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Abstract The purpose of this paper is threefold. First, we prove sharp singular affine
Moser—Trudinger inequalities on both bounded and unbounded domains in R”. In par-
ticular, we will prove the following much sharper affine Moser-Trudinger inequality
in the spirit of Lions (Rev Mat lIberoamericana 1(2):45-121, 1985) (see our Theo-

no\ a1
rem1.4):Leta, =n (%) ,0 < B < nandt > 0. Then there exists a constant
2

C=C . p) > Osuchthatforall 0 < o < (1~ £) e and u € C§° (") \ {0} with

n
the affine energy &, (u) < 1, we have

T |u|n%1

1
2n—lg
nyn—1

¢n,1 (
/ (14+E:w)

) laallp ™"
|x|P

1= & )|

)dx =Cn,p)

5
1=

Moreover, the constant (1 _B

=) an is the best possible in the sense that there is

no uniform constant C(n, §) independent of u in the above inequality when o >
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(1 - g) a,. Second, we establish the following improved Adams type inequality in

the spirit of Lions (Theorem 1.8): Let 0 < 8 < 2m and v > 0. Then there exists a
constant C = C (m, B, t) > 0 such that

sup
uew2m (Rzm),fRzm [Au™+t|u)™<1

b2m,2 Lu M=

(1l Aulym=T

5 dx<C((m,B,1),
R2m |x|

forall) <o < (1 — %) B(2m,2). When o > (1 — %) B(2m, 2), the supremum
is infinite. In the above, we use

Jjp—=2
s .

J
bpg = = > g =min[jeN:jz 5] > 2
AR q q

The main difficulties of proving the above results are that the symmetrization method
does not work. Therefore, our main ideas are to develop a rearrangement-free argument
in the spirit of Lam and Lu (J Differ Equ 255(3):298-325, 2013; Adv Math 231(6):
3259-3287, 2012), Lam et al. (Nonlinear Anal 95: 77-92, 2014) to establish such
theorems. Third, as an application, we will study the existence of weak solutions to
the biharmonic equation

A’u+V(x)u = f(x,u) in R*
ueHz(R4),u20 ’

where the nonlinearity f has the critical exponential growth.
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Moser—Trudinger and Adams inequalities - Unbounded domains - Lions type
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1 Introduction

Sobolev spaces and geometric inequalities can be considered as one of the central
tools in many areas such as analysis, differential geometry, mathematical physics,
partial differential equations, calculus of variations, etc. The main aim of this paper
is to study such inequalities. More precisely, we will prove many versions of Moser—
Trudinger type inequalities and Adams type inequalities, which are the borderline
cases of the Sobolev embeddings. Basically, the Sobolev embeddings assert that

Wg’P (QcCcLI(Qforl <g< ni’;{p, kp < n, n > 2, where Q@ C R" is a bounded
domain. However, in the limiting case, n = kp, we can show by many examples that
W(])C Q) ¢ L°° (). In this case, the Moser-Trudinger and Adams inequalities are
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302 N. Lam et al.

the perfect replacement. In fact, Yudovich [41], Pohozaev [33] and Trudinger [39]
worked independently and proved that W(}’n (2) C Ly, (2) where Ly, (2) is the
Orlicz space associated with the Young function ¢, () = exp (ﬂ |t|”/ (”_1)) — 1 for
some B > 0. More precisely, they proved that there exist constants § > 0and C,, > 0
depending only on n such that

sup /exp(ﬂ |u|nnfl)dx§Cn|Q|.
Q

ueW, ™ (Q). [olVul"dx<1

Nevertheless, the best possible constant 8 was not exhibited until the 1971 paper [30]
of Moser. In fact, using the symmetrization argument to reduce to the one dimensional
case, Moser established the following result:

Theorem (Moser [30], 1971). Let 2 be a domain with finite measure in Euclidean

n

n—1
n-space R", n > 2. Then there exists sharp constant &, = n ( nx 2 ) such that

! / 1) dx <
—_— eXp((xu"—) X = Q)
12 Jo

forany o < ay, any u € WOI’" (2) with fQ |Vu|" dx < 1. This constant oy, is sharp
in the sense that if « > oy, then the above inequality can no longer hold with some
co independent of u.

The existence of extremal functions for Moser’s inequality was first established by
Carleson and Chang on balls in Euclidean spaces [5] and then extended to more general
domains in [10] and [25]. Moser’s inequalities have played important roles and have
been widely used in geometric analysis and PDEs; see for example [13,14,36,38], the
expository articles [6] and [18] and references therein.

Recently, using the L? affine energy £, (f) of f instead of the standard L? energy
of gradient ||V f| ,, where

—1/n
& =an ([ 10urizran)

1/p

nwywp_1

Cn,p = — (nwn)]/n s
2wn+p—2

1/p
1Dy fl, = (/R v-Vf (x)l”dx) ,

the authors of [8] proved a sharp version of affine Moser—Trudinger inequality, namely,

Theorem ([8], 2009). Let Q2 be a domain with finite measure in Euclidean n-space
R™, n > 2. Then there exists a constant m, > 0 such that

1 / o
— exp(alulnfl)dxfm
12| Jo "
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for any o < «y, any u € Wé’" () with &, (u) < 1. The constant a,, is sharp in
the sense that if & > «, then the above inequality can no longer hold with some my,
independent of u.

It is worth noting that by the Holder inequality and Fubini’s theorem, we have that

Ep (H=IIVLl,

forevery f € W7 (R") and p > 1. Moreover, since the ratio ‘L:V{ﬁ;’ is not uniformly

bounded from above by any constant (see [8] and [42]), this afﬁpné Moser—Trudinger
inequality is actually stronger than the standard Moser-Trudinger inequality.

Our first result is a sharp version of the singular affine Moser—Trudinger inequality
on bounded domains which extends the result of [8]:

Theorem 1.1 Let Q be a domain with finite measure in Euclidean n-space R", n > 2
and 0 < B < n. Then there exists a constant my g > 0 such that

dx <mug

1 exp (a Iulnnj)
A

Q" x|

foranya < (1 — g) O, anyu € Wol‘" () with &, (u) < 1. The constant (1 — g) oy,
1B

is sharp in the sense that if o > ( ;) oy, then the above inequality can no longer

hold with some my, g independent of u.

