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Abstract
Motivated and inspired by the improvedHardy inequalities studied in their well-knownworks
by Brezis and Vázquez (Rev Mat Univ Complut Madrid 10:443–469, 1997) and Brezis and
Marcus (Ann Scuola Norm Sup Pisa Cl Sci 25(1–2):217–237, 1997), we establish in this
paper several identities that imply many sharpened forms of the Hardy type inequalities
on upper half spaces {xN > 0}. We set up these results for the distance to the origin, the
distance to the boundary of any strip R

N−1 × (0, R) and the distance to the hyperplane
{xN = 0}, using both the usual full gradient and radial derivative (in the case of distance
to the origin) or only the partial derivative ∂u

∂xN
(in the case of distance to the boundary of

the strip or hyperplane). One of the applications of our main results is that when � is the
strip R

N−1 × (0, 2R), the bound λ (�) given by Brezis and Marcus in Brezis and Marcus

(1997) can be improved to
z20
R2 , where z0 = 2.4048 . . . is the first zero of the Bessel function

J0 (z). Our approach makes use of the notion of Bessel pairs introduced by Ghoussoub and
Moradifam (MathAnn349(1):1–57, 2011) and (Functional inequalities: newperspectives and
new applications. Mathematical Surveys and Monographs, American Mathematical Society,
Providence, 2013) and the method of factorizations of differential operators. In particular,
our identities and inequalities offer sharpened and more precise estimates of the second
remainder term in the existing Hardy type inequalities on upper half spaces in the literature,
including the Hardy-Sobolev-Maz’ya type inequalities.
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1 Introduction

The classical Hardy inequalities

∫

�

|∇u|2 dx ≥ Copt (�)

∫

�

|u|2
d (x)2

dx , u ∈ C∞
0 (�) , (1.1)

where � ⊂ R
N , N ≥ 2, d(x) is the distance from x to a certain surface, have attracted

extensive attention because of their important roles in many branches of mathematics. There
is a vast amount of literature on the Hardy type inequalities together with their variations and
generalizations. It is impossible to give a complete list on the subject. Hence, we just refer the
interested reader to [32,49] for historical backgrounds and to the monographs [3,33,34,55],
that are standard references on the topic.

The principal aim of this note is to use the factorizations of differential operators to study
the Hardy type inequalities on half-spaces. For a comprehensive review, the history and
properties of the factorization method, the interested reader is referred to [24]. We note here
that factorizing differential equations was used in [26] to prove the classical Hardy inequality
and in [25] for the radial and logarithmic refinements of the Hardy inequality. In Gesztesy
[24], the authors applied factorizations of singular, even-order partial differential operators
to provide simple proofs for several Hardy-Rellich type inequalities. Recently in [38,39,42–
45], the Hardy operator has been decomposed into or bounded by the product of differential
operators and thus higher order Hardy-Sobolev-Maz’ya inequalities and their borderline case
of Hardy-Adams inequalities have been established using the Fourier analysis techniques
on hyperbolic spaces, among other techniques (see also the first order Hardy-Trudinger-
Moser type inequalities in [41,61,63]). More recently, the factorization method was used to
obtain Hardy, Hardy-Rellich and refined Hardy inequalities on general stratified groups and
weighted Hardy inequalities on general homogeneous groups in [57].

1.1 Hardy inequalities with distance to the origin

When 0 ∈ � and d (x) = |x | is the distance to the origin, the Hardy inequalities (1.1) have
been investigated extensively and intensively:

∫

�

|∇u|2 dx ≥
(
N − 2

2

)2 ∫

�

|u|2
|x |2 dx , u ∈ C∞

0 (�) . (1.2)

The fact that the optimal constant
( N−2

2

)2
, N ≥ 3, is not achieved in H1

0 (�) has been
well understood. On domains having 0 on their boundary, the situation is more complicated.
Indeed, in this case, it was proved that the best constant Copt (�) can be anywhere between( N−2

2

)2
and

( N
2

)2
. Moreover, it can be attained by nontrivial functions in H1

0 (�) as long as

Copt (�) <
( N
2

)2
. In particular, on the half-spaces RN+ = {

x ∈ R
N : xN > 0

}
,Copt

(
R

N+
) =( N

2

)2 : ∫

R
N+

|∇u|2 dx ≥
(
N

2

)2 ∫

R
N+

|u|2
|x |2 dx , u ∈ C∞

0

(
R

N+
)
. (1.3)

See, for instance [14,17,19,53].
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When 0 ∈ �, there has been considerable efforts to improve the Hardy inequalities. One

possible way is to find extra terms to add to the potential
( N−2

2

)2 1
|x |2 . The first result in

this direction appeared in [12] where in order to investigate the stability of certain singular
solutions of nonlinear elliptic equations, Brezis and Vázquez proved on bounded domains
that

Theorem A (Brezis-Vázquez [12]). For any bounded domain � ⊂ RN , N ≥ 2, and every
u ∈ H1

0 (�),

∫

�

|∇u|2 dx −
(
N − 2

2

)2 ∫

�

|u|2
|x |2 dx ≥ z20ω

2
N
N |�|− 2

N

∫

�

|u|2 dx (1.4)

where z0 = 2.4048 . . . is the first zero of the Bessel function J0 (z). The constant z20ω
2
N
N |�|− 2

N

is optimal when � is a ball but is not achieved in H1
0 (�).

It is also conjectured by Brezis and Vázquez that (see [12]) z20ω
2
N
N |�|− 2

N

∫

�

|u|2 dx is just

the first term of an infinite series of extra terms that can be added to the RHS of (1.4). The
results of Brezis and Vázquez in [12] have generated a noticeable amount of interest.We refer
the reader to, for instance [1,6,7,23,29,52,62]. See also the book [28] for more discussions
and developments in this aspect. We just state here a result by Ghoussoub and Moradifam
in [27] that extends and unifies several results in this direction (see also their beautiful book
[28]):

Theorem B (Ghoussoub-Moradifam [27]). Assume N ≥ 1. Let 0 < R ≤ ∞, V and W be

positive C1−functions on (0, R) such that

R∫

0

1
r N−1V (r)

dr = ∞ and

R∫

0

r N−1V (r) dr < ∞.

If
(
r N−1V , r N−1W

)
is a Bessel pair on (0, R), then for all u ∈ C∞

0 (BR)

∫

BR

V (|x |) |∇u|2 dx ≥
∫

BR

W (|x |) |u|2 dx. (1.5)

Also, if (1.5) holds for all u ∈ C∞
0 (BR), then

(
r N−1V , r N−1cW

)
is a Bessel pair on (0, R)

for some c > 0.

Here a couple ofC1−functions (V ,W ) is aBessel pair on (0, R) if the ordinary differential
equation (

V y′)′ + Wy = 0

has a positive solution on the interval (0, R).
Another way to improve the Hardy type inequalities is to replace the usual∇ by x

|x | ·∇. We

note that x
|x | ·∇ is just the radial derivative. Indeed, in the polar coordinate (r , σ ) =

(
|x | , x

|x |
)
,

we have x
|x | · ∇u (x) = ∂r u (rσ) =: Ru. We also mention here that the operator R has

appeared naturally in the literature. Indeed, much research has been devoted to investigating
the functional and geometric inequalities on general homogeneous groups. However, since
these spaces do not have to be stratified or even graded, the concept of horizontal gradients
does not make sense. Thus, one may want to work with the full gradient. On the other
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hand, unless the homogeneous groups are Abelian, the full gradient is not homogeneous.
Nevertheless, on the homogeneous groups, the operatorR is homogeneous of order −1 and
thus, is reasonable to work on. Actually, the Hardy type inequalities with radial derivative
have been studied intensively recently. See [31,35,36,58], to name just a few. For instance,
in [9,47], the following equalities have been set up to provide a direct understanding to the
validity as well as the nonexistence of optimizers for the Hardy inequalities:

∫

RN

∣∣∣∣ x

|x | · ∇u

∣∣∣∣
2

dx =
(
N − 2

2

)2 ∫

RN

|u|2
|x |2 dx +

∫

RN

∣∣∣∣ x

|x | · ∇u + N − 2

2

u

|x |
∣∣∣∣
2

dx

∫

RN

|∇u|2 dx =
(
N − 2

2

)2 ∫

RN

|u|2
|x |2 dx +

∫

RN

∣∣∣∣∇u + N − 2

2

u

|x |
x

|x |
∣∣∣∣
2

dx .

A version of Theorem B with radial derivative was also set up recently in [16].
For the improvements of the Hardy type inequalities with boundary singularities, the

interested reader is referred to [6–8,14,17,20,22,40,43,46,51,56,59,60], to name just a few.
We note here that a sharp version of the Hardy inequality for fractional Sobolev spaces on
half-spaces was investigated in [22]. In [6,7], Beckner established Hardy type inequalities
on the entire spaces and half-spaces using Fourier analysis and a nonlinear generalization of
the Stein-Weiss lemma for non-unimodular groups.

