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Abstract. The main purpose of this paper is to establish the existence of non-

trivial solutions to semilinear polyharmonic equations with exponential growth

at the subcritical or critical level. This growth condition is motivated by the
Adams inequality [1] of Moser-Trudinger type. More precisely, we consider the

semilinear elliptic equation

(−∆)m u = f(x, u),

subject to the Dirichlet boundary condition u = ∇u = ... = ∇m−1u = 0, on the

bounded domains Ω ⊂ R2m when the nonlinear term f satisfies exponential
growth condition. We will study the above problem both in the case when

f satisfies the well-known Ambrosetti-Rabinowitz condition and in the case

without the Ambrosetti-Rabinowitz condition. This is one of a series of works
by the authors on nonlinear equations of Laplacian in R2 and N−Laplacian in

RN when the nonlinear term has the exponential growth and with a possible
lack of the Ambrosetti-Rabinowitz condition (see [23], [24]).

1. Introduction. Sharp Moser-Trudinger’s inequality plays an important in geo-
metric analysis and partial differential equations. In 1971, J. Moser [37] sharpened
the result of Pohozaev [38] and Trudinger [42] and found the largest positive con-

stant βn = nω
1

n−1

n−1 , where ωn−1 is the area of the surface of the unit n−ball, such
that if Ω is an open subset of Euclidean space Rn (n ≥ 2) with finite Lebesgue
measure, then there is a constant C0 depending only on n such that

1

|Ω|

∫
Ω

exp
(
β|u(x)|

n
n−1
)
dx ≤ C0

for any β ≤ βn, any u in the Sobolev space W 1,n
0 (Ω), provided ||∇u||Ln(Ω) ≤ 1.

Moser also proved that if β exceeds βn, then the above inequality can not hold with
uniform C0 independent of u.

In 1986, Carleson and Chang [9] proved that the following supremum

sup
u∈W 1,n

0 (Ω),||∇u||Ln(Ω)≤1

{
1

|Ω|

∫
Ω

exp

(
nω

1
n−1

n−1 |u(x)|
n
n−1

)
dx

}
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has extremals for the case when Ω is a ball in Rn for n ≥ 2. We refer the reader to
the works of on existence of extremal functions by Flucher [15] on smooth domains
in Rn when n = 2, by Lin [32] for the case n > 2, on existence of extremal functions
with mean value zero by Leckband [27], Lu and Yang [33] and in Lp norms ([35])
and on existence of extremal functions on Riemannian manifolds by Y.X. Li [28, 29]
and Yang [43], and on unbounded domains by Ruf in R2 [41] and by Y.X. Li and
Ruf in Rn [31]. We also refer the reader to the survey article by S.Y. A. Chang and
P. Yang on Moser-Trudinger inequalities and their applications in PDEs [10].

D. Adams was the first one who finds the sharp constants for higher order Moser’s
inequality [1]. To state Adams’ result, we use the symbol ∇mu, m is a positive
integer, to denote the m−th order gradient for u ∈ Cm, the class of m−th order
differentiable functions:

∇mu =

{
4m

2 u for m even

∇4m−1
2 u for m odd.

where ∇ is the usual gradient operator and 4 is the Laplacian. We use ||∇mu||p to
denote the Lp norm (1 ≤ p ≤ ∞) of the function |∇mu|, the usual Euclidean length

of the vector ∇mu. We also use W k,p
0 (Ω) to denote the Sobolev space which is a

completion of C∞0 (Ω) under the norm of ||u||Lp(Ω) + ||∇ku||Lp(Ω). We will also use

the notation Hm
0 (Ω) to denote the space Wm,2

0 in the subsequent sections of this
paper. Then Adams proved the following

Theorem A. Let Ω be an open and bounded set in Rn. If m is a positive integer
less than n, then there exists a constant C0 = C(n,m) > 0 such that for any

u ∈Wm, nm
0 (Ω) and ||∇mu||

L
n
m (Ω)

≤ 1, then

1

|Ω|

∫
Ω

exp(β|u(x)|
n

n−m )dx ≤ C0

for all β ≤ β(n,m) where

β(n,m) =


n

wn−1

[
πn/22mΓ(m+1

2 )

Γ(n−m+1
2 )

] n
n−m

when m is odd

n
wn−1

[
πn/22mΓ(m2 )

Γ(n−m2 )

] n
n−m

when m is even.

Furthermore, for any β > β(n,m), the integral can be made arbitrarily large.

Note that β(n, 1) coincides with Moser’s value of βn and β(2m,m) = 22mπmΓ(m+
1) for both odd and even m. In the particularly interesting case n = 4 and m = 2,
β(4, 2) = 32π2 and the existence of the extremal function has been established in
[30], [34]. The Adams inequality was extended to compact Riemannian manifolds
without boundary by Fontana [16].

Motivated by the Adams inequality, we consider the following polyharmonic prob-
lem

(−∆)
m
u = f(x, u) in Ω ⊂ Rn (1)

with Dirichlet boundary conditions

u = ∇u = ... = ∇m−1u = 0 on ∂Ω

Here Ω is a sufficiently smooth (say Cm−1) bounded domain of Rn, n ≥ 2, m ≥ 1,
∆ stands for the Laplace operator and f : Ω × R → R satisfies some regularity
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and growth conditions. More precisely, we are interested in existence of nontrivial
solutions of (1) when the nonlinear term has the subcritical or critical exponential
growth.