When 2 has infinite volume, the above results become meaningless. In this case,
the subcritical Moser—Trudinger type inequalities for unbounded domains were con-
sidered in [7] when n = 2 and [9] and [1] for the general case n > 2. More precisely,
they proved that for any u € W (R") with ||Vul|, <m < 1and |lul, < M < oo,
there exists a constant C (m, M) > 0 and « > 0 independent of « such that

/Rn Dot (o lulPT) dx = € om, M)

where

i

-2

t S t
¢n,1(t)=e - E l_'
i=0 "

The sharp form is given as follows:

Theorem ([9] and [1]) For any a € (0, &), there exists a constant Cy > 0 such
that

[ u (wul#r) dx = Colully v e wh (®7). 1Vl < 1.
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This inequality is false for « > oy,.

It can be noted that unlike in the case of the bounded domains, the best constant
cannot be achieved. Thus, the above result can be considered as the subcritical Moser—
Trudinger type inequality on unbounded domains. We also note that the proofs given in
[1] and [9] use the symmetrization argument in Euclidean spaces. On the Heisenberg
group where such a symmetrization argument fails, the subcritical Moser—Trudinger
inequality has been established in [20].

As our nextresult, we will study the singular affine Moser—Trudinger type inequality
on unbounded domains:

Theorem 1.2 Let 0 < B8 < n. Forany o € (0, (1 — g) an), there exists a constant
Ca.p > 0 such that

dx < Copllul’™F,

b (o lul7)
/n |x|P

n

foranyu € WH (R™) with £, (u) < 1. This inequality is false for o > (1 — é) oy in

the sense that if « > (1 B ) oy, then the above inequality can no longer hold with

T
some Cq g independent of u.

As a consequence of Theorem 1.2, we have the following singular subcritical
Moser—Trudinger type inequality which extends the result of [1] for 8 = 0 to the
singular case 0 < 8 < n:

Theorem 1.3 Let 0 < B8 < n. Forany o € (0, (1 — g) ozn), there exists a constant
Ca,p > 0 such that

fu (o [ul77) i
| S = Cap il

for any u € WU (R™) with ||Vul||,, < 1. This inequality is false for a > (1 - g) oy

in the sense that if o« > (1 - é) oy, then the above inequality can no longer hold with

some Cq g independent of u.

We notice that if we replace the norm ||Vu||, by the full norm ||Vu|,, + ||u]l, in
the Sobolev space W (R"), the best constants in the Moser—-Trudinger inequalities
in unbounded domains can be attained. Thus, they can be considered as the critical
Moser—Trudinger inequalities on unbounded domains. In fact, these results are studied
in the work of [34] and [24] using symmetrization argument. We also note that on the
Heisenberg group where symmetrization does not work, such a sharp critical Moser—
Trudinger inequality was proved in [17].
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We recall that in the paper [3], the authors used the blow-up technique to study an
improvement of the Moser—Trudinger inequality in the spirit of Lions [26]. In fact,
they proved that

Co (Q) = sup / A (Felull) gy < o0 iff0 < o < A1 (Q),
ueWy (). || Vully<1 7

Va3

r(R) = .
ueW 2@\ (0} llull3

We note that A1(£2) is the first eigenvalue for the Dirichlet problem of the Laplace
operator on Q C RZ. It is easy to see that this inequality is stronger than the original
one of Moser where 47 is the best constant, while this inequality of [3] has the
constant 477 (1 + a ||lu]|3) which is larger than 47 for u # 0. This result is extended
to L? norms in the two-dimensional case in [27] and to the high dimensional case
in [40] and [43]. Such a blow-up analysis technique was used by Y. X. Li in his
works in proving the existence of extremal functions for Moser-Trudinger inequalities
on compact Riemannian manifolds (see [21] and [22]), and has also been used to
establish the existence of extremal functions of the Adams inequality for Paneitz
operator on compact Riemannian manifolds of dimension four in [23] and for bi-
Laplacian operator on domains in R* in [28].

Our next main theorem is to establish an even sharper affine Moser—Trudinger
inequality in the entire space in the spirit of P. L. Lions [26] in which he proved a
sharpened version of Moser’s result on domains of finite measure. More precisely, we
will prove that

Theorem 1.4 Let0 < B8 < nandt > 0. Then there exists a constant C = C (n, B) >
0 such that for all @ < (1 ﬁ) oy andu € Cg° (R") \ {0}, &, (u) < 1, we have

n

L n
! (<1+8n<u>">nil 2P
/ L dx = C(n, p) ———"——.
: . =& |

Moreover, the constant (1 — g) op is the best possible in the sense that if @ >

(1 - g) o, then there is no uniform finite constant C(n, B) independent of u such

that the above inequality holds. As a consequence, we have that there exists a constant
C =C (n, B, 1) > 0 such that

M4,Ol S M3,O( S Ml,a S C(”’ ﬂ? T)a
M4,oz =< MZ,a =< Ml,oz <C@n,B, 1),
forall0 <o < (1 — ﬂ) oy, where

n
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1
( 2n—1g |u|nl)
1+Ey (u)") n= =
/ (1+&E: ") d
Rn

Ml,ot = sup B X
ueWLn ), £,0" +rlul <1 x|
dt (o ul )
My = sup / 5 ——— " dx
ueWn (R, E, )"+ |ul" <1/ R |x|
] n
— 2 Te et
(A+IvVull )" I
M3 = / B dx
uew!n (®"), ||VM||"+T||u||f,'§1 " x|
n
Dt (o ul )
Myy = sup / —ﬁdx.
ueWln@®n), [Vull+zu|? <1/ R x|

n—=

Moreover, the constant (1 — g) oy in the above supremums is sharp in the sense that
when a > (1 — g) Ay, Mg = My o = M3 4 = My oy = 00

Again, since the ratio g {]ﬂ)p is not uniformly bounded from above by any constant,

our affine Moser—Trudlnger type inequalities (Theorems 1.1, 1.2 and 1.4) are truly
stronger than the standard Moser—Trudinger type inequalities. Moreover, as a conse-
quence of Theorem 1.4, we have the following sharp Moser—Trudinger type inequality
in the whole space in the spirit of P. L. Lions:

Theorem 1.5 Let 0 < B < n and t > 0. Then there exists a constant C =
C (n, B, t) > 0 such that

sup dx <C(n,B,17) < +00,

ueWhn@Rm), | Vully+rlul;<1

n—

1
2Ty n
Gu | ——— lu|T
B T
n

x|

forall) < a < (1 — g) oy,. The constant (1 — é) oy, 1S the best possible in the sense

that if ¢ > (1 — g) o, then the integral is still finite but the supremum is infinite.
We note here that since
= B
= (1 - ;) n p
ﬁ Z 1 - — | %,
(1 +1Vauly) ™ "