Our first primary goal of this article is to employ the method of factorization to investigate
a version of Theorem B in the setting of half-spaces. More precisely, we will show that

Theorem 1.1 Let 0 < R ≤ ∞, V and W be positive C1−functions on (0, R). If(
r N+1V , r N+1W

)
is a Bessel pair on (0, R), then for u ∈ C∞

0

(
B(N )
R ∩ R

N+
)

:
∫

B(N )
R ∩RN+

V (|x |) |∇u|2 dx −
∫

B(N )
R ∩RN+

[
W (|x |) − V ′ (|x |)

|x |
]

|u|2 dx

=
∫

B(N )
R ∩RN+

V (|x |)
∣∣∣∣∇

(
u

ϕ

1

xN

)∣∣∣∣
2

ϕ2x2Ndx

and
∫

B(N )
R ∩RN+

V (|x |)
∣∣∣∣ x

|x | · ∇u

∣∣∣∣
2

dx −
∫

B(N )
R ∩RN+

[
W (|x |) − V ′ (|x |)

|x | − (N − 1)

|x |2 V (|x |)
]

|u|2 dx

=
∫

B(N )
R ∩RN+

V (|x |)
∣∣∣∣ x

|x | · ∇
(
1

ϕ

u

xN

)∣∣∣∣
2

ϕ2x2Ndx .

Here ϕ = ϕr N+1V ,r N+1W ;R is the positive solution of

(
r N+1V (r) y′(r)

)′ + r N+1W (r) y(r) = 0

on the interval (0, R).

Asa consequence ofTheorem1.1,weobtain the following type inequalities on half-spaces.
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Corollary 1.1 If
(
r N+1V , r N+1W

)
is aBessel pair on (0, R), then for u ∈ C∞

0

(
B(N )
R ∩ R

N+
)
:

∫

B(N )
R ∩RN+

V (|x |) |∇u|2 dx ≥
∫

B(N )
R ∩RN+

[
W (|x |) − V ′ (|x |)

|x |
]

|u|2 dx

∫

B(N )
R ∩RN+

V (|x |)
∣∣∣∣ x

|x | · ∇u

∣∣∣∣
2

dx ≥
∫

B(N )
R ∩RN+

[
W (|x |) − V ′ (|x |)

|x | − (N − 1)

|x |2 V (|x |)
]

|u|2 dx

with the ground state xNϕ (x).

By applyingTheorem1.1 to theBessel pair
(
r N+1,

( N
2

)2
r N−1

)
withϕ = r− N

2 on (0,∞),

we deduce the following identities that provide a straightforward interpretation of (1.3):

Corollary 1.2 For u ∈ C∞
0

(
R

N+
)
, there holds

∫

R
N+

|∇u|2 dx −
(
N

2

)2 ∫

R
N+

|u|2
|x |2 dx =

∫

R
N+

∣∣∣∣∇
(

|x | N2 u

xN

)∣∣∣∣
2

|x |−N x2Ndx (1.6)

∫

R
N+

∣∣∣∣ x

|x | · ∇u

∣∣∣∣
2

dx −
(
N − 2

2

)2 ∫

R
N+

|u|2
|x |2 dx =

∫

R
N+

∣∣∣∣ x

|x | · ∇
(

|x | N2 u

xN

)∣∣∣∣
2

|x |−N x2Ndx .

(1.7)

We note that xN |x |− N
2 is not in L2

(
R

N+
)
. Indeed,

∫

R
N+

x2N |x |−N dx =
∞∫

0

∫

RN−1

x2N
∣∣x2N + |y|2∣∣− N

2 dydxN

=
∣∣∣SN−2

∣∣∣
∞∫

0

∞∫

0

x2N
∣∣x2N + r2

∣∣− N
2 r N−2drdxN .

By setting r = xN t , we get

∞∫

0

∞∫

0

x2N
∣∣x2N + r2

∣∣− N
2 r N−2drdxN =

∞∫

0

∞∫

0

∣∣1 + t2
∣∣− N

2 t N−2xNdtdxN

=
∞∫

0

xNdxN

∞∫

0

∣∣1 + t2
∣∣− N

2 t N−2dt

which is divergent. Hence, the best constants
( N
2

)2
in (1.6) and

( N−2
2

)2
in (1.7) cannot be

attained by nontrivial functions in H1
0

(
R

N+
)
. Nevertheless, from the equality (1.6), we deduce

that cxN |x |− N
2 , c ∈ C, can play the role of the “virtual” ground state in the sense of Frank

and Seiringer [21].

Remark 1.1 It is also worthy to note that the best constant for the Hardy inequality on half-
spaces with radial derivative is exactly the same as the optimal constant of the one on the
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whole space. This is in contrast to the case of full gradient where the sharp constant of the

Hardy inequality on half-spaces with usual gradient is bumped to
( N
2

)2
on R

N+ .

Using Theorem 1.1, we can derive many new and interesting Hardy type inequalities on
half-spaces. Indeed, we can deduce as many the Hardy inequalities on R

N+ as we can form
the Bessel pairs. The book [28] provides various examples and properties about Bessel pairs.
In the next section, we will state a few typical versions of the Hardy type inequalities on
half-spaces that seem new in the literature and have potential applications in the study of the
stability of certain singular solutions of nonlinear elliptic equations on half-spaces.

We illustrate below some particular applications of our Theorem 1.1 which provide the
following sharpened inequalities on half balls or half spaces in the spirit ofBrezis andVázquez
[12].

Theorem 1.2 For any 0 < R ≤ ∞, we have for u ∈ C∞
0

(
B(N )
R ∩ R

N+
)

:
∫

B(N )
R ∩RN+

|∇u|2 dx −
(
N

2

)2 ∫

B(N )
R ∩RN+

|u|2
|x |2 dx

= z20
R2

∫

B(N )
R ∩RN+

|u|2 dx +
∫

B(N )
R ∩RN+

∣∣∣∣∣∇
(

|x | N2
J0;R(|x |)

u

xN

)∣∣∣∣∣
2 ∣∣∣∣∣

J0;R (|x |)
|x | N2

xN

∣∣∣∣∣
2

dx

≥ z20
R2

∫

B(N )
R ∩RN+

|u|2 dx,

and
∫

B(N )
R ∩RN+

∣∣∣∣ x

|x | · ∇u

∣∣∣∣
2

dx −
(
N − 2

2

)2 ∫

B(N )
R ∩RN+

|u|2
|x |2 dx

= z20
R2

∫

B(N )
R ∩RN+

|u|2 dx +
∫

B(N )
R ∩RN+

∣∣∣∣∣
x

|x | · ∇
(

|x | N2
J0;R(|x |)

u

xN

)∣∣∣∣∣
2 ∣∣∣∣∣

J0;R (|x |)
|x | N2

xN

∣∣∣∣∣
2

dx

≥ z20
R2

∫

B(N )
R ∩RN+

|u|2 dx .

We can also obtain the following versions of the celebrated Heisenberg’s uncertainty
principle on half-spaces as applications of our results:

∫

R
N+

|u|2 dx

≤

⎛
⎜⎜⎝

∫

R
N+

|u|2
|x |2 dx

⎞
⎟⎟⎠

1
2
⎛
⎜⎜⎝

∫

R
N+

|x |2 |u|2 dx

⎞
⎟⎟⎠

1
2
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≤ 2

N − 2

⎛
⎜⎜⎝

∫

R
N+

∣∣∣∣ x

|x | · ∇u

∣∣∣∣
2

dx

⎞
⎟⎟⎠

1
2
⎛
⎜⎜⎝

∫

R
N+

|x |2 |u|2 dx

⎞
⎟⎟⎠

1
2

and ∫

R
N+

|u|2 dx

≤

⎛
⎜⎜⎝

∫

R
N+

|u|2
|x |2 dx

⎞
⎟⎟⎠

1
2
⎛
⎜⎜⎝

∫

R
N+

|x |2 |u|2 dx

⎞
⎟⎟⎠

1
2

≤ 2

N

⎛
⎜⎜⎝

∫

R
N+

|∇u|2 dx

⎞
⎟⎟⎠

1
2
⎛
⎜⎜⎝

∫

R
N+

|x |2 |u|2 dx

⎞
⎟⎟⎠

1
2

.

1.2 Hardy inequalities with distance to a surface of codimension 1

Another type of the Hardy inequalities that has also received much attention in the literature
is the case when d (x) is the distance to a surface K of codimention 1. The most notable
example is d (x) = d (x, ∂�) is the distance to the boundary. Here, � is a domain in R

N

with Lipschitz boundary. In this case, the optimal constant

Copt (�) := inf
u∈H1

0 (�)

∫

�

|∇u|2 dx
∫

�

|u|2
d(x,∂�)2

dx

depends on the domain. In general, Copt (�) ≤ 1
4 when ∂� has a tangent plane at least at

one point. There exists smooth bounded domains such that Copt (�) < 1
4 , but for convex

domains Copt (�) = 1
4 . It is interesting to mention that the optimal constant Copt (�) can be

attained if and only if Copt (�) < 1
4 . See, for instance [4,10,11,15,48]. Actually, Brezis and

Marcus proved in [10] the following result to explain explicitly this situation on bounded
convex domain:

Theorem C (Brezis-Marcus [10]). For every smooth domain of class C2, there exists λ (�) ∈
R such that∫

�

|∇u|2 dx − 1

4

∫

�

|u|2
d (x, ∂�)2

dx ≥ λ (�)

∫

�

|u|2 dx, u ∈ C∞
0 (�) . (1.8)

Moreover, for convex domains,

λ (�) ≥ 1

4diam2 (�)
.
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They also questioned in [10] whether the diameter could be replaced by the volume of

�. An affirmative answer was posed in [30] where it was showed that λ (�) ≥ N
N−2
N ω

2
N
N−1

4|�| 2
N

.