When m = 1, n = 2, problem (1) becomes the well-known Laplacian problem on
bounded domains Ω ⊂ R2 and has been investigated in [2, 13, 17, 23, 36]. In fact, it
is well known that problems involving the Laplacian appear in many contexts. Some
of these problems come from different areas of applied mathematics and physics.
For example, they may be found in the study of propagation phenomena of solitary
waves, Newtonian fluids and nonlinear elasticity problems. It also appears in the
search for solitons of certain Lorentz-invariant nonlinear field equations. Those
authors considered the maximal growth on the nonlinear term f(x, u) which allowed
them to treat the equation (1) (in the case m = 1) variationally. Here those maximal
growths are given by Trudinger-Moser inequality [37, 42] which says that

exp
(
αu2

)
∈ L1 (Ω) , ∀u ∈W 1,2

0 (Ω) , ∀α > 0

and

sup
u∈W 1,2

0 (Ω),
∫
Ω
|∇u|2dx≤1

∫
Ω

exp
(
αu2

)
≤ C (Ω) <∞, if α ≤ 4π

Therefore, from this result they have naturally associated notions of criticality and
subcriticality, namely, they say that a function f : Ω×R→ R has subcritical growth
on Ω ⊂ R2 if

lim
|u|→∞

|f(x, u)|
exp (αu2)

= 0, uniformly on Ω, ∀α > 0

and f has critical growth on Ω if there exists α0 > 0 such that

lim
|u|→∞

|f(x, u)|
exp (αu2)

= 0, uniformly on Ω, ∀α > α0

and

lim
|u|→∞

|f(x, u)|
exp (αu2)

= +∞, uniformly on Ω, ∀α < α0.

We should stress that in those works of Adimurthi, de Figueiredo-Miyagaki-Ruf,
Miyagaki-Souto, J.M. do Ó, etc. [2, 13, 17, 23, 36], the Ambrosetti-Rabinowitz con-
dition played an important role. Indeed, this well-known Ambrosetti-Rabinowitz
condition ensures the boundedness of the Palais-Smale sequence which is very neces-
sary for using the Mountain-Pass Theorem [3]. There have been some works trying
to remove this condition, but only in the case of subcritical polynomial growth. The
Ambrosetti-Rabinowtiz condition in the exponential growth (both subcritical and
critical case) was first removed for the Laplacian operator in R2 in [23].

When m ≥ 2, many authors have studied (1), specially in the case of the bihar-
monic m = 2. See for example, in [14, 6, 18, 20, 21, 26, 39, 40], where the authors
treated problem in the case 2m < n and the nonlinearity has the subcritical and
critical polynomial growth of power ≤ n+2m

n−2m . It is worthwhile to notice that poly-

harmonic operators (−4)m with Dirichlet boundary conditions in general do not
satisfy the maximum principle if m ≥ 2 (see [5] for existence of minimal solutions
for biLaplacian).

We now consider in this paper the case n = 2m. So it’s necessary to introduce
the definition of the subcritical (exponential) and critical (exponential) growth in
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this case. By the Adams’ inequalities (see [1]) for the high order derivatives (see
Theorem A), namely,

sup
u∈Hm0 (Ω),

∫
Ω
|∇mu|pdx≤1

∫
Ω

exp
(
α |u|p

′)
dx ≤ C (m,n,Ω) <∞, for all α ≤ β(m,n)

where p = n/m and p′ = p/(p − 1). Therefore, it is natural to expect that the
critical growth functions are, roughly speaking, the nonlinearities that behave like

exp(|t|n/(n−m)
) at infinity. Since we consider in this paper the case n = 2m, we have

the same definition for the subcritical and critical (exponential) growth as in the
case m = 1, n = 2. Note that β(2m,m) = m! (4π)

m
. As we mentioned earlier, for

the case of Laplace operator (that is m = 1 and n = 2), the answer of the existence
of nontrivial solutions has been given in many works, such as in [2, 13, 17], etc.
Nevertheless, in the case of polyharmonic operators, not much has been done about
the existence of nontrivial solution when the nonlinear term f(x, u) satisfies the
subcritical and critical exponential growth in the sense of Adams’ inequalities. In
[22], O. Lakkis used the same method of using Nehari manifold as Adimurthi did
when he treated the Laplace operator in [2]. As a result, the author in [22] must
require much restrictive conditions on the nonlinear term f . For instance (among
others), it was assumed that f is C1 and satisfies

∂f

∂u
(x, u) >

f(x, u)

u
, ∀u ∈ R \ {0} , ∀x ∈ Ω.

We also mention that in [4], the authors treated the case when f(x, u) = eu, which is
of exponential growth but not of the critical power implied by the Adams inequality.

In this paper, we will consider the problem in the case n = 2m in bounded
domains Ω ⊂ Rn. More precisely, we study the following problem in both the
subcritical and critical cases of exponential growth:{

(−∆)
m
u = f(x, u) in Ω ⊂ R2m

u = ∇u = ... = ∇m−1u = 0 on ∂Ω
(P )

We now recall the definition of the subcritical and critical growth for our case
n = 2m. We say that f has subcritical growth if for all α > 0

lim
t→∞

|f(x, t)|
exp (αt2)

= 0, uniformly on x ∈ Ω ⊂ Rn (SCG)

and f has critical growth if there exists α0 > 0 such that

lim
t→∞

|f(x, t)|
exp (αt2)

= 0, uniformly on x ∈ Ω, ∀α > α0 (CG)

lim
t→∞

|f(x, t)|
exp (αt2)

=∞, uniformly on x ∈ Ω, ∀α < α0

As we pointed out earlier, this notion of criticality is motivated by the so-called
Trudinger-Moser inequality and Adams’ inequalities. We will prove results analo-
gous to [22] under much less restrictive conditions than those in [22]. Our approach
is similar to those approaches in [13, 17] for the Laplace operator in domains in
R2 (i.e., m = 1 and n = 2). Indeed, again in the critical case, our Euler-Lagrange
functional does not satisfy the Palais-Smale condition at all level. Similar to the
idea used by Brezis and Nirenberg [8], we use the test functions related to the op-
timal Adams’ inequalities to prove that our Euler-Lagrange functional satisfies the
Palais-Smale condition in a certain level and that is sufficient to get the nontriv-
ial solution thanks to the Ambrosetti-Rabinowitz (AR) condition that f satisfies.
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However, results in [13, 17] do not include the case when f does not satisfies the
Ambrosetti-Rabinowitz (AR) condition. In this paper, using the method similar to
that in [23, 24], we also consider the existence of nontrivial solutions to the poly-
harmonic operators when f does not satisfy the well-known Ambrosetti-Rabinowitz
condition.

