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Abstract

Let H = Cn
× R be the n-dimensional Heisenberg group, Q = 2n + 2 be the homogeneous dimension

of H, Q′
=

Q
Q−1 , and ρ(ξ) = (|z|4 + t2)

1
4 be the homogeneous norm of ξ = (z, t) ∈ H. Then we

prove the following sharp Moser–Trudinger inequality on H (Theorem 1.6): there exists a positive constant

αQ = Q


2πnΓ ( 1
2 )Γ (

Q−1
2 )Γ (

Q
2 )−1Γ (n)−1

Q′
−1

such that for any pair β, α satisfying 0 ≤ β < Q,

0 < α ≤ αQ(1 −
β
Q ) there holds

sup
∥u∥1,τ ≤1


H

1

ρ (ξ)β


exp


α |u|

Q/(Q−1)


−

Q−2
k=0

αk

k!
|u|

k Q/(Q−1)


≤ C(Q, β, τ ) < ∞.

The constant αQ(1−
β
Q ) is best possible in the sense that the supremum is infinite if α > αQ(1−

β
Q ). Here

τ is any positive number, and ∥u∥1,τ =


H |∇Hu|Q + τ


H |u|Q

1/Q
.

Our result extends the sharp Moser–Trudinger inequality by Cohn and Lu (2001) [19] on domains of
finite measure on H and sharpens the recent result of Cohn et al. (2012) [18] where such an inequality was
studied for the subcritical case α < αQ(1 −

β
Q ). We carry out a completely different and much simpler

✩ Research is partly supported by a US NSF grant.
∗ Corresponding author.

E-mail addresses: nguyenlam@wayne.edu (N. Lam), gzlu@math.wayne.edu (G. Lu).

0001-8708/$ - see front matter c⃝ 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.aim.2012.09.004

http://www.elsevier.com/locate/aim
http://dx.doi.org/10.1016/j.aim.2012.09.004
http://www.elsevier.com/locate/aim
mailto:nguyenlam@wayne.edu
mailto:gzlu@math.wayne.edu
http://dx.doi.org/10.1016/j.aim.2012.09.004


3260 N. Lam, G. Lu / Advances in Mathematics 231 (2012) 3259–3287

argument than that in Cohn et al. (2012) [18] to conclude the critical case. Our method avoids using the
rearrangement argument which is not available in an optimal way on the Heisenberg group and can be used
in more general settings such as Riemanian manifolds, appropriate metric spaces, etc. As applications,
we establish the existence and multiplicity of nontrivial nonnegative solutions to certain nonuniformly
subelliptic equations of Q-Laplacian type on the Heisenberg group (Theorems 1.8, 1.9, 1.10 and 1.11):

− divH

|∇Hu|

Q−2
∇Hu


+ V (ξ) |u|

Q−2 u =
f (ξ, u)

ρ(ξ)β
+ εh(ξ)

with nonlinear terms f of maximal exponential growth exp(α|u|

Q
Q−1 ) as |u| → ∞. In particular, when

ε = 0, the existence of a nontrivial solution is also given.
c⃝ 2012 Elsevier Inc. All rights reserved.
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1. Introduction

Analysis and study of partial differential equations on the Heisenberg group has received
great attention in the past decades. Heisenberg group is the simplest example of noncommutative
nilpotent Lie groups which has a close connection with several complex variables and CR
geometry. Sharp geometric inequalities on the Heisenberg group have particularly played an
important role in harmonic analysis, partial differential equations and differential geometry. A
good example of this role is the identification of the sharp constant and extremal functions for
the L2 Sobolev inequality on the Heisenberg group. This was achieved in a series of celebrated
works of Jerison and Lee in conjunction with the solution of the CR Yamabe problem [36–38].
To state our main theorems, we first introduce some preliminaries on the Heisenberg group.

Let H be the n-dimensional Heisenberg group

H = Cn
× R

whose group structure is given by

(z, t) · (z′, t ′) = (z + z′, t + t ′ + 2Im(z · z′)),

for any two points (z, t) and (z′, t ′) in H.
The Lie algebra of H is generated by the left invariant vector fields

T =
∂

∂t
, X i =

∂

∂xi
+ 2yi

∂

∂t
, Yi =

∂

∂yi
− 2xi

∂

∂t

for i = 1, . . . , n. These generators satisfy the non-commutative relationship

[X i , Y j ] = −4δi j T .

Moreover, all the commutators of length greater than two vanish, and thus this is a nilpotent,
graded, and stratified group of step two.

For each real number r ∈ R, there is a dilation naturally associated with the Heisenberg group
structure which is usually denoted as

δr u = δr (z, t) = (r z, r2t).
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However, for simplicity we will write ru to denote δr u. The Jacobian determinant of δr is r Q ,
where Q = 2n + 2 is the homogeneous dimension of H.

The anisotropic dilation structure on H introduces a homogeneous norm

|u| = |(z, t)| = (|z|4 + t2)
1
4 .

With this norm, we can define the Heisenberg ball centered at u = (z, t) with radius R

B(u, R) = {v ∈ H : |u−1
· v| < R}.

The volume of such a ball is CQ RQ for some constant depending on Q.
The subelliptic gradient on the Heisenberg group is denoted by

▽H f (z, t) =

n
j=1


(X j f (z, t))X j + (Y j f (z, t))Y j


.

The following Sobolev inequality on the Heisenberg group is well known: for f ∈ C∞

0 (H)


H

| f (z, t)|qdzdt

 1
q

≤ C p,q


H

| ▽H f (z, t)|pdzdt

 1
p

(1.1)

provided that 1 ≤ p < Q = 2n + 2 and 1
p −

1
q =

1
Q . This inequality was first proved by

Folland–Stein [27,28]; see also [31,58]. In the above inequality, we have used | ▽H f | to express
the (Euclidean) norm of the subelliptic gradient of f :

| ▽H f | =


n

i=1


(X i f )2

+ (Yi f )2
 1

2

.

It is then clear that the above inequality is also true for functions in the anisotropic Sobolev space
W 1,p

0 (H) (p ≥ 1), where W 1,p
0 (Ω) for open set Ω ⊂ H is the completion of C∞

0 (Ω) under the
norm

∥ f ∥L p(Ω) + ∥ ▽H f ∥L p(Ω).

Nevertheless, much less is known about sharp constants for Sobolev inequality (1.1) for the
Heisenberg group than for Euclidean space. In fact, the first major breakthrough came after the
works by Jerison and Lee [37] on the sharp constants for the Sobolev inequality and extremal
functions on the Heisenberg group in conjunction with the solution to the CR Yamabe problem
(we should note the well-known results of Talenti [68] and Aubin [7] for sharp constants and
extremal functions in the isotropic case). More precisely, in a series of papers [36,38,37], the
Yamabe problem on CR manifolds was first studied. In particular, Jerison and Lee study the
problem of conformally changing the contact form to one with constant Webster curvature in the
compact setting.

In particular, the best constant C p,q for the Sobolev inequality (1.1) on H for p = 2 was found
and the extremal functions were identified in [37].

Theorem 1.1 (Jerison and Lee [37]). The best constant for the inequality (1.1) on H is

C2, 2n+2
n

= (4π)−1n−2 [Γ (n + 1)]
1

n+1
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and all the extremals of (1.1) are obtained by dilations and left translations of the function

K |


t + i(|z |

2
+1)


|
−n .

Furthermore, the extremals in (1.1) are constant multiples of images under the Cayley transform
of extremals for the Yamabe functional on the sphere S2n+1 in Cn+1.

The sharp Sobolev inequality on the Heisenberg group for p = 2 is closely related to the
sharp Hardy–Littlewood–Sobolev inequality, also known as the HLS inequality (see [35]):


H×H

f (u)g(v)

|u−1v|λ
dudv

 ≤ Cr,λ,n∥ f ∥r∥g∥s . (1.2)

In fact, the result of Jerison and Lee is equivalent to the sharp version of HLS inequality (1.2)
when λ = Q − 2 and r = s = 2Q/(2Q − λ) = 2Q/(Q + 2).

Very recently, in a remarkable paper of Frank and Lieb [32], they have succeeded to establish
the sharp constants and extremal functions of the HLS inequality on the Heisenberg group for all
0 < λ < Q and r = s =

2Q
2Q−λ

, an analogue to Lieb’s celebrated result in Euclidean spaces [54].
We can state the result in [32] as the following theorem.

Theorem 1.2 (Frank and Lieb, Theorem 2.1 in [32]). Let 0 < λ < Q and r = 2Q/(2Q − λ).
Then for any f, g ∈ Lr (H),


H×H

f (u)g(v)

|u−1v|λ
dudv

 ≤


πn+1

2n−1n!

