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a b s t r a c t

The aim of this paper is to prove a sharp subcritical Moser–Trudinger inequality on the
whole Heisenberg group. Let H = Cn

× R be the n−dimensional Heisenberg group, Q =

2n+2 be the homogeneous dimension of H, Q ′
=

Q
Q−1 , and ρ(ξ) = (|z|4 + t2)

1
4 be the ho-

mogeneous normof ξ = (z, t) ∈ H. Thenwe establish the following inequality onH (Theo-

rem 1.1): there exists a positive constant αQ = Q

2πnΓ ( 1

2 )Γ ( Q−1
2 )Γ ( Q

2 )−1Γ (n)−1
Q ′

−1

such that for any pair β, α satisfying 0 ≤ β < Q , 0 < α < αQ (1 −
β

Q ) there exists a
constant 0 < Cα,β = C (α, β) < ∞ such that the following inequality holds

sup
∥∇Hu∥LQ (H)

≤1

1

∥u∥ Q−β

LQ (H)


H

1
ρ (ξ)β


exp


α |u|Q/(Q−1)

−

Q−2
k=0

αk

k!
|u|kQ/(Q−1)


≤ Cα,β .

The above result is the best possible in the sense when α ≥ αQ (1 −
β

Q ), the integral is still
finite for any u ∈ W 1,Q (H), but the supremum is infinite.

In contrast to the analogous inequality in Euclidean spaces proved in Adachi and Tanaka
(1999) [6] using symmetrization, our argument is completely different and avoids the
symmetrizationmethodwhich is not available on the Heisenberg group in an optimal way.
Moreover, our restriction on the norm ∥∇Hu∥LQ (H) ≤ 1 of the function u is much weaker
than ∥∇Hu∥LQ (H) + ∥u∥ LQ (H) ≤ 1 which was assumed in Lam and Lu (2012) [16]. As a
consequence, our inequality fails at α = αQ (1 −

β

Q ) in contrast to the one in [16].
As an application of this inequality, we will prove that the following nonlinear

subelliptic equation of Q -Laplacian type without perturbation:

− ∆Q u + V (ξ) |u|Q−2 u =
f (ξ , u)
ρ (ξ)β

in H (0.1)

has a nontrivial weak solution, where the nonlinear term f has the critical exponential

growth eα|u|
Q

Q−1 as u → ∞, but does not satisfy the Ambrosetti–Rabinowitz condition.
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1. Introduction

Geometric inequalities are very important tools in the study of geometric analysis, a mathematical discipline at the
interface of differential geometry and partial differential equations. Sobolev embedding can be considered as one of such
inequalities. Basically, the Sobolev inequality asserts that W k,p

0 (Ω) ⊂ Lq (Ω) when kp < n, where Ω ⊂ Rn (n ≥ 2) is a
bounded domain, 1 ≤ q ≤

np
n−kp and that W k,p

0 (Ω) ⊂ Lq (Ω) for 1 ≤ q < ∞ when kp = n. However, it can be showed by

many examples that W
k, nk
0 (Ω) ⊈ L∞ (Ω). In fact, Yudovich [1], Pohozaev [2] and Trudinger [3] proved independently that

W 1,n
0 (Ω) ⊂ Lϕn (Ω) where Lϕn (Ω) is the Orlicz space associated with the Young function ϕn(t) = exp


β |t|n/(n−1)

− 1
for some β > 0. It was established in his 1971 paper [4] by J. Moser the following inequality using the symmetrization
argument:

Theorem A (Moser–Trudinger Inequality). Let Ω be a domain with finite measure in Euclidean n-space Rn, n ≥ 2. Then there

exists a sharp constant αn = nω
1

n−1
n−1 , where ωn−1 is the area of the surface of the unit n-ball, such that

1
|Ω|


Ω

exp

α |u|

n
n−1


dx ≤ c0

for any α ≤ αn, any u ∈ W 1,n
0 (Ω) with


Ω

|∇u|n dx ≤ 1. This constant αn is sharp in the sense that if α > αn, then the above
inequality can no longer hold with some c0 independent of u.

There have been many generalizations related to the Moser–Trudinger inequality. For instance, Adimurthi and Sandeep
in [5] established an interpolation of Hardy inequality and Moser–Trudinger inequality and proved that with Ω ⊂ Rn, n ≥

2, |Ω| < ∞, there exists a constant C0 = C0(n) > 0 such that

1

|Ω|
1− α

n


Ω

exp

α |u|

n
n−1


|x|β

dx ≤ C0

for any β ∈ [0, n) , 0 ≤ α ≤


1 −

β

n


αn, any u ∈ W 1,n

0 (Ω) with


Ω
|∇u|n dx ≤ 1. Moreover, this constant


1 −

β

n


αn is

sharp in the sense that if α >

1 −

β

n


αn, then the above inequality can no longer hold with some C0 independent of u.

Another interesting extension is to study the Moser–Trudinger inequality on unbounded domains. In fact, when Ω has
infinite volume, the above results are trivial. Adachi and Tanaka [6], using Moser’s approach of symmetrization, proved that

Theorem B. For any α ∈ (0, αn), there exists a constant Cα > 0 such that
Rn

φ

α |u|

n
n−1


dx ≤ Cα ∥u∥n

n , ∀u ∈ W 1,n Rn , ∥∇u∥n ≤ 1,

where

φ(t) = et −

n−2
i=0

t i

i!
.

This inequality is false for α ≥ αn in the sense that there is no finite Cα such that the inequality holds uniformly for all u.

It is particularly interesting to note that in this situation, the constant αn cannot be achieved. Namely, the inequality fails
when α = αn.

In order to obtain a Moser–Trudinger type inequality including the critical case αn, Ruf [7] and Li–Ruf [8] used the full
norm of the Sobolev space W 1,n (Rn), namely


∥u∥n

n + ∥∇u∥n
n

1/n, instead of ∥∇u∥n, to set up the result in the critical case

α = αn. These results were generalized recently in [9] where they proved that for all α ≤


1 −

β

n


αn and τ > 0,

sup
∥u∥1,τ ≤1


Rn

φ

α |u|

n
n−1


|x|β

dx < ∞

where

∥u∥1,τ =


Rn


|∇u|n + τ |u|n


dx
1/n

.

Moreover, this constant

1 −

β

n


αn is sharp in the sense that if α >


1 −

β

n


αn, then the supremum is infinity.
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All the proofs of the above theorems use symmetrization argument in Euclidean spaces. More precisely, for a given
function f we denote λf (t) = |{x : |f (x)| > t} and let f ♯ be defined by

f ♯(s) = inf{t : λf (t) ≤ s}.