Theorem 1.5 is stronger than the Moser—Trudinger type inequality in [24,34].
We now turn to the discussion of high order Adams inequalities. Regarding the
case of higher order derivatives, since the symmetrization is not available, D. Adams
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[2] proposed a new idea to find the sharp constants for higher order Moser’s type
inequality, namely, to express u as the Riesz potential of its gradient of order m, and
then apply O’Neil’s result on the rearrangement of convolution functions and use
techniques of symmetric decreasing rearrangements. To state Adams’s result, we use
the symbol V™ u, m is a positive integer, to denote the m-th order gradient foru € C™,
the class of m-th order differentiable functions:
vy — [ A%umil for m even
VAT u for m odd

where V is the usual gradient operator and A is the Laplacian. We use ||V ul|, to
denote the L? norm (1 < p < 00) of the function |V"u/|, the usual Euclidean length

of the vector V"u. We also use W(I; "P(Q) to denote the Sobolev space which is a
I/p

k
completion of C;°(£2) under the norm of ||u||€1,(9) + Z| |Vju||€p(9) . Then
j=1
Adams proved the following:

Theorem (Adams [2], 1988). Let 2 be an open and bounded set in R". If m is a
positive integer less than n, then there exists a constant Co = C(n, m) > 0 such that

"o m
foranyu € Wy " (Q) and ||V u||L%(Q) <1, then

1 n
@/Qexpwm(xnm)dx e

forall B < B(n, m) where

n
nn/szr m+1 n—m .
o 1 [F(,T(Hz)) when m is odd
—
Bn, m) = : n_
n 7.[11/221111«(%)
W1 NCD)

n—m
when m is even

Furthermore, the constant (n, m) is best possible in the sense that for any f >
B(n, m), the integral can be made as large as possible.

It’s easy to check that B(n, 1) coincides with Moser’s value of o, and B(2m, m) =
22mam(m + 1) for both odd and even m. In fact, Adams’s result was extended
recently by Tarsi [37] to a larger space, namely, the Sobolev space with homogeneous

Navier boundary conditions W;l’ﬁ () :

n
"

n . —1
W;\,n”” (RQ) := [ueW’”’ cAu=00ndQfor0 <j < |:m2 i“

We note that the Moser—Trudinger—Adams type inequality was extended to spheres
in R" by Beckner in [4].
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308 N. Lam et al.

Concerning the Adams inequality for unbounded domains, in the spirit of Adachi—
Tanaka [1], Ogawa and Ozawa [31] in the case % = 2 and Ozawa [32] in the general
case proved that there exist positive constants « and C, such that

[ un (wul5) dx < ol e wri (@), 97, <1,
Rll m m
where
n—=2
t m t]
Gnm(t) =€ — =
=0 J°
n n
j1=min{jeN:jz—}z—.
m m m

Their approach of proving the above result is similar to the idea of Yudovich [41],
Pohozaev [33] and Trudinger [39] and thus, the problem of determining the best
constant cannot be investigated in this way. It seems that it is still left as an open problem
to determine the best constant for the above inequality. Thus, it is very interesting to
identify the best constants in such inequalities.

The next aim is to study the sharp subcritical Adams type inequalities in some
special cases. More precisely, we will prove that

Theorem 1.6 For any a € (0, B (n, 2)), there exists a constant C,, > 0 such that

Ji

[ ona (@t ax < Catulf . va e W2 () jauly <1
Rn 2
Theorem 1.7 For any a € (0, B (2m, m)), there exists a constant C, > 0 such that

/2 Gonm (e lu) dx = Cy lul3, Vu e W2 (R"), [V7ul, < 1. (1.2)
R2m

It was proved in [12] that the inequality (1.1) in Theorem 1.6 does not hold when
o > B (n, 2), neither does inequality (1.2) in Theorem 1.7 when @ > B8 2m, m).

The critical Adams type inequality was also studied using the full norm in order to
get the best constant. Indeed, it was investigated in [35] when m is even and in [16]
when m is odd. It was established in [15] for the fractional derivative case in Sobolev
spaces of fractional orders. Moreover, the sharp singular Adams inequalities were also
proved in [19]. We now state the sharp critical Adams inequality in fractional order
Sobolev spaces proved by Lam and Lu in [15] as follows:

Theorem Let 0 < o < n be an arbitrary real positive number, p = % and t > 0.
Then it holds that

sup /,. Dn (ﬁo (n, @) Iul”,) dx < o0

ueWw(R"),‘(rl—A)%uH <1
P
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where

/

n/2~a p
ooy — " |:7'r 2F(a/2):| '

r ()

Furthermore, this inequality is sharp, i.e., if By (n, @) is replaced by any y > Bo (n, o),
then the supremum is infinite.

n—

Our last main result in this paper is an improved version of the Adams type inequality
in the Sobolev space W2 (Rz’”). In this special case, it has been proved in [15] that:
LetO <o <2mand 7 > 0. Then forall 0 < B < (1 — %) B(2m, 2), we have

sup dx < oo.

MEWZ*”’ (Rz»1)7 fRZm \Au\m-‘rﬂu\mfl

bom 2 (/3 |M|%)
Jo ™

|x|*

Moreover, the constant (1 — %) B(2m,2) is sharp in the sense that if § >
(1 — %) B(2m, 2), then the supremum is infinite.

We should note this result does not require the restriction on the full standard norm
and hence, it extends the results in [ 19]. Indeed, the results there are for the special case
m = 2 and they require that the full standard norm fR“ (|AM|2 +o|Vul*+t |u|2) dx
is less than 1.

We are now ready to state our last main result which is an improved version of the

sharp Adams inequality in the whole space in the spirit of P. L. Lions [3,26,27]:

Theorem 1.8 Let 0 < B < 2m and © > 0. Then there exists a constant C =
C (m, B) > 0 such that for all u € C3° (Rzm) \ {0}, l|Aull,, < 1, we have for all

O0<ac< (1 — %) B(2m, 2) the following inequality:

1
=T _m_
2"1’2((2)"—'"&)‘ '“'ml) Jutl
I+ [[Aullz ) m=T u
dx < C(m. B) =

m B _B"
R2 x| |1—||Au||ﬁ}l 2m

Moreover, the constant (1 — %) B(2m,2) is the best possible in the sense that if

o > (1 - %) B(2m, 2), then there is no uniform finite constant C (m, ) independent

of u such that the above inequality holds.
Consequently, we have that there exists a constant C = C (m, B8, t) > 0 such that

1
=T _m_
2m,2 % |M|mfl
(141 Aufy) =T
sup

ueWZ,m(RZm)’ ,fRZm‘A”|”1+T|M|’,l§1 R2m |)C|/S

dx <C@m,B,71),
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forall0 < a < (1 — %) B(2m, 2). Moreover, the constant (1 — %) BQ2m, 2) isthe

best possible in the sense that if o > (1 - %) B(2m, 2), then the above supremum

is infinite.

