
|x|>R
|vk |>A

f (x, vk) dx

� c

A

∫
|x|>R

|vk|N+1 dx + c
1

A

∫
RN

f (x, vk)vk dx

� c

A
‖vk‖N+1

E + c
1

A

∫
RN

f (x, vk)vk dx

so since ‖vk‖E is bounded and by (5.4), we can choose A such that

∫
|x|>R
|vk |>A

F(x, vk) dx � 2δ.

Next, we have

∫
|x|>R
|vk |�A

F(x, vk) dx � C(α0,A)

∫
|x|>R
|vk |�A

|vk|N dx

� 2N−1C(α0,A)

( ∫
|x|>R
|vk |�A

|vk − u0|N dx +
∫

|x|>R
|vk |�A

|u0|N dx

)
.

Now, using the compactness of embedding E ↪→ Lq(RN), q � N and noticing that vk ⇀ u0,
again we can choose R such that

∫
|x|>R
|vk |�A

F(x, vk) dx � δ.

Combining all the above estimates, we have the fact that

∫
RN

F (x, vk)

|x|β dx →
∫

RN

F (x,u0)

|x|β dx

since δ is arbitrary and (5.3) holds. From this, we have

lim
k→∞‖∇vk‖N

N = NcM − lim
k→∞

∫
RN

V (x)|vk|N dx + N

∫
RN

F (x,u0)

|x|β dx + Nε

∫
RN

hu0 dx. (5.5)
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Now, let

wk = vk

‖∇vk‖N

and w0 = u0

limk→∞ ‖∇vk‖N

we have ‖∇wk‖N = 1 for all k and wk ⇀ w0 in D1,N (RN), the closure of the space C∞
0 (RN)

endowed with the norm ‖∇ϕ‖N . In particular, ‖∇w0‖N � 1 and wk|BR
⇀ w0|BR

in W 1,N (BR)

for all R > 0. We claim that ‖∇w0‖N < 1.
Indeed, if ‖∇w0‖N = 1, then we have limk→∞ ‖∇vk‖N = ‖∇u0‖N and thus vk → u0 in

W 1,N (RN) since vk → u0 in Lq(RN), q � N . So we can find g ∈ W 1,N (RN) (for some q � N )
such that |vk(x)| � g(x) almost everywhere in RN . From assumption (f 1), we have for some
α1 > α0 that ∣∣f (x, s)s

∣∣ � b1|s|N + C
[
exp

(
α1|s|N/(N−1)

) − SN−2(α1, s)
]

for all (x, s) ∈ RN×R. Thus,

|f (x, vk)vk|
|x|β � b1

|vk|N
|x|β + C

[exp(α1|vk|N/(N−1)) − SN−2(α1, vk)]
|x|β

� b1
|vk|N
|x|β + C

[exp(α1|g|N/(N−1)) − SN−2(α1, g)]
|x|β

almost everywhere in RN . Now, by Lebesgue’s dominated convergence theorem,

lim
k→∞

∫
RN

f (x, vk)vk

|x|β dx =
∫

RN

f (x,u0)u0

|x|β dx.

Similarly, since uk → u0 in E, we also have

lim
k→∞

∫
RN

f (x,uk)uk

|x|β dx =
∫

RN

f (x,u0)u0

|x|β dx.

Now, noting that

DJε(uk)uk = ‖uk‖N
E −

∫
RN

f (x,uk)uk

|x|β dx −
∫

RN

εhuk dx → 0

and

DJε(vk)vk = ‖vk‖N
E −

∫
RN

f (x, vk)vk

|x|β dx −
∫

RN

εhvk dx → 0

we conclude that

lim
k→∞‖vk‖N

E = lim
k→∞‖uk‖N

E = ‖u0‖N
E

and thus Jε(vk) → Jε(u0) = c0 < 0 and this is a contradiction.
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So ‖∇w0‖N < 1. Using Remark 5.1 we have

cM − Jε(u0) <
1

N

(
N − β

N

αN

α0

)N−1

and thus

α0 <
N − β

N

αN

[N(cM − Jε(u0))]1/(N−1)
.