In [18], the authors improved the bound in [10] to λ (�) ≥ 3
Dint (�)2

where Dint (�) :=
2 supx∈� d (x, ∂�) is the interior diameter. In [2], Avkhadiev and Wirths established a sharp

bound λ (�) ≥ λ20

(supx∈� d(x,∂�))
2 , λ0 = 0.940 . . . is the first zero in (0,∞) of the function

J0 (x) + 2x J ′
0 (x), using one-dimensional inequalities. We refer the interested reader to

the monograph [3] for further developments in this direction. We brieftly note here that

as a consequence of our main results, the constant λ (�) can be improved to
z20
R2 when

� = R
N−1 × (0, 2R).

The next goal of this paper is to investigate the general versions of the Hardy inequality
with distance to the boundary on R

N+ . We will use the method of factorizing differential
operators and the notion of Bessel pairs to consolidate and improve many existing results
in the literature. More precisely, let 0 < R ≤ ∞ and let A(N )

R = R
N−1 × (0, R) be a strip

in R
N . Denote dR (x) = min {xN , 2R − xN } (with the convention that d∞ (x) = xN ). Note

that dR (x) is the distance from x to the boundary of the strip A(N )
2R . Then we will prove that

Theorem 1.3 Let0 < R ≤ ∞. If (V ,W ) is aBessel pair on (0, R), then for u ∈ C∞
0

(
A(N )
2R

)
:

∫

A(N )
2R

V (dR (x)) |∇u|2 dx −
∫

A(N )
2R

W (dR (x)) |u|2 dx

=
∫

A(N )
2R

V (dR (x))

∣∣∣∣∇
(

u

ϕ (dR (x))

)∣∣∣∣
2

ϕ2 (dR (x)) dx,

and ∫

A(N )
2R

V (dR (x))

∣∣∣∣ ∂u

∂xN

∣∣∣∣
2

dx −
∫

A(N )
2R

W (dR (x)) |u|2 dx

=
∫

A(N )
2R

V (dR (x))

∣∣∣∣ ∂

∂xN

(
u

ϕ (dR (x))

)∣∣∣∣
2

ϕ2 (dR (x)) dx .

We note that for any 0 < R < ∞,

(
1, 1

4
1
r2

+ z20
R2

)
is a Bessel pair on (0, R) with

ϕ = √
r J0

( r z0
R

) = √
r J0;R (r). Hence we get the following Hardy inequalities in the spirit

of Brezis-Marcus:

Theorem 1.4 For any 0 < R < ∞, we have for u ∈ C∞
0

(
A(N )
2R

)
:

∫

A(N )
2R

|∇u|2 dx − 1

4

∫

B(N )
R ∩RN+

|u|2
dR (x)2

dx

= z20
R2

∫

A(N )
2R

|u|2 dx +
∫

A(N )
2R

∣∣∣∣∇
(

u√
dR (x)J0;R(dR (x))

)∣∣∣∣
2 ∣∣J0;R(dR (x))

∣∣2 dR (x) dx
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and∫

A(N )
2R

∣∣∣∣ ∂u

∂xN

∣∣∣∣
2

dx − 1

4

∫

B(N )
R ∩RN+

|u|2
dR (x)2

dx

= z20
R2

∫

A(N )
2R

|u|2 dx +
∫

A(N )
2R

∣∣∣∣ ∂

∂xN

(
u√

dR (x)J0;R(dR (x))

)∣∣∣∣
2 ∣∣J0;R(dR (x))

∣∣2 dR (x) dx .

Hence, when the domain is the strip A(N )
2R , we improve the constant λ (�) in Theorem C

to
z20
R2 . This theorem can be considered as a special case of Corollary 3.1 in Sect. 3.

Another interesting application of our Theorem 1.3 is as follows: Since
(
rα+1, α2

4 r
α−1

)

is a Bessel pair on (0,∞) with ϕ = r− α
2 , we obtain the following identities:

Corollary 1.3 For u ∈ C∞
0

(
R

N+
)
, there holds

∫

R
N+

|∇u|2 xα+1
N dx − α2

4

∫

R
N+

|u|2 xα−1
N dx =

∫

R
N+

∣∣∣∇
(
x

α
2
N u

)∣∣∣2 xNdx

∫

R
N+

∣∣∣∣ ∂u

∂xN

∣∣∣∣
2

xα+1
N dx − α2

4

∫

R
N+

|u|2 xα−1
N dx =

∫

R
N+

∣∣∣∣∣∣∣
∂

(
x

α
2
N u

)

∂xN

∣∣∣∣∣∣∣

2

xNdx .

By choosing α = −1, we get
∫

R
N+

|∇u|2 dx − 1

4

∫

R
N+

|u|2
x2N

dx ≥ 0.

Actually, we also have the following Hardy-Sobolev-Maz’ya inequality: (see, for instance
[50]):

∫

R
N+

|∇u|2 dx − 1

4

∫

R
N+

|u|2
x2N

dx ≥ 1

C2 (N , 1)

⎛
⎜⎜⎝

∫

R
N+

|u| 2(N+1)
N−1 x

− 2
N−1

N dx

⎞
⎟⎟⎠

N−1
N+1

, u ∈ C∞
0

(
R

N+
)
.

(1.9)
Here C (N , 1) is sharp and is given in (1.10). We will show that by combining the identities
in Corollary 1.3 and the optimal Sobolev inequality with monomial weights, we can derive
a sharp version of the Hardy-Sobolev-Maz’ya type inequalities.

Theorem 1.5 Let α ∈ R. Then we have∫

R
N+

|∇u|2 xα+1
N dx − α2

4

∫

R
N+

|u|2 xα−1
N dx

≥ 1

C2 (N , 1)

⎛
⎜⎜⎝

∫

R
N+

|u| 2(N+1)
N−1 x

N−1+α(N+1)
N−1

N dx

⎞
⎟⎟⎠

N−1
N+1

.
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The optimal constant C (N , 1) given in (1.10) is optimal and can be achieved when u (x) =
x−α/2
N

(
a + b |x |2)(1−N )/2

, a and b are arbitrary positive constants.

Indeed, the optimal Sobolev inequality with monomial weights in [13,54] asserts that

⎛
⎜⎜⎝

∫

R
N+

|∇v|2 x A
Ndx

⎞
⎟⎟⎠

1
2

≥ 1

C (N , A)

⎛
⎜⎜⎝

∫

R
N+

|v|2∗
A x A

Ndx

⎞
⎟⎟⎠

1
2∗A

where 2∗
A = 2(N+A)

N+A−2 and the best constant C (N , A) is achieved by Ua,b (x) =(
a + b |x |2)1− N+A

2 , a and b are arbitrary positive constants:

C (N , A) = (N + A)

(
	

( A+1
2

)
2	

(
1 + N+A

2

)
) 1

N+A

× (N + A)
1

N+A − 3
2

(
1

N + A − 2

) 1
2
(

2	 (N + A)

	
( N+A

2

)
	

( N+A
2

)
) 1

N+A

. (1.10)

Using this result, we get for any α ∈ R that

∫

R
N+

|∇u|2 xα+1
N dx − α2

4

∫

R
N+

|u|2 xα−1
N dx

=
∫

R
N+

∣∣∣∇
(
x

α
2
N u

)∣∣∣2 xNdx

≥ 1

C2 (N , 1)

⎛
⎜⎜⎝

∫

R
N+

∣∣∣x α
2
N u

∣∣∣
2(N+1)
N−1

xNdx

⎞
⎟⎟⎠

N−1
N+1

= 1

C2 (N , 1)

⎛
⎜⎜⎝

∫

R
N+

|u| 2(N+1)
N−1 x

1+ α(N+1)
N−1

N dx

⎞
⎟⎟⎠

N−1
N+1

.

Remark 1.2 We remark here that the method in [50, Section 2.7] is dimension reduction.
Hence the argument there doesn’t work for arbitrary real number α.

Our final goal of this paper is to set up Hardy type inequalities with distance to the
hyperplane {xN = 0} on R

N+ .