As an application of our result, we will investigate the existence of nontrivial weak
solutions of the following biharmonic equation:
A’u+V(x)u = f(x,u) in R* (13)
u € H? (RY) ’ :

where V is a continuous positive potential bounded away from zero and the nonlin-
earity f (x, u) behaves like exp (ccu?) at infinity for some o > 0. We refer to Sect. 6
for more details on the assumptions on the potential V and the nonlinear term f.

The organization of the paper is as follows. In Sect. 2, we give the proofs of The-
orem 1.1 and 1.2, i.e., the sharp affine singular Moser-Trudinger inequalities both on
bounded and unbounded domains. Section 3 deals with the proof of Theorem 1.4,
namely, the affine Moser—Trudinger inequality on the entire spaces in the spirit of P.
L. Lions. This is one of the main theorems of this paper. Section 4 offers the proofs
of the sharp subcritical Adams type inequalities on the entire spaces when the restric-
tions are only on the norms of the highest order derivatives in the case of the second
order derivatives m = 2 and when the dimension n = 2m, i.e., Theorems 1.6 and
1.7. These are the second main results of this paper. The proof of the sharp Adams
type inequality on the entire space R" in the spirit of Lions, namely, Theorem 1.8, is
given in Sect. 5. This is another main theorem of the paper. Section 6 includes the last
main result of the paper, namely, the application of our sharp inequalities to nonlinear
PDE:s of bi-harmonic type equations with nonlinear term of exponential growth, i.e.,
the existence of nonnegative solutions to (1.3).

2 Proof of Theorems 1.1 and 1.2
2.1 Proof of Theorem 1.1

First, we note that forevery f € Wh? (R"), p > LE(fM) <&y (fHrand&, (f*) =
IV f*Il,, where f* is the nonincreasing spherically symmetric rearrangement of f.
This can be found in [29] and [42]. Then we can assume that u is a positive smooth
decreasing symmetric function and 2 is a ball B = B (0, R). The proof now is
similar to the standard Moser—Trudinger inequality using symmetrization. Indeed, we
have

En )" = IVull,

=/ Val”
Br

R
= a)n_l/ (u’(r))n " Ldr.
0
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Lettingt = ;- =1 — %, then we have

exp (Oln (1 - §) Mﬁ) exp (toe,, |u|n"TI)
/ oo [ L),
Q Br

/P N e =0m
R n
= a),,_l/ exp (ta,, |u|ﬁ) =y,
0
Now, we define a function v as follows:
v(s) = T (s%) fors € [0, R'].
Then, we can check that
R! R
a)n_l/ W' )" P ldr = a),,_l/ (' )" r"tdr
0 0
=1

and

R

1 [F , )
;/ exp (O‘n |U(V)|ﬁ) " ldr = / exp (tozn |u|ﬁ) Fn=1 g,
0 0

Hence, we get

Enu)<l |x|P Lyvul, <1

exp (an (1 - g) |u|nﬂTl) 1 N
sup dx < — sup exp (an [u|n=T ) dx
Q Bt

= Cup |R'|"
—CoplQ

Now, noting that

sup
Ew=1|Q

1 exp (ozlulnnj) 1 exp (ozluInnT')
dx > sup / dx,
-4 /sz |x|P Ival,<1|Q|' =% Jeo |x|?

B

we can conclude that (1 — Z) a, is sharp in the sense of Theorem 1.1. Namely,

exp(alul"nT')
Ixl?

the supremum  sup 117 7 Jo
gn (u)<1 [Q 7
completes the proof of Theorem 1.1.

dx is infinite if @ > (1 — g) o;,. This
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2.2 Proof of Theorem 1.2

Fixa € (0, (1 — g) Oln), we want to prove that there exists a constant Cy, g > 0 such
that

/ ®n,1 (alulnnj)

< Cap lully =" @1

for any u € wbhr (R?) with &, (1) < 1. We will present here a new method, a
rearrangement-free argument, to study the inequality (2.1). In fact, using a new idea
of splitting the domain, we can prove Theorem 1.2 without using the symmetrization.
By a standard density argument, we can suppose that u € C3° (R") \ {0}, u > 0
and &, (u) < 1.
Denote

Q) ={x e R" ukx)> 1},

D1 (04 Iulﬁ)
I = / N
Q(u)

x|

Dt (o ul77)
12 :/ —ﬁdx
RN\Q ) |x]

First, we will estimate /;. First, it can be noted that since u € C(‘)>o (R™), Q(u)isa
bounded domain. Moreover, the volume of €2 (u) satisfies

/ ul” z/ ul” = 12w,
n Qu)

Second, if we set v(x) = u(x) —11in (u), then it is clear that v(x) € W&’"(Q (n)),

and &, (v) =&, (u).Pute = 0;—"(1 — g) —1 > 0. Then using the following elementary
inequality: S
(a+b)?P —bP <eb? + (1 —(1+¢e) r 1) Pal,

foralla,b >, 1 and p > 1, wehave in Q2 (u) that

()| = (v(x) + DT < (1 +8&)|vx)|=T + (1 — 0 +L)n_l)ﬁ'

Hence, by Theorem 1.1,

bt (o ul7T)
n= [ S
Q)

x|

exp (x|u "nT]
5/ p( |ﬂ| )dx
Qu) x|

/ exp (a(v + 1)iT)
= dx
Qu)

|x|P
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exp (a(l +oo)|u|mT + aCs)
< / 7 dx
Q) | x|

dx

/ exp (a0 (1 = D)ul T +aC; )
<
Q) |x|?

B
< e |Qu)|

< Copllul®?

To estimate I, we first note that u < 1 in R" \ (). As a consequence, we have

dut (o lul77)
/ 5 —— % dx
Q2 (1) IXI
</ 1 ozkl | e
< — — |u|"n=
u<] xﬂ j=n— lk'
1 — o
5/ e >

-1

1 1
fe“/ — +e°‘/ .
fu<t, |xl<llull} 1% {u<t, |x|>lull,) 1%

Now, since 0 < 8 <n,wecanfixy >0suchthat § <y <n (sayy = #), then

1
{u<1, Ixl<llulla) |x]

1
< —ﬂ|u|ydx
fu<t, |xl<llull} 1%
1—

y/n y

1 I—y/n n n

(o G ) (e
bel<lluell, \1X] Rn

v n—p—y
= Copllully lulln
= Copllul’™,

where in the second inequality, we used the Holder inequality.
We also have that

1
lu|"dx
/{u<1 el ul) xI?