 λ
Q n!Γ ((Q − λ)/2)

Γ 2((2Q − λ)/4)
∥ f ∥r∥g∥r , (1.3)

with equality if and only if

f (u) = cH(δ(a−1u)), g(v) = c′ H(δ(a−1v))

for some c, c′
∈ C, δ > 0, a ∈ H (unless f ≡ 0 or g ≡ 0), and

H =


(1 + |z|2)2

+ t2
−

2Q−λ
4

.

The explicit formula in Theorem 1.2 about the extremal functions for the sharp
Hardy–Littlewood–Sobolev inequality (1.3) is consistent with Branson, Fontana and Morpurgo’s
natural guess initially made in their work [14] where among other things, important progress has
been made on sharp Onfri–Beckner inequalities on CR spheres (see also earlier work of Cohn and
the second author in this direction on sharp Moser–Trudinger inequalities on CR sphere [21]).
We also mention the recent work of Han, Zhu and the second author [34] in which weighted
Hardy–Littlewood–Sobolev inequalities (namely, Stein–Weiss inequalities) on the Heisenberg
group have been established. Existence of extremal functions of Hardy–Littlewood–Sobolev
inequalities on the Heisenberg group has been recently proved by Han [33] using Lions’
concentration compactness argument [56,57]. We refer the reader to [11] for some nonexistence
result of extremal functions for Stein–Weiss inequalities on the Heisenberg group by Beckner
(see also [10,12] for Stein–Weiss inequalities in the Euclidean spaces).1

1 Added in Proof: Sharp constants for Stein–Weiss inequalities on the Heisenberg group in some special cases were
identified very recently by Beckner [9].
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The work of Jerison and Lee [37] raised two natural questions. What is the best constant C p,q

for the L p to Lq Sobolev inequality (1.1) for all 1 ≤ p < Q and q =
Qp

Q−p when p ≠ 2? What is
the sharp constant for the borderline case p = Q? While the first question still seems to be open,
the second question was answered in the work of the second author with Cohn in [19] on domains
of finite measure in the Heisenberg group. Namely, we proved in [19] the sharp Moser–Trudinger
inequality on any domain Ω with |Ω | < ∞ on the Heisenberg group.

To familiarize the reader with the borderline case inequality, we first recall the well known
Moser–Trudinger inequality in Euclidean space. When Ω is an open set in Rn with |Ω | <

∞, it is showed by Judovich [39], Pohozaev [64] and Trudinger [70] independently that
W 1,n

0 (Ω) ⊂ Lϕn (Ω) where Lϕn (Ω) is the Orlicz space associated with the Young function
ϕn(t) = exp


|t |n/(n−1)


− 1. Using the method of symmetrization, Moser [63] finds the largest

positive real number βn = nω
1

n−1
n−1, where ωn−1 is the area of the surface of the unit n-ball, such

that if Ω is a domain with finite n-measure in Euclidean n-space Rn, n ≥ 2, then there is a
constant c0 depending only on n such that

1
|Ω |


Ω

exp

β |u|

n
n−1


dx ≤ c0

for any β ≤ βn , any u ∈ W 1,n
0 (Ω) with


Ω |∇u|

n dx ≤ 1. Moreover, this constant βn is sharp in
the sense that if β > βn , then the above inequality can no longer hold with some c0 independent
of u. However, when Ω has infinite volume, the result of Moser is meaningless. In this case,
the sharp Moser–Trudinger type inequality was obtained in [65] in dimension two and in [53] in
general dimension.

As has been the case in most proofs of sharp constants in Euclidean spaces, one often attempts
to use the radial non-increasing rearrangement u∗ of functions u (in terms of a certain norm) on
the Heisenberg group. However, it is not known whether or not the L p norm of the subelliptic
gradient of the rearrangement of a function is dominated by the L p norm of the subelliptic
gradient of the function. In other words, an inequality like

∥ ▽H u∗
∥L p ≤ ∥▽H u∥L p (1.4)

is not available on the Heisenberg group. In fact, the work of Jerison–Lee on the best constant
and extremals [37] indicates that this inequality fails to hold for the case p = 2. Thus, in the
works of Jerison and Lee [37] and Frank and Lieb [32], substantially new ideas are needed in
deriving sharp Sobolev and Hardy–Littlewood–Sobolev inequalities on the Heisenberg group.

As for the Moser–Trudinger inequality on bounded domains on the Heisenberg group, the
borderline case of the Sobolev inequality when p = Q, we also have to avoid the rearrangement
argument due to the unavailability of the symmetrization inequality (1.4) when p = Q.
This was carried out in the work of Cohn and the second author [19]. In fact, we can adapt
Adams’ idea [2] in deriving the Moser–Trudinger inequality for higher order derivatives in
Euclidean space [2], which requires, roughly speaking, an optimal bound on the size of a
function in terms of the potential of its gradient, namely a sharp representation formula. By
using this one parameter representation formula on the Heisenberg group, we are able to avoid
considering the subelliptic gradient of the rearrangement function. Instead, we will consider the
rearrangement of the convolution of the subelliptic gradient with an optimal kernel (see [19] for
more details). Adams inequality on bounded domains [2] was extended to compact Riemannian
manifolds in [29], to bounded domains with Navier boundary value conditions by Tarsi [69],
and Fontana and Morpurgo [30] on metric measure spaces. Adams inequality has been recently
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generalized to unbounded domains on high order Sobolev spaces W m, n
m (Rn) for any even order

by Ruf–Sani [66] and to any odd order by the authors [42,47]. In particular, we developed
in [43] a rearrangement-free argument to show all integral orders m and also on fractional
Sobolev spaces W α, n

α (Rn) of arbitrary fractional order 0 < α < n. The method used in [43]
avoids the symmetrization which is not available in general settings such as Riemannian or sub-
Riemannian manifolds or deep comparison principle of solutions to polyharmonic operators as
used in [66,42,47]. We also refer the reader to [46] for detailed descriptions of results proved
in [43]. We also mention that existence of extremal functions for Adams inequalities has only
been proved in dimension four (see [52,60]).

The sharp constant for the Moser–Trudinger inequality on domains of finite measure in the
Heisenberg group established in [19] is stated as follows. Throughout the remainder of this

paper, we use ξ = (z, t) to denote any point (z, t) ∈ H and ρ(ξ) = (|z|4 + t2)
1
4 to denote

the homogeneous norm of ξ ∈ H.

Theorem 1.3. Let αQ = Q


2πnΓ ( 1
2 )Γ (

Q−1
2 )Γ (

Q
2 )−1Γ (n)−1

Q′
−1

. Then there exists a

uniform constant C0 depending only on Q such that for all Ω ⊂ H, |Ω | < ∞ and α ≤ αQ

sup
u∈W 1,Q

0 (Ω),∥∇Hu∥L Q ≤1

1
|Ω |


Ω

exp(α|u(ξ)|Q′

)dξ ≤ C0 < ∞. (1.5)

The constant αQ is the best possible in the sense that if α > αQ , then the supremum in the
inequality (1.5) is infinite.

It is clear that when |Ω | = ∞, the above inequality (1.5) in Theorem 1.3 is not meaningful.
We also remark that using the similar ideas of representation formulas and rearrangement of
convolutions as done on the Heisenberg group in [19], Theorem 1.3 was extended to the groups
of Heisenberg type in [20] and to general stratified groups in [8]. We refer to [13] for more
introduction of stratified groups. The best constant for the sharp Moser–Trudinger inequality on
CR sphere was also identified in [21].

Using the sharp representation formula in [19], the authors established the following version
of sharp singular Moser–Trudinger inequality on domains of finite measure on the Heisenberg
group in [48].

Theorem 1.4. Let Ω ⊂ H, |Ω | < ∞ and 0 ≤ β < Q. Then there exists a uniform constant
C0 < ∞ depending only on Q, β such that

sup
u∈W 1,Q

0 (Ω),∥∇Hu∥L Q ≤1

1

|Ω |
1−

β
Q


Ω

exp

αQ


1 −

β
Q


|u(ξ)|Q′


dξ

ρ (ξ)β
≤ C0.

The constant αQ


1 −

β
Q


is sharp in the sense that if αQ


1 −

β
Q


is replaced by any larger

number, then the supremum is infinite.

The situation is more complicated when dealing with unbounded domains on the Heisenberg
group. Before we state the Moser–Trudinger inequality on the entire Heisenberg group, we need
to recall some preliminaries.

Let u : H → R be a nonnegative function in W 1,Q (H), and u∗ be the decreasing
rearrangement of u, namely

u∗(ξ) := sup

s ≥ 0 : ξ ∈ {u > s}∗
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where

{u > s}∗ = Br = {ξ : ρ (ξ) ≤ r}

such that |{u > s}| = |Br |. It is known from a result of Manfredi and Vera De Serio [62] that
there exists a constant c ≥ 1 depending only on Q such that

H

∇Hu∗
Q dξ ≤ c


H

|∇Hu|
Q dξ (1.6)

for all u ∈ W 1,Q (H). Thus we can define

c∗
= inf


c1/(Q−1)

:


H

∇Hu∗
Q dξ ≤ c


H

|∇Hu|
Q dξ, u ∈ W 1,Q (H)


≥ 1.