Then we can define the non-increasing rearrangement f ∗ of f by f ∗(x) = f ♯(cn|x|n), where cn is the volume of the unit ball
in Rn. Thus, we have (see e.g. [10])

∥f ∗
∥Lp(Rn) = ∥f ∥Lp(Rn), and ∥∇f ∗

∥Lp(Rn) ≤ ∥∇f ∥Lp(Rn)

for 1 ≤ p < ∞.
These properties of the rearrangement functions allow them to reduce the proofs of Theorems A and B to radial

functions [4,6]. Nevertheless, such rearrangement inequalities are not true on the Heisenberg group. Therefore, analogous
theorems on the Heisenberg group to Theorems A and B become more difficult to prove.

The first main purpose of this paper is to establish the sharp subcritical Moser–Trudinger type inequalities on Heisenberg
groups. To state our theorems, we shall begin with some preliminaries.

Let H = Cn
× R be the n-dimensional Heisenberg group whose group structure is given by

(z, t) · (z ′, t ′) = (z + z ′, t + t ′ + 2Im(z · z ′)),

for any two points (z, t) and (z ′, t ′) in H. The Lie algebra of H is generated by the left invariant vector fields

T =
∂

∂t
, Xi =

∂

∂xi
+ 2yi

∂

∂t
, Yi =

∂

∂yi
− 2xi

∂

∂t
for i = 1, . . . n. These generators satisfy the non-commutative relationship

[Xi, Yj] = −4δijT .

Moreover, all the commutators of length greater than two vanish, and thus this is a nilpotent, graded, and stratified group
of step two.

For each real number r ∈ R, there is a dilation naturally associated with Heisenberg group structure which is usually
denoted as

δr(z, t) = (rz, r2t).

However, for simplicity we will write ru to denote δru. The Jacobian determinant of δr is rQ , where Q = 2n + 2 is the
homogeneous dimension of H.

We use ξ = (z, t) to denote any point (z, t) ∈ H and ρ(ξ) = (|z|4 + t2)
1
4 to denote the homogeneous norm of ξ ∈ H.

With this norm, we can define a Heisenberg ball centered at ξ = (z, t) with radius R : B(ξ , R) = {v ∈ H : |ξ−1v| < R}. The
volume of such a ball is σQ = CQRQ for some constant depending on Q .

We use |∇Hf | to express the norm of the subelliptic gradient of the function f : H → R:

|∇Hf | =


n

i=1

((Xif )2 + (Yif )2)

1/2

.

LetΩ be an open set inH. We useW 1,p
0 (Ω) to denote the completion of C∞

0 (Ω) under the norm ∥f ∥W1,p(Ω) = (


Ω
(|∇Hn f |p+

|f |p)du)1/p.
As pointed out earlier, it is not known whether or not the Lp norm of the subelliptic gradient of the rearrangement of a

function is dominated by the Lp norm of the subelliptic gradient of the function on the Heisenberg group H. In other words,
an inequality like

∥ ▽H u∗
∥Lp ≤ ∥▽H u∥Lp

is not available on H. Thus, in order to establish the Moser–Trudinger inequality on bounded domains on the Heisenberg
group, we also have to avoid the rearrangement argument. Nevertheless, Cohn and Lu [11], using a sharp representation
formula on the Heisenberg group, adapted D. Adams’ idea (see [12]) to avoid considering the subelliptic gradient of the
rearrangement function. Instead, they considered the rearrangement of the convolution of the subelliptic gradient with an
optimal kernel (see also [13] in the case of complex spheres).

The sharp constant for theMoser–Trudinger inequality on domains of finitemeasure in the Heisenberg group established
in [11] is stated as follows:

Theorem C. Let αQ = Q

2πnΓ ( 1

2 )Γ ( Q−1
2 )Γ ( Q

2 )−1Γ (n)−1
Q ′

−1
. Then there exists a uniform constant C0 depending only on

Q such that for all Ω ⊂ H, |Ω| < ∞ and α ≤ αQ

sup
u∈W1,Q

0 (Ω), ∥∇Hu∥LQ ≤1

1
|Ω|


Ω

exp(α |u(ξ)|Q
′

)dξ ≤ C0 < ∞. (1.1)

The constant αQ is the best possible in the sense that if α > αQ , then the supremum in the inequality (1.1) is infinite.
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Using similar ideas of [11], we considered in [14] the sharp singular Moser–Trudinger inequality on bounded domains in
the Heisenberg group H. This is stated as follows:

Theorem D. There exists a constant C0 depending only on Q , β such that for all Ω ∈ H, |Ω| < ∞, and for all u ∈ W 1,Q
0 (Ω),

1

|Ω|
1− β

Q


Ω

exp

αQ


1 −

β

Q


|u(ξ)|Q

′


ρ(ξ)β
dξ ≤ C0,

provided ∥∇Hu∥LQ ≤ 1. Furthermore, if αQ (1 −
β

Q ) is replaced by any larger number, then the above statement is false.

The situation is more complicated when concerning the Moser–Trudinger type inequalities for unbounded domains on
Heisenberg group since the Adams’ approach does not work. In this case, the authors of [15] established a non-optimal
Moser–Trudinger inequality by using a symmetrization argument. Recently, the first two authors of this paper developed a
new idea of establishing sharp constants forMoser–Trudinger inequalities on unbounded domains of Heisenberg groups and
for Adams inequalities on high order Sobolev spaces on unbounded domains without using rearrangement argument [16,
17]. With this new method, we can set up the following sharp Moser–Trudinger type inequality on unbounded domain
in [16]:

Theorem E. Let τ be any positive real number. Then for any pair β, α satisfying 0 ≤ β < Q and 0 < α ≤ αQ (1 −
β

Q ), there
holds

sup
∥u∥1,τ ≤1


H

1
ρ(ξ)β


exp


α |u|Q/(Q−1)

− SQ−2 (α, u)


< ∞. (1.2)

When α > αQ (1 −
β

Q ), the integral in (1.2) is still finite for any u ∈ W 1,Q (H), but the supremum is infinite. Here

∥u∥1,τ =


H

|∇Hu|Q + τ


H

|u|Q
1/Q

,

SQ−2 (α, u) =

Q−2
k=0

αk

k!
|u|kQ/(Q−1) .

We notice that in the above result, we used the restriction of the full norm of the Sobolev space W 1,Q (H) :


H |∇Hu|Q

+ τ


H |u|Q
1/Q

.
These results on the Heisenberg group raised a very interesting question: Is the analogous theorem to Theorem B on the

Heisenberg group true? Namely, canwe only impose the restriction on the norm


H |∇Hu|Q without restricting the full norm
H

|∇Hu|Q + τ


H

|u|Q
1/Q

≤ 1?