Now if we choose q > 1 sufficiently close to 1 and set

L(w) = cM − 1

N

∫
RN

V (x)|w|N dx +
∫

RN

F (x,w)

|x|β dx + ε

∫
RN

hw dx

then for some δ > 0,

qα0‖∇vk‖N/(N−1)
N � N − β

N

αN‖∇vk‖N/(N−1)
N

[N(cM − Jε(u0))]1/(N−1)
− δ

= N − β

N

αN(NL(vk))
1/(N−1) + ok(1)

[N(cM − Jε(u0))]1/(N−1)
− δ.

Note that

lim
k→∞L(vk) = cM − lim

k→∞
1

N

∫
RN

V (x)|vk|N dx +
∫

RN

F (x,u0)

|x|β dx + ε

∫
RN

hu0 dx + ok(1)

and (
cM − lim

k→∞
1

N

∫
RN

V (x)|vk|N dx +
∫

RN

F (x,u0)

|x|β dx + ε

∫
RN

hu0 dx

)(
1 − ‖∇RN w0‖N

N

)

� cM − Jε(u0)

so for k,R sufficiently large,

qα0‖∇vk‖N/(N−1)
N � N − β

N

αN

[1 − ‖∇RN w0‖N
LN(BR)

]1/(N−1)
− δ.

By Lemma 3.3, note that ∇wk → ∇w0 almost everywhere since ∇vk(x) → ∇uM(x) = ∇u0(x)

almost everywhere in RN :

∫
BR

exp(qα0‖∇vk‖N/(N−1)
N |wk|N/(N−1))

|x|β dx � C. (5.6)
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By (f 1) and Holder’s inequality,

∣∣∣∣
∫

RN

f (x, vk)(vk − u0)

|x|β dx

∣∣∣∣
� b1

∫
RN

|vk|N−1|vk − u0|
|x|β dx + b2

∫
BR

|vk − u0| exp(α0|vk|N/(N−1))

|x|β dx

� b1

( ∫
RN

|vk|N
|x|β dx

)(N−1)/N( ∫
RN

|vk − u0|N
|x|β dx

)1/N

+ b2

( ∫
RN

|vk − u0|q ′

|x|β dx

)1/q ′(∫
BR

exp(qα0‖∇vk‖N/(N−1)
N |wk|N/(N−1))

|x|β dx

)1/q

where q ′ = q/(q − 1). By (5.6), we have

∣∣∣∣
∫

RN

f (x, vk)(vk − u0)

|x|β dx

∣∣∣∣ � C1

∥∥∥∥vk − u0

|x|β/N

∥∥∥∥
N

+ C2

∥∥∥∥vk − u0

|x|β/q ′

∥∥∥∥
q ′

.

Using the Holder inequality and the compact embedding E ↪→ Lq , q � N , we get

∫
RN

|vk − u0|N
|x|β dx =

∫
|x|<1

|vk − u0|N
|x|β dx +

∫
|x|�1

|vk − u0|N
|x|β dx

�
( ∫

|x|<1

1

|x|βs
dx

)1/s( ∫
|x|<1

|vk − u0|s′N dx

)1/s′

+ ‖vk − u0‖N
N

→ 0 as k → ∞

for some s > 1 sufficiently close to 1. Similarly,

∫
RN

|vk − u0|q ′

|x|β dx
k→∞−−−→ 0.

Thus we can conclude that

∫
RN

|∇vk|N−2∇vk(∇vk − ∇u0) dx +
∫

RN

V (x)|vk|N−2vk(vk − u0) dx → 0

since DJε(vk)(vk − u0) → 0.
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On the other hand, since vk ⇀ u0∫
RN

|∇u0|N−2∇u0(∇vk − ∇u0) dx → 0

and ∫
RN

V (x)|u0|N−2u0(vk − u0) dx → 0

we have ∫
RN

|∇vk − ∇u0|N dx +
∫

RN

V (x)|vk − u0|N

� C1

∫
RN

(|∇vk|N−2∇vk − |∇u0|N−2∇u0
)
(∇vk − ∇u0) dx

+ C2

∫
RN

V (x)
(|vk|N−2vk − |u0|N−2u0

)
(vk − u0) dx

where we did use the inequality (|x|N−2x − |y|N−2y)(x − y) � 22−N |x − y|N. So we can con-
clude that vk → u0 in E. Thus Jε(vk) → Jε(u0) = c0 < 0. Again, this is a contradiction. The
proof is thus complete. �
6. The existence result to the problem (1.4)

In this section, we deal with the problem (1.4). The main result of ours shows that we don’t
need a nonzero small perturbation in this case to guarantee the existence of a solution.