We can now state the following version of the Moser–Trudinger type inequality (see [18]).

Theorem 1.5. Let α∗
= αQ/c∗. Then for any pair β, α satisfying 0 ≤ β < Q and α ≤

α∗(1 −
β
Q ), there holds

sup
∥u∥W 1,Q (H)

≤1


H

1

ρ (ξ)β


exp


α |u|

Q/(Q−1)


− SQ−2 (α, u)


< ∞ (1.7)

where

SQ−2 (α, u) =

Q−2
k=0

αk

k!
|u|

k Q/(Q−1) .

Moreover, the supremum is infinite if α > αQ(1 −
β
Q ).

We mention in passing that inequality (1.7) in Euclidean spaces when β = 0 was established
in two dimensional case R2 in [65] and high dimensional case RN in [53], while the singular
case 0 ≤ β < N was treated in [6]. A subcritical case was studied first in two dimension R2

in [16] and in high dimension in [1].
We briefly outline the proof of Theorem 1.5 given in [18]. By using the rearrangement

inequality (1.6), we can reduce the inequality to the case where the functions are radial in terms
of the homogeneous norm on the Heisenberg group. Then we break the integral over the space H
into two parts, the interior of a large ball and the exterior of the ball. Over the finite ball, we can
use the sharp Moser–Trudinger inequality on finite domains proved in [19]. On the exterior of the
ball, we will then use the radial lemma for radial functions on the Heisenberg group. However,
we should note that, in the above Theorem 1.5, we cannot exhibit the best constant α∗(1 −

β
Q )

due to the loss of the non-optimal rearrangement inequality in the Heisenberg group. In fact, in
the inequality controlling the norm of the subelliptic gradient of the rearranged function u∗, the
constant c∗ is not known to be 1. Therefore, the constant αQ

c∗ (1 −
β
Q ) is not known to be equal to

αQ(1 −
β
Q ). Thus, the considerably more difficult critical case α = αQ(1 −

β
Q ) is still left open

from [18].
Thus, our main purpose in this paper is to establish the Moser–Trudinger type inequalities

in the critical case α = αQ(1 −
β
Q ). Our new argument is completely different from and much

simpler than those used in [18]. In addition, our method avoids using the symmetrization (i.e., the
non-optimal rearrangement inequality (1.6)) on the Heisenberg group. Most importantly, our
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method allows us to derive the best constant α = αQ(1−
β
Q ). We also mention that sharp Adams

inequalities on high order Sobolev spaces W α, n
α (Rn) for any arbitrary fractional order 0 < α < n

have been established in [43] on unbounded domains without using any symmetrization or
comparison principle for solutions to polyharmonic operators, significantly simpler than the
method used in [66,42,47].

Indeed, our first main result concerning the best constant for the Moser–Trudinger inequality
on the entire Heisenberg group H can be read as follows:

Theorem 1.6. Let τ be any positive real number. Then for any pair β, α satisfying 0 ≤ β < Q
and 0 < α ≤ αQ(1 −

β
Q ), there holds

sup
∥u∥1,τ ≤1


H

1

ρ (ξ)β


exp


α |u|

Q/(Q−1)


− SQ−2 (α, u)


< ∞. (1.8)

When α > αQ(1−
β
Q ), the integral in (1.8) is still finite for any u ∈ W 1,Q (H), but the supremum

is infinite. Here

∥u∥1,τ =


H

|∇Hu|
Q

+ τ


H

|u|
Q
1/Q

.

We remark in passing that we have proved in [49] the following different version of
Moser–Trudinger inequality in the spirit of Adachi–Tanaka [1] with less restriction on the norm
by only assuming ∥∇Hu∥L Q(H) ≤ 1 instead of ∥u∥1,τ ≤ 1.

Theorem 1.7. For any pair β, α satisfying 0 ≤ β < Q and 0 < α < αQ(1 −
β
Q ) there exists a

constant 0 < Cα,β < ∞ such that the following inequality holds

sup
∥∇Hu∥L Q (H)

≤1

1

∥u∥
Q−β

L Q(H)


H

1

ρ (ξ)β


exp


α |u|

Q/(Q−1)


− SQ−2 (α, u)


≤ Cα,β . (1.9)

The above result is sharp in the sense when α ≥ αQ(1 −
β
Q ), the integral in (1.9) is still finite for

any u ∈ W 1,Q (H), but the supremum is infinite.

We note here that our proof of Theorem 1.7 does not rely on the method of symmetrization
which was used in [1] the Euclidean space. As a matter of fact, such a symmetrization is not
available on the Heisenberg group H. Therefore, the argument in [1] does not work on H.

It is interesting to note that there is a sharp difference between Theorems 1.6 and 1.7. The
inequality (1.8) in Theorem 1.6 holds for all α ≤ (1 −

β
Q )αQ , while the inequality (1.9) in

Theorem 1.7 only holds for α < (1 −
β
Q )αQ . This indicates the restriction of Sobolev norms

on the functions under consideration has a substantial impact on the sharp constants for the
geometric inequalities.

As applications of our Theorem 1.6, we study a class of partial differential equations of
exponential growth on the Heisenberg group. More precisely, we consider the existence of
nontrivial weak solutions for the non-uniformly subelliptic equations of Q-sub-Laplacian type
of the form (see [25] for the study of such type of non-uniformly equations in Euclidean spaces):

− divH (a (ξ, ∇Hu)) + V (ξ) |u|
Q−2 u =

f (ξ, u)

ρ (ξ)β
+ εh(ξ) (NU)
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where

|a (ξ, τ )| ≤ c0


h0 (ξ) + h1 (ξ) |τ |

Q−1


for any τ in RQ−2 and a.e. ξ in H, h0 ∈ L Q′

(H) and h0 ∈ L∞

loc (H) , 0 ≤ β < Q, V : H → R is

a continuous potential, f : H × R → R behaves like exp

α |u|

Q′


when |u| → ∞ and satisfy

those assumptions (V1),(V2), (V3) and (f1), (f2), (f3) in Section 3, and h ∈

W 1,Q (H)

∗
, h ≠ 0

and ε is a positive parameter. The main features of this class of problems are that it is defined in
the whole space H and involves critical growth and the nonlinear operator Q-sub-Laplacian type.
In spite of a possible failure of the Palais–Smale (PS) compactness condition, in this article we
apply the mountain-pass theorem to obtain the weak solution of (NU) in the suitable subspace E
of W 1,Q (H). Moreover, in the case of Q-sub-Laplacian, i.e.,

a (ξ, ∇Hu) = |∇Hu|
Q−2

∇Hu,

we will apply the mountain-pass theorem combined with minimization and Ekelands variational
principle to obtain multiplicity of weak solutions to the nonhomogeneous problem

− divH

|∇Hu|

Q−2
∇Hu


+ V (ξ) |u|

Q−2 u =
f (ξ, u)

ρ(ξ)β
+ εh(ξ). (NH)

We mention that the existence of nontrivial nonnegative solutions to the equation (NH) was
established in [18]. However, the multiplicity of solutions was not treated in [18]. In fact, in the
case with no perturbation term, i,e., ϵ = 0, the existence of a nontrivial solution for the following
nonlinear equation is established in this paper (see Theorem 1.11):

− divH

|∇Hu|

Q−2
∇Hu


+ V (ξ) |u|

Q−2 u =
f (ξ, u)

ρ(ξ)β
. (1.10)

To establish the existence of a nontrivial solution for this Eq. (1.10), the sharp constant α =

αQ(1 −
β
Q ) for the Moser–Trudinger inequality on the entire Heisenberg group at the critical

case (Inequality (1.8) in Theorem 1.6) plays an important role. It is also worth noticing that the
Moser–Trudinger type inequalities in Euclidean spaces are crucial in the study of elliptic partial
differential equations of the exponential growth. Here we just mention some of them, we refer
the reader to [17,26,55,3–5,22–24,51,50,40,61,67,71] and the references therein. Existence of
solutions to polyharmonic operators and N -Laplacian equations of exponential growth without
satisfying the standard Ambrosetti–Rabinowitz condition have been studied by the authors in
[41,44,45].

We next state our main results concerning the existence and multiplicity of nontrivial
nonnegative solutions to the Q-sub-Laplacian (NH) on the Heisenberg group.

Theorem 1.8. Suppose that (V1) and V(2) (or (V3)) and (f1)–(f3) are as stated in Section 3 and
λ1(Q) is as defined in (3.2) in Section 3. Furthermore, assume that

(f4) lim sup
s→0+

F(ξ, s)

k0 |s|Q < λ1(Q) uniformly in ξ ∈ H.