The proof of Theorem B by Adachi–Tanaka [6] in the Euclidean spaces requires a symmetrization argument which is not
available on the Heisenberg group. Therefore, it is nontrivial to know if such an inequality holds on the Heisenberg group.

In this paper, we will use a rearrangement-free argument to prove the singular Moser–Trudinger type inequality in the
spirit of Adachi–Tanaka. More precisely, we will prove that

Theorem 1.1. For any pair β, α satisfying 0 ≤ β < Q and 0 < α < αQ (1−
β

Q ) there exists a constant 0 < Cα,β = C (α, β) <

∞ such that the following inequality holds

sup
∥∇Hu∥LQ (H)

≤1

1

∥u∥Q−β

LQ (H)


H

1
ρ (ξ)β


exp


α |u|Q/(Q−1)

− SQ−2 (α, u)


≤ Cα,β . (1.3)

The above result is sharp in the sense when α ≥ αQ (1 −
β

Q ), the integral in (1.3) is still finite for any u ∈ W 1,Q (H), but the
supremum is infinite.

In fact, to prove the first part of Theorem 1.1, we will prove the following more general result:

Theorem 1.2. Let β be a nonnegative real number satisfying 0 ≤ β < Q and {αk}
∞

k=0 be a positive sequence satisfying the
following: there exist constants 0 < α < αQ (1 −

β

Q ) and C = C (α) > 0 such that


∞

k=Q−1 αk |x|kQ/(Q−1)
≤ C (α) eα|x|Q/(Q−1)

,

∀ |x| ≥ 1. Then there exists a constant 0 < Cα,β = C (α, β) < ∞ such that the following inequality holds

sup
∥∇Hu∥LQ (H)

≤1

1

∥u∥Q−β

LQ (H)


H

1
ρ (ξ)β


∞

k=Q−1

αk |u|kQ/(Q−1)


≤ Cα,β .
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It is clear that if we choose αk =
αkQ/(Q−1)

k! in Theorem 1.2, we will have Theorem 1.1.
We note here that our proof of Theorem 1.2 (and hence Theorem 1.1) does not rely on the method of symmetrization

which was used by Adachi–Tanaka in [6] on the Euclidean space. As a matter of fact, such a symmetrization is not available
on the Heisenberg group H as we pointed out earlier. Therefore, the argument in [6] does not work on H.

It is important to observe that there is a sharp difference between Theorems 1.1 and E. The inequality (1.2) in Theorem E
holds for all α ≤ (1 −

β

Q )αQ , while the inequality (1.3) in Theorem 1.1 only holds for α < (1 −
β

Q )αQ . This indicates the
restriction of Sobolev norms on the functions under consideration has a substantial impact on the sharp constants for the
geometric inequalities.

As an application of our results proved in this paper, we will study and investigate some properties of the solutions to
the Q -sub-Laplacian equation

− ∆Qu + V (ξ) |u|Q−2 u =
f (ξ , u)
ρ (ξ)β

in H, (1.4)

where ∆Qu = divH

|∇Hu|Q−2

∇Hu

. When the nonlinear term f satisfies the Ambrosetti–Rabinowitz condition (see

[18,19]), the existence of a nonnegative solution has been established in [16]. We will deal with the case when f does not
satisfy the Ambrosetti–Rabinowitz condition in this paper.

We assume that f : H × R → R is continuous, f (ξ , u) = 0 for all (ξ , u) ∈ H × (−∞, 0] and f behaves like
exp


α |u|Q/(Q−1) as |u| → ∞. More precisely, we assume the following growth conditions on the nonlinearity f (ξ , u):

(f 1) There exist constants α0, b1, b2 > 0 such that for all (ξ , u) ∈ H × R,

|f (ξ , u)| ≤ b1 |u|Q−1
+ b2


exp


α0 |u|Q/(Q−1)

− SQ−2 (α0, u)

,

(f 2) L(ξ , u) ≤ L(ξ , v) for all ξ ∈ H and 0 < u < v, where

F(ξ , s) =

 s

0
f (ξ , τ )dτ ,

L(ξ , τ ) = uf (ξ , τ ) − QF(ξ , τ ).

(f 3) limu→∞
F(ξ ,u)
|u|Q

= ∞ uniformly on ξ ∈ H.

(f 4) There exists c > 0 such that for all (ξ , s) ∈ H × R+
: F(ξ , s) ≤ c |s|Q + cf (ξ , s).

(f 5) lim sups→0+
QF(ξ ,s)

|s|Q
< λ1(Q ) uniformly in ξ ∈ H where

λ1(Q ) = inf

 ∥u∥Q
X

H
|u|Q

ρ(ξ)β
dξ

: u ∈ X \ {0}

 .

(f 6) lims→∞ sf (ξ , s) exp

−α0 |s|Q/(Q−1)

= ∞ uniformly on compact subsets of H.

We also assume that the potential satisfies

(V1) V : H → R is a continuous function bounded from below by a positive constant V0; and one of the two following
conditions:

(V2) For everyM > 0, µ ({ξ ∈ H : V (ξ) ≤ M}) < ∞.
(V3) The function [V (ξ)]−1 is in L1 (H).

The main features of our equation are that it is defined in the whole Heisenberg group H (therefore it has the non-
compact nature for the problem) and that the singular nonlinearity is with the critical growth, but does not satisfy the
classical Ambrosetti–Rabinowitz condition. The failure of the Ambrosetti–Rabinowitz condition for the nonlinear term f
adds extra difficulty (we refer the reader to [20–22]) where nonlinear equations and systems in Euclidean spaces have been
considered and existence theorems have been proved when the nonlinear terms do not satisfy the Ambrosetti–Rabinowitz
condition. In spite of a possible failure of the Palais–Smale compactness condition, in this paper, we still use a version of the
Mountain-pass approach due to Cerami [23,24] for the critical growth to derive a nontrivial weak solution. More precisely,
we will prove in this paper that:

Theorem 1.3. Suppose that (V1) and (V2) (or (V3)) and (f 1)–(f 6) are satisfied. Then Eq. (1.4) has a nontrivial weak solution.

We are now ready to make the following remarks. First of all, all the results, including the sharp critical and subcritical
Moser–Trudinger inequalities (Theorems 1.1 and E) and existence of nontrivial solutions of the subelliptic PDEs of
exponential growth on the Heisenberg group (Theorem 1.3), hold true for more general groups such as stratified (also
know as Carnot) groups. Using the same rearrangement-free argument, we can first extend Theorems 1.1 and E to the
arbitrary Carnot (stratified) groups. Second, for functions which are restricted to be in the class of first-layer symmetric on
the groups of Heisenberg type, our Theorem1.1 has been extended toweightedMoser–Trudinger inequalities on unbounded
domains with sharp constants by the first and third authors in [25] (we note that our Theorem 1.1 does not restrict to this
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class of functions). Third, best constants for critical and subcritical Moser–Trudinger inequalities on hyperbolic spaces of
any dimension have been established by the second and third authors in [26] using a rearrangement-free argument. It is
worthwhile to note that the symmetrizationmethod on the hyperbolic space does not work to establish such sharp singular
Moser–Trudinger inequalities on the entire hyperbolic space.