Theorem 1.6 If (V ,W ) is a Bessel pair on (0, R), then for u ∈ C∞
0

(
A(N )
R

)
:
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∫

A(N )
R

V (xN ) |∇u|2 dx −
∫

A(N )
R

W (xN ) |u|2 dx

=
∫

A(N )
R

V (xN )

∣∣∣∣∇
(

u

ϕ (xN )

)∣∣∣∣
2

ϕ2 (xN ) dx,

and ∫

A(N )
R

V (xN )

∣∣∣∣ ∂u

∂xN

∣∣∣∣
2

−
∫

A(N )
R

W (xN ) |u|2 dx

=
∫

A(N )
R

V (xN )

∣∣∣∣ ∂

∂xN

(
u

ϕ (xN )

)∣∣∣∣
2

ϕ2 (xN ) dx .

For instance, we can get the following result in the spirit of Brezis-Vázquez and Brezis-
Marcus:

Corollary 1.4 For any 0 < R < ∞, we have for u ∈ C∞
0

(
A(N )
R

)
:

∫

A(N )
R

|∇u|2 dx − 1

4

∫

A(N )
R

|u|2
x2N

dx

= z20
R2

∫

A(N )
R

|u|2 dx +
∫

A(N )
R

∣∣∣∣∇
(

u√
xN J0;R(xN )

)∣∣∣∣
2 ∣∣J0;R(xN )

∣∣2 xNdx

and ∫

A(N )
R

∣∣∣∣ ∂u

∂xN

∣∣∣∣
2

dx − 1

4

∫

A(N )
R

|u|2
x2N

dx

= z20
R2

∫

A(N )
R

|u|2 dx +
∫

A(N )
R

∣∣∣∣∣∣
∂

(
u√

xN J0;R(xN )

)

∂xN

∣∣∣∣∣∣

2 ∣∣J0;R(xN )
∣∣2 xNdx .

Basically, the above results assert that on A(N )
R , if we replace the distance to the boundary

by the distance to the hyperplane {xN = 0}, then the constant λ (�) in Theorem C can be

improved to
z20
R2 .

Furthermore, as another application of Theorem 1.6, we will be able to establish Hardy
type identities and inequalities with as many remainder terms as we wish (See Corollary 4.2)
in Sect. 4.

We end up this introduction with the following remarks. In our recent work [37], we
establish general geometric Hardy’s inequalities on domains in R

N in the spirit of their
works by Brezis-Vázquez [12] and Brezis-Marcus [10]. More precisely, we use the notion
of Bessel pairs introduced by Ghoussoub and Moradifam [27,28] to establish several Hardy
identities and inequalities with the general distance functions d(x) from x to a surface of any
codimension.
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183 Page 12 of 31 N. Lam et al.

Theorem D Let 0 < R ≤ ∞, V and W be positive C1−functions on (0, R). Assume
that |∇d(x)| = 1 and for some α ∈ R, 
d (x) − α−1

d(x) exists on {0 < d (x) < R} in

the sense of distributions and
(
rα−1V , rα−1W

)
is a Bessel pair on (0, R). Then for

u ∈ C∞
0 ({0 < d (x) < R}) :∫

0<d(x)<R

V (d (x)) |∇u (x)|2 dx −
∫

0<d(x)<R

W (d (x)) |u (x)|2 dx

=
∫

0<d(x)<R

V (d (x)) ϕ2 (d (x))

∣∣∣∣∇
(

u (x)

ϕ (d (x))

)∣∣∣∣
2

dx

−
∫

0<d(x)<R

V (d (x)) |u (x)|2
[

d (x) − α − 1

d (x)

]
ϕ′ (d (x))

ϕ (d (x))
dx

and ∫

0<d(x)<R

V (d (x)) |∇d (x) · ∇u (x)|2 dx −
∫

0<d(x)<R

W (d (x)) |u (x)|2 dx

=
∫

0<d(x)<R

V (d (x)) ϕ2 (d (x))

∣∣∣∣∇d (x) · ∇
(

u (x)

ϕ (d (x))

)∣∣∣∣
2

dx

−
∫

0<d(x)<R

V (d (x)) |u (x)|2
[

d (x) − α − 1

d (x)

]
ϕ′ (d (x))

ϕ (d (x))
dx .

Here ϕ is the positive solution of
(
rα−1V (r) y′(r)

)′ + rα−1W (r) y(r) = 0

on the interval (0, R).

It is worth noting that our distance functions can be understood as the distance to the
surfaces of codimention α ∈ R, and include the distance to the origin (α = N ), the distance
to the boundary (α = 1), and even the distance to surfaces of codimension k ∈ N with
1 ≤ k ≤ N , as special cases. As applications of our main results, we are able to obtain
the improved Hardy inequalities in the sense of Brezis-Vázquez [12] and Brezis-Marcus
[10] for general distance functions. We also prove a version of the Hardy-Sobolev-Maz’ya
inequality on (R+)N for the distance functionmin {x1, . . . , xN }. Moreover, the critical Hardy
inequalities with general distance functions are also considered. Our results also extend
and sharpen earlier results on Hardy’s inequalities with distance functions to surfaces of
codimension 1 ≤ k ≤ N in the literature by adding nonnegative remainder terms.

The organization of the paper is as follows. In Sect. 2, wewill establish theHardy identities
and inequalities with distance to the origin on half-spaces and prove Theorem 1.1. We will
also apply this theorem to derive several Corollaries of Hardy type identities and inequalities
on half spaces in the spirit of Brezis and Vázquez. In Sect. 3, we will prove the Hardy type
identities and inequalities with distance to the boundary of the strips A(N )

2R on half-spaces,
namely Theorem 1.3.Wewill also give some applications of Theorem 1.3. As a consequence,
we will improve the bounds λ(�) in TheoremC of Brezis andMarcus when� is a strip A(N )

2R .
We will also get an extension and improvement of the Hardy-Sobolev-Maz’ya inequality to
arbitrary α ≤ 0. Finally, in Sect. 4, we will prove the Hardy type identities and inequalities
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with distance to the hyperplane {xN = 0}, namely Theorem 1.6. We will also give some
applications of Theorem 1.6.

2 Hardy identities and inequalities with distance to the origin on
half-spaces

In this section, we will establish the Hardy identities and inequalities with distance to the
origin on half-spaces and prove Theorem 1.1.

2.1 Proof of Theorem 1.1

Proof of Theorem 1.1 Let T = √
V∇ − √

V ∇ϕ
ϕ

− √
V eN

xN
. Then its formal adjoint is T+ =

− div(
√
V ·) − √

V ∇ϕ
ϕ

· −√
V eN

xN
·.

Also,

T+T = − div (V∇) + div

(
V

∇ϕ

ϕ

)
+ V

∇ϕ

ϕ
· ∇ + div

(
V
eN
xN

)
+ V

eN
xN

· ∇

− V
∇ϕ

ϕ
· ∇ + V

∇ϕ

ϕ
· ∇ϕ

ϕ
+ V

∇ϕ

ϕ
· eN
xN

− V
eN
xN

· ∇ + V
∇ϕ

ϕ
· eN
xN

+ V
1

x2N

= − div (V∇) + div

(
V

∇ϕ

ϕ

)
+ V ′

|x |

+ V

(
ϕ′

ϕ

)2

+ V
ϕ′

ϕ

1

|x |
+ V

ϕ′

ϕ

1

|x |
Hence ∫

B(N )
R ∩RN+

u (x)
(
T+Tu

)
(x) dx

= −
∫

B(N )
R ∩RN+

u (x) div (V∇u (x)) dx +
∫

B(N )
R ∩RN+

div

(
V

∇ϕ

ϕ

)
|u (x)|2 dx

+
∫

B(N )
R ∩RN+

V ′

|x | |u (x)|2 dx

+
∫

B(N )
R ∩RN+

V

(
ϕ′

ϕ

)2

|u (x)|2 dx + 2
∫

B(N )
R ∩RN+

V
ϕ′

ϕ

1

|x | |u (x)|2 dx

=
∫

B(N )
R ∩RN+

V (|x |) |∇u|2 dx +
∫

B(N )
R ∩RN+

Vϕ′′ + V N+1
|x | ϕ′ + V ′ϕ′

ϕ
|u (x)|2 dx
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+
∫

B(N )
R ∩RN+

V ′

|x | |u (x)|2 dx

=
∫

B(N )
R ∩RN+

V (|x |) |∇u|2 dx −
∫

B(N )
R ∩RN+

[
W (|x |) − V ′ (|x |)

|x |
]

|u|2 dx .

On the other hand, ∫

B(N )
R ∩RN+

u (x)
(
T+Tu

)
(x) dx

=
∫

B(N )
R ∩RN+

|Tu|2 dx

=
∫

B(N )
R ∩RN+

V (|x |)
∣∣∣∣∇

(
u

ϕ

1

xN

)∣∣∣∣
2

ϕ2x2Ndx .

Hence ∫

B(N )
R ∩RN+

V (|x |) |∇u|2 dx −
∫

B(N )
R ∩RN+

[
W (|x |) − V ′ (|x |)

|x |
]

|u|2 dx

=
∫

B(N )
R ∩RN+

V (|x |)
∣∣∣∣∇

(
u

ϕ

1

xN

)∣∣∣∣
2

ϕ2x2Ndx .