Then there exists ε1 > 0 such that for each 0 < ε < ε1, (NU) has a weak solution of mountain-
pass type.
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Theorem 1.9. In addition to the hypotheses in Theorem 1.8, assume that

(f5) lim
s→∞

s f (ξ, s) exp

−α0 |s|Q/(Q−1)


= +∞

uniformly on compact subsets of H. Then, there exists ε2 > 0, such that for each 0 < ε < ε2,
problem (NH) has at least two weak solutions and one of them has a negative energy.

In the case where the function h does not change sign, we have the following.

Theorem 1.10. Under the assumptions in Theorems 1.8 and 1.9, if h(ξ) ≥ 0 (h(ξ) ≤ 0) a.e.,
then the solutions of problem (NH) are nonnegative (nonpositive).

The perturbation term εh(ξ) in Eq. (NH) helps us to establish the existence result. However,
when the perturbation term disappears, it is harder to do. Nevertheless, using the best constant
α = αQ(1 −

β
Q ) we can still succeed to conclude the existence result.

We state this existence of a nontrivial solution result as follows.

Theorem 1.11. Under the same hypotheses in Theorems 1.8 and 1.9, problem (NH) with ε = 0
has a nontrivial weak solution.

Our paper is organized as follows. In Section 2, we will prove one of our main theorems,
the sharp Moser–Trudinger inequality (Theorem 1.6). In Section 3, we will briefly discuss about
nonlinear equations of exponential growth. We also provide the assumptions on the nonlinearity
f and potential V . We will also discuss the variational framework concerning Eqs. (NU) and
(NH). In Section 4, we prove some basic lemmas that are useful in proving Theorems 1.8 and 1.9.
We will investigate in Section 5 the existence of nontrivial solution to Eq. (NU) (Theorem 1.8).
Section 6 is devoted to the study of multiplicity of solutions to Eq. (NH) (Theorem 1.9). We also
establish Theorems 1.10 and 1.11 in this section.

2. Proof of Theorem 1.6: the sharp Moser–Trudinger inequality

The primary purpose of this section is to offer a completely different and much simpler proof
of the best constant αQ(1−

β
Q ) for the Moser–Trudinger inequality on unbounded domains in the

Heisenberg group H. All existing proofs on the Heisenberg group only give the subcritical case
for α < αQ(1 −

β
Q ). Our proof does not rely on the special structure of the Heisenberg group

and applies to much more general cases including the stratified groups [13], Euclidean spaces,
complete Riemannian manifolds, even appropriate metric measure spaces, etc. However, for its
simplicity and clarity, we only present it on the Heisenberg group.

Proof. It suffices to prove that for any β, τ satisfying 0 ≤ β < Q and τ > 0, there exists a
constant C = C (β, τ, Q) such that for all u ∈ C∞

0 (H)\{0}, u ≥ 0 and


H |∇Hu|
Q

+τ


H |u|
Q

≤

1, there holds
H

1

ρ (ξ)β


exp


αQ


1 −

β

Q


|u|

Q/(Q−1)


− SQ−2


αQ


1 −

β

Q


, u


≤ C (β, τ, Q) . (2.1)

We fix some notations here:

A(u) = 2−
1

Q(Q−1) τ
1
Q ∥u∥Q

Ω(u) = {ξ ∈ H : u(ξ) > A(u)} .
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Then, it is clear that

A(u) < 1. (2.2)

Moreover, since
H

|u|
Q

≥


Ω(u)

|u|
Q

≥


Ω(u)

|A(u)|Q

= 2−
1

(Q−1) τ ∥u∥
Q
Q |Ω(u)|

we have

|Ω(u)| ≤ 2
1

(Q−1)
1
τ

. (2.3)

Now, we write
H

1

ρ (ξ)β


exp


αQ


1 −

β

Q


|u|

Q/(Q−1)


− SQ−2


αQ


1 −

β

Q


, u


= I1 + I2

where

I1 =


Ω(u)

1

ρ (ξ)β


exp


αQ


1 −

β

Q


|u|

Q/(Q−1)


− SQ−2


αQ


1 −

β

Q


, u


and

I2 =


H\Ω(u)

1

ρ (ξ)β


exp


αQ


1 −

β

Q


|u|

Q/(Q−1)


− SQ−2


αQ


1 −

β

Q


, u


.

We will prove that both I1 and I2 are bounded by a constant C = C (β, τ, Q).
Indeed, from (2.2), we see

I2 ≤


{u(ξ)<1}

1

ρ (ξ)β

∞
k=Q−1


αQ


1 −

β
Q

k

k!
|u|

k Q/(Q−1)

≤


{u(ξ)<1}

1

ρ (ξ)β

∞
k=Q−1


αQ


1 −

β
Q

k

k!
|u|

Q

≤


{ρ(ξ)≥1}

∞
k=Q−1


αQ


1 −

β
Q

k

k!
|u|

Q

+


{ρ(ξ)<1}

1

ρ (ξ)β

∞
k=Q−1


αQ


1 −

β
Q

k

k!

≤ C (β, τ, Q) .

Now, to estimate I1, we first notice that if we set

v(ξ) = u(ξ) − A(u) in Ω(u),
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then v ∈ W 1,Q
0 (Ω(u)). Moreover, in Ω(u):

|u|
Q′

= (|v| + A(u))Q′

≤ |v|
Q′

+ Q′2Q′
−1

|v|

Q′
−1 A(u) + |A(u)|Q′


≤ |v|

Q′

+ Q′2Q′
−1 |v|

Q′

|A(u)|Q

Q
+ Q′2Q′

−1


1
Q′

+ |A(u)|Q′



≤ |v|
Q′


1 +

2
1

Q−1

Q − 1
|A(u)|Q


+ C(Q)

where we did use Young’s inequality and the following elementary inequality:

(a + b)q
≤ aq

+ q2q−1


aq−1b + bq


for all q ≥ 1 and a, b ≥ 0.

Let

w(ξ) =


1 +

2
1

Q−1

Q − 1
|A(u)|Q

 Q−1
Q

v(ξ) in Ω(u),

then it is clear that

w ∈ W 1,Q
0 (Ω) and |u|

Q′

≤ |w|
Q′

+ C(Q). (2.4)

Moreover, we have

∇Hw =


1 +

2
1

Q−1

Q − 1
|A(u)|Q

 Q−1
Q

∇Hv.

Thus 
Ω(u)

|∇Hw|
Q

=


1 +

2
1

Q−1

Q − 1
|A(u)|Q

Q−1 
Ω(u)

|∇Hv|
Q

=


1 +

2
1

Q−1

Q − 1
|A(u)|Q

Q−1 
Ω(u)

|∇Hu|
Q

≤


1 +

2
1

Q−1

Q − 1
|A(u)|Q

Q−1 
1 − τ


H

|u|
Q


.

Then 
Ω(u)

|∇Hw|
Q
 1

Q−1

=


1 +

2
1

Q−1

Q − 1
|A(u)|Q


1 − τ


H

|u|
Q
 1

Q−1

≤


1 +

2
1

Q−1

Q − 1
|A(u)|Q


1 −

τ

Q − 1


H

|u|
Q


=


1 +

2
1

Q−1

Q − 1
2−

1
(Q−1) τ ∥u∥

Q
Q


1 −

τ

Q − 1


H

|u|
Q
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=


1 +

τ

Q − 1


H

|u|
Q


1 −
τ

Q − 1


H

|u|
Q


≤ 1. (2.5)

Here, we used the inequality

(1 − x)q
≤ 1 − qx for all 0 ≤ x ≤ 1, 0 < q ≤ 1.

From (2.4) and (2.5), using Theorem 1.4 and (2.3), we get

I1 ≤


Ω(u)

exp

αQ


1 −

β
Q


|u|

Q/(Q−1)


ρ (ξ)β

≤ e
αQ


1−

β
Q


C(Q)


Ω(u)

exp

αQ


1 −

β
Q


|w|

Q/(Q−1)


ρ (ξ)β

≤ e
αQ


1−

β
Q


C(Q)

C0 |Ω(u)|
1−

β
Q

≤ C (β, τ, Q) .

The proof is then completed. �

3. Assumptions on the nonlinearity and the potential and variational framework

In this section, we will provide conditions on the nonlinearity and potential of Eqs. (NU)
and (NH). Motivated by the Moser–Trudinger inequality (Theorem 1.6), we consider here the
maximal growth on the nonlinear term f (ξ, u) which allows us to treat Eqs. (NU) and (NH)
variationally in a subspace of W 1,Q (H). We assume that f : H × R → R is continuous,
f (ξ, 0) = 0 and f behaves like exp


α |u|

Q/(Q−1)


as |u| → ∞. More precisely, we assume
the following growth conditions on the nonlinearity f (ξ, u):

(f1) There exist constants α0, b1, b2 > 0 such that for all (ξ, u) ∈ H × R,

| f (ξ, u)| ≤ b1 |u|
Q−1

+ b2


exp


α0 |u|

Q/(Q−1)


− SQ−2 (α0, u)

,

(f2) There exists p > Q such that for all ξ ∈ H and s > 0,

0 < pF(ξ, s) = p
 s

0
f (ξ, τ )dτ ≤ s f (ξ, s)

(f3) There exist constant R0, M0 > 0 such that for all ξ ∈ H and s ≥ R0,

F(ξ, s) ≤ M0 f (ξ, s).