We begin with two types of conditions on f that will be assumed in all theorems
below. The (H)-type condition is when f satisfies the well-known Ambrosetti-
Rabinowitz (AR) condition and the (L)-type condition is without the (AR) condi-
tion.

We first introduce the constant Λ2m,m which is defined by

Λ2m,m (Ω) = inf
Hm0 (Ω)\{0}

‖u‖2

‖u‖22
be the first eigenvalue of the poly-Laplacian operator ∆m (see [19]). The constant
M in the following conditions will be defined in Section 2.

1.1. The (H)-type conditions. This kind of condition includes the well-known
Ambrosetti-Rabinowitz condition:

(H1) f : Ω×R→ R is continuous, f(x, u) ≥ 0 on Ω× [0,∞) and f(x, u) = 0 on
Ω× (−∞, 0] .

(H2) ∃R > 0, ∃M > 0 such that ∀u ≥ R, ∀x ∈ Ω :

0 < F (x, u) ≤Mf(x, u)

(H3) lim
u→0+

sup 2F (x,u)

|u|2 < Λ2m,m (Ω), uniformly on x ∈ Ω.

(H4) lim
u→∞

uf(x, u) exp(−α0 |u|2) ≥ β1 >
32π2

α0R4M .

We should stress that as a consequence of (H)-type conditions, f automatically
satisfies the following

(H5) There is a positive constant C such that ∀u ≥ R0, ∀x ∈ Ω :

F (x, u) ≥ C exp

(
1

M
u

)
and

(H6) ∃R0 > 0, ∃θ > 2 such that ∀ |u| ≥ R0, ∀x ∈ Ω :

θF (x, u) ≤ uf(x, u)

The above condition (H6) is exactly the well-known Ambrosetti-Rabinowitz condi-
tion.

1.2. The (L)-type conditions. This kind of condition is without the well-known
Ambrosetti-Rabinowitz condition:
(L1) f : Ω × R → R is continuous, f(x, u) ≥ 0 on Ω × [0,∞) and f(x, u) = 0 on
Ω× (−∞, 0] .

(L2) : lim
u→+∞

F (x,u)
u2 = +∞ uniformly on x ∈ Ω.

(L3) : There is C∗ ≥ 0, θ ≥ 1 such that H(x, t) ≤ θH(x, s) + C∗ for all 0 < t <
s, ∀x ∈ Ω where H(x, u) = uf(x, u)− 2F (x, u).

(L4) lim
u→0+

sup 2F (x,u)

|u|2 < Λ2m,m (Ω), uniformly on x ∈ Ω.

(L5) lim
u→∞

uf(x, u) exp(−α0 |u|2) ≥ β1 >
32π2

α0R4M .



2192 NGUYEN LAM AND GUOZHEN LU

(L6) f is in the class (L0), i.e., for any {uk} inHm
0 (Ω) , if

{
uk ⇀ 0 in Hm

0 (Ω)
f(x, uk)→ 0 in L1 (Ω)

then F (x, uk)→ 0 in L1 (Ω) (up to a subsequence).
We note that the (L)− type condition does not imply the well-known Ambrosetti-

Rabinowitz condition (H6).
We end this introduction with the following remarks. This paper, along with a

series of works by the authors [23], [24], is an attempt to study the existence of
nontrivial nonnegative solutions to nonlinear equations when the nonlinear term
satisfies the subcritical and critical exponential growth but does not satisfy the
well-known Ambrosetti-Rabinowitz (AR) condition (see also [25] for N−Laplace
equations with nonlinear terms without satisfying the (AR) condition on unbounded
domains). The lack of this condition generates many more kinds of nonlinearity
of exponential growth which was not studied in the literature. There are many
interesting examples of nonlinear term f which does not satisfy the (AR) condition,
but still allows us to have the existence of nontrivial and nonnegative solutions.

More precisely, in [23], we let Ω be a bounded smooth domain in R2 and consider
the following class of semilinear elliptic problems{

−∆u = f (x, u)

u ∈W 1,2
0 (Ω) \ {0} (2)

Further in [24], we let Ω be a bounded domain in RN and consider the following
nonlinear elliptic equation of N -Laplacian type:{

−∆Nu = f (x, u)

u ∈W 1,2
0 (Ω) \ {0} (3)

Both in [23] and [24], the nonlinear term f is of subcritical or critical exponential
growth without the Ambrosetti-Rabinowitz condition. Earlier works in the litera-
ture on the existence of nontrivial solutions to Laplacian in R2 and N−Laplacian
in RN when the nonlinear term f has the exponential growth only deal with the
case when f satisfies the (AR) condition.

We mention in passing that in a recent paper of the authors [7], we consider the
Bessel type polyharmonic equations in the whole space R2n of the form

(I −∆)
n
u = f(x, u) in R4n.