Next, we set S = √
V x

|x | · ∇ − √
V ϕ′

ϕ
− √

V 1
|x | . Then its formal adjoint is

S+ = −√
V

x

|x | · ∇ − √
V
N − 1

|x | − V ′

2
√
V

− √
V

ϕ′

ϕ
− √

V
1

|x |
= −√

V
x

|x | · ∇ − √
V

N

|x | − V ′

2
√
V

− √
V

ϕ′

ϕ

Then we have∫

B(N )
R ∩RN+

u (x)
(
S+Su

)
(x) dx

= −
∫

B(N )
R ∩RN+

u
√
V

x

|x | · ∇
(√

V
x

|x | · ∇u

)
dx +

∫

B(N )
R ∩RN+

u
√
V

x

|x | · ∇
(√

V
ϕ′

ϕ
u

)
dx

+
∫

B(N )
R ∩RN+

u
√
V

x

|x | · ∇
(√

V
1

|x |u
)
dx

−
∫

B(N )
R ∩RN+

u

(√
V

N

|x | + V ′

2
√
V

+ √
V

ϕ′

ϕ

) √
V

x

|x | · ∇udx
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+
∫

B(N )
R ∩RN+

(√
V

N

|x | + V ′

2
√
V

+ √
V

ϕ′

ϕ

) √
V

ϕ′

ϕ
|u|2 dx

+
∫

B(N )
R ∩RN+

(√
V

N

|x | + V ′

2
√
V

+ √
V

ϕ′

ϕ

) √
V

1

|x | |u|2 dx .

Using the polar coordinate (r , σ ) =
(
|x | , x

|x |
)
and the fact that x

|x | · ∇ = ∂r , we get by a

direct computation that

−
∫

B(N )
R ∩RN+

u
√
V

x

|x | · ∇
(√

V
x

|x | · ∇u

)
dx

=
∫

B(N )
R ∩RN+

V (|x |)
∣∣∣∣ x

|x | · ∇u

∣∣∣∣
2

dx +
∫

B(N )
R ∩RN+

u

(
x

|x | · ∇u

)
V ′

2
dx

+
∫

B(N )
R ∩RN+

u

(
x

|x | · ∇u

)
V
N − 1

|x | dx,

and ∫

B(N )
R ∩RN+

u
√
V

x

|x | · ∇
(√

V
ϕ′

ϕ
u

)
dx

=
∫

B(N )
R ∩RN+

u

(
x

|x | · ∇u

)
V

ϕ′

ϕ
dx +

∫

B(N )
R ∩RN+

V

(
ϕ′′ϕ − (

ϕ′)2
ϕ2

)
|u|2 dx

+
∫

B(N )
R ∩RN+

ϕ′

ϕ

V ′

2
|u|2 dx .

and ∫

B(N )
R ∩RN+

u
√
V

x

|x | · ∇
(√

V
1

|x |u
)
dx

=
∫

B(N )
R ∩RN+

(
V ′

2 |x | − V

|x |2
)

|u|2 dx +
∫

B(N )
R ∩RN+

u

(
x

|x | · ∇u

)
V

|x |dx

Hence ∫

B(N )
R ∩RN+

u (x)
(
S+Su

)
(x) dx

=
∫

B(N )
R ∩RN+

[
Vϕ′′ + V N+1

|x | ϕ′ + V ′ϕ′

ϕ
+ V ′

|x | + V
N − 1

|x |2
]

|u|2 dx

123



183 Page 16 of 31 N. Lam et al.

+
∫

B(N )
R ∩RN+

V (|x |)
∣∣∣∣ x

|x | · ∇u

∣∣∣∣
2

dx

=
∫

B(N )
R ∩RN+

[
−W (|x |) + V ′ (|x |)

|x | + (N − 1)

|x |2 V (|x |)
]

|u|2 dx

+
∫

B(N )
R ∩RN+

V (|x |)
∣∣∣∣ x

|x | · ∇u

∣∣∣∣
2

dx .

On the other hand,
∫

B(N )
R ∩RN+

u (x)
(
S+Su

)
(x) dx

=
∫

B(N )
R ∩RN+

|Su|2 dx

=
∫

B(N )
R ∩RN+

V (|x |)
∣∣∣∣ x

|x | · ∇
(
1

ϕ

u

xN

)∣∣∣∣
2

ϕ2x2Ndx .

Hence, we deduce

∫

B(N )
R ∩RN+

V (|x |)
∣∣∣∣ x

|x | · ∇u

∣∣∣∣
2

dx −
∫

B(N )
R ∩RN+

[
W (|x |) − V ′ (|x |)

|x | − (N − 1)

|x |2 V (|x |)
]

|u|2 dx

=
∫

B(N )
R ∩RN+

V (|x |)
∣∣∣∣ x

|x | · ∇
(
1

ϕ

u

xN

)∣∣∣∣
2

ϕ2x2Ndx .

�

2.2 Applications of Theorem 1.1

The pair

(
r N+1, r N+1

(( N
2

)2
r−2 + z20

R2

))
, z0 is the first zero of the Bessel function J0, is

a Bessel pair on (0, R) with ϕ = r− N
2 J0

( r z0
R

) = r− N
2 J0;R (r). Hence, as a consequence of

our Theorem 1.1, we get the following version of the Hardy inequality on RN+ in the spirit of
Brezis and Vázquez [12]:

Corollary 2.1 For any R > 0, we have for u ∈ C∞
0

(
B(N )
R ∩ R

N+
)

:
∫

B(N )
R ∩RN+

|∇u|2 dx −
(
N

2

)2 ∫

B(N )
R ∩RN+

|u|2
|x |2 dx
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= z20
R2

∫

B(N )
R ∩RN+

|u|2 dx +
∫

B(N )
R ∩RN+

∣∣∣∣∣∇
(

|x | N2
J0;R(|x |)

u

xN

)∣∣∣∣∣
2 ∣∣∣∣∣

J0;R (|x |)
|x | N2

xN

∣∣∣∣∣
2

dx

≥ z20
R2

∫

B(N )
R ∩RN+

|u|2 dx, (2.1)

and

∫

B(N )
R ∩RN+

∣∣∣∣ x

|x | · ∇u

∣∣∣∣
2

dx −
(
N − 2

2

)2 ∫

B(N )
R ∩RN+

|u|2
|x |2 dx

= z20
R2

∫

B(N )
R ∩RN+

|u|2 dx +
∫

B(N )
R ∩RN+

∣∣∣∣∣
x

|x | · ∇
(

|x | N2
J0;R(|x |)

u

xN

)∣∣∣∣∣
2 ∣∣∣∣∣

J0;R (|x |)
|x | N2

xN

∣∣∣∣∣
2

dx .

A version of (2.1) on the bounded domain containing 0 was proved in [12] and was used
to study the stability of certain singular solutions of nonlinear elliptic equations. Hence, our
results in the above corollary can be used to investigate the stability of singular solutions of
certain nonlinear elliptic equations on half-spaces.

Assume 0 ≤ λ ≤ N . Then
(
r N+1−λ,

( N−λ
2

)2
r N−1−λ

)
is a Bessel pair on (0,∞) with

ϕ = r− N−λ
2 . Hence, we get from Theorem 1.1 that

Corollary 2.2 Assume 0 ≤ λ ≤ N. We have for u ∈ C∞
0

(
R

N+
) :

∫

R
N+

1

|x |λ |∇u|2 dx −
[(

N − λ

2

)2

+ λ

] ∫

R
N+

1

|x |λ+2
|u|2 dx

=
∫

R
N+

∣∣∣∣∣∇
(

|x | N−λ
2 u

xN

)∣∣∣∣∣
2

x2N
|x |N dx

and

∫

R
N+

1

|x |λ
∣∣∣∣ x

|x | · ∇u

∣∣∣∣
2

dx −
(
N − λ − 2

2

)2 ∫

R
N+

1

|x |λ+2
|u|2 dx

=
∫

R
N+

∣∣∣∣∣
x

|x | · ∇
(

|x | N−λ
2 u

xN

)∣∣∣∣∣
2

x2N
|x |N dx .

Assume 0 ≤ λ ≤ N . Then

(
r N+1−λ,

( N−λ
2

)2
r N−1−λ + z20

R2 r
N+1−λ

)
is a Bessel pair on

(0, R) with ϕ = r− N−λ
2 J0

( r z0
R

) = r− N−λ
2 J0;R (r). Hence by Theorem 1.1, we obtain
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Corollary 2.3 Assume 0 ≤ λ ≤ N. We have for u ∈ C∞
0

(
B(N )
R ∩ R

N+
)

:
∫

B(N )
R ∩RN+

1

|x |λ |∇u|2 dx −
[(

N − λ

2

)2

+ λ

] ∫

B(N )
R ∩RN+

1

|x |λ+2
|u|2 dx

= z20
R2

∫

B(N )
R ∩RN+

1

|x |λ |u|2 dx +
∫

B(N )
R ∩RN+

∣∣∣∣∣∇
(

|x | N−λ
2

J0;R(|x |)
u

xN

)∣∣∣∣∣
2 ∣∣∣∣∣

J0;R (|x |)
|x | N−λ

2

xN

∣∣∣∣∣
2

dx

≥ z20
R2

∫

B(N )
R ∩RN+

1

|x |λ |u|2 dx

and ∫

B(N )
R ∩RN+

1

|x |λ
∣∣∣∣ x

|x | · ∇u

∣∣∣∣
2

dx −
(
N − 2 − λ

2

)2 ∫

B(N )
R ∩RN+

1

|x |λ+2
|u|2 dx

= z20
R2

∫

B(N )
R ∩RN+

1

|x |λ |u|2 dx +
∫

B(N )
R ∩RN+

∣∣∣∣∣
x

|x | · ∇
(

|x | N−λ
2

J0;R(|x |)
u

xN

)∣∣∣∣∣
2 ∣∣∣∣∣

J0;R (|x |)
|x | N−λ

2

xN

∣∣∣∣∣
2

dx

≥ z20
R2

∫

B(N )
R ∩RN+

1

|x |λ |u|2 dx .