Since we are interested in nonnegative weak solutions, we will assume

f (ξ, u) = 0 for all (ξ, u) ∈ H × (−∞, 0] .

Let A be a measurable function on H×RQ−2 such that A(ξ, 0) = 0 and a(ξ, τ ) = ∇τ A (ξ, τ ) is
a Caratheodory function on H×RQ−2. Assume that there are positive real numbers c0, c1, k0, k1
and two nonnegative measurable functions h0, h1 on H such that h1 ∈ L∞

loc (H) , h0 ∈

L Q/(Q−1) (H) , h1(ξ) ≥ 1 for a.e. ξ in H and the following conditions hold:
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(A1) |a(ξ, τ )| ≤ c0


h0 (ξ) + h1 (ξ) |τ |

Q−1


∀τ ∈ RQ−2, a.e. ξ ∈ H

(A2) c1 |τ − τ1|
Q

≤ ⟨a(ξ, τ ) − a(ξ, τ1), τ − τ1⟩ ∀τ, τ1 ∈ RQ−2, a.e. ξ ∈ H
(A3) 0 ≤ a(ξ, τ ).τ ≤ Q A (ξ, τ ) ∀τ ∈ RQ−2, a.e. ξ ∈ H
(A4) A (ξ, τ ) ≥ k0h1 (ξ) |τ |

Q
∀τ ∈ RQ−2, a.e. ξ ∈ H.

Then A verifies the growth condition:

|A (ξ, τ )| ≤ c0


h0 (ξ) |τ | + h1 (ξ) |τ |

Q


∀τ ∈ RQ−2, a.e. ξ ∈ H. (3.1)

For examples of A, we can consider A (ξ, τ ) = h(ξ)
|τ |

Q

Q where h ∈ L∞

loc (H).
We also propose the following conditions on the potential:

(V1) V is a continuous function such that V (ξ) ≥ V0 > 0 for all ξ ∈ H, and one of the following
two conditions:

(V2) V (ξ) → ∞ as ρ (ξ) → ∞; or more generally, for every M > 0,

µ ({ξ ∈ H : V (ξ) ≤ M}) < ∞

or
(V3) The function [V (ξ)]−1 belongs to L1 (H).

We introduce some notations:

E =


u ∈ W 1,Q

0 (H) :


H

h1(ξ) |∇Hu|
Q dξ +


H

V (ξ) |u|
Q < ∞


∥u∥ =


H


h1(ξ) |∇Hu|

Q
+

1
k0 Q

V (ξ) |u|
Q


dξ

1/Q

, u ∈ E

λ1(Q) = inf

 ∥u∥
Q

H
|u|

Q

ρ(ξ)β
dξ

: u ∈ E \ {0}

 .

Under the condition on the potential (V1), we can see that E is a reflexive Banach space when
endowed with the norm

∥u∥ =


H


h1(ξ) |∇Hu|

Q
+

1
k0 Q

V (ξ) |u|
Q


dξ

1/Q

and for all Q ≤ q < ∞,

E ↩→ W 1,Q (H) ↩→ Lq (H)

with continuous embedding. Furthermore,

λ1(Q) = inf

 ∥u∥
Q

H
|u|

Q

ρ(ξ)β
dξ

: u ∈ E \ {0}

 > 0 for any 0 ≤ β < Q. (3.2)

By the assumptions (V2) or (V3), we can get the compactness of the embedding

E ↩→ L p (H) for all p ≥ Q.
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Following from ( f 1), we can conclude for all (ξ, u) ∈ H × R,

|F (ξ, u)| ≤ b3


exp


α1 |u|

Q/(Q−1)


− SQ−2 (α1, u)


for some constants α1, b3 > 0. Thus, by the Moser–Trudinger type inequalities, we have
F (ξ, u) ∈ L1 (H) for all u ∈ W 1,Q (H). Define the functional E, T, Jε : E → R by

E(u) =


H

A(ξ, ∇H u)dξ +
1
Q


H

V (ξ) |u|
Q dξ

T (u) =


H

F(ξ, u)

ρ (ξ)β
dξ

Jε(u) = E(u) − T (u) − ε


H

hudξ

then the functional Jε is well-defined. Moreover, Jε is a C1 functional on E with

D Jε(u)v =


H

a (ξ, ∇H u) ∇Hvdξ +


H

V (ξ) |u|
Q−2 vdξ

−


H

f (ξ, u)v

ρ (ξ)β
dξ − ε


H

hvdξ, ∀u, v ∈ E .

Therefore, D Jε(u) = 0 if and only if u ∈ E is a weak solution to Eq. (NU).

4. Some basic lemmas

First, we recall what we call the Radial Lemma (see [18]) which asserts:

u∗(ξ)
Q ≤

Q

ωQ−1

∥u∗∥
Q
Q

ρ (ξ)Q , ∀ξ ∈ H \ {0}

where u∗ is the decreasing rearrangement of |u| and ωQ−1 =

ρ(ξ)=1 dξ . Using this Radial

Lemma, we can prove the following two lemmas (see [24,18]).

Lemma 4.1. For κ > 0 and ∥u∥E ≤ M with M sufficiently small and q > Q, we have
H


exp


κ |u|

Q/(Q−1)

− SQ−2 (κ, u)


|u|

q

ρ (ξ)β
dξ ≤ C (Q, κ) ∥u∥

q .

Proof. The proof is analogous to the proof of Theorem 1.1 in [18]. For the completeness, we
give the details here.

Set

R (α, u) = exp

α |u|

Q/(Q−1)


− SQ−2 (α, u) .

Assume that u∗ is the decreasing rearrangement of |u|. We have by the Hardy–Littlewood
inequality that

H

R (κ, u) |u|
q

ρ (ξ)β
dξ ≤


H

R (κ, u∗) |u∗|
q

ρ (ξ)β
dξ. (4.1)
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Let γ be a positive number to be chosen later, we estimate
ρ(ξ)≤γ

R (κ, u∗) |u∗|
q

ρ (ξ)β
dξ

≤


ρ(ξ)≤γ

(R (κ, u∗))p

ρ(ξ)β
dξ

1/p 
ρ(ξ)≤γ

1

ρ (ξ)βs dξ

1/p′s

×


ρ(ξ)≤γ

u∗
qp′s′

dξ

1/p′s′

≤ C


ρ(ξ)≤γ

R (pκ, u∗)

ρ(ξ)β
dξ

1/p 
ρ(ξ)≤γ

u∗
qp′s′

dξ

1/p′s′

where p > 1 and 1
p +

1
p′ = 1, 1 < s <

Q
β

, and 1
s +

1
s′ = 1. This together with Moser–Trudinger

type inequalities and the continuous embedding of E ↩→ L t (H) , t ≥ Q implies
ρ(ξ)≤γ

R (κ, u∗) |u∗|
q

ρ (ξ)β
dξ ≤ C ∥u∥

q (4.2)

for some constant C = C (Q, κ, γ ), provided that ∥u∥E is sufficiently small such that
pκ ∥u∥

Q/(Q−1)
E ≤ α∗.

On the other hand, choosing γ sufficiently large such that

Q/ωQ−1

1/Q
γ −1 ∥u∥E < 1/2,

we obtain by the Radial lemma and the continuous embedding of E ↩→ Lq (H),
ρ(ξ)≥γ

R (κ, u∗) |u∗|
q

ρ (ξ)β
dξ ≤

R (κ, u∗ (γ ))

γ β


ρ(ξ)≥γ

u∗
q dξ

≤
R (κ, 1/2)

γ β

u∗
q

q ≤ C ∥u∥
q
E (4.3)

for some constant C . By (4.1)–(4.3), we then complete the proof of the lemma. �

Lemma 4.2. If κ > 0, 0 ≤ β < Q, u ∈ E and ∥u∥E ≤ M with κ M Q/(Q−1) <


1 −
β
Q


αQ ,

then 
H


exp


κ |u|

Q/(Q−1)

− SQ−2 (κ, u)


|u|

ρ(ξ)β
dξ ≤ C (Q, M, κ) ∥u∥s

for some s > Q.

Proof. First, recall the following inequality: For α ≥ 0, r ≥ 1, we have
eα

−

Q−2
k=0

αk

k!

r

≤ erα
−

Q−2
k=0

(rα)k

k!
. (4.4)

Now, using the Holder inequality, (4.4) and Theorem 1.6, we have
H


exp


κ |u|

Q/(Q−1)

− SQ−2 (κ, u)


|u|

ρ(ξ)β
dξ

≤


H


exp


κ |u|

Q/(Q−1)

− SQ−2 (κ, u)

r
ρ(ξ)rβ dξ

1/r 
H

|u|
s
1/s
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≤


H


exp


κr |u|

Q/(Q−1)

− SQ−2 (κr, u)


ρ(ξ)rβ dξ

1/r

∥u∥s

≤ C (Q, M, κ) ∥u∥s

where r, s ≥ 1, 1
r +

1
s = 1 and r is sufficiently close to 1. �

We also have the following lemma (for Euclidean case, see [56]).