Following our first remark, we now state that the sharp critical Moser–Trudinger inequality on the Heisenberg group
(Theorem E) can be extended to the following:

Theorem 1.4. Let G be a Carnot group with homogeneous dimension Q and τ be any positive real number. Let ∇Gu be the
subelliptic gradient on G. Then for any pair β, α satisfying 0 ≤ β < Q , 0 < α ≤ αQ


1 −

β

Q


, there holds

sup
u∈W1,Q (G),∥u∥1,τ ≤1


G

φ

α |u(ξ)|

Q
Q−1


N (ξ)β

dξ < ∞.

Moreover, the constant αQ is sharp in the sense that if α > αQ


1 −

β

Q


, then the supremum is infinite. Here

Nis the homogeneous norm on G,

αQ = Q


S
|∇GN(ξ)|Q dσ(ξ)

 1
Q−1

,

S = {N = 1} ,

∥u∥1,τ =


G

|∇Gu(ξ)|Q dξ + τ


G

|u(ξ)|Q dξ
1/Q

φ(t) = et −

Q−2
j=0

t j

j!
.

Next, the sharp subcritical Moser–Trudinger inequality on the Heisenberg group (Theorem 1.1) can be generalized to the
following:

Theorem 1.5. Let G be a Carnot group with homogeneous dimension Q . Let ∇Gu be the subelliptic gradient on G. Then for any
pair β, α satisfying 0 ≤ β < Q , 0 < α < αQ


1 −

β

Q


, there holds

sup
u∈W1,Q (G),∥∇Gu∥LQ ≤1


G

φ

α |u(ξ)|

Q
Q−1


N(ξ)β

dξ < ∞.

Moreover, the constant αQ is sharp in the sense that if α ≥ αQ


1 −

β

Q


, then the supremum is infinite.

The proofs of Theorems 1.4 and 1.5 on the Carnot group are identical to those of Theorems 1.1 and E with very minimal
modifications. We have chosen in this paper to present our results and their proofs on the Heisenberg group only for the
purpose of clarity and simplicity.We note theMoser–Trudinger inequality on domains of finitemeasure in the Carnot group
was given in [27] which extends the results on the Heisenberg group and groups of Heisenberg type in [11,28]. For analysis
on Carnot (stratified) groups, we refer to [29,30].

The paper is organized as follows. We will prove the sharp subcritical Moser–Trudinger inequality Theorems 1.1 and
1.2 in Section 2. The existence of a nontrivial weak solution to Eq. (1.4) when the nonlinear term f does not satisfy the
well-known Ambrosetti–Rabinowitz condition will be studied in Section 3.

2. Proof of Theorems 1.1 and 1.2

We will begin with the proof of Theorem 1.2 from which the first part of Theorem 1.1 follows.

2.1. Proof of Theorem 1.2

It is enough to prove that for all u ∈ C∞

0 (H) \ {0}, u ≥ 0 and ∥∇Hu∥Q = 1, there holds
H

ΦQ (|u|
Q

Q−1 )

ρ(ξ)β
dξ ≤ Cα,β∥u∥Q−β

Q ,
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where

ΦQ (t) =

∞
k=Q−1

αk |t|k .

Set Ω(u) = {ξ ∈ H : u > 1}. Since u ∈ C∞

0 (H), Ω(u) is a bounded domain. Moreover, we have


H |u|Q ≥


Ω(u) |u|Q ≥

|Ω(u)|.
Now, we split the integral as follows:

H

ΦQ


|u|

Q
Q−1


ρ(ξ)β

dξ = I1 + I2,

where

I1 =


H\Ω(u)

ΦQ


|u|

Q
Q−1


ρ(ξ)β

dξ,

I2 =


Ω(u)

ΦQ


|u|

Q
Q−1


ρ (ξ)β

dξ .

We first estimate I1. Since u ≤ 1 in H \ Ω(u), we get

I1 =


H\Ω(u)

ΦQ


|u|

Q
Q−1


ρ(ξ)β

dξ

≤


{u≤1}

1
ρ(ξ)β

∞
k=Q−1

αk|u|
k Q
Q−1

≤


{u≤1}

1
ρ(ξ)β

∞
k=Q−1

αk|u|Q

≤ C (α) eα


{u≤1, ρ(ξ)≤∥u∥Q }

1
ρ(ξ)β

|u|Q + C (α) eα


{u≤1, ρ(ξ)>∥u∥Q }

1
|ρ(ξ)β

|u|Q .

Now, since β < Q , we can fix γ > 0 such that 0 < γ < Q − β (say γ =
Q−β

2 ), then
{u≤1, ρ(ξ)≤∥u∥Q }

1
ρ(ξ)β

|u|Q ≤


{u≤1, ρ(ξ)≤∥u∥Q }

1
ρ(ξ)β

|u|γ

≤


ρ(ξ)≤∥u∥Q


1

ρ(ξ)β

 1
1−γ /Q

1−γ /Q 
H
(|u|γ )

Q
γ

 γ
Q

= ∥u∥γ

Q


Σ


∥u∥Q

0
rQ−1− βQ

Q−γ drdµ(ξ ∗)

 Q−γ
Q

= Cα,β∥u∥γ

Q∥u∥Q−β−γ

Q

= Cα,β∥u∥Q−β

Q ,

where in the second inequality, we used the Hölder inequality.
We also have that

{u≤1, ρ(ξ)>∥u∥Q }

1
ρ(ξ)β

|u|Q ≤
1

∥u∥β

Q


H

|u|Q

= ∥u∥Q−β

Q .

Therefore we get the following inequality:

I1 ≤ Cα,β∥u∥Q−β

Q .