6.1. Proof of Theorem 2.3

It’s similar to the proof of Theorems 2.1 and 2.2. We can find a sequence (vk) in E such that

J (vk) → cM > 0 and
(
1 + ‖vk‖E

)∥∥DJ(vk)
∥∥ → 0

where cM is the mountain-pass level of J . Now, by Lemma 4.1, the sequence (vk) converges
weakly to a weak solution v of (1.4) in E. Now, suppose that v = 0. Similarly as in the proof of
Proposition 5.2, we have that: ∫

RN

F (x, vk)

|x|β → 0. (6.1)

So

lim
k→∞‖vk‖N

E = lim
k→∞

(
NJ(vk) + N

∫
RN

F (x, vk)

|x|β dx

)
= NCM.
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Note that by Lemma 3.6, we have 0 < CM < 1
N

(
N−β

N
αN

α0
)N−1, so

lim sup
k→∞

‖vk‖E <

(
N − β

N

αN

α0

)(N−1)/N

.

Thus by (f 1), we have

f (x, vk)vk

|x|β � b1
vN
k

|x|β + b2
R(α0, vk)vk

|x|β .

Note that

b1

∫
RN

vN
k

|x|β + b2

∫
RN

R(α0, vk)vk

|x|β → 0

since by Lemma 3.2 and by the compact embedding E ↪→ Ls(RN), s � N ,
∫

RN
R(α0,vk)vk

|x|β �

C(M,N)‖vk‖s → 0. Moreover,
∫
|x|�1

vN
k

|x|β � ‖vk‖N
N → 0 again by the compact embedding

E ↪→ LN(RN) and
∫
|x|�1

vN
k

|x|β � C‖vk‖N
Nr → 0 by Holder’s inequality and by the compact em-

bedding E ↪→ Ls(RN), s � N . So we can conclude that

∫
RN

f (x, vk)vk

|x|β dx → 0

which thus limk→∞ ‖vk‖N
E = limk→∞

∫
RN

f (x,vk)vk

|x|β dx = 0 and it’s impossible. So we get the
nontriviality of the solution.

7. Existence and multiplicity without the Ambrosetti–Rabinowitz condition

The main purpose of this section is to prove that all of the results of existence and multiplicity
in Sections 5 and 6 hold even when the nonlinear term f does not satisfy the Ambrosetti–
Rabinowitz condition. It is not difficult to see that there are many interesting examples of such f

which do not satisfy the Ambrosetti–Rabinowitz condition, but satisfy our weaker conditions
listed below. The existence of nontrivial solutions to a class of nonlinear equations of N -Laplace
type [20] or polyharmonic operators [22] on bounded domains in RN has been established
when the nonlinear term satisfies the exponential growth but without satisfying the Ambrosetti–
Rabinowitz condition.

In this section, instead of conditions (f 2) and (f 3), we assume that

(f 2′) H(x, t) � H(x, s) for all 0 < t < s, ∀x ∈ RN where H(x,u) = uf (x,u) − NF(x,u).
(f 3′) There exists c > 0 such that for all (x, s) ∈ RN × R+: F(x, s) � c|s|N + cf (x, s).
(f 4′) limu→∞ F(x,u)

|u|N = ∞ uniformly on x ∈ RN .
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We should stress that (f 1) + (f 3) will imply (f 3′).
The key to establish the results in earlier sections is to prove that the Cerami sequence [12,

13] associated to the Lagrange–Euler functional is bounded. Once we will have proved this, the
remaining should be the same as in previous sections. Therefore, we only include the proof of
this essential ingredient in this section.