Lemma 4.3. Let {wk} ⊂ E, ∥wk∥E = 1. If wk → w ≠ 0 weakly and almost everywhere,
∇Hwk → ∇Hw almost everywhere, then R(α,wk )

ρ(ξ)β
is bounded in L1 (H) for 0 < α <

αQ


1 −

β
Q

 
1 − ∥w∥

Q
E

−1/(Q−1)

.

Proof. Using the Brezis–Lieb lemma in [15], we deduce that

∥wk∥
Q
E − ∥wk − w∥

Q
E → ∥w∥

Q
E .

Thus for k large enough and δ > 0 small enough:

0 < α (1 + δ) ∥wk − w∥
Q/(Q−1)
E < αQ


1 −

β

Q


.

Now, by noticing that the function ex
−
Q−2

k=0
xk

k!
is increasing and convex in x ≥ 0 and the

fact that for all ε > 0 sufficiently small, there exists C (ε) > 0 such that for all real numbers a, b:

|a + b|
Q′

≤ (1 + ε) |a|
Q′

+ C(ε) |b|
Q′

,

we have
H

R (α, wk)

ρ(ξ)β
dξ ≤

1
p


H

R ((1 + ε) pα, wk − w)

ρ(ξ)β
dξ +

1
q


H

R (qC(ε)α, w)

ρ(ξ)β
dξ

where p, q ≥ 1 and 1
p +

1
q = 1. Now, by choosing p sufficiently close to 1 and ε small enough

such that (1 + ε) p < (1 + δ) and using Theorem 1.6, we get the conclusion. �

5. The existence of the solution to the problem (NU)

The existence of the nontrivial solution to Eq. (NU) will be proved by a mountain-pass
theorem without a compactness condition such as the one of the Palais–Smale (PS) type. This
version of the mountain-pass theorem is a consequence of Ekeland’s variational principle. First
of all, we will check that the functional Jε satisfies the geometric conditions of the mountain-pass
theorem.

Lemma 5.1. Suppose that (V1), (f1) and (f4) hold. Then there exists ε1 > 0 such that for
0 < ε < ε1, there exists ρε > 0 such that Jε(u) > 0 if ∥u∥E = ρε. Furthermore, ρε can be
chosen such that ρε → 0 as ε → 0.

Proof. From (f4), there exist τ, δ > 0 such that |u| ≤ δ implies

F(ξ, u) ≤ k0 (λ1(Q) − τ) |u|
Q (5.1)
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for all ξ ∈ H. Moreover, using (f1) for each q > Q, we can find a constant C = C(q, δ) such
that

F(ξ, u) ≤ C |u|
q

exp


κ |u|

Q/(Q−1)


− SQ−2 (κ, u)


(5.2)

for |u| ≥ δ and ξ ∈ H. From (5.1) and (5.2) we have

F(ξ, u) ≤ k0 (λ1(Q) − τ) |u|
Q

+ C |u|
q

exp


κ |u|

Q/(Q−1)


− SQ−2 (κ, u)


for all (ξ, u) ∈ H × R. Now, by (A4), Lemma 4.1, (3.2) and the continuous embedding
E ↩→ L Q (H), we obtain

Jε(u) ≥ k0 ∥u∥
Q
E − k0 (λ1(Q) − τ)


H

|u|
Q

ρ (ξ)β
dξ − C ∥u∥

q
E − ε ∥h∥∗ ∥u∥E

≥ k0


1 −

(λ1(Q) − τ)

λ1(Q)


∥u∥

Q
E − C ∥u∥

q
E − ε ∥h∥∗ ∥u∥E .

Thus

Jε(u) ≥ ∥u∥E


k0


1 −

(λ1(Q) − τ)

λ1(Q)


∥u∥

Q−1
E − C ∥u∥

q−1
E − ε ∥h∥∗


. (5.3)

Since τ > 0 and q > Q, we may choose ρ > 0 such that k0


1 −

(λ1(Q)−τ)
λ1(Q)


ρQ−1

−Cρq−1 > 0.

Thus, if ε is sufficiently small then we can find some ρε > 0 such that Jε(u) > 0 if ∥u∥ = ρε

and even ρε → 0 as ε → 0. �

Lemma 5.2. There exists e ∈ E with ∥e∥E > ρε such that Jε(e) < inf∥u∥=ρε Jε(u).

Proof. Let u ∈ E \ {0}, u ≥ 0 with compact support Ω = supp(u). By (f2) and (f3), we have
that for p > Q, there exists a positive constant C > 0 such that

∀s ≥ 0, ∀ξ ∈ Ω : F (ξ, s) ≥ cs p
− d. (5.4)

Then by (3.1), we get

Jε(tu) ≤ Ct

Ω

h0 (ξ) |∇H u| dξ + Ct Q
∥u∥

Q
E

− Ct p

Ω

|u|
p

ρ (ξ)β
dξ + C + εt


Ω

hudξ

 .
Since p > Q, we have Jε(tu) → −∞ as t → ∞. Setting e = tu with t sufficiently large, we
get the conclusion. �

In studying this class of sub-elliptic problems involving critical growth and unbounded
domains, the loss of the (PS) compactness condition raises many difficulties. In the following
lemmas, we will analyze the compactness of (PS) sequences of Jε.

Lemma 5.3. Let (uk) ⊂ E be an arbitrary (PS) sequence of Jε, i.e.,

Jε (uk) → c, D Jε (uk) → 0 in E ′ as k → ∞.
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Then there exists a subsequence of (uk) (still denoted by (uk)) and u ∈ E such that

f (ξ, uk)

ρ (ξ)β
→

f (ξ, u)

ρ (ξ)β
strongly in L1

loc (H)

∇Huk(ξ) → ∇Hu(ξ) almost everywhere in H

a (ξ, ∇Huk) ⇀ a (ξ, ∇Hu) weakly in


L Q/(Q−1)

loc (H)
Q−2

uk ⇀ u weakly in E .

Furthermore u is a weak solution of (NU).

In order to prove this lemma, we need the following two lemmas.

Lemma 5.4. Let Br (ξ∗) be a Heisenberg ball centered at (ξ∗) ∈ H with radius r . Then there
exists a positive ε0 depending only on Q such that

sup
Br (ξ∗)|∇H u|

Qdξ≤1,


Br (ξ∗) udξ=0

1
|Br (ξ∗)|


Br (ξ∗)

exp

ε0 |u|

Q/(Q−1)


dξ ≤ C0

for some constant C0 depending only on Q.

The proof of this lemma follows from the representation formula on stratified groups derived
in [58] together with a general theorem of exponential integrability for fractional integrals in [59].

Lemma 5.5. Let (un) be in L1 (Ω) such that un → u in L1 (Ω) and let f be a continuous
function. Then f (ξ,un)

ρ(ξ)β
→

f (ξ,u)

ρ(ξ)β
in L1 (Ω), provided that f (ξ,un(ξ))

ρ(ξ)β
∈ L1 (Ω) ∀n and

Ω
| f (ξ,un(ξ))un(ξ)|

ρ(ξ)β
dξ ≤ C1.

We refer the reader to [18] for a proof.
Now we are ready to prove Lemma 5.3.

Proof. By the assumption, we have
H

A(ξ, ∇H uk)dξ +
1
Q


H

V (ξ) |uk |
Q dξ −


H

F(ξ, uk)

ρ (ξ)β
dξ − ε


H

hukdξ
k→∞
→ c (5.5)

and 
H

a (ξ, ∇H uk) ∇Hvdξ +


H

V (ξ) |uk |
Q−2 ukvdξ −


H

f (ξ, uk)v

ρ (ξ)β
dξ − ε


H

hvdξ


≤ τk ∥v∥E (5.6)

for all v ∈ E , where τk → 0 as k → ∞.
Choosing v = uk in (5.6) and by (A3), we get

H

f (ξ, uk)uk

ρ (ξ)β
dξ + ε


H

hukdξ − Q


H
A (ξ, ∇H uk) dξ −


H

V (ξ) |uk |
Q−2 ukdξ

≤ τk ∥uk∥E .

This together with (5.5), (f2) and (A4) leads to
p

Q
− 1


∥uk∥

Q
E ≤ C (1 + ∥uk∥E )
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and hence ∥uk∥E is bounded and thus
H

f (ξ, uk)uk

ρ (ξ)β
dξ ≤ C,


H

F(ξ, uk)

ρ (ξ)β
dξ ≤ C. (5.7)

Note that the embedding E ↩→ Lq (H) is compact for all q ≥ Q, by extracting a subsequence,
we can assume that

uk → u weakly in E and for almost all ξ ∈ H.