1
< [
ful Jee

= [lu)2F.
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Therefore we get the following inequality:
I < Copluly™.

p1 (alul7°T)

P dx = I + I, we have the inequality (2.1).

Finally, noting that /

Now, it remains to show that there exists a sequence {ux} in W1 (R?) \ {0} with
&, (ur) < 1 such that

dx — oo as k — oo.

1 / ®n1 (Ollukl”nf')

gy |x|?

In fact, such a sequence can be showed explicitly. More precisely, we set

| ko if 0 < |x| < e k/n
1
up(x) = — k_Enlnl)lC—l, ife */n <|x|<1.
@ o, if 1 < |x|
By calculation, we have |Vuy| = ﬁkfﬁnﬁxg(ogl)\g(o,e_k/n) and then

on

£, ()" < / Vi dx
Rn

1 1
=/ —k " —dx
ek/n<|x|<1 0y |x|

=1

Also,

1 1\”
/ lug"dx = 1/ k~'n" (ln—) dx
n al ™" Jekin<|x <1 |x]

1 _
+ nfl/ K" dx
Op  JO<|x|<ek/n

—0ask — oo.

Moreover, we have

n ) an(1=15) c
[ exp (@ (1 = D)l #7) = 313 ) RS

dx
|x|P

exp ((1 — Byni 1k~ In |x||nnj)
=/ 5 dx
e~kin<|x|<1 x|
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jojn_
1_£ 'n-/n—l J .
n2 ( ") k™ n=1 |In |x ||/ #-T

3 P M
_/ Jj=0 J! ) dx
e_k/"f\)dfl |x|
exp (k(l _ ::i)) _ Z?:(z) M
+/ 7 dx
0<|x|<ek/n | x|
. )
z - k—m/ ~————— |In|x|[/ 2T d§
Z 0<lx|<I Jjllxl?

_B —2 (1=
Wn—1 (6(1 mk — 220 ,—'1')

n = py el

+

Wp—1
>0ask — o0

n—

since

[In x|/ 5T :
—ﬁdx < +ooforany j € {l,...,n —2}.
o<ixl<t x|

The proof of Theorem 1.2 is now completed.

3 Proof of Theorem 1.4

First, we need to prove that there exists a constant C = C (n, 8) > 0 such that for
ue Cg® R\ {0}, & (u) < 1, we have

1
2T (1-8)e,
¢n,1 (—L |u|n—] nle
(14+Ex )"y =T lluelln
dx<Cn,p) ———

1? L& w7

Indeed, let u € C° (R™) \ {0}, &, (u) < 1, u > 0. We fix the following notation:

2=

Aw) = (1 =& "),

o (u) — w’
1
o (u)n-T
= e b
Cluy = (1 —

(46 ()
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Bu) = o ()i T
Q) = {x eR" tu(x) > A(u)}.
‘We have that
1
[+ & @
co=[ ]
Cw AT _
Bu) '

We note that since u € C§° (R"), Q2 () is a bounded domain. Moreover, since

/ |u|”dx2/ lu|" dx
n Q(u)

z/ IAGI" dx
Q)
— 1AW 12 W)

we get

2 ) < 4
A"

ol

=& @

On Q (1), we define functions
v(x) = ulx) — Au),
w@) = (1+ @)™ v(x).

Then, it’s clear that v, w € W&’" (2 (u)).
Using the following elementary inequality:

| p
(a+b)? —bP < eb? + (1—(1+8)_1’j) a?, Np>1, a,b,e >0,
we can deduce that
()| 7T = ((x) + A(u)) i1

1
< (1+& ) u)|™ + (1 ) "A@|

(I +e u)n!
= |w(x)|7T + C (u) [AG)|7T.
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Moreover, since on 2 (u),

Vw = (1 +e@) T Vv = (1 + &)™ Vu,

we obtain

En ()"

(1+e@)" & @)"
a ()

& W

Hence, by Theorem 1.1, we have

2

1
2n—1 l—ﬁ n n
exp(<—”)°f |u|n—1)
14+&, (") n=T1
/ ( w /)S dx
Qu) |x]
an(1-t N an(1-£) C A 7T
exp(ﬂT))lw(x)V‘l)eXP( ( )/S(u)
< dx
Q) |x|ﬂ
Dtn(lfg) n_
n n—1
an (1 £) € () 1A 1T | T vl
< exp / B dx
Bu) Q) x|
ﬂ _n_

< exp (2'11105,, (1 — P
<C@m B I1Rw|'"
lullp ™"

n

), et

=& ]

Now, noting that on the domain R"\ (u), we have |u(x)| < 1, we can deduce

easily that
1
2T (1-8)e,
P, 1 (% |u|"—1)
1+&,(u)") n— _
/ ) dx < C (0, B) Il
RM\Q (1) |x]
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Hence, we can conclude that

1
20T (1=8)q, T
¢n)1 <—L |u|n—] nfﬂ
(1+Ex )"y n=1 el
/ dx <C(n,B) ———

1? & w7

Now, if we have &, (u)" + t ||u||? < 1, then

huln ™ _ 1
-8 — 18"
=& @ T
Thus
L n
b | —2—— [ulnT
(L&, (") =T
M, = sup 7 dx <C(n, B, 7).
UEWLn (R, &, )"+ ul <1/ R x|

n—

n

Finally, when o > (1 B ) oy, we have that

[ bt (o ul7T)

sup
|x|P

ueWhn(@m), [Vully+rluly<1

dx = +o00,

and hence we can conclude that (1 — g) oy, is sharp.
The proof is now completed.

4 Proof of Theorems 1.6 and 1.7

4.1 Proof of Theorem 1.6

Fix o € (0, B (n,2)), we will prove that there exists a constant C,, > 0 such that for
allu € C° (R™)\{0}, u > 0 and IIAMII% < 1, we have

[SEINTE]

[ ona (wmi#=) dx < € ul
Rn

Indeed, set
Qu) = {x eR" 1 u(x) > 1}.
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Since u € Cf)’o (R™), we have that 2 (u) is a bounded set. Moreover, we have

[SERSTE

< Q.

|s2(u>|s/ ul? < ful
Q(u)

Thus, on R" \ Q(u), we have |u(x)| < 1. Thus,

n= [ dua (wlul ) dx
RMN\Q (1)

2m J
ee] (a |u| 2m—2 )
< / ——dx
R\ Q (u)

- J!
j=jn-1
a n
< e” |u|?2 dx
R™M\Q ()
n
< Callull}

Next, set

b= [ g (alul ) dx.
Q(u)

Since 0 < o < B(n,2), we can fix ¢ = w — 1 > 0. On Q(u), we define

v(x) =u(x) — 1. Thus v € Wi,’f(Q(u)). Also, ||AU||% <1 and

lu(x)|72 = ((x) + Dz < (1 + &)|ox)|72 + C,.