Lemma 7.1. Let {uk} be an arbitrary Cerami sequence associated to the functional

I (u) = 1

N
‖u‖N −

∫
RN

F (x,u)

|x|β dx

such that

1

N
‖uk‖N −

∫
RN

F (x,uk)

|x|β dx → CM,

(
1 + ‖uk‖

)∣∣∣∣
∫

RN

|∇uk|N−1∇uk∇v dx +
∫

RN

V (x)|uk|N−1ukv dx −
∫

RN

f (x,uk)v

|x|β dx

∣∣∣∣ � εk‖v‖,

εk → 0,

where CM ∈ (0, 1
N

((1 − β
N

)
αN

α0
)N−1). Then {uk} is bounded up to a subsequence.

Proof. Suppose that

‖uk‖ → ∞. (7.1)

Set

vk = uk

‖uk‖
then ‖vk‖ = 1. We can then suppose that vk ⇀ v in E (up to a subsequence). We may sim-
ilarly show that v+

k ⇀ v+ in E, where w+ = max{w,0}. Thanks to the assumptions on the
potential V , the embedding E ↪→ Lq(RN) is compact for all q � N . So, we can assume that{

v+
k (x) → v+(x) a.e. in RN,

v+
k → v+ in Lq(RN), ∀q � N.

We wish to show that v+ = 0 a.e. RN. Indeed, if S+ = {x ∈
RN : v+(x) > 0} has a positive measure, then in S+, we have

lim
k→∞u+

k (x) = lim
k→∞v+

k (x)‖uk‖ = +∞

and thus by (f 4′):

lim
k→∞

F(x,u+
k (x))

|x|β |u+
k (x)|N = +∞ a.e. in S+.
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This means that

lim
n→∞

F(x,u+
k (x))

|x|β |u+
k (x)|N

∣∣v+
k (x)

∣∣N = +∞ a.e. in S+ (7.2)

and so

∫
RN

lim inf
k→∞

F(x,u+
k (x))

|x|β |u+
k (x)|N

∣∣v+
k (x)

∣∣N dx = +∞. (7.3)

However, since {uk} is the arbitrary Cerami sequence at level CM , we see that

‖uk‖N = NCM + N

∫
RN

F (x,u+
k (x))

|x|β dx + o(1)

which implies that

∫
RN

F (x,u+
k (x))

|x|β dx → +∞

and then

lim inf
k→∞

∫
RN

F (x,u+
k (x))

|x|β |u+
k (x)|N

∣∣v+
k (x)

∣∣N dx

= lim inf
k→∞

∫
RN

F (x,u+
k (x))

|x|β‖uk‖N
dx

= lim inf
k→∞

∫
RN

F(x,u+
k (x))

|x|β dx

NCM + N
∫

RN

F(x,u+
k (x))

|x|β dx + o(1)

= 1

N
. (7.4)

Now, note that F(x, s) � 0, by Fatou’s lemma and (7.3) and (7.4), we get a contradiction. So
v � 0 a.e. which means that v+

k ⇀ 0 in E.

Let tk ∈ [0,1] such that

I (tkuk) = max
t∈[0,1]

I (tuk).

For any given R ∈ (0, (
(1− β

N
)αN

α0
)

N−1
N ), let ε = (1− β

N
)αN

RN/(N−1) − α0 > 0, since f has critical growth

(f 1) on RN , there exists C = C(R) > 0 such that
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F(x, s) � C|s|N +
∣∣∣∣ (1 − β

N
)αN

RN/(N−1)
− α0

∣∣∣∣R(α0 + ε, s), ∀(x, s) ∈ RN × R. (7.5)

Since ‖uk‖ → ∞, we have

I (tkuk) � I

(
R

‖uk‖uk

)
= I (Rvk) (7.6)

and by (7.5), ‖vk‖ = 1 and the fact that
∫

RN
F(x,vk)

|x|β dx = ∫
RN

F(x,v+
k )

|x|β dx, we get

NI (Rvk) � RN − NCRN

∫
RN

|v+
k |N

|x|β dx − N

∣∣∣∣ (1 − β
N

)αN

R
N

N−1

− α0

∣∣∣∣
∫

RN

R(α0 + ε,R|v+
k |)

|x|β dx

� RN − NCRN

∫
RN

|v+
k |N

|x|β dx − N

∣∣∣∣ (1 − β
N

)αN

R
N

N−1

− α0

∣∣∣∣
∫

RN

R((α0 + ε)R
N

N−1 , |v+
k |)

|x|β dx

� RN − NCRN

∫
RN

|v+
k |N

|x|β dx − N

∣∣∣∣ (1 − β
N

)αN

R
N

N−1

− α0

∣∣∣∣
∫

RN

R((1 − β
N

)αN, |vk|)
|x|β dx.