Thanks to Lemma 5.5, we have

f (ξ, un)

ρ (ξ)β
→

f (ξ, u)

ρ (ξ)β
in L1

loc (H) . (5.8)

Now, arguing as done in [18], up to a subsequence, we define an energy concentration set for
any fixed δ > 0,

Σδ =


ξ ∈ H : lim

r→0
lim

k→∞


Br (ξ)


|uk |

Q
+ |∇Huk |

Q


≥ δ


Since (uk) is bounded, Σδ must be a finite set. For any ξ∗

∈ H r Σδ , there exist r : 0 < r <

dist (ξ∗,Σδ) such that

lim
k→∞


Br (ξ∗)


|uk |

Q
+ |∇Huk |

Q


dξ < δ

so for large k:
Br (ξ∗)


|uk |

Q
+ |∇Huk |

Q


dξ < δ. (5.9)

By results in [18], we have:
Br (ξ∗)

| f (ξ, uk)| |uk − u|

ρ (ξ)β
dξ

≤

 f (ξ, uk)

ρ (ξ)β/q


Lq

 1

ρ (ξ)β

1/q ′

Ls
∥uk − u∥Lq′s′ ≤ C ∥uk − u∥Lq′s′ → 0 (5.10)

and for any compact set K ⊂⊂ H \ Σδ ,

lim
k→∞


K

| f (ξ, uk) uk − f (ξ, u) u|

ρ (ξ)β
dξ = 0. (5.11)

So now, we will prove that for any compact set K ⊂⊂ H \ Σδ ,

lim
k→∞


K

|∇Huk − ∇Hu|
Q dξ = 0. (5.12)

It is enough to prove for any ξ∗
∈ H \ Σδ , and r given by (5.9), there holds

lim
k→∞


Br/2(ξ

∗)

|∇Huk − ∇Hu|
Q dξ = 0. (5.13)



N. Lam, G. Lu / Advances in Mathematics 231 (2012) 3259–3287 3279

For this purpose, we take φ ∈ C∞

0 (Br (ξ∗)) with 0 ≤ φ ≤ 1 and φ = 1 on Br/2 (ξ∗). Obviously
φuk is a bounded sequence. Choose v = φuk and v = φu in (5.6), we have:

Br (ξ∗)

φ (a (ξ, ∇Huk) − a (ξ, ∇Hu)) (∇Huk − ∇Hu) dξ

≤


Br (ξ∗)

a (ξ, ∇Huk) ∇Hφ (u − uk) dξ

+


Br (ξ∗)

φa (ξ, ∇Hu) (∇Hu − ∇Huk) dξ +


Br (ξ∗)

φ (uk − u)
f (ξ, uk)

ρ (ξ)β
dξ

+ τk ∥φuk∥E + τk ∥φu∥E − ε


Br (ξ∗)

φh (uk − u) dξ.

Note that by the Holder inequality and the compact embedding of E ↩→ L Q (Ω), we get

lim
k→∞


Br (ξ∗)

a (ξ, ∇Huk) ∇Hφ (u − uk) dξ = 0. (5.14)

Since ∇Huk ⇀ ∇Hu and uk ⇀ u, there holds

lim
k→∞


Br (ξ∗)

φa (ξ, ∇Hu) (∇Hu − ∇Huk) dξ = 0 and

lim
k→∞


Br (ξ∗)

φh (uk − u) dξ = 0.

(5.15)

The Holder inequality and (5.10) imply that

lim
k→∞


Br (ξ∗)

φ (uk − u) f (ξ, uk) dξ = 0.

So we can conclude that

lim
k→∞


Br (ξ∗)

φ (a (ξ, ∇Huk) − a (ξ, ∇Hu)) (∇Huk − ∇Hu) dξ = 0

and hence we get (5.13) by (A2). So we have (5.12) by a covering argument. Since Σδ is finite,
it follows that ∇Huk converges to ∇Hu almost everywhere. This immediately implies, up to a

subsequence, a (ξ, ∇Huk) ⇀ a (ξ, ∇Hu) weakly in


L Q/(Q−1)

loc (Ω)
Q−2

. Let k tend to infinity

in (5.6) and combine with (5.8), we obtain

⟨D Jε(u), h⟩ = 0 ∀h ∈ C∞

0 (Ω) .

This completes the proof of the lemma. �

5.1. The proof of Theorem 1.8

Proposition 5.1. Under the assumptions (V1) and (V2) (or V(3)), and (f1)–(f4), there exists
ε1 > 0 such that for each 0 < ε < ε1, the problem (NU) has a solution uM via mountain-pass
theorem.

Proof. For ε sufficiently small, by Lemmas 4.1 and 4.2, Jε satisfies the hypotheses of the
mountain-pass theorem except possibly for the (PS) condition. Thus, using the mountain-pass
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theorem without the (PS) condition, we can find a sequence (uk) in E such that

Jε (uk) → cM > 0 and ∥D Jε (uk)∥ → 0

where cM is the mountain-pass level of Jε. Now, by Lemma 5.3, the sequence (uk) converges
weakly to a weak solution uM of (NU) in E . Moreover, uM ≠ 0 since h ≠ 0. �

6. The multiplicity results to the problem (NH): Theorem 1.9

In this section, we study the problem (NH). Note that (NH) is a special case of the problem

(NU) where A (ξ, τ ) =
|τ |

Q

Q . As a consequence, there exists a nontrivial solution of standard
“mountain-pass” type as in Theorem 1.8. Now, we will prove the existence of the second solution.

Lemma 6.1. There exists η > 0 and v ∈ E with ∥v∥E = 1 such that Jε(tv) < 0 for all
0 < t < η. In particular, inf∥u∥E ≤η Jε(u) < 0.

Proof. Let v ∈ E be a solution of the problem

−divH

|∇Hv|

Q−2
∇Hv


+ V (ξ) |v|

Q−2 v = h in H.

Then, for h ≠ 0, we have


H hv = ∥v∥
Q
E > 0. Moreover,

d

dt
Jε(tv) = t Q−1

∥v∥
Q
E −


H

f (ξ, tv) v

ρ(ξ)β
dξ − ε


H

hvdξ

for t > 0. Since f (ξ, 0) = 0, by continuity, it follows that there exists η > 0 such that
d
dt Jε(tv) < 0 for all 0 < t < η and thus Jε(tv) < 0 for all 0 < t < η since Jε(0) = 0. �

Next, we define the Moser Functions (see [18,40]):

ml(ξ, r) =
1

σ
1/Q
Q


(log l)(Q−1)/Q if ρ(ξ) ≤

r

l
log r

ρ(ξ)

(log l)1/Q
if

r

l
≤ ρ(ξ) ≤ r

0 if ρ(ξ) ≥ r.

Using the fact that |∇Hρ(ξ)| =
|z|

ρ(ξ)
where ξ = (z, t) ∈ H, we can conclude thatml (., r) ∈ W 1,Q(H), the support of ml(ξ, r) is the ball Br ,

H
|∇Hml(ξ, r)|Q dξ = 1, and ∥ml∥W 1,Q(H) = 1 + O(1/ log l). (6.1)

Let ml(ξ, r) = ml(ξ, r)/ ∥ml∥E . Then by straightforward calculation, we have

m Q/(Q−1)
l (ξ, r) = σ

−1/(Q−1)
Q log l + dl for ρ (ξ) ≤ r/ l, (6.2)

where dl = σ
−1/(Q−1)
Q log l


∥ml∥

−1/(Q−1)
− 1


. Moreover, we have

∥ml∥ → 1 as l → ∞

dl

log l
→ 0 as l → ∞.

It is now standard to check the following lemma (for the Euclidean case, see [24,40]):
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Lemma 6.2. Suppose that (V1) and (f1)–(f5) hold. Then there exists k ∈ N such that

max
t≥0


t Q

Q
−


H

F (ξ, tmk)

ρ(ξ)β
dξ


<

1
Q


Q − β

Q

αQ

α0

Q−1

.

Corollary 6.1. Under the hypotheses (V1) and (f1)–(f5), if ε is sufficiently small then

max
t≥0

Jε (tmk) = max
t≥0


t Q

Q
−


H

F (ξ, tmk)

ρ(ξ)β
dξ − t


H

εhmkdξ


<

1
Q


Q − β

Q

αQ

α0

Q−1

.

Proof. Since


H εhmkdξ
 ≤ ε ∥h∥∗, taking ε sufficiently small and using Moser–Trudinger

type inequalities, the result follows. �

Note that we can conclude by inequality (5.3) and Lemma 6.1 that

− ∞ < c0 = inf
∥u∥E ≤ρε

Jε(u) < 0. (6.3)

Next, we will prove that this infimum is achieved and generate a solution. In order to obtain
convergence results, we need to improve the estimate of Lemma 6.2.