For any R > 0, 0 ≤ λ ≤ N , and k ∈ N, the pair
(
r N+1−λ,

( N−λ
2

)2
r N−1−λ +

r N+1−λPk,R (r)
)
is a Bessel pair on (0, R) with ϕ = r− N−λ

2
[
X1

( r
R

) · · · Xk
( r
R

)]− 1
2 where

Pk,R (r) = 1

4

1

r2

k∑
j=1

X2
1

( r

R

)
· · · X2

j

( r

R

)

X1 (r) = 1

1 − ln r
, Xi (r) = X1 (Xi−1 (r)) .

See [28, Proposition 1.1.1 and Proposition 1.3.1]. Hence, we deduce

Corollary 2.4 For any R > 0, 0 ≤ λ ≤ N, and k ∈ N, we have

∫

B(N )
R ∩RN+

1

|x |λ |∇u|2 dx −
[(

N − λ

2

)2

+ λ

] ∫

B(N )
R ∩RN+

1

|x |λ+2
|u|2 dx

= 1

4

∫

B(N )
R ∩RN+

|u|2
|x |λ+2

k∑
j=1

X2
1

( |x |
R

)
· · · X2

j

( |x |
R

)
dx

+
∫

B(N )
R ∩RN+

∣∣∣∣∣∇
(

|x | N−λ
2

[
X1

( |x |
R

)
· · · Xk

( |x |
R

)] 1
2 u

xN

)∣∣∣∣∣
2
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∣∣∣∣∣∣∣∣
xN

|x | N−λ
2

[
X1

( |x |
R

)
· · · Xk

( |x |
R

)] 1
2

∣∣∣∣∣∣∣∣

2

dx

≥ 1

4

∫

B(N )
R ∩RN+

|u|2
|x |λ+2

k∑
j=1

X2
1

( |x |
R

)
· · · X2

j

( |x |
R

)
dx (2.2)

and ∫

B(N )
R ∩RN+

1

|x |λ
∣∣∣∣ x

|x | · ∇u

∣∣∣∣
2

dx −
(
N − λ − 2

2

)2 ∫

B(N )
R ∩RN+

1

|x |λ+2
|u|2 dx

= 1

4

∫

B(N )
R ∩RN+

|u|2
|x |λ+2

k∑
j=1

X2
1

( |x |
R

)
· · · X2

j

( |x |
R

)
dx

+
∫

B(N )
R ∩RN+

∣∣∣∣∣
x

|x | · ∇
(

|x | N−λ
2

[
X1

( |x |
R

)
· · · Xk

( |x |
R

)] 1
2 u

xN

)∣∣∣∣∣
2

∣∣∣∣∣∣∣∣
xN

|x | N−λ
2

[
X1

( |x |
R

)
· · · Xk

( |x |
R

)] 1
2

∣∣∣∣∣∣∣∣

2

dx

≥ 1

4

∫

B(N )
R ∩RN+

|u|2
|x |λ+2

k∑
j=1

X2
1

( |x |
R

)
· · · X2

j

( |x |
R

)
dx . (2.3)

The inequality (2.2) was derived in ([59]) in the case λ = 0 using the spherical harmonic
decomposition. Our results here provide the exact remainders and the ground states. The case
0 < λ ≤ N is new. (2.3) is completely new in the literature.

Assume 0 ≤ λ ≤ N , R > 0 and ρ > Re.
(
r N+1−λ,

( N−λ
2

)2
r N−1−λ +

1
4r

N−1−λ
(
log ρ

r

)−2
)
is a Bessel pair on (0, R) with ϕ = r− N−λ

2
(
log ρ

r

) 1
2 . Hence

Corollary 2.5 Assume 0 ≤ λ ≤ N, R > 0 and ρ > Re. We have

∫

B(N )
R ∩RN+

1

|x |λ |∇u|2 dx −
[(

N − λ

2

)2

+ λ

] ∫

B(N )
R ∩RN+

1

|x |λ+2
|u|2 dx

= 1

4

∫

B(N )
R ∩RN+

|u|2

|x |λ+2
(
log ρ

|x |
)2 dx +

∫

B(N )
R ∩RN+

∣∣∣∣∣∣∣∣
∇

⎛
⎜⎜⎝ |x | N−λ

2

(
log ρ

|x |
) 1

2

u

xN

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣

2 ∣∣∣∣∣∣∣∣

(
log ρ

|x |
) 1

2

|x | N−λ
2

xN

∣∣∣∣∣∣∣∣

2

dx

≥ 1

4

∫

B(N )
R ∩RN+

|u|2

|x |λ+2
(
log ρ

|x |
)2 dx
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and
∫

B(N )
R ∩RN+

1

|x |λ
∣∣∣∣ x

|x | · ∇u

∣∣∣∣
2

dx −
(
N − 2 − λ

2

)2 ∫

B(N )
R ∩RN+

1

|x |λ+2
|u|2 dx

= 1

4

∫

B(N )
R ∩RN+

|u|2

|x |λ+2
(
log ρ

|x |
)2 dx

+
∫

B(N )
R ∩RN+

∣∣∣∣∣∣∣∣
x

|x | · ∇

⎛
⎜⎜⎝ |x | N−λ

2

(
log ρ

|x |
) 1

2

u

xN

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣

2 ∣∣∣∣∣∣∣∣

(
log ρ

|x |
) 1

2

|x | N−λ
2

xN

∣∣∣∣∣∣∣∣

2

dx

≥ 1

4

∫

B(N )
R ∩RN+

|u|2

|x |λ+2
(
log ρ

|x |
)2 dx .

3 Hardy identities and inequalities with distance to the boundary of
domains on half-spaces

In this section, we will provide the proof for the general Hardy inequality with distance to
the boundary of the strip A(N )

2R . We also derive a general result that implies that the constant

λ (�) in Theorem C can be improved to
z20
R2 when � is the strip A(N )

2R .

3.1 Proof of Theorem 1.3

Proof of Theorem 1.3 Let T = √
V (dR (x))∇ − √

V (dR (x)) ϕ′(dR(x))
ϕ(dR(x)) ∇dR (x). Then its for-

mal adjoint is T+ = − div(
√
V (dR (x))·) − √

V (dR (x)) ϕ′(dR(x))
ϕ(dR(x)) ∇dR (x) ·.

Hence,

T+Tu = − div

(
V (dR (x))

[
∇u − ϕ′ (dR (x))

ϕ (dR (x))
u∇dR (x)

])

− V (dR (x))
ϕ′ (dR (x))

ϕ (dR (x))
∇dR (x) · ∇u + V (dR (x))

(
ϕ′ (dR (x))

ϕ (dR (x))

)2

u

= −V (dR (x)) 
u − V ′ (dR (x)) ∇dR (x) · ∇u

+ V ′ (dR (x))
ϕ′ (dR (x))

ϕ (dR (x))
u + V (dR (x))

ϕ′′ (dR (x))

ϕ (dR (x))
u.

Thus∫

A(N )
2R

u (x)
(
T+Tu

)
(x) dx

=
∫

A(N )
2R

V (dR (x)) |∇u|2 dx+
∫

A(N )
2R

V ′ (dR (x)) ϕ′ (dR (x)) + V (dR (x)) ϕ′′ (dR (x))

ϕ (dR (x))
|u|2 dx
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=
∫

A(N )
2R

V (dR (x)) |∇u|2 dx −
∫

A(N )
2R

W (dR (x)) |u|2 dx .

On the other hand,
∫

A(N )
2R

u (x)
(
T+Tu

)
(x) dx

=
∫

A(N )
2R

|Tu|2 dx

=
∫

A(N )
2R

V (dR (x))

∣∣∣∣∇
(

u

ϕ (dR (x))

)∣∣∣∣
2

ϕ2 (dR (x)) dx .

Hence, we deduce
∫

A(N )
2R

V (dR (x)) |∇u|2 dx −
∫

A(N )
2R

W (dR (x)) |u|2 dx

=
∫

A(N )
2R

V (dR (x))

∣∣∣∣∇
(

u

ϕ (dR (x))

)∣∣∣∣
2

ϕ2 (dR (x)) dx .