Here C; is a constant depending only on « and n.
Using the Adams inequality for bounded domains on the Sobolev space with homo-

geneous Navier boundary conditions W '3 (2 (w)) (see [37]), we get

12=/Q(u)¢n,z (el dx
=/Q(u)¢n,z (e o) + 1172 ) dx

5/ exp (a(1+e)|v(x)|n"fz +05C8)dx
Q(u)

<G exp (B2 o) dx
Q(u)
< CalQW)|
< Colul}
2
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Finally, noting that

[ na () dx =1+ 1o
Rn

we get our desired result.
Ifa > B (n, 2), it was showed in [12] that the inequality is false.

4.2 Proof of Theorem 1.7

Lemma 4.1 Forany @ € (0, B (2m, m)), there exists a constant C,, > 0 such that

[ B (o) dx = o Y€ W2 (B27), [ 9"l <1, fully = 1.

Proof Fix a € (0, B (2m, m)). We first note that for every ¢ > 0, there exists C; > 0
such that for every u € W2 (Rz’”) and0 <71 < 1:

m 2
|1 =% < a+e | vrul;+corlui. @1

Indeed, by Fourier transform, we get that

ot - %l = 2 (7)== [l

J

Now, by interpolation inequalities, noting that 0 < t < 1, we can conclude (4.1).
Using (4.1), wecan fix0 < &, T < 1'suchthatforallu € W2 (R*"), |[V"ul|, <
1, |lull, = 1, we have

n |2 2m,
1 - a8 < p @m. m)
2 o
Thus, using Theorem D, we get
2

2 m |2 u

Gomm (a lul )dx S - H(II - A)ZMH ] ax
R2m R2m 2 H (] — A)TMH
2
2
u
= Gomm | B 2m, m) T . dx
R ”(TI—A)M i

< Cy.
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Next, we will use our Lemma 4.1 to prove Theorem 1.7. Indeed, for every u €
w2 (RM) [Vl < 1, we let

up(x) = u (Ax),
where
1
A= |lully
then we have

2 -2 2
luplly = 277" Jlull; = 1.

[t (i) ax =727 [ g (olul?)

[V7urly = [V7ul, =1
Applying Lemma 4.1, we have

Lo o (@tuP) dx =3 [ o (wlisP) s
R2m R2m

< A¥.C,

2
= Co [lull -

5 Proof of Theorem 1.8

The method here is similar to the proof of Theorem 1.4. Indeed, fix u € Cgo (Rz’") \
{0}, [|Aull,, <1, u > 0. We will use the following notation:

Aw) = (1= [lAully, )

iy = 110
1
o2 ( +||Au||’")m o
2T | Aullyy!
(1—||AM||m)
T+ iaa”)
B (1+||Au||m) =

Q) = {x eR¥ - u(x) > A(u)}.
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We note here that

CwIAWI™T 1
B) ‘

Now since u € C§° (RZ’") , we have that Q (1) is a bounded domain and the volume
of Q (u) satisfies

[l
12 (w)] = AW

m
I 11
1— [ Aul?’

/ |u|mdxz/ lul™ dx
R2m Q(u)

> / |AGOI™ dx
Q)
— AG)I™ 192 ).

since

On the domain 2 (1), we define two functions

v(x) = u(x) — Aw),
w(x) = (14 @)™ v(x).

Then, it’s clear that v, w € W]%,’m (2 (n)).
Now, if we make use of the following elementary inequality:

1 \I-p
(a+b)P —bP < eb? + (1 —qa +s)‘p—1) a?, Np>1, a,b,e >0,
we can get the following inequalities
lu() [T = (v(x) + A(u)) "1

1
s(1+e<u))|v(x>|mml+(1 ) A

(e @)m-!
= |w ()| T + C (u) |[AQ)|7T.

Moreover, since on 2 (1),
Aw = (1 + @)™ Av=(1+ew)® Au,
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we obtain

[Aw|? < (1+e@)™ " | Aull
= a (1)
L+ Au)
=

Hence, by the singular Adams type inequality (Theorem 1.2 in [19]), we have

1
2m—1(1—47)ﬁ0nz® -
bom,2 [wa]m=T
(1+\|Aul\m)m !
/ d
2w

x|#

(177),3(2’" 2) m (1*%)}3(2”1,2)6‘(14”14(14”%
xp\ —pgw lw(x)|m=T Jexp B
S/ dx
Q(u)

X

x|

X

. ﬁ)ﬁ(zm,z) .
(1-£) pam. D¢ @ 1AWl i SO
= d
P Bu) Q) |x|P

exp £5) am, 2)| 22 =1
< exp (Zﬁ (1 - ﬂ) ﬁ(2m,2))/ (( ) Awll, )dx
2m Q)

x|#
1—£
<C(m,B)IQw|' "
_B
3 lullyy 2
c<m,ﬂ>—lﬂ.
[T —JAw|m| "2

Also, on the exterior domain R¥"\ (1), we have |u(x)| < 1. Hence we can deduce
easily that

2T (1——)ﬁ(2m 2) | |m)

b2m,2 1 u|m-1
/ (1+||Aun$)m*1
R2M\Q (1) x|

B

dx < C (m, B) lullm *.

Thus, we finally can conclude that

2 11(1 )ﬂ(z 2)
m— — 5 m m
$om,2 ] =T mb
(14 Aul)y T lluallp
dx < C (m, B)

R ol 1 lawiy] F
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Now, if [pon |Aul™ + 7 [u|™ < 1, then

_8 B
lull > _ (L)'
mi-£ ~\1 )

1= lawlp] >

1
2m—T _m_
om2 | 5 |u| =1
(14N Auly) m=T
sup

uevyZ,m(RZm)Y fRZm‘A”|m+T|M|mS] R2m |x|/3

Asa consequence,

dx < C(m,B, 1),

forall0 < a < (1 - %) B(2m,?2).

When o > (1 — %) B(2m, 2), the supremum is infinite since

sup dx = 400

weW2m (R2M), foo | Aul"+tlul" <1

Gom,2 ((1 - %) B2m,2) |u|%)
/ﬂw xlP

by a result in [15].
The proof now is completed.