Corollary 6.2. Under the hypotheses (V1) and (f1)–(f5), there exist ε2 ∈ (0, ε1] and u ∈

W 1,Q (H) with compact support such that for all 0 < ε < ε2,

Jε(tu) < c0 +
1
Q


Q − β

Q

αQ

α0

Q−1

for all t ≥ 0.

Proof. It is possible to raise the infimum c0 by reducing ε. By Lemma 5.1, ρε
ε→0
→ 0. Conse-

quently, c0
ε→0
→ 0. Thus there exists ε2 > 0 such that if 0 < ε < ε2 then, by Corollary 6.1, we

have

max
t≥0

Jε (tmk) < c0 +
1
Q


Q − β

Q

αQ

α0

Q−1

.

Taking u = mk ∈ W 1,Q (H), the result follows. �

Now, similarly as in the Euclidean case (see [6,24,40]), we have the following lemma.

Lemma 6.3. If (uk) is a (PS) sequence for Jε at any level with

lim inf
k→∞

∥uk∥E <


Q − β

Q

αQ

α0

(Q−1)/Q

(6.4)

then (uk) possesses a subsequence which converges strongly to a solution u0 of (NH).

6.1. Proof of Theorem 1.9

The proof of the existence of the second solution of (NH) follows by a minimization argument
and Ekeland’s variational principle. To this end, we first prove the following.
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Proposition 6.1. There exists ε2 > 0 such that for each ε with 0 < ε < ε2, Eq. (NH) has a
minimum type solution u0 with Jε (u0) = c0 < 0, where c0 is defined in (6.3).

Proof. Let ρε be as in Lemma 5.1. We can choose ε2 > 0 sufficiently small such that

ρε <


Q − β

Q

αQ

α0

(Q−1)/Q

.

Since Bρε is a complete metric space with the metric given by the norm of E , convex and the
functional Jε is of class C1 and bounded below on Bρε , by Ekeland’s variational principle there
exists a sequence (uk) in Bρε such that

Jε (uk) → c0 = inf
∥u∥E ≤ρε

Jε(u) and ∥D Jε (uk)∥ → 0.

Observing that

∥uk∥E ≤ ρε <


Q − β

Q

αQ

α0

(Q−1)/Q

by Lemma 6.3, it follows that there exists a subsequence of (uk) which converges to a solution
u0 of (NH). Therefore, Jε (u0) = c0 < 0. �

Remark 6.1. By Corollary 6.2, we can conclude that

0 < cM < c0 +
1
Q


Q − β

Q

αQ

α0

Q−1

.

Proposition 6.2. If ε2 > 0 is small enough, then the solutions of (NH) obtained
in Propositions 5.1 and 6.1 are distinct.

Proof. By Propositions 5.1 and 6.1, there exist sequences (uk) , (vk) in E such that

uk → u0, Jε (uk) → c0 < 0, D Jε (uk) uk → 0

and

vk ⇀ uM , Jε (vk) → cM > 0, D Jε (vk) vk → 0,

∇Hvk(ξ) → ∇HuM (ξ) almost everywhere in H.

Now, suppose by contradiction that u0 = uM . As in the proof of Lemma 5.3 we obtain

f (ξ, vk)

ρ(ξ)β
→

f (ξ, u0)

ρ(ξ)β
in L1 (BR) for all R > 0. (6.5)

From this, we have by (f2), (f3) and the generalized Lebesgue dominated convergence theorem:

F(ξ, vk)

ρ(ξ)β
→

F(ξ, u0)

ρ(ξ)β
in L1 (BR) for all R > 0.

Now, recall the following inequalities: there exists c > 0 such that for all (ξ, s) ∈ H × R+:

F(ξ, s) ≤ c |s|Q
+ c f (ξ, s) (6.6)

F(ξ, s) ≤ c |s|Q
+ cR (α0, s) s

H

f (ξ, vk)vk

ρ(ξ)β
dξ ≤ C,


H

F(ξ, vk)

ρ(ξ)β
dξ ≤ C.
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We will prove that for arbitrary δ > 0, we can find R > 0 such that
ρ(ξ)>R

F(ξ, vk)

ρ(ξ)β
dξ ≤ 3δ and


ρ(ξ)>R

F(ξ, u0)

ρ(ξ)β
dξ ≤ δ.

As a consequence, we get

F(ξ, vk)

ρ(ξ)β
→

F(ξ, u0)

ρ(ξ)β
in L1 (H) . (6.7)

First, we have
ρ(ξ)>R
|vk |>A

F(ξ, vk)

ρ(ξ)β
dξ ≤ c


ρ(ξ)>R
|vk |>A

|vk |
Q

ρ(ξ)β
dξ + c


ρ(ξ)>R
|vk |>A

f (ξ, vk)

ρ(ξ)β
dξ

≤
c

Rβ A


ρ(ξ)>R

|vk |
Q+1 dξ + c

1
A


H

f (ξ, vk)vk

ρ(ξ)β
dξ

≤
c

Rβ A
∥vk∥

Q+1
E + c

1
A


H

f (ξ, vk)vk

ρ(ξ)β
dξ.

Hence, since ∥vk∥E is bounded and using (6.6), we can choose A and R such that
ρ(ξ)>R
|vk |>A

F(ξ, vk)

ρ(ξ)β
dξ ≤ 2δ.

Next, we have
ρ(ξ)>R
|vk |≤A

F(ξ, vk)

ρ(ξ)β
dξ ≤

C(α0, A)

Rβ


ρ(ξ)>R
|vk |≤A

|vk |
Q dξ

≤
2Q−1C(α0, A)

Rβ


ρ(ξ)>R
|vk |≤A

|vk − u0|
Q dξ +


ρ(ξ)>R
|vk |≤A

|u0|
Q dξ


.

Now, using the compactness of embedding E ↩→ Lq (H) , q ≥ Q and noticing that vk ⇀ u0,
again we can choose R such that

ρ(ξ)>R
|vk |≤A

F(ξ, vk)

ρ(ξ)β
dξ ≤ δ.

Thus we have
ρ(ξ)>R

F(ξ, vk)

ρ(ξ)β
dξ ≤ 3δ.

Similarly, we also have
ρ(ξ)>R

F(ξ, u0)

ρ(ξ)β
dξ ≤ 3δ.

Thus, we can get (6.7).
Now, by standard arguments (see [24,40]), we can deduce a contradiction. �
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6.2. Proof of Theorem 1.10

Corollary 6.3. There exists ε3 > 0 such that if 0 < ε < ε3 and h(ξ) ≥ 0 for all ξ ∈ H, then the
weak solutions of (NH) are nonnegative.

Proof. Let u be a weak solution of (NH), that is,
H


|∇H u|

Q−2
∇H u∇H v + V (ξ) |u|

Q−2 uv


dξ −


H

f (ξ, u) v

ρ(ξ)β
dξ −


H

εhvdξ = 0

for all v ∈ E . Taking v = u−
∈ E and observing that f (ξ, u (ξ)) u− (ξ) = 0 a.e., we haveu−

Q
E = −


H

εhu−dξ ≤ 0.

Consequently, u = u+
≥ 0. �

6.3. Proof of Theorem 1.11

This is similar to the proof of Theorems 1.8 and 1.9. First, we can find a sequence (vk) in E
such that

J0 (vk) → cM > 0 and D J0 (vk) → 0

where cM is the Mountain-pass level of J0. Moreover, we have that the sequence (vk) converges
weakly to a weak solution v of (NH) with ε = 0. It is now enough to show that v ≠ 0. Indeed,
suppose that v = 0. Similarly as in the previous part, we get

F(ξ, vk)

ρ(ξ)β
→ 0 in L1 (H) . (6.8)

Thus

∥vk∥
Q
E → QcM > 0. (6.9)

Also, we have from the previous sections that cM ∈


0, 1

Q


Q−β

Q
αQ
α0

Q−1


. Hence, we can find

δ > 0 and K ∈ N such that

∥vk∥
Q
E ≤


Q − β

Q

αQ

α0
− δ

Q−1

for all k ≥ K . (6.10)

Now, if we choose τ > 1 sufficiently close to 1, then by ( f 1) we have

| f (ξ, vk)vk | ≤ b1 |vk |
Q

+ b2


exp


α0 |vk |

Q/(Q−1)


− SQ−2 (α0, vk)

|vk | .

Hence
H

| f (ξ, vk)vk |

ρ(ξ)β
≤ b1


H

|vk |
Q

ρ(ξ)β
+ b2


H


exp


α0 |vk |

Q/(Q−1)

− SQ−2 (α0, vk)


|vk |

ρ(ξ)β
.

Using the Holder inequality, Theorem 1.6, Lemma 4.2 and (6.10), we can conclude that
H

| f (ξ, vk)vk |

ρ(ξ)β
→ 0.

Since D J0 (vk) → 0, we get ∥vk∥E → 0 and it is a contradiction.
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