We study the existence of the nontrivial solutions when the nonlinear terms have
the critical exponential growth in the sense of Adams’ inequalities Our approach
is variational methods such as the Mountain Pass Theorem without Palais-Smale
condition combining with a version of a result due to Lions for the critical growth
case. Moreover, using the regularity lifting by contracting operators and regularity
lifting by combinations of contracting and shrinking operators, we prove that our
solutions are uniformly bounded and Lipschitz continuous. This appears to be the
first work concerning existence and regularity of nontrivial nonnegative solutions of
the Bessel type polyharmonic equation with exponential growth of the nonlinearity
in the whole Euclidean space.

This paper is organized as follows:
In Section 2, we introduce some notations and state our main results (Theorems

2.1, 2.2, 2.3, 2.4). In Section 3, we establish the existence of nontrivial solutions to
our problem under (H)-type conditions, namely the Ambrosetti-Rabinowitz condi-
tion holds. Section 4 deals with the existence of nontrivial solutions to our problem
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with the (L)-conditions, namely when the nonlinear term f does not satisfy the
Ambrosetti-Rabinowitz condition.

2. Notations and main results. Let Ω be a bounded domain in R2m. Denote,

J(u) =
1

2

∫
Ω

|∇mu|2 dx−
∫

Ω

F (x, u)dx

F (x, u) =

u∫
0

f(x, s)ds

‖u‖ =

(∫
Ω

|∇mu|2 dx
)1/2

β0 = β(2m,m) = m! (4π)
m

Let

Λ2m,m (Ω) = inf
Hm0 (Ω)\{0}

‖u‖2

‖u‖22
be the first eigenvalue of the poly-Laplacian operator ∆m (see [19]). By a direct
method of variation, one can show that Λ2m,m (Ω) > 0. We assume that there exist
positive constants C and β such that

|f(x, t)| ≤ C exp
(
βt2
)
, ∀x ∈ Ω, ∀t ∈ R. (4)

In particular, this is the case if f has subcritical or critical growth. Then J is a C1

function: Hm
0 (Ω)→ R and

DJ(u)v =

∫
Ω

∇mu∇mvdx−
∫

Ω

f(x, u)vdx, ∀v ∈ Hm
0 (Ω)

Now, we will construct particular functions, namely the Adams functions. Denote
by B the unit ball B(0, 1) in R2m and by Bl := B (0, l) whenever l ∈ (0, 1) . We have
the following result (see [1, 22]):

Claim 1. For all l ∈ (0, 1) there exists

Ul ∈ ω := {u ∈ Hm
0 (B) : u|Bl = 1}

such that

‖Ul‖2 = Cm,2 (Bl;B) ≤ β0

2m log
(

1
l

)
Cm,2 (K;E) denotes the (m, 2)-conductor capacity of K in E, whenever E is an

open set and K a relatively compact subset of E; it is defined as

Cm,2 (K;E) := inf
{
‖∇mu‖22 : u ∈ C∞0 (E), u|K = 1

}
.

Now, let x0 ∈ Ω, R ≤ R0 = dist (x0, ∂Ω), the Adams function is the function

Ãr(x) =


√

2m log(Rr )
β0

Ur/R
(
x−x0

R

)
, if |x− x0| < R

0, if |x− x0| ≥ R
where 0 < r < R and Ul is as in Claim 1.

It’s easy to check that the Adams functions satisfy
∥∥∥Ãr∥∥∥ ≤ 1. Put

M = lim
k→∞

∫
1
k≤|x−x0|≤1

exp
(

2m log k
∣∣UR/k (x)

∣∣2) dx



2194 NGUYEN LAM AND GUOZHEN LU

Note that M > 0.
Then we have the following results:

Theorem 2.1. Assume that f has subcritical growth and satisfies the (H)-type
conditions: (H1), (H2), (H3). Then, problem (2) has a nontrivial solution.

Theorem 2.2. Assume that f has critical growth and satisfies the (H)-type condi-
tions: (H1), (H2), (H3), (H4). Then, problem (2) has a nontrivial solution.

Theorem 2.3. Assume that f has subcritical growth and satisfies the (L)-type
conditions: (L1), (L2), (L3), (L4). Then, problem (2) has a nontrivial solution.

Theorem 2.4. Assume that f has critical growth and satisfies the (L)-type condi-
tions: (L1), (L2), (L3) with C∗ = 0, θ = 1, (L4), (L5), (L6). Then, problem (2)
has a nontrivial solution.

Note that the superlinear condition (L2) is just a consequence of the critical
growth condition of the nonlinear term f .

3. Proof of Theorems 2.1 and 2.2: Existence under the (H)-type condi-
tion - with the Ambrosetti-Rabinowitz condition.

3.1. Mountain pass geometry.

Lemma 3.1. J(tu)→ −∞ as t→∞ for all u ∈ Hm
0 (Ω) \ {0} with u ≥ 0.

Proof. Let u ∈ Hm
0 (Ω) \ {0} , u ≥ 0. By (H5), for p > 2, there exist M > 0 and A

such that for all (x, s) ∈ Ω× R+

F (x, s) ≥Msp −A.
Then

J(tu) ≤ t2

2
‖u‖2 −Mtp

∫
Ω

|u|p dx+O(1)

Since p > 2, we have J(tu)→ −∞ as t→∞.