To estimate I2, we first notice that ifwe set v(ξ) = u(ξ)−1 inΩ(u), then v(ξ) ∈ W 1,Q
0 (Ω(u)), and ∥∇Hv∥Q = ∥∇Hu∥Q =

1. Moreover in Ω(u),

|u(ξ)|
Q

Q−1 = (v(ξ) + 1)
Q

Q−1 ≤ (1 + ε)|v(ξ)|
Q

Q−1 +


1 −

1
(1 + ε)Q−1

 1
1−Q



84 N. Lam et al. / Nonlinear Analysis 95 (2014) 77–92

for any small ε > 0, where we use the following elementary inequality:

(a + b)p − bp ≤ εbp +


1 − (1 + ε)

−
1

p−1
1−p

,

for all a, b > 1 and p > 1.
Now since 0 < α < αQ (1 −

β

Q ), we can fix ε =
αQ
α

(1 −
β

Q ) − 1 > 0, and set Cε = (1 − (1 + ε)
−

1
p−1 )1−p. Then Cε is a

constant only depending on α, β .
Since Ω(u) is bounded, using Theorem D, we get

I2 =


Ω(u)

ΦQ


|u|

Q
Q−1


ρ (ξ)β

dξ

≤ Cα


Ω(u)

exp

α|u|

Q
Q−1


ρ(ξ)β

= Cα


Ω(u)

exp

α(v + 1)

Q
Q−1


ρ(ξ)β

≤ Cα


Ω(u)

exp

α(1 + ε)|v|

Q
Q−1 + αCε


ρ(ξ)β

≤ Cα


Ω(u)

exp

αQ


1 −

β

Q


|v|

Q
Q−1 + αCε


ρ(ξ)β

≤ CαeαCε |Ω(u)|1−
β
Q

≤ Cα,β∥u∥Q−β

Q .

Thus
H

ΦQ


|u|

Q
Q−1


ρ(ξ)β

dξ = I1 + I2 ≤ Cα,β∥u∥Q−β

Q .

This completes the proof of Theorem 1.2.

2.2. Proof of Theorem 1.1

We first introduce some notations needed in the proof. Given any ξ = (z, t) set z∗
= z/ρ(ξ), t∗ = t/ρ(ξ)2 and

ξ ∗
= (z∗, t∗). Thus for any u ∈ H and ξ ≠ 0 we have ξ ∗

∈ Σ = {ξ ∈ H : ρ(ξ) = 1}.
It is clear that if we choose αk =

αkQ/(Q−1)

k! , we have

sup
∥∇Hu∥LQ (H)

≤1

1

∥u∥Q−β

LQ (H)


H

1
ρ (ξ)β


exp


α |u|Q/(Q−1)

− SQ−2 (α, u)


< ∞

for any pairβ, α satisfying 0 ≤ β < Q and 0 < α < αQ (1−
β

Q ). Also, the fact that 1
ρ(ξ)β


exp


α |u|Q/(Q−1)

− SQ−2 (α, u)


∈

L1(H) for all u ∈ W 1,Q (H) can be found in [15] or [16].
Now, we will verify that the constant αQ (1 −

β

Q ) is our best possible. Indeed, we choose the sequence {uk} as follows

uk(ξ) =
1

α
Q−1
Q

Q


k

Q−1
Q if 0 ≤ ρ(ξ) ≤ e−k/Q ,

−k−
1
Q Q ln ρ(ξ), if e−k/Q

≤ ρ(ξ) ≤ 1,
0, if 1 < ρ(ξ).

We can verify that

|∇Huk| =
1

α
Q−1
Q

Q

k−1/QQ
|z|

ρ(ξ)2
χB(0,1)\B(0,e−k) where ξ = (z, t) ∈ H

since |∇Hρ(ξ)| =
|z|

ρ(ξ)
.
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By [11], αQ = Qc1/(Q−1)
Q , where cQ =


Σ

|z∗
|
Q dµ(ξ ∗). Then we get

H
|∇Huk|

Q
=

Q Q

α
Q−1
Q


Σ

 1

e−k/Q
k−1

|z∗
|
Q 1
r
drdµ(ξ ∗) =

Q Q

α
Q−1
Q

cQ k−1
 1

e−k/Q

1
r
dr = 1.

Moreover,
H

|uk|
Q

=
1

α
Q−1
Q


Σ

 1

e−k/Q


k

Q−1
Q Q

ln r
k

Q

rQ−1drdµ(ξ ∗)

+
1

α
Q−1
Q


Σ

 e−k/Q

0


k

Q−1
Q

Q
rQ−1drdµ(ξ ∗)

≤
1
k


Σ
dµ(ξ ∗)

α
Q−1
Q


Σ

dµ(ξ ∗)

 1

0
rQ−1(ln r)Q dr +

kQ−1

ek


Σ
dµ(ξ ∗)

Qα
Q−1
Q

k→∞
→ 0.

Thus, we can conclude that {uk(ξ)}∞k=1 ⊂ W 1,Q (H).
Moreover, we have

H

1
ρ(ξ)β


exp


αQ


1 −

β

Q


|uk|

Q/(Q−1)


− SQ−2


αQ


1 −

β

Q


, uk


dξ

=


H

exp

αQ


1 −

β

Q


|uk|

Q
Q−1


−

Q−2
j=0


αQ


1− β

Q

j
j! |uk|

j Q
Q−1

ρ(ξ)β
dξ

=


e−k/Q ≤ρ(ξ)≤1

exp


1 −
β

Q


Q

Q
Q−1 k−

1
Q−1 |ln ρ(ξ)|

Q
Q−1


ρ (ξ)β

dξ

−


e−k/Q ≤ρ(ξ)≤1

Q−2
j=0


1− β

Q

j
Q
j Q
Q−1

j! k−
j

Q−1 |ln ρ(ξ)|
j Q
Q−1

ρ(ξ)β
dξ +


0≤ρ(ξ)≤e−k/Q

ΦQ


1 −

β

Q


k


ρ(ξ)β
dξ

≥ −

Q−2
j=1

k−j 1
Q−1


0≤ρ(ξ)≤1


1 −

β

Q

j
Q j Q

Q−1

j!ρ (ξ)β
|ln ρ(ξ)|

j Q
Q−1 dξ

+


Σ
dµ(ξ ∗)

Q − β

e

1− β

Q


k
−

Q−2
j=0


1 −

β

Q


k
j

j!

 e−


1− β

Q


k

→


Σ
dµ(ξ ∗)

Q − β
> 0 as k → ∞

since 
0≤ρ(ξ)≤1

|ln ρ (ξ)|
j Q
Q−1

ρ(ξ)β
dξ < +∞ for any j ∈ {1, . . . ,Q − 2}.

Therefore the chosen sequence satisfies that {uk(ξ)}∞k=1 ⊂ W 1,Q (H), ∥∇Huk∥LQ = 1 and

1
∥uk∥

Q−β

LQ


H

exp

αQ (1− β

Q )|uk|Q/(Q−1)

−SQ−2


αQ (1− β

Q ),uk


ρ(ξ)β
dξ → ∞. That completes the proof of Theorem 1.1, namely, the supre-

mum in Theorem 1.1 is infinite when α = αQ .