Now, let Su = √
V (dR (x)) ∂u

∂xN
− √

V (dR (x)) ϕ′(dR(x))
ϕ(dR(x))

∂dR(x)
∂xN

u. Then its formal adjoint

is S+v = − ∂
∂xN

(√
V (dR (x))v

) − √
V (dR (x)) ϕ′(dR(x))

ϕ(dR(x))
∂dR(x)
∂xN

v.

Therefore,

S+Su

= − ∂

∂xN

(
V (dR (x))

∂u

∂xN
− V (dR (x))

ϕ′ (dR (x))

ϕ (dR (x))

∂dR (x)

∂xN
u

)

− V (dR (x))
ϕ′ (dR (x))

ϕ (dR (x))

∂dR (x)

∂xN

∂u

∂xN
+ V (dR (x))

(
ϕ′ (dR (x))

ϕ (dR (x))

)2

u

= −V (dR (x))

(
∂2u

∂x2N
− ϕ′ (dR (x))

ϕ (dR (x))

∂dR (x)

∂xN

∂u

∂xN

− ϕ′′ (dR (x)) ϕ (dR (x)) − (
ϕ′ (dR (x))

)2
ϕ2 (dR (x))

u

)

− V ′ (dR (x))
∂dR (x)

∂xN

(
∂u

∂xN
− ϕ′ (dR (x))

ϕ (dR (x))

∂dR (x)

∂xN
u

)

− V (dR (x))
ϕ′ (dR (x))

ϕ (dR (x))

∂dR (x)

∂xN

∂u

∂xN
+ V (dR (x))

(
ϕ′ (dR (x))

ϕ (dR (x))

)2

u

= −V (dR (x))

(
∂2u

∂x2N
− ϕ′′ (dR (x))

ϕ (dR (x))
u

)
− V ′ (dR (x))

(
∂dR (x)

∂xN

∂u

∂xN
− ϕ′ (dR (x))

ϕ (dR (x))
u

)
.
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Hence, ∫

A(N )
2R

u (x)
(
S+Su

)
(x) dx

=
∫

A(N )
2R

V (dR (x))

∣∣∣∣ ∂u

∂xN

∣∣∣∣
2

dx

+
∫

A(N )
2R

V ′ (dR (x)) ϕ′ (dR (x)) + V (dR (x)) ϕ′′ (dR (x))

ϕ (dR (x))
|u|2 dx .

=
∫

A(N )
2R

V (dR (x)) |∇u|2 dx −
∫

A(N )
2R

W (dR (x)) |u|2 dx .

On the other hand,∫

A(N )
2R

u (x)
(
S+Su

)
(x) dx

=
∫

A(N )
2R

|Su|2 dx

=
∫

A(N )
2R

V (dR (x))

∣∣∣∣ ∂u

∂xN
− ϕ′ (dR (x))

ϕ (dR (x))

∂dR (x)

∂xN
u

∣∣∣∣
2

dx

=
∫

A(N )
2R

V (dR (x))

∣∣∣∣ ∂

∂xN

(
u

ϕ (dR (x))

)∣∣∣∣
2

ϕ2 (dR (x)) dx .

Then we can get

∫

A(N )
2R

V (dR (x))

∣∣∣∣ ∂u

∂xN

∣∣∣∣
2

dx −
∫

A(N )
R

W (dR (x)) |u|2 dx

=
∫

A(N )
2R

V (dR (x))

∣∣∣∣ ∂

∂xN

(
u

ϕ (dR (x))

)∣∣∣∣
2

ϕ2 (dR (x)) dx .

�

3.2 Applications of Theorem 1.3

For R > 0, we note that

(
rα+1,

(
α
2

)2
rα−1 + z20

R2 r
α+1

)
is a Bessel pair on (0, R) with

ϕ = r− α
2 J0

( r z0
R

) = r− α
2 J0;R (r). Hence we get the following Hardy type inequality
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Corollary 3.1 For any R > 0, we have for u ∈ C∞
0

(
A(N )
2R

)
:

∫

A(N )
2R

|∇u|2 dR (x)α+1 dx −
(α

2

)2 ∫

A(N )
2R

|u|2 dR (x)α−1 dx

= z20
R2

∫

A(N )
2R

|u|2 dx +
∫

A(N )
2R

∣∣∣∣∣∇
(

dR (x)
α
2 u

J0;R(dR (x))

)∣∣∣∣∣
2 ∣∣∣∣ J0;R(dR (x))

dR (x)
α
2

∣∣∣∣
2

dx

and ∫

A(N )
2R

∣∣∣∣ ∂u

∂xN

∣∣∣∣
2

dR (x)α+1 dx −
(α

2

)2 ∫

A(N )
2R

|u|2 dR (x)α−1 dx

= z20
R2

∫

A(N )
2R

|u|2 dx +
∫

A(N )
2R

∣∣∣∣∣
∂

∂xN

(
dR (x)

α
2 u

J0;R(dR (x))

)∣∣∣∣∣
2 ∣∣∣∣ J0;R(dR (x))

dR (x)
α
2

∣∣∣∣
2

dx .

For any R > 0 and k ∈ N, the pair
(
rα+1,

(
α
2

)2
rα−1 + rα+1Pk,R (r)

)
is a Bessel pair

on (0, R) with ϕ = r− α
2

[
X1

( r
R

) · · · Xk
( r
R

)]− 1
2 where

Pk,R (r) = 1

4

1

r2

k∑
j=1

X2
1

( r

R

)
· · · X2

j

( r

R

)

X1 (r) = 1

1 − ln r
, Xi (r) = X1 (Xi−1 (r)) .

Hence, we deduce

Corollary 3.2 For any R > 0 and k ∈ N, we have
∫

A(N )
2R

∣∣∣∣ ∂u

∂xN

∣∣∣∣
2

dR (x)α+1 dx −
(α

2

)2 ∫

A(N )
2R

|u|2 dR (x)α−1 dx

= 1

4

∫

A(N )
2R

|u|2 dR (x)α−1
k∑
j=1

X2
1

(
dR (x)

R

)
· · · X2

j

(
dR (x)

R

)
dx

+
∫

A(N )
2R

∣∣∣∣∣
∂

∂xN

(
dR (x)

α
2

[
X1

(
dR (x)

R

)
· · · Xk

(
dR (x)

R

)] 1
2

u

)∣∣∣∣∣
2

×

∣∣∣∣∣∣∣∣
1

dR (x)
α
2

[
X1

(
dR(x)
R

)
· · · Xk

(
dR(x)
R

)] 1
2

∣∣∣∣∣∣∣∣

2

dx

≥ 1

4

∫

A(N )
2R

|u|2 dR (x)α−1
k∑
j=1

X2
1

(
dR (x)

R

)
· · · X2

j

(
dR (x)

R

)
dx
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and

∫

A(N )
2R

|∇u|2 dR (x)α+1 dx −
(α

2

)2 ∫

A(N )
2R

|u|2 dR (x)α−1 dx

= 1

4

∫

A(N )
2R

|u|2 dR (x)α−1
k∑
j=1

X2
1

(
dR (x)

R

)
· · · X2

j

(
dR (x)

R

)
dx

+
∫

A(N )
2R

∣∣∣∣∣∇
(
dR (x)

α
2

[
X1

(
dR (x)

R

)
· · · Xk

(
dR (x)

R

)] 1
2

u

)∣∣∣∣∣
2

×

∣∣∣∣∣∣∣∣
1

dR (x)
α
2

[
X1

(
dR(x)
R

)
· · · Xk

(
dR(x)
R

)] 1
2

∣∣∣∣∣∣∣∣

2

dx

≥ 1

4

∫

A(N )
2R

|u|2 dR (x)α−1
k∑
j=1

X2
1

(
dR (x)

R

)
· · · X2

j

(
dR (x)

R

)
dx

Hence, the Hardy inequality with distance to the boundary of the strip A(N )
2R can be

improved by adding an infinite number of terms.

4 Hardy identities and inequalities with distance to the hyperplane
{xN = 0} on half-spaces

In this section, we will prove the Hardy type identities and inequalities with distance to
the hyperplane {xN = 0}, namely Theorem 1.6. We mention that Hardy-Sobolev-Maz’ya
inequalities in half spaces have been studied, for example, in [5,8,43,50]. We will also give
some applications of Theorem 1.6.

4.1 Proof of Theorem 1.6

Proof Let T = √
V (xN )∇ − √

V (xN )
ϕ′(xN )
ϕ(xN )

eN . Then its formal adjoint is T+ =
− div(

√
V (xN )·) − √

V (xN )
ϕ′(xN )
ϕ(xN )

eN ·.
Hence,

T+Tu = − div

(√
V (xN )

[√
V (xN )∇u − √

V (xN )
ϕ′ (xN )

ϕ (xN )
ueN

])

− √
V (xN )

ϕ′ (xN )

ϕ (xN )
eN ·

[√
V (xN )∇u − √

V (xN )
ϕ′ (xN )

ϕ (xN )
ueN

]

= − div

(
V (xN )

[
∇u − ϕ′ (xN )

ϕ (xN )
ueN

])
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− V (xN )
ϕ′ (xN )

ϕ (xN )

∂u

∂xN
+ V (xN )

(
ϕ′ (xN )

ϕ (xN )

)2

u

= −V (xN ) 
u − V ′ (xN )
∂u

∂xN
+ V ′ (xN )

ϕ′ (xN )

ϕ (xN )
u + V (xN )

ϕ′′ (xN )

ϕ (xN )
u.