Lemma 3.2. There exist δ, ρ > 0 such that

J(u) ≥ δ if ‖u‖ = ρ

Proof. By (H1) , (H3) and (4), there exist κ, τ > 0 and q > 2 such that

F (x, s) ≤ 1

2
(Λ2m,m (Ω)− τ) |s|2 + C exp

(
κ |s|2

)
|s|q , ∀ (x, s) ∈ Ω× R

By Holder’s inequality and the Adams’ inequalities, we have:∫
Ω

exp
(
κ |u|2

)
|u|q dx ≤

(∫
Ω

exp

(
κr ‖u‖2

(
|u|
‖u‖

)2
)
dx

)1/r (∫
Ω

|u|r
′q
dx

)1/r′

≤ C
(∫

Ω

|u|r
′q
dx

)1/r′

if r > 1 sufficiently close to 1 and ‖u‖ ≤ σ, where κrσ2 < β0. Thus by the definition
of Λ2m,m (Ω) and the Sobolev embedding:

J(u) ≥ 1

2

(
1− (Λ2m,m (Ω)− τ)

Λ2m,m (Ω)

)
‖u‖2 − C ‖u‖q

Since τ > 0 and q > 2, we may choose ρ, δ > 0 such that J(u) ≥ δ if ‖u‖ = ρ.
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3.2. The subcritical case-Proof of Theorem 2.1.

Lemma 3.3. The functional J satisfies (PS)c for all c ∈ R.

Proof. Let {uk} ⊂ Hm
0 (Ω) be a Palais-Smale sequence, i.e.

J(uk) =
1

2
‖uk‖2 −

∫
Ω

F (x, uk)dx→ c (5)

|DJ(uk)v| =
∣∣∣∣∫

Ω

∇muk∇mvdx−
∫

Ω

f(x, uk)vdx

∣∣∣∣ ≤ εn ‖v‖ (6)

where εn → 0. Choose v = uk in (6), we get

1

2
‖uk‖2 −

∫
Ω

F (x, uk)dx→ c∣∣∣∣‖uk‖2 − ∫
Ω

f(x, uk)ukdx

∣∣∣∣ ≤ εn ‖uk‖
which thus yields(

θ

2
− 1

)
‖uk‖2 +

∫
Ω

[f(x, uk)uk − θF (x, uk)] dx ≤ O(1) + εn ‖uk‖

By the Ambrosetti-Rabinowitz condition (H6), we have(
θ

2
− 1

)
‖uk‖2 ≤ O(1) + εn ‖uk‖

and thus {uk} is bounded. WLOG, we suppose that

‖uk‖ ≤ K
uk ⇀ u0 weakly in Hm

0 (Ω)

uk → u0 strongly in Lp (Ω) , ∀p ≥ 1.

uk (x)→ u0 (x) a.e. Ω

Now, since f has the subcritical growth on Ω, we can find a constant cK > 0 such
that

f (x, s) ≤ cK exp

(
β0

2K2
|s|2
)
, ∀ (x, s) ∈ Ω× R

then by the Holder’s inequality and Adams’ inequalities,∣∣∣∣∫
Ω

f (x, uk) (uk − u) dx

∣∣∣∣ ≤ ∫
Ω

|f (x, uk) (uk − u)| dx

≤
(∫

Ω

|f (x, uk)|2 dx
)1/2(∫

Ω

|uk − u|2 dx
)1/2

≤ C
(∫

Ω

exp

(
β0

K2
|uk|2

)
dx

)1/2

‖uk − u‖2

≤ C

(∫
Ω

exp

(
β0

K2
‖uk‖2

∣∣∣∣ uk‖uk‖
∣∣∣∣2
)
dx

)1/2

‖uk − u‖2

≤ C ‖uk − u‖2
n→∞→ 0.
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Similarly, since uk ⇀ u weakly in Hm
0 (Ω) ,

∫
Ω
f (x, u) (uk − u) dx → 0. Thus we

can conclude that ∫
Ω

(f (x, uk)− f (x, u)) (uk − u) dx
n→∞→ 0 (7)

Also, by (6) we have

〈DJ(uk)−DJ(u), (uk − u)〉 n→∞→ 0 (8)

From (7) and (8), we get

‖uk − u‖
n→∞→ 0

thus uk
n→∞→ u strongly in Hm

0 (Ω) which means that J satisfies (PS)c.

By the above lemma, it’s easy to deduce Theorem 2.1 by the well-known Moun-
tain Pass Theorem.

3.3. The critical case-Proof of Theorem 2.2.

Lemma 3.4. There exists k such that

max {J(tAk) : t ≥ 0} < β0

2α0

where Ak = ÃR/k.

Proof. Suppose for the sake of contradiction that for all k we have

max {J(tAk) : t ≥ 0} ≥ β0

2α0

So for all k, we can choose tk > 0 such that

J(tkAk) = max {J(tAk) : t ≥ 0}
which thus

J(tkAk) =
t2k ‖Ak‖

2

2
−
∫

Ω

F (x, tkAk)dx ≥ β0

2α0
.

and

t2k ‖Ak‖
2

=

∫
Ω

tkAkf(x, tkAk)dx (9)

Since F (x, s) ≥ 0 and ‖Ak‖2 ≤ 1, we get

t2k ≥
β0

α0
(10)

On the other hand, given ε > 0, there exists Rε > 0 such that

uf(x, u) ≥ (β1 − ε) exp
(
α0 |u|2

)
, ∀u ≥ Rε.

Thus, we have

t2k ≥ (β1 − ε)
∫
B(x0,R/k)

exp
(
α0 |tkAk|2

)
dx

≥ (β1 − ε)
ω2m−1

2m

(
R

k

)2m

exp

(
α0 |tk|2

2m log k

β0

)
≥ (β1 − ε)

ω2m−1

2m
R2m exp

([
α0 |tk|2

β0
− 1

]
2m log k

)
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for k large, which implies that (tk) is bounded and moreover, by (10),

t2k →
β0

α0
(11)

‖Ak‖ → 1

It’s also easy to see that

Ak(x)→ 0 a.e. x ∈ Ω.