3. Q -sub-Laplace equation

3.1. Variational framework

We define the function space:

X =


u ∈ W 1,Q (H) :


H
V (ξ) |u|Q dξ < ∞


.



86 N. Lam et al. / Nonlinear Analysis 95 (2014) 77–92

By the assumptions of the potential V , we see that X with the norm

∥u∥X :=


H


|∇Hu|Q + V (ξ) |u|Q


dξ
1/Q

is a reflexive Banach space. Moreover, we also get the continuous embedding

X ↩→ W 1,Q RQ  ↩→ Lq

RQ 

for all Q ≤ q < ∞, and the compactness of the embedding

X ↩→ Lp

RQ  for all p ≥ Q .

Thus, we can conclude that

λ1(Q ) = inf

 ∥u∥Q
X

H
|u|Q

ρ(ξ)β
dξ

: u ∈ X \ {0}

 > 0 for any 0 ≤ β < Q .

Now, by assumptions on the nonlinear term, we obtain for all (ξ , u) ∈ H × R,

|F (ξ , u)| ≤ b3

exp


α1 |u|Q/(Q−1)

− SQ−2 (α1, u)


for some constants α1, b3 > 0. Thus, by our Theorem 1.1, F (ξ , u) ∈ L1 (H) for all u ∈ W 1,Q

RQ

. Thus, we can define the

following functional J : X → R by

J(u) =
1
Q


H

|∇Hu|Q dξ +
1
Q


H
V (ξ) |u|Q dξ −


H

F(ξ , u)
ρ(ξ)β

dξ .

Moreover, by standard arguments, J is a C1 functional on X and ∀u, v ∈ X ,

DJ(u)v =


H

|∇Hu|Q−2
∇Hu∇Hvdξ +


H
V (ξ) |u|Q−2 vdξ −


H

f (ξ , u)v
ρ(ξ)β

dξ .

As a consequence, critical points of J are weak solutions of Eq. (1.4). We will search such critical points by the Mountain
Pass Theorems. We stress that to use the Mountain-pass Theorem, we need to verify some types of compactness for the
associated Lagrange–Euler functional, namely the Palais–Smale condition. Or at least, wemust prove the boundedness of the
Palais–Smale sequence. In almost all of works, we can easily establish this condition thanks to the Ambrosetti–Rabinowitz
(AR) conditionwhich is not assumed in ourwork. Nevertheless, wewill use the following version ofMountain Pass Theorem
with Cerami sequence [23,24]:

Lemma 3.1. Let (X, ∥·∥X ) be a real Banach space and I ∈ C1 (X, R) satisfies I(0) = 0 and

(i) There are constants ρ, α > 0 such that I|∂Bρ ≥ α.
(ii) There is an x ∈ X \ Bρ such that I(x) ≤ 0.

Let CM be characterized by

CM = inf
γ∈Γ

max
0≤t≤1

I(γ (t))

where

Γ =

γ ∈ C0 ([0, 1] , X) , γ (0) = 0, γ (1) = x


.

Then I possesses a (C)CM sequence, i.e., there exists a sequence {xn} ⊂ X with

I (xn) → CM , ∥DI (xn)∥X∗ (1 + ∥xn∥X ) → 0.

3.2. Basic lemmas

In this subsection, we recall some lemmas in [16].

Lemma 3.2. For κ > 0 and ∥u∥X ≤ M with M sufficiently small and q > Q , we have
H


exp


κ |u|Q/(Q−1)

− SQ−2 (κ, u)

|u|q

ρ(ξ)β
dξ ≤ C (Q , κ) ∥u∥q .
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Lemma 3.3. If κ > 0, 0 ≤ β < Q , u ∈ X and ∥u∥X ≤ M with κMQ/(Q−1) <

1 −

β

Q


αQ , then

H


exp


κ |u|Q/(Q−1)

− SQ−2 (κ, u)

|u|

ρ(ξ)β
dξ ≤ C (Q ,M, κ) ∥u∥s

for some s > Q .

Lemma 3.4. Let {wk} ⊂ X, ∥wk∥X = 1. If wk → w ≠ 0 weakly and almost everywhere, ∇Hwk → ∇Hw almost everywhere,

then


exp


α|wk|

Q/(Q−1)

−SQ−2(α,wk)


ρ(ξ)β

is bounded in L1 (H) for 0 < α < αQ


1 −

β

Q

 
1 − ∥w∥

Q
X

−1/(Q−1)
.

3.3. Mountain pass geometry

Lemma 3.5. There exists ρ > 0 such that J(u) > 0 if ∥u∥X = ρ .

Proof. By the assumptions (f 5) and (f 1), we see that there exist τ , δ > 0 such that |u| ≤ δ implies

F(ξ , u) ≤ k0 (λ1(Q ) − τ) |u|Q for all ξ ∈ H (3.1)

and for each q > Q , we can find a constant C = C(q, δ) such that for some κ > 0:

F(ξ , u) ≤ C |u|q

exp


κ |u|Q/(Q−1)

− SQ−2 (κ, u)


for |u| ≥ δ and ξ ∈ H. (3.2)

Hence, we have

F(ξ , u) ≤ k0 (λ1(Q ) − τ) |u|Q + C |u|q

exp


κ |u|Q/(Q−1)

− SQ−2 (κ, u)


for all (ξ , u) ∈ H × R. As a consequence, we obtain

J(u) ≥
1
Q

∥u∥Q
X −

1
Q

(λ1(Q ) − τ)


H

|u|Q

ρ(ξ)β
dξ − C ∥u∥q

X

≥
1
Q


1 −

(λ1(Q ) − τ)

λ1(Q )


∥u∥Q

X − C ∥u∥q
X

≥ ∥u∥X


1
Q


1 −

(λ1(Q ) − τ)

λ1(Q )


∥u∥Q−1

X − C ∥u∥q−1
X


(3.3)

by using Lemma 3.2 and noting the continuous embedding E ↩→ LQ (H). Since τ > 0 and q > Q , we may choose ρ > 0
such that 1

Q


1 −

(λ1(Q )−τ)

λ1(Q )


ρQ−1

− Cρq−1 > 0. �

Lemma 3.6. There exists x ∈ X with ∥x∥X > ρ such that J(x) < inf∥u∥=ρ J(u).

Proof. Let u ∈ E \ {0}, u ≥ 0 with compact support Ω = supp(u). By (f 3), for all M > 0, there exists a constant C > 0
such that

∀s ≥ 0, ∀ξ ∈ Ω F (ξ , s) ≥ MsQ − C . (3.4)

Thus,

J(tu) ≤
tQ

Q
∥u∥Q

X − MtQ


Ω

|u|Q

ρ(ξ)β
dξ + C |Ω| .

