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Abstract The purpose of this paper is threefold. First, we prove sharp singular affine
Moser–Trudinger inequalities on both bounded and unbounded domains inR

n . In par-
ticular, we will prove the following much sharper affine Moser–Trudinger inequality
in the spirit of Lions (Rev Mat Iberoamericana 1(2):45–121, 1985) (see our Theo-

rem1.4): Letαn = n

(
nπ

n
2

�( n2+1)

) 1
n−1

, 0 ≤ β < n and τ > 0. Then there exists a constant

C = C (n, β) > 0 such that for all 0 ≤ α ≤
(
1 − β

n

)
αn and u ∈ C∞

0 (Rn) \ {0} with
the affine energy En (u) < 1, we have

∫
Rn

φn,1

(
2

1
n−1 α

(1+En(u)n)
1

n−1
|u| n

n−1

)

|x |β dx ≤ C (n, β)
‖u‖n−β

n∣∣1 − En (u)n
∣∣1− β

n

.

Moreover, the constant
(
1 − β

n

)
αn is the best possible in the sense that there is

no uniform constant C(n, β) independent of u in the above inequality when α >
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(
1 − β

n

)
αn . Second, we establish the following improved Adams type inequality in

the spirit of Lions (Theorem 1.8): Let 0 ≤ β < 2m and τ > 0. Then there exists a
constant C = C (m, β, τ ) > 0 such that

sup
u∈W 2,m(R2m),

∫
R2m |�u|m+τ |u|m≤1

∫
R2m

φ2m,2

(
2

1
m−1 α

(1+‖�u‖mm)
1

m−1
|u| m

m−1

)

|x |β dx≤C (m, β, τ ) ,

for all 0 ≤ α ≤
(
1 − β

2m

)
β(2m, 2). When α >

(
1 − β

2m

)
β(2m, 2), the supremum

is infinite. In the above, we use

φp,q(t) = et −
j p
q

−2∑
j=0

t j

j ! , j p
q

= min

{
j ∈ N : j ≥ p

q

}
≥ p

q
.

The main difficulties of proving the above results are that the symmetrization method
does notwork. Therefore, ourmain ideas are to develop a rearrangement-free argument
in the spirit of Lam and Lu (J Differ Equ 255(3):298–325, 2013; Adv Math 231(6):
3259–3287, 2012), Lam et al. (Nonlinear Anal 95: 77–92, 2014) to establish such
theorems. Third, as an application, we will study the existence of weak solutions to
the biharmonic equation

{
�2u + V (x)u = f (x, u) in R

4

u ∈ H2
(
R
4
)
, u ≥ 0

,

where the nonlinearity f has the critical exponential growth.

Keywords Affine Moser–Trudinger inequalities · Best constants for
Moser–Trudinger and Adams inequalities · Unbounded domains · Lions type

Mathematics Subject Classification Primary: 46E35 · 35J30 · Secondary: 46E30

1 Introduction

Sobolev spaces and geometric inequalities can be considered as one of the central
tools in many areas such as analysis, differential geometry, mathematical physics,
partial differential equations, calculus of variations, etc. The main aim of this paper
is to study such inequalities. More precisely, we will prove many versions of Moser–
Trudinger type inequalities and Adams type inequalities, which are the borderline
cases of the Sobolev embeddings. Basically, the Sobolev embeddings assert that
Wk,p

0 (	) ⊂ Lq (	) for 1 ≤ q ≤ np
n−kp , kp < n, n ≥ 2, where 	 ⊂ R

n is a bounded
domain. However, in the limiting case, n = kp, we can show by many examples that

W
k, nk
0 (	) � L∞ (	). In this case, the Moser–Trudinger and Adams inequalities are
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302 N. Lam et al.

the perfect replacement. In fact, Yudovich [41], Pohozaev [33] and Trudinger [39]
worked independently and proved that W 1,n

0 (	) ⊂ Lϕn (	) where Lϕn (	) is the
Orlicz space associated with the Young function ϕn(t) = exp

(
β |t |n/(n−1)) − 1 for

some β > 0. More precisely, they proved that there exist constants β > 0 and Cn > 0
depending only on n such that

sup
u∈W 1,n

0 (	),
∫
	

|∇u|ndx≤1

∫
	

exp
(
β |u| n

n−1

)
dx ≤ Cn |	| .

Nevertheless, the best possible constant β was not exhibited until the 1971 paper [30]
of Moser. In fact, using the symmetrization argument to reduce to the one dimensional
case, Moser established the following result:

Theorem (Moser [30], 1971). Let 	 be a domain with finite measure in Euclidean

n-space R
n, n ≥ 2. Then there exists sharp constant αn = n

(
nπ

n
2

�( n2+1)

) 1
n−1

such that

1

|	|
∫

	

exp
(
α |u| n

n−1

)
dx ≤ c0

for any α ≤ αn, any u ∈ W 1,n
0 (	) with

∫
	

|∇u|n dx ≤ 1. This constant αn is sharp
in the sense that if α > αn, then the above inequality can no longer hold with some
c0 independent of u.

The existence of extremal functions for Moser’s inequality was first established by
Carleson andChang on balls in Euclidean spaces [5] and then extended tomore general
domains in [10] and [25]. Moser’s inequalities have played important roles and have
been widely used in geometric analysis and PDEs; see for example [13,14,36,38], the
expository articles [6] and [18] and references therein.

Recently, using the L p affine energy Ep ( f ) of f instead of the standard L p energy
of gradient ‖∇ f ‖p, where

Ep ( f ) = cn,p

(∫
Sn−1

‖Dv f ‖−n
p dv

)−1/n

,

cn,p =
(
nωnωp−1

2ωn+p−2

)1/p

(nωn)
1/n ,

‖Dv f ‖p =
(∫

Rn
|v · ∇ f (x)|p dx

)1/p

,

the authors of [8] proved a sharp version of affineMoser–Trudinger inequality, namely,

Theorem ([8], 2009). Let 	 be a domain with finite measure in Euclidean n-space
R
n, n ≥ 2. Then there exists a constant mn > 0 such that

1

|	|
∫

	

exp
(
α |u| n

n−1

)
dx ≤ mn
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for any α ≤ αn, any u ∈ W 1,n
0 (	) with En (u) ≤ 1. The constant αn is sharp in

the sense that if α > αn, then the above inequality can no longer hold with some mn

independent of u.

It is worth noting that