Now, let

Xk = {x ∈ Ω : tkAk ≥ Rε} and Yk = Ω \Xk

then the characteristic functions χYk → 1 a.e. x ∈ Ω. Therefore, in view of the
Lebesgue Dominated Convergence Theorem, we have∫

Yn

tkAkf(x, tkAk)dx→ 0∫
Yk

exp
(
α0 |tkAk|2

)
dx→ ω2m−1

2m
R2m

Also,∫
B(x0,R)

exp
(
α0 |tkAk|2

)
dx ≥

∫
B(x0,R)

exp
(
β0 |An|2

)
dx

= R2m

∫
|x−x0|≤1/k

exp
(
β0 |Ak|2

)
dx

+R2m

∫
1
k≤|x−x0|≤1

exp
(
β0 |Ak|2

)
dx

=
ω2m−1

2m
R2m

+R2m

∫
1
k≤|x−x0|≤1

exp
(

2m log k
∣∣UR/k (x)

∣∣2) dx
So, since

t2k ≥ (β1 − ε)
∫
B(x0,R)

exp
(
α0 |tkAk|2

)
dx+

∫
Yk

tkAkf(x, tkAk)dx

− (β1 − ε)
∫
Yk

exp
(
α0 |tkAk|2

)
dx

we will get
β0

α0
≥ (β1 − ε)R2mM

and
β0

α0R2mM
≥ β1

which is a contradiction.

Lemma 3.5. Let {uk} ⊂ Hm
0 (Ω) be a Palais-Smale sequence. Then {uk} has a

subsequence, still denoted by {uk}, and u ∈ Hm
0 (Ω) such that{

uk ⇀ u weakly in Hm
0 (Ω)

f(x, uk) −→ f(x, u) strongly in L1 (Ω)
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Proof. Let {uk} ⊂ Hm
0 (Ω) be a Palais-Smale sequence, i.e.

J(uk) =
1

2
‖uk‖2 −

∫
Ω

F (x, uk)dx→ c

|DJ(uk)v| =
∣∣∣∣∫

Ω

∇muk∇mvdx−
∫

Ω

f(x, uk)vdx

∣∣∣∣ ≤ εn ‖v‖
where εn → 0. Similarly as in the Lemma 3.3, we can prove that {uk} is bounded
thanks to the (AR) condition. Moreover,

∫
Ω
F (x, uk)dx and

∫
Ω
f(x, uk)ukdx are

also bounded. So WLOG, we suppose that

‖uk‖ ≤ K;

∫
Ω

F (x, uk)dx ≤ K;

∫
Ω

f(x, uk)ukdx ≤ K

uk ⇀ u weakly in Hm
0 (Ω)

uk → u strongly in Lp (Ω) , ∀p ≥ 1.

uk (x)→ u (x) a.e. Ω

Use the argument as in [13], Lemma 4, we get the lemma.

Now, thanks to the Mountain Pass Geometry of the functional J and Lemma
3.4, we can find a Palais-Smale sequence {uk} at the level 0 < CM < β0

2α0
. More

precisely, we have

J(uk) =
1

2
‖uk‖2 −

∫
Ω

F (x, uk)dx→ c (12)

|DJ(uk)v| =
∣∣∣∣∫

Ω

∇muk∇mvdx−
∫

Ω

f(x, uk)vdx

∣∣∣∣ ≤ εn ‖v‖ (13)

By Lemma 3.5, there exists u in Hm
0 (Ω) such that{

uk ⇀ u weakly in Hm
0 (Ω)

f(x, uk) −→ f(x, u) strongly in L1 (Ω)

Moreover, it’s easy to check that

DJ(u)v = 0, ∀v ∈ C∞0 (Ω)

which means that u is a weak solution of (2). So it is remainder to prove that
u is not trivial. Suppose for the sake of contradiction that u = 0, then by (H2)
and the generalized Lebesgue Dominated Convergence Theorem, we have thanks to
f(x, uk) −→ 0 strongly in L1 (Ω) :∫

Ω

F (x, uk)dx −→ 0 strongly in L1 (Ω)

So from (12), we have

‖uk‖2 → 2CM <
β0

α0

It means that we can choose q > 1 sufficiently close to 1 such that for n sufficiently
large

qα0 ‖uk‖2 < β0
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Notice that f has critical growth (at α0) and the Adams’ inequalities, we can
conclude that∫

Ω

|f(x, uk (x))|q dx ≤ C
∫

Ω

exp
[
qα0 |uk|2

]
dx

≤ C
∫

Ω

exp

[
qα0 ‖uk‖2

∣∣∣∣ uk‖uk‖
∣∣∣∣2
]
dx ≤ O(1)

By (13) with v = uk, we have ‖uk‖2 → 0 and it’s a contradiction.

4. Proof of Theorems 2.3 and 2.4: Existence under the (L)-type condition
- without the Ambrosetti-Rabinowitz condition. In this case, we still use the
variational method to find the solution for (2). However, since we don’t have the
(AR) condition, we need to use a modified version of Mountain Pass Theorem which
was introduced in [11, 12].

Definition 4.1. Let (X, ‖·‖X) be a real Banach space with its dual space
(X∗, ‖·‖X∗) and I ∈ C1 (X,R). For c ∈ R, we say that I satisfies the (C)c condition
if for any sequence {xk} ⊂ X with

I (xk)→ c, ‖DI (xk)‖X∗ (1 + ‖xk‖X)→ 0

there is a subsequence {xkl} such that {xkl} converges strongly in X.

We have the following versions of the Mountain Pass Theorem (see [3, 11, 12]):

Lemma 4.2. Let (X, ‖·‖X) be a real Banach space and I ∈ C1 (X,R) satisfies the
(C)c condition for any c ∈ R, I(0) = 0 and

(i) There are constants ρ, α > 0 such that I|∂Bρ ≥ α.
(ii) There is an e ∈ X \Bρ such that I(e) ≤ 0.
Then c = inf

γ∈Γ
max

0≤t≤1
I(γ (t)) ≥ α is a critical value of I where

Γ =
{
γ ∈ C0 ([0, 1] , X) , γ(0) = 0, γ (1) = e

}
.