Now, choosing M >
∥u∥QX

Q

Ω

|u|Q

ρ(ξ)β
dξ

and letting t → ∞, we have Jε(tu) → −∞. Setting x = tu with t sufficiently large, we get

the conclusion. �

By Lemmas 3.5 and 3.6, we now can find a Cerami sequence at minimax level

CM = inf
γ∈Γ

max
0≤t≤1

J(γ (t))

where

Γ =

γ ∈ C0 ([0, 1] , X) , γ (0) = 0, γ (1) = x


.
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It means that there exist sequences {uk} and {εk} such that for all v ∈ X:
1
Q

∥uk∥
Q
X −


H

F(ξ , uk)

ρ(ξ)β
dξ → CM (1 + ∥uk∥X )

×


H

|∇Huk|
Q−1

∇Huk∇Hvdξ +


H
V (ξ) |uk|

Q−1 ukvdξ −


H

f (ξ , uk)v

ρ(ξ)β
dξ
 ≤ εk ∥v∥X εk → 0.

We will now prove that this Cerami sequence is bounded. To do that, we first need to find more information about the
minimax level CM . In fact, it was proved in [16] that (see Lemma 6.2):

0 < CM <
1
Q


1 −

β

Q


αQ

α0

Q−1

. (3.5)

With the help of inequality (3.5), we are now able to prove the boundedness of the Cerami sequence.

Lemma 3.7. Let {uk} be an arbitrary Cerami sequence associated to the functional

I(u) =
1
Q

∥u∥Q
X −


H

F(ξ , u)
ρ(ξ)β

dξ

such that
1
Q

∥uk∥
Q
X −


H

F(ξ , uk)

ρ(ξ)β
dξ → CM (1 + ∥uk∥X )

×


H

|∇Huk|
Q−1

∇Huk∇Hvdξ +


H
V (ξ) |uk|

Q−1 ukvdξ −


H

f (ξ , uk)v

ρ(ξ)β
dξ
 ≤ εk ∥v∥X εk → 0

where CM ∈


0, 1

Q


1 −

β

Q


αQ
α0

Q−1

. Then {uk} is bounded up to a subsequence.

Proof. We could suppose for a contradiction that

∥uk∥X → ∞. (3.6)

Now, letting

vk =
uk

∥uk∥X

then

∥vk∥X = 1,
vk ⇀ v in X (up to a subsequence).

Similarly, we have v+

k ⇀ v+ in X . Here we are using the standard notation w+
= max {w, 0}. By assumptions on the

potential V , the embedding E ↩→ Lq (H) is compact for all q ≥ Q , we get that
v+

k (ξ) → v+(ξ) a.e. in H
v+

k → v+ in Lq (H) , ∀q ≥ Q .

Noting that {uk} is a Cerami sequence at level CM , we see that

∥uk∥
Q
X = QCM + Q


H

F(ξ , u+

k (ξ))

ρ(ξ)β
dξ + o(1).

As consequences,
H

F(ξ , u+

k (ξ))

ρ (ξ)β
dξ → +∞

and

lim inf
k→∞


H

F

ξ, u+

k (ξ)


ρ(ξ)β
u+

k (ξ)
Q v+

k (ξ)
Q dξ = lim inf

k→∞


H

F

ξ, u+

k (ξ)


ρ(ξ)β ∥uk∥
Q
X

dξ

= lim inf
k→∞


H

F

ξ,u+

k (ξ)


ρ(ξ)β
dξ

QCM + Q


H
F(ξ ,u+

k (ξ))

ρ(ξ)β
dξ + o(1)

=
1
Q

. (3.7)
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Now, we will prove that v+
= 0 a.e. H. Indeed, if S+

=

ξ ∈ H : v+ (ξ) > 0


has a positive measure, then in S+, we have

by (f 3) that

lim
k→∞

u+

k (ξ) = lim
k→∞

v+

k (ξ) ∥uk∥X = +∞,

lim
k→∞

F

ξ, u+

k (ξ)


ρ(ξ)β
u+

k (ξ)
Q = +∞ a.e. in S+.

Thus

lim
k→∞

F

ξ, u+

k (ξ)


ρ(ξ)β
u+

k (ξ)
Q v+

k (ξ)
Q = +∞ a.e. in S+, (3.8)


H
lim inf
k→∞

F

ξ, u+

k (ξ)


ρ(ξ)β
u+

k (ξ)
Q v+

k (ξ)
Q dξ = +∞. (3.9)

This is a contradiction by Fatou’s lemma, (3.9), (3.7) and noting that F(ξ , s) ≥ 0. Thus, we can conclude that v+

k ⇀ 0 in X .
Next, we choose tk ∈ [0, 1] such that

J (tkuk) = max
t∈[0,1]

J (tuk) .

For any given M ∈

0,
 

1− β
Q


αQ

α0

 Q−1
Q

, let ε =


1− β

Q


αQ

MQ/(Q−1) − α0 > 0. Since f has critical growth (f 1) on H, there exists

C = C(M) > 0 such that

F(ξ , s) ≤ C |s|Q +



1 −

β

Q


αQ

MQ/(Q−1)
− α0

 R

α0 +

ε

2
, s


, ∀ (ξ , s) ∈ H × R. (3.10)

Since ∥uk∥X → ∞, we have

J (tkuk) ≥ J


M
∥uk∥X

uk


= J (Mvk) . (3.11)

By (3.10), ∥vk∥X = 1 and the fact that


H
F(ξ ,vk)
ρ(ξ)β

dξ =


H

F

ξ,v+

k


ρ(ξ)β

dξ , we get

QJ (Mvk) ≥ MQ
− QCMQ


H

v+

k

Q
ρ(ξ)β

dξ − Q



1 −

β

Q


αQ

M
Q

Q−1
− α0




H

R

α0 +

ε
2 ,M

v+

k


ρ(ξ)β

dξ

≥ MQ
− QCMQ


H

v+

k

Q
ρ(ξ)β

dξ − Q



1 −

β

Q


αQ

M
Q

Q−1
− α0




H

R


α0 +
ε
2


M

Q
Q−1 ,

v+

k


ρ(ξ)β

dξ

≥ MQ
− QCMQ


H

v+

k

Q
ρ(ξ)β

dξ − Q



1 −

β

Q


αQ

M
Q

Q−1
− α0




H

R (α1, |vk|)

ρ(ξ)β
dξ . (3.12)

Here

α1 =

α0 +
1
2



1 −

β

Q


αQ

MQ/(Q−1)
− α0

M
Q

Q−1 ∈


0,

1 −

β

Q


αQ


.