6 Biharmonic Equation in R* with Exponential Critical Growth

This section is devoted to the study of biharmonic equation in R* when the nonlin-

earity has the exponential critical growth in the sense of the Adams inequality. More

precisely, we study the existence of nontrivial weak solutions of the critical periodic
and asymptotic periodic problem:

A’u+ V(x)u = f(x,u) in R* 6.1

[ueHz(R4),u20 ’ ©.1)

Here the potential V : R* — R is continuous and V (x) > Vy > 0 for all x € R*.
Moreover, we assume that

(V) There exists a continuous 1-periodic function W : R* — R(i.e., W (x + p) =
W(x) for all x € R* and p € Z*) such that W (x) > V(x) for all x € R* and
W(x)—V(x)— 0as |x| > oo.

(f1) There exists a continuous 1-periodic function fy : R* xR — R (ie.,
fx+pu) = f(x,u) forall x € R*, p € Z* and u € R) such that 0 <
fo(x,s) < f(x,s) forall (x,s) € R* x [0, o0), and for all ¢ > 0, there exists
n > 0 such that forall s > 0 and [x| > 1 : | £ (x, 5) — fo(x, s)| < ee327°s”,

(f2) f(x,s) = o01(s) near the origin uniformly with respect to x € R*.
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(f3) f(x,s) < C327°5 for all (x, 5) € R* x [0, 00).
(f4) There exists ;# > 2suchthat0 < uF(x,s) < sf(x,s)and0 < uFp(x,s) <
sfo(x, s), all (x,s) € R* x (0, o). Here

F(x,s) = /Sf(x, t)dt.
0

Fo(x,s) = /sfo(x, 1dt.
0

(f5) for each fixed x € R*, the functions s — fo(x,s)/sands — f(x,s)/s are
increasing;
(f6) there are constants p > 2 and Cj, > 0 such that

fo(x,s) > Cpspfl, forall (x,s) € R* x RY,

where
sh,
1/2
[/ (1Aul® + Wy Jul?) dx]
_ R4

= inf
r ueH?(R*)~{0} 1/p
/ |ul? dx
R4

Here Wi = max W (x).
xeR4

Ay (=22
c, > [M(p 2)]
p(u—2)

(f7) For any set A of positive measure, at least one of the nonnegative continuous
functions f(x,s) — fo(x,s) and W(x) — V(x) is positive on A.

It is easy to see from the Sobolev embedding that §,, > 0.
Since we are interested in nonnegative solutions, we also assume that

folx,s) = f(x,s) =0forall (x,s) € R* x (—o0,0].

We denote by Xo the Sobolev space H? (R4) endowed with the norm

1/2
||M||o=[/ (|Au|2+W(x>|u|2)dx}
R4

and by X the Sobolev space H> (R“) endowed with the norm

12
= | [ (18 v o) ax|
R4
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Our first concern is about the existence of solutions for the periodic critical problem:

H A%u+ Wx)u = folx, u) in R* @)

ue H>(RY, u=0 '

In view of Adams type inequalities (Theorems 1.6, 1.7, 1.8), we have that the func-
tionals

Jo(u)zl/ (|Au|2+W(x)|u|2)dx—/ Fo(x, u)dx
2 R4 R4

T(u) = %/M (|Au|2 FV ) |u|2) dx — /ﬂ{{f@, wydx

are well defined. Moreover, by standard arguments, they are in C! and Vo € Ccse (R“) :

DJo(u)e =/ (Aubdg + W (x)up)dx —/ Jo(x, u)pdx
R4 R4

DJu)e :/ (Aulp 4+ V (x) up)dx —/ f(x, u)pdx.
R4 R4

Thus, critical points of Jy, J are weak solutions of (P), (6.1) respectively.
First, we will prove that

Theorem 6.1 The equation (P) has a nontrivial weak solution.

Theorem 6.2 The equation (6.1) has a nontrivial weak solution.

6.1 The Periodic Equation (P)

From the conditions on the potential W and nonlinear term fj, it’s now standard to
check that Jy satisfies the mountain-pass geometry:

Lemma 6.1 (i) There exist p, 6 > 0 such that if |\u|ly = p, then Jo(u) > 6.
(ii) Foranyu € H? (R4) \ {0} with u > 0, we have Jy(tu) — 0o ast — oo.

Consequently, we can get a (bounded) Palais—Smale sequence of the functional Jy

at the minimax level My = inf max Jy (v (¢)) where
yelptel0,1]

ro={y e (0.1 82 (B)) - Jo (r 0) < 0. Jo (v (1)) <0}
That is
Jo (up) = My, DJy (u,) — 0.

Then
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Lemma 6.2 We have My € [0, “2—;2] Also, the (PS)u, sequence (u,) is bounded
and its weak limit uq satisfies D Joy (ug) = 0.

Proof 1t’s clear that My > 6. Now, we can fix ¢ > 0 small enough and a function
Upe € H? (R4) such that

) 5 1/2
[/R (180p.e+ Wi [o.e )dx}

Sp =< ) 1/p = SP+8’
[/R“ |vp,g| dxi|
/ (|Avp5|2+W1|vp€|2)dx§& |vp8|pdx.
R ’ ’ pJre
Then,
My < t2&§1J0 (rvp.e)
12 2 2 17C
<t [ 7 L (ool o P = 2 [ el
(1 (S,, +8)P/(P—2)
2 c2/=2
w—2
< —.
21

Now, by the standard Ambrosetti-Rabinowitz condition, it’s clear that (u,) is
bounded and then we can assume that

U, — ug € Xy
u, — ugin Ly, <R4)

u, (x) = ug (x) in R*.
By (f4), we have
Moy = lim Jo (u,)
n— oo
1
= lim |:J0 (un) — —DJ (uy) un]
n— o0 M

: 2
lim sup lu, g -
n—o0

ZM

Hence, lim sup ||u,,||% =m=< —25,/‘20 <L

n—0o0
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By Adams type inequalities, we can find positive numbers y, g1 and C > 0 such
that

hy(x) = 27700 _ 1 ¢ 9 (R“) ,
lhall, < C. ¥n eN.

Consequently,
[ oot g > [ foteuoto) peodr. Vi € ¢ (&Y.
R4 R4

Now, we can conclude that

DJy (ug) = 0.

Lemma 6.3 Let (u,) € H? (R4) be a sequence with u, — 0 and

lim sup ||un||% <m< 1.
n—oo

If there exists R > O such that

lim inf sup / Iun|2dx =0,
Br(y)

n—00 | Ra
we then have
/ Fo(x, u,)dx, / folx, up)updx — 0asn — oo.
R4 R4
Proof Using Lemma 8.4 in [11] (which claims that: Let | < p < o0, 1 < g < o

(if p < 4, we assume more that ¢ # p* = f_—pp). If (u,) is bounded in L4 (R*) such
that (|Vu,|) is bounded in L” (R*) and if there exists R > 0 such that

lim sup / lu,|?dx =0,
n—>00y R4 J Br(y)

then u, — Oin L" (R“) for min (¢, p*) < r < max (g, p*) (we denote that p* = oo
if p > 4)), we get with p = 4 and ¢ = 2 that

u, — 0in L" (]R4) forall r > 2.