(7.7)

Since v+
k ⇀ 0 in E and the embedding E ↪→ Lp(RN) is compact for all p � N , using the

Holder inequality, we can show easily that
∫

RN

|v+
k (x)|N
|x|β dx

k→∞−−−→ 0. Also, by Lemma 1.1,∫
RN

R((1− β
N

)αN ,|vk(x)|)
|x|β dx is bounded by a universal C.

Thus using (7.6) and letting k → ∞ in (7.7), and then letting R → [( (1− β
N

)αN

α0
)

N−1
N ]−, we get

lim inf
k→∞ I (tkuk) � 1

N

((
1 − β

N

)
αN

α0

)N−1

> CM. (7.8)

Note that I (0) = 0 and I (uk) → CM , we can suppose that tk ∈ (0,1). Thus since
DI (tkuk)tkuk = 0,

tNk ‖uk‖N =
∫

RN

f (x, tkuk)tkuk

|x|β dx.

By (f 2′):

NI (tkuk) = tNk ‖uk‖N − N

∫
RN

F (x, tkuk)

|x|β dx

=
∫

RN

[f (x, tkuk)tkuk − NF(x, tkuk)]
|x|β dx
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�
∫

RN

[f (x,uk)uk − NF(x,uk)]
|x|β dx.

Moreover, we have

∫
RN

[f (x,uk)uk − NF(x,uk)]
|x|β dx = ‖uk‖N + NCM − ‖uk‖N + o(1)

= NCM + o(1)

which is a contraction to (7.8). This proves that {uk} is bounded in E. �
References

[1] S. Adachi, K. Tanaka, Trudinger type inequalities in RN and their best exponents, Proc. Amer. Math. Soc. 128
(1999) 2051–2057.

[2] Adimurthi, Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the N -
Laplacian, Ann. Sc. Norm. Super. Pisa 17 (1990) 393–413.

[3] Adimurthi, K. Sandeep, A singular Moser–Trudinger embedding and its applications, NoDEA Nonlinear Differen-
tial Equations Appl. 13 (5–6) (2007) 585–603.

[4] Adimurthi, S.L. Yadava, Multiplicity results for semilinear elliptic equations in bounded domain of R2 involving
critical exponent, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 17 (1990) 481–504.

[5] Adimurthi, Yunyan Yang, An interpolation of Hardy inequality and Trudinger–Moser inequality in RN and its
applications, Int. Math. Res. Not. IMRN 2010 (13) (2010) 2394–2426.

[6] Antonio Ambrosetti, Paul H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct.
Anal. 14 (1973) 349–381.

[7] F.V. Atkinson, L.A. Peletier, Ground states and Dirichlet problems for −�u = f (u) in R2, Arch. Ration. Mech.
Anal. 96 (1986) 147–165.

[8] F.V. Atkinson, L.A. Peletier, Elliptic equations with nearly critical growth, J. Differential Equations 70 (1987) 349–
365.

[9] Haïm Brézis, Elliott Lieb, A relation between pointwise convergence of functions and convergence of functionals,
Proc. Amer. Math. Soc. 88 (3) (1983) 486–490.

[10] Daomin Cao, Nontrivial solution of semilinear elliptic equation with critical exponent in R2, Comm. Partial Differ-
ential Equations 17 (3–4) (1992) 407–435.

[11] L. Carleson, S.Y.A. Chang, On the existence of an extremal function for an inequality of J. Moser, Bull. Sci.
Math. 110 (1986) 113–127.