Lemma 4.3. Let (X, ‖·‖X) be a real Banach space and I ∈ C1 (X,R) satisfies
I(0) = 0 and

(i) There are constants ρ, α > 0 such that I|∂Bρ ≥ α.
(ii) There is an e ∈ X \Bρ such that I(e) ≤ 0.
Let CM be characterized by

CM = inf
γ∈Γ

max
0≤t≤1

I(γ (t))

where
Γ =

{
γ ∈ C0 ([0, 1] , X) , γ(0) = 0, γ (1) = e

}
.

Then I possesses a (C)CM sequence.

4.1. The geometry of the functional J . In this subsection, again we will check
the Mountain Pass properties of the functional J .

Lemma 4.4. Then J(tu) → −∞ as t → ∞ for all nonnegative function u ∈
Hm

0 (Ω) \ {0}

Proof. Let u ∈ Hm
0 (Ω) \ {0} , u ≥ 0. By (L2), there exist M > ‖u‖2

2‖u‖22
> 0 and A

such that for all (x, s) ∈ Ω× R+

F (x, s) ≥Ms2 −A.
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Then

J(tu) ≤ t2

2
‖u‖2 −Mt2

∫
Ω

|u|2 dx+O(1)

= t2

(
‖u‖2

2
−M

∫
Ω

|u|2 dx

)
+O(1)

Since M > ‖u‖2

2‖u‖22
, we have J(tu)→ −∞ as t→∞.

Lemma 4.5. There exist δ, ρ > 0 such that

J(u) ≥ δ if ‖u‖ = ρ

Proof. It’s similar to Lemma 3.2.

4.2. The subcritical case-Proof of Theorem 2.3.

Lemma 4.6. The functional J satisfies (C)c for all c ∈ R.

Proof. Let {uk} ⊂ Hm
0 (Ω) be a Palais-Smale sequence, i.e.

J(uk) =
1

2
‖uk‖2 −

∫
Ω

F (x, uk)dx→ c (14)

(1 + ‖uk‖) |DJ(uk)v| = (1 + ‖uk‖)
∣∣∣∣∫

Ω

∇muk∇mvdx−
∫

Ω

f(x, uk)vdx

∣∣∣∣ ≤ εk ‖v‖
(15)

where εn → 0. Choose v = uk in (15), we get

1

2
‖uk‖2 −

∫
Ω

F (x, uk)dx→ c∣∣∣∣‖uk‖2 − ∫
Ω

f(x, uk)ukdx

∣∣∣∣ ≤ εn ‖uk‖
1 + ‖uk‖

We first show that {uk} is bounded which is our main purpose in this section.
Indeed, suppose that

‖uk‖ → ∞ (16)

Setting

vk =
uk
‖uk‖

then ‖vk‖ = 1 so we can suppose that vk ⇀ v in Hm
0 (Ω). We may similarly show

that v+
k ⇀ v+ in Hm

0 (Ω), where w+ = max {w, 0} . Since Ω is bounded, Sobolev’s

imbedding theorem implies that

{
v+
k (x)→ v+(x) a.e. in Ω
v+
k → v+ in Lp (Ω) , ∀p ≥ 1

. We will prove

that v+ = 0 a.e. Ω. Indeed, suppose µ (Ω+) = µ {x ∈ Ω : v+ (x) > 0} > 0. Then in
Ω+, we have

lim
k→∞

uk(x) = lim
k→∞

v+
k (x) ‖uk‖ = +∞

and thus by (L2) :

lim
k→∞

F (x, uk(x))

|uk(x)|2
= +∞ a.e. in Ω+

This means that

lim
k→∞

F (x, uk(x))

|uk(x)|2
∣∣v+
k (x)

∣∣2 = +∞ a.e. in Ω+ (17)
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Also, by (14), we see that

‖uk‖2 = 2c+ 2

∫
Ω

F (x, uk (x))dx+ o(1) (18)

which implies that ∫
Ω

F (x, uk (x))dx→ +∞ (19)

Now, note that F (x, s) ≥ 0, by Fatou’s lemma and (17), (18) and (19):

+∞ =

∫
Ω+

lim inf
k→∞

F (x, uk(x))

|uk(x)|2
∣∣v+
k (x)

∣∣2 dx
≤ lim inf

k→∞

∫
Ω+

F (x, uk(x))

|uk(x)|2
∣∣v+
k (x)

∣∣2 dx
≤ lim inf

k→∞

∫
Ω

F (x, uk(x))

‖uk‖2
dx

= lim inf
k→∞

∫
Ω+ F (x, uk(x)) dx

2c+ 2
∫

Ω
F (x, uk (x))dx+ o(1)

=
1

2

This is a contradiction. So we get v ≤ 0 a.e.
In fact, we have v = 0 a.e. Indeed, since

(1 + ‖uk‖) |DJ(uk)v| = (1 + ‖uk‖)
∣∣∣∣∫

Ω

∇muk∇mvdx−
∫

Ω

f (x, uk) vdx

∣∣∣∣ ≤ εk ‖v‖
we get∫

Ω

∇muk∇mvdx ≤
∫

Ω

∇muk∇mvdx−
∫

Ω

f (x, uk) vdx ≤ εk ‖v‖
(1 + ‖uk‖)