(Note that since (u,) is bounded in H? (R*), we have |Vu,| is bounded in L* (R*)
because of Vu, € H! (R4) and the Sobolev imbedding H'! (R4) — L* (R4)).
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This fact together with the Adams-type inequalities imply that for « > 1 sufficiently
closeto 1 :

/R4 (exp (32n2xuﬁ(x)) - 1) dx < C.

By our assumptions on the nonlinear term, given & > 0 there exist positive constants
C. and g, y > 1 sufficiently close to 1 such that

/ Jo(x, up)undx
R4
< 8/ | dx + cg/ junl [exp (3272 ud () = 1] dx
R4 R4
o\ .\
<c (/ it | dx) (/ [exp (32n2yu,§(x)) - 1] dx) +eC
R4 R4
, 1/q' 1/g
<C (/ [y, | dx) (/ [exp (32n2qyu%(x)) — l] dx) +¢eC
R4 R4

=C ”un”q’ +eC

where ¢’ = q/(q — 1). Hence

/ Fo(x, uy)dx, / folx, up)updx — 0 asn — oo.
R4 R4

m}

Now, by Lemma 6.2, we have that the weak limit uo of the (PS)y, sequence
satisfies D Jy (ug) = 0. If ug # 0, then ug is the nontrivial weak solution of (P). Now,
if ug = 0, then there is a sequence (z;) C R* and R, A > 0 such that

liminf/ lun®dx > A.
BR(Zn)

n— o0

(If not, then by Lemma 6.4, we get
/ F(x,uy)dx, / f(x, up)updx — 0asn — oo.
R4 R4

which implies that u,, — 0 in H? (R4). As a consequence, My = 0 which is impos-
sible.)
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Without loss of generality, we may assume that (z,) C 7*. Setting 1, (x) = u, (x —
Zn), since W, fy, Fop are 1-periodic functions, we get

lunllo = llunllo
Jo(up) = Jo(ity)
D Jy(ug) — 0.

As before, we can find a Ty in H? (]R4) such that i, — 1y weakly in H? (R“) and
D Jy(uip) = 0. Finally, we notice that by taking a subsequence and R sufficiently large,
we can get

Al = ””’Zn”LZ(BR(O)) = ||ﬁO||L2(BR(O)) + llu, — iO”LZ(BR(o)) .

By the compact embedding H> (R4) — leo . (R4) we have that u( is nontrivial.
Also, since fo(x,s) = 0 for all s < 0, we have that the nontrivial weak solution
here is nonnegative.

6.2 The Nonperiodic Equation (6.1)

Similarly as in the previous subsection, we may check that the functional energy J has
the geometry of the mountain-pass theorem. Also, we can find a bounded Palais—Smale
sequence (v,) in H? (R*) at the minimax level M:

J (v,) > M and DJ (v,) — 0, asn — 00,
M = inf J t
nf max (y (1)

where
Fo={r ec (0.1, 5 (&) : /(v ) <0, J (v (1) <0}

Furthermore, we also have M € (k, (u — 2) /2u] for some positive constant ¥ and
vy, — vo in H? (R*) and that vy is a critical point of functional J.
We also get that

limsup [lv,||> <m’ < 1

n— o0

which again implies that for y > 1 sufficiently close to 1, we have

/R4 (exp (32ﬂzyvg(x)) - 1) dx < C

for some universal constant C > 0. So now, it’s sufficient to prove that vy is nontrivial.
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Suppose that vy = 0. First, we will prove that

Hm/Iﬁ@ww—F@wwwx=hm/Imuwww—f@wwwwx=0
n—00 [p4 n—00 [p4

Indeed, given ¢ > 0, there exists n > 0 such that by the Adams type inequalities and
Sobolev embeddings:

/llh@www—f@wwwwx
x|=n

s;/
[x]=n
<eg

=< s

< Ces.

(exp (32712)/1)3()5)) — 1) Un

(exp (32712)/1),%()5)) - 1) ‘q dx)l/q (/R4 o |7 dx)l/q/

On the other hand, by the compact embedding H? (]R“) — L}

loc

(R, r > 1:

/ll [ fo(x, v)vn — f(x, vp)unl dx
x|<n

1/q 1/q'
5 0\ 4
< (/R4 (exp (3271 yvn(x)) 1)‘ dx) (/len [V dx)
+s/ |v,,|2.
R4

Combining these two inequalities, we have

n—o0

lim [Fo(x, vy) — F(x,v,)|dx = lim / [ fo(x, vo)uy — f(x, vp)vn|dx = 0.
R4 n—00 |4
We can also check easily that
/ [W(x) — V (x)]v? (x)dx — Oasn — oo.
R4

From these equations, we get

[Jo (vy) — J (vy)l = O
IDJo (vy) — DJ (vp)ll — O,

which implies

Jo(vp) > M
DJy (v,) — 0.
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As in the previous subsection, there is a sequence (z,) C Z* and R, A > 0 such that

n—o0

liminf/ log|? dx > A.
Br(zn)

Now, letting v, (x) = v, (x — z,,), since W, fy, Fp are 1-periodic functions, we get

lvnllo = vnllo
Jo(vn) = Jo(Un)
D Jy(v,) — 0.

Then we can finda v in H> (R*) such that v, — ) weakly in 7> (R*) and D Jy(v9) =
0.
Next, by Fatou’s lemma we have:

1
Jo(vo) = Jo (Vo) — EDJ0(50)50

1
= E/ [ fo(x, Vo)vo — 2Fo(x, V)]
RZm

IA

1
lim inf + / Lo, T)Tn — 2Fo(x, T)]
n—o0 2 |p4

1
lim [Jo(in) — —DJo(ﬁ,,)ﬁn:| =M.
n—00 2
Similarly as in the previous section, we have that vy # 0 and by (f5), we can get that

M > Jy(vo) = maéifo(ﬁo) > M.
>

On the other hand, by assumptions (f1), (f5) and (f7) :

M < magif(tuo) = J(tiuo) < Jo(tiup) < maéifo(tuo) = Jo(up) = My
1= 1>

and we get a contradiction. Therefore, vy is nontrivial.
Since f(x,u) = 0 for all (x,u) € R* x (—o0, 0], from standard arguments, it’s
easy to see that this weak solution is nonnegative.
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