[12] Giovanna Cerami, An existence criterion for the critical points on unbounded manifolds, Istit. Lombardo Accad.
Sci. Lett. Rend. A 112 (2) (1978) 332–336 (1979) (in Italian).

[13] Giovanna Cerami, On the existence of eigenvalues for a nonlinear boundary value problem, Ann. Mat. Pura Appl.
(4) 124 (1980) 161–179 (in Italian).

[14] João Marcos do Ó, N -Laplacian equations in RN with critical growth, Abstr. Appl. Anal. 2 (3–4) (1997) 301–315.
[15] João Marcos do Ó, Semilinear Dirichlet problems for the n-Laplacian in RN with nonlinearities in the critical

growth range, Differential Integral Equations 9 (5) (1996) 967–979.
[16] João Marcos do Ó, Everaldo Medeiros, Uberlandio Severo, On a quasilinear nonhomogeneous elliptic equation with

critical growth in Rn, J. Differential Equations 246 (4) (2009) 1363–1386.
[17] Duong Minh Duc, Nguyen Thanh Vu, Nonuniformly elliptic equations of p-Laplacian type, Nonlinear Anal. 61 (8)

(2005) 1483–1495.
[18] D.G. de Figueiredo, O.H. Miyagaki, B. Ruf, Elliptic equations in R2 with nonlinearities in the critical growth range,

Calc. Var. Partial Differential Equations 3 (2) (1995) 139–153.
[19] Giovanni Gregori, Generalized solutions for a class of non-uniformly elliptic equations in divergence form, Comm.

Partial Differential Equations 22 (3-4) (1997) 581–617.
[20] Nguyen Lam, Guozhen Lu, N -Laplacian equations in RN with subcritical and critical growth without the

Ambrosetti–Rabinowitz condition, arXiv:1012.5489.



N. Lam, G. Lu / Journal of Functional Analysis 262 (2012) 1132–1165 1165

[21] Nguyen Lam, Guozhen Lu, Existence and multiplicity of solutions to the nonuniformly subelliptic equations of
Q-subLaplacian type with critical growth in Hn , preprint, 2010.

[22] Nguyen Lam, Guozhen Lu, Existence of nontrivial solutions to polyharmonic equations with subcritical and critical
exponential growth, Discrete Contin. Dyn. Syst., in press.

[23] Yuxiang Li, Bernhard Ruf, A sharp Trudinger–Moser type inequality for unbounded domains in Rn, Indiana Univ.
Math. J. 57 (1) (2008) 451–480.

[24] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat.
Iberoam. 1 (1) (1985) 145–201.

[25] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1970/1971) 1077–1092.
[26] R. Panda, Nontrivial solution of a quasilinear elliptic equation with critical growth in Rn, Proc. Indian Acad. Sci.

Math. Sci. 105 (4) (1995) 425–444.
[27] S.I. Pohozaev, On the eigenfunctions of the equation �u + λf (u) = 0, Dokl. Akad. Nauk SSSR 165 (1965) 36–39

(in Russian).
[28] Bernhard Ruf, A sharp Trudinger–Moser type inequality for unbounded domains in R2, J. Funct. Anal. 219 (2)

(2005) 340–367.
[29] Mei-Chi Shaw, Eigenfunctions of the nonlinear equation �u + νf (x,u) = 0 in R2, Pacific J. Math. 129 (1987)

349–356.
[30] A.S. Tersenov, On quasilinear non-uniformly elliptic equations in some non-convex domains, Comm. Partial Dif-

ferential Equations 23 (11–12) (1998) 2165–2185.
[31] Hoang Quoc Toan, Quoc-Anh Ngo, Multiplicity of weak solutions for a class of nonuniformly elliptic equations of

p-Laplacian type, Nonlinear Anal. 70 (4) (2009) 1536–1546.
[32] Neil S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967) 473–483.
[33] Yunyan Yang, Existence of positive solutions to quasilinear equations with exponential growth in the whole Eu-

clidean space, arXiv:1106.4622v1.
[34] Huang Yisheng, Yuying Zhou, Multiple solutions for a class of nonlinear elliptic problems with a p-Laplacian type

operator, Nonlinear Anal. 72 (7–8) (2010) 3388–3395.