→ 0

by noticing that since v ≤ 0, f (x, uk) v ≤ 0 a.e. Ω, thus −
∫

Ω
f (x, uk) v ≥ 0. So we

have ∫
Ω

∇mvk∇mvdx =

∫
Ω
∇muk∇mvdx
‖uk‖

≤ εk ‖v‖
(1 + ‖uk‖) ‖uk‖

→ 0

On the other hand, since vk ⇀ v in Hm
0 (Ω),∫

Ω

∇mvk∇mvdx→
∫

Ω

|∇mv|2 dx

which implies v = 0.
Next, let tk ∈ [0, 1] such that

J (tkuk) = max
t∈[0,1]

J (tuk)

For all R > 0, by (SCG), there exists C > 0 such that

F (x, s) ≤ C |s|+ exp

(
β0

R2
s2

)
, ∀ (x, s) ∈ Ω× R. (20)

Also since ‖uk‖ → ∞, we have

J (tkuk) ≥ J
(

R

‖uk‖
uk

)
= J (Rvk) (21)
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and by (20) and noting that ‖vk‖ = 1 :

2J (Rvk) ≥ R2 − 2CR

∫
Ω

|vk(x)| dx− 2

∫
Ω

exp
(
β0v

2
k(x)

)
dx (22)

By Adams’ inequalities,
∫

Ω
exp

(
β0v

2
k(x)

)
dx is bounded by a constant C (Ω) > 0.

Also, since vk ⇀ 0 in Hm
0 (Ω),

∫
Ω
|vk(x)| dx→ 0. Thus if we let k →∞ in (22), and

then let R→∞ and using (21), we get

J (tkuk)→∞ (23)

Note that J(0) = 0 and J(uk) → c, we can then suppose that tk ∈ (0, 1). Since
DJ(tkuk)tkuk = 0, we have

t2k ‖uk‖
2

=

∫
Ω

f (x, tkuk) tkukdx

Also, by (14) and (15):∫
Ω

[f (x, uk)uk − 2F (x, uk)] dx = ‖uk‖2 + 2c− ‖uk‖2 + o(1)

= 2c+ o(1)

So by (L3) :

2J (tkuk) = t2k ‖uk‖
2 − 2

∫
Ω

F (x, tkuk) dx

=

∫
Ω

[f (x, tkuk) tkuk − 2F (x, tkuk)] dx

≤ θ
∫

Ω

[f (x, uk)uk − 2F (x, uk)] dx+O(1)

≤ O(1)

which is a contraction to (23). This proves that {uk} is bounded in Hm
0 (Ω). Now,

similarly as in Lemma 3.3, we can conclude that J satisfies (C)c.

By the above lemma, it’s easy to deduce Theorem 2.3 by Lemma 4.1.

4.3. The critical case-Proof of Theorem 2.4. Thanks to the Geometry of the
functional J , the Lemma 3.4 and Lemma 4.2, we can find a Cerami sequence {uk} in
Hm

0 (Ω) such that

(1 + ‖uk‖) ‖DJ(uk)‖ → 0 (24)

J(uk)→ CM <
β0

2α0

We again want to show that {uk} is bounded in Hm
0 (Ω). Indeed, again if we suppose

that {uk} is unbounded, then similarly to the Lemma 4.5, we can get that

vk ⇀ 0 in Hm
0 (Ω) where vk =

uk
‖uk‖

.

Let tk ∈ [0, 1] such that

J (tkuk) = max
t∈[0,1]

J (tuk)
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Let R ∈
(

0,
√

β0

α0

)
and choose ε = β0

R2− α0 > 0, by (CG), there exists C > 0 such

that

F (x, s) ≤ C |s|+
∣∣∣∣ β0

R2
− α0

∣∣∣∣ exp
(
(α0 + ε) s2

)
, ∀ (x, s) ∈ Ω× R. (25)

Also since ‖uk‖ → ∞, we have

J (tkuk) ≥ J
(

R

‖uk‖
uk

)
= J (Rvk) (26)

and by (25) and note ‖vk‖ = 1 :

2J (Rvk) ≥ R2 − 2CR

∫
Ω

|vk(x)| dx− 2

∣∣∣∣ β0

R2
− α0

∣∣∣∣ ∫
Ω

exp
(
(α0 + ε)R2v2

k(x)
)
dx

(27)
By the Adams’ inequalities,∫

Ω

exp
(
(α0 + ε)R2v2

k(x)
)
dx =

∫
Ω

exp

(
β0

R2
R2v2

k(x)

)
dx

is bounded by an universal constant C (Ω) > 0 thanks to the choice of ε. Also, since
vk ⇀ 0 in Hm

0 (Ω),
∫

Ω
|vk(x)| dx → 0. Thus if we let k → ∞ in (27), and then let

R→
√

β0

α0

−
and using (26), we get

lim inf
k→∞

J (tkuk) ≥ β0

2α0
> CM . (28)

Note that J(0) = 0 and J(uk) → CM , we can suppose that tk ∈ (0, 1). Thus since
DJ(tkuk)tkuk = 0,

t2k ‖uk‖
2

=

∫
Ω

f (x, tkuk) tkukdx

Also, by (24)∫
Ω

[f (x, uk)uk − 2F (x, uk)] dx = ‖uk‖2 + 2CM − ‖uk‖2 + o(1)

= 2CM + o(1)

So from (L3) with C∗ = 0, θ = 1 :

2J (tkuk) = t2k ‖uk‖
2 − 2

∫
Ω

F (x, tkuk) dx

=

∫
Ω

[f (x, tkuk) tkuk − 2F (x, tkuk)] dx

≤
∫

Ω

[f (x, uk)uk − 2F (x, uk)] dx

= 2CM + o(1)

which is a contradiction to (28). This proves that {uk} is bounded in Hm
0 (Ω). Now

as in the proof of Theorem 2.2, we get Theorem 2.4.
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