Since v+

k ⇀ 0 in X , the fact that the embedding X ↩→ Lp (H) is compact for all p ≥ Q , using the Holder inequality, we

can show easily that


H

v+

k (ξ)

Q
ρ(ξ)β

dξ
k→∞
→ 0. Also, noting that 0 < α1 <


1 −

β

Q


αQ , by our Theorem 1.1,


H

R(α1,|vk(ξ)|)

ρ(ξ)β
dξ is

bounded by a universal C .
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Thus using (3.11) and letting k → ∞ in (3.12), and then lettingM →

 
1− β

Q


αQ

α0

 Q−1
Q

−

, we get

lim inf
k→∞

J (tkuk) ≥
1
Q


1 −

β

Q


αQ

α0

Q−1

> CM . (3.13)

Note that J(0) = 0 and J(uk) → CM , we can now suppose that tk ∈ (0, 1). Thus since DJ(tkuk)tkuk = 0,

tQk ∥uk∥
Q
X =


H

f (ξ , tkuk) tkuk

ρ(ξ)β
dξ .

By (f 2):

QJ (tkuk) = tQk ∥uk∥
Q
X − Q


H

F (ξ , tkuk)

ρ (ξ)β
dξ

=


H

[f (ξ , tkuk) tkuk − QF (ξ , tkuk)]
ρ(ξ)β

dξ

≤


H

[f (ξ , uk) uk − QF (ξ , uk)]
ρ(ξ)β

dξ

= ∥uk∥
Q
X + QCM − ∥uk∥

Q
X + o(1)

= QCM + o(1).

This is a contraction to (3.13). This proves that {uk} is bounded in X . �

Now, by standard arguments (see Lemma 5.3 in [16]), noting that the sequence {uk} is bounded, we have

Lemma 3.8. Let (uk) ⊂ X be an arbitrary Cerami sequence of J at the minimax level CM . Then there exist a subsequence of (uk)
(still denoted by (uk)) and u ∈ X such that

f (ξ , uk)

ρ(ξ)β
→

f (ξ , u)
ρ(ξ)β

strongly in L1loc (H)

∇Huk(ξ) → ∇Hu(ξ) almost everywhere in H

|∇Huk|
Q−2

∇Huk ⇀ |∇Hu|Q−2
∇Hu weakly in


LQ/(Q−1)
loc (H)

Q−2

uk ⇀ u weakly in X .

Furthermore u is a weak solution of (1.4).

Thus, our work will be completed if we can prove that u is nontrivial.

3.4. Proof of Theorem 1.3

Suppose that u = 0. First, we will prove that

F(ξ , uk)

ρ(ξ)β
→ 0 in L1 (H) . (3.14)

Indeed, by Lemma 3.8, we have by (f 4) and the generalized Lebesgue dominated convergence theorem that:

F(ξ , uk)

ρ(ξ)β
→ 0 in L1 (BR) for all R > 0.

Hence, it is enough to show that for arbitrary δ > 0, we can find R > 0 such that
ρ(ξ)>R

F(ξ , uk)

ρ(ξ)β
dξ ≤ 3δ.

First, we would like to recall the following facts: there exists C > 0 such that for all (ξ , s) ∈ H × R+:

F(ξ , s) ≤ C |s|Q + Cf (ξ , s) (3.15)
F(ξ , s) ≤ C |s|Q + CR (α0, s) s

H

f (ξ , uk)uk

ρ(ξ)β
dξ ≤ C,


H

F(ξ , uk)

ρ(ξ)β
dξ ≤ C .
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Using (3.15), the fact that ∥uk∥X is bounded, we can choose A and R large enough such that
ρ(ξ)>R
|uk|>A

F(ξ , uk)

ρ(ξ)β
dξ ≤ C


ρ(ξ)>R
|uk|>A

|uk|
Q

ρ(ξ)β
dξ + C


ρ(ξ)>R
|uk|>A

f (ξ , uk)

ρ(ξ)β
dξ

≤
C

RβA


ρ(ξ)>R

|uk|
Q+1 dξ + C

1
A


H

f (ξ , uk)uk

ρ(ξ)β
dξ

≤
C

RβA
∥uk∥

Q+1
X + C

1
A


H

f (ξ , uk)uk

ρ(ξ)β
dξ

≤ 2 δ.

Also, 
ρ(ξ)>R
|uk|≤A

F(ξ , uk)

ρ(ξ)β
dξ ≤

C(α0, A)

Rβ


ρ(ξ)>R
|uk|≤A

|uk|
Q dξ

≤
2Q−1C(α0, A)

Rβ


ρ(ξ)>R
|uk|≤A

|uk − u0|
Q dξ +


ρ(ξ)>R
|uk|≤A

|u0|
Q dξ


.

Using the compactness of embedding E ↩→ Lq (H) , q ≥ Q and noticing that uk ⇀ u0, again we can choose R sufficiently
large such that

ρ(ξ)>R
|uk|≤A

F(ξ , uk)

ρ(ξ)β
dξ ≤ δ.

Thus, we have
ρ(ξ)>R

F(ξ , uk)

ρ(ξ)β
dξ ≤ 3δ.

As a consequence, we get (3.14) and then

∥uk∥
Q
X → QcM > 0. (3.16)

Also, since CM ∈


0, 1

Q


Q−β

Q
αQ
α0

Q−1

, we can find δ > 0 and K ∈ N such that

∥uk∥
Q
X ≤


Q − β

Q
αQ

α0
− δ

Q−1

for all k ≥ K . (3.17)

Now, if we choose τ > 1 sufficiently close to 1, then by (f 1) we have

|f (ξ , uk)uk| ≤ b1 |uk|
Q

+ b2

exp


α0 |uk|

Q/(Q−1)
− SQ−2 (α0, uk)


|uk| .

Hence
H

|f (ξ , uk)uk|

ρ(ξ)β
≤ b1


H

|uk|
Q

ρ(ξ)β
+ b2


H


exp


α0 |uk|

Q/(Q−1)
− SQ−2 (α0, uk)


|uk|

ρ(ξ)β
.

Using Hölder inequality, the compactness of the embedding X ↩→ Lq (H), we have


H
|uk|Q

ρ(ξ)β
→ 0 as k → ∞.

Now, by Theorem 1.1, Lemma 3.3 and (3.17), we can conclude that
H


exp


α0 |uk|

Q/(Q−1)
− SQ−2 (α0, uk)


|uk|

ρ(ξ)β
→ 0 as k → ∞.

Thus, 
H

|f (ξ , uk)uk|

ρ(ξ)β
→ 0 as k → ∞.

Now, since DJ0 (uk) → 0, we get ∥uk∥X → 0 and it is a contradiction.
The proof is now completed.
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