Thus ∫

A(N )
R

u (x)
(
T+Tu

)
(x) dx

=
∫

A(N )
R

V (xN ) |∇u|2 dx +
∫

A(N )
R

V ′ (xN ) ϕ′ (xN ) + V (xN ) ϕ′′ (xN )

ϕ (xN )
|u|2 dx

=
∫

A(N )
R

V (xN ) |∇u|2 dx −
∫

A(N )
R

W (xN ) |u|2 dx .

On the other hand,
∫

A(N )
R

u (x)
(
T+Tu

)
(x) dx

=
∫

A(N )
R

|Tu|2 dx

=
∫

A(N )
R

V (xN )

∣∣∣∣∇
(

u

ϕ (xN )

)∣∣∣∣
2

ϕ2 (xN ) dx .

Hence, we deduce
∫

A(N )
R

V (xN ) |∇u|2 −
∫

A(N )
R

W (xN ) |u|2 dx

=
∫

A(N )
R

V (xN )

∣∣∣∣∇
(

u

ϕ (xN )

)∣∣∣∣
2

ϕ2 (xN ) dx .

Now, let Su = √
V (xN ) ∂u

∂xN
− √

V (xN )
ϕ′(xN )
ϕ(xN )

u. Then its formal adjoint is S+v =
− ∂

∂xN

(√
V (xN )v

) − √
V (xN )

ϕ′(xN )
ϕ(xN )

v.

Therefore,

S+Su = − ∂

∂xN

[√
V (xN )

(√
V (xN )

∂u

∂xN
− √

V (xN )
ϕ′ (xN )

ϕ (xN )
u

)]

− √
V (xN )

ϕ′ (xN )

ϕ (xN )

(√
V (xN )

∂u

∂xN
− √

V (xN )
ϕ′ (xN )

ϕ (xN )
u

)

= − ∂

∂xN

(
V (xN )

∂u

∂xN
− V (xN )

ϕ′ (xN )

ϕ (xN )
u

)
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− V (xN )
ϕ′ (xN )

ϕ (xN )

∂u

∂xN
+ V (xN )

(
ϕ′ (xN )

ϕ (xN )

)2

u

= −V (xN )

(
∂2u

∂x2N
− ϕ′ (xN )

ϕ (xN )

∂u

∂xN
− ϕ′′ (xN ) ϕ (xN ) − (

ϕ′ (xN )
)2

ϕ2 (xN )
u

)

− V ′ (xN )

(
∂u

∂xN
− ϕ′ (xN )

ϕ (xN )
u

)
− V (xN )

ϕ′ (xN )

ϕ (xN )

∂u

∂xN
+ V (xN )

(
ϕ′ (xN )

ϕ (xN )

)2

u

= −V (xN )

(
∂2u

∂x2N
− ϕ′′ (xN )

ϕ (xN )
u

)
− V ′ (xN )

(
∂u

∂xN
− ϕ′ (xN )

ϕ (xN )
u

)
.

Hence,
∫

A(N )
R

u (x)
(
S+Su

)
(x) dx

=
∫

A(N )
R

V (xN )

∣∣∣∣ ∂u

∂xN

∣∣∣∣
2

dx +
∫

A(N )
R

V ′ (xN ) ϕ′ (xN ) + V (xN ) ϕ′′ (xN )

ϕ (xN )
|u|2 dx .

=
∫

A(N )
R

V (xN ) |∇u|2 dx −
∫

A(N )
R

W (xN ) |u|2 dx .

On the other hand,
∫

A(N )
R

u (x)
(
S+Su

)
(x) dx

=
∫

A(N )
R

|Su|2 dx

=
∫

A(N )
R

V (xN )

∣∣∣∣ ∂u

∂xN
− ϕ′ (xN )

ϕ (xN )
u

∣∣∣∣
2

dx

=
∫

A(N )
R

V (xN )

∣∣∣∣ ∂

∂xN

(
u

ϕ (xN )

)∣∣∣∣
2

ϕ2 (xN ) dx .

Then we can get

∫

A(N )
R

V (xN )

∣∣∣∣ ∂u

∂xN

∣∣∣∣
2

dx −
∫

A(N )
R

W (xN ) |u|2 dx

=
∫

A(N )
R

V (xN )

∣∣∣∣ ∂

∂xN

(
u

ϕ (xN )

)∣∣∣∣
2

ϕ2 (xN ) dx .

�
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4.2 Applications of Theorem 1.6

For R > 0, we note that

(
rα+1,

(
α
2

)2
rα−1 + z20

R2 r
α+1

)
is a Bessel pair on (0, R) with

ϕ = r− α
2 J0

( r z0
R

) = r− α
2 J0;R (r). Hence we get the following Hardy type inequality in the

spirit of Brezis-Vázquez and Brezis-Marcus:

Corollary 4.1 For any R > 0, we have for u ∈ C∞
0

(
A(N )
R

)
:

∫

A(N )
R

|∇u|2 xα+1
N dx −

(α

2

)2 ∫

A(N )
R

|u|2 xα−1
N dx

= z20
R2

∫

A(N )
R

|u|2 xα+1
N dx +

∫

A(N )
R

∣∣∣∣∣∣∇
⎛
⎝ x

α
2
N u

J0;R(xN )

⎞
⎠

∣∣∣∣∣∣
2 ∣∣∣∣∣∣

J0;R(xN )

x
α
2
N

∣∣∣∣∣∣
2

dx

and

∫

A(N )
R

∣∣∣∣ ∂u

∂xN

∣∣∣∣
2

xα+1
N dx −

(α

2

)2 ∫

A(N )
R

|u|2 xα−1
N dx

= z20
R2

∫

A(N )
R

|u|2 xα+1
N dx +

∫

A(N )
R

∣∣∣∣∣∣
∂

∂xN

⎛
⎝ x

α
2
N u

J0;R(xN )

⎞
⎠

∣∣∣∣∣∣

∣∣∣∣∣∣
J0;R(xN )

x
α
2
N

∣∣∣∣∣∣
2

dx .

For any R > 0 and k ∈ N, the pair
(
rα+1,

(
α
2

)2
rα−1 + rα+1Pk,R (r)

)
is a Bessel pair

on (0, R) with ϕ = r− α
2

[
X1

( r
R

) · · · Xk
( r
R

)]− 1
2 where

Pk,R (r) = 1

4

1

r2

k∑
j=1

X2
1

( r

R

)
· · · X2

j

( r

R

)

X1 (r) = 1

1 − ln r
, Xi (r) = X1 (Xi−1 (r)) .

Hence, we deduce

Corollary 4.2 For any R > 0 and k ∈ N, we have

∫

A(N )
R

|∇u|2 xα+1
N dx −

(α

2

)2 ∫

A(N )
R

|u|2 xα−1
N dx

= 1

4

∫

A(N )
R

|u|2 xα−1
N

k∑
j=1

X2
1

( xN
R

)
· · · X2

j

( xN
R

)
dx
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+
∫

A(N )
R

∣∣∣∣∇
(
x

α
2
N

[
X1

( xN
R

)
· · · Xk

( xN
R

)] 1
2
u

)∣∣∣∣
2
∣∣∣∣∣∣

1

x
α
2
N

[
X1

( xN
R

) · · · Xk
( xN

R

)] 1
2

∣∣∣∣∣∣
2

dx

≥ 1

4

∫

A(N )
R

|u|2 xα−1
N

k∑
j=1

X2
1

( xN
R

)
· · · X2

j

( xN
R

)
dx

and∫

A(N )
R

∣∣∣∣ ∂u

∂xN

∣∣∣∣
2

xα+1
N dx −

(α

2

)2 ∫

A(N )
R

|u|2 xα−1
N dx

= 1

4

∫

A(N )
R

|u|2 xα−1
N

k∑
j=1

X2
1

( xN
R

)
· · · X2

j

( xN
R

)
dx

+
∫

A(N )
R

∣∣∣∣ ∂

∂xN

(
x

α
2
N

[
X1

( xN
R

)
· · · Xk

( xN
R

)] 1
2
u

)∣∣∣∣
2
∣∣∣∣∣∣

1

x
α
2
N

[
X1

( xN
R

) · · · Xk
( xN

R

)] 1
2

∣∣∣∣∣∣
2

dx

≥ 1

4

∫

A(N )
R

|u|2 xα−1
N

k∑
j=1

X2
1

( xN
R

)
· · · X2

j

( xN
R

)
dx .

Hence, the Hardy inequality with distance to the hyperplane {xN = 0} can be improved
by adding an infinite number of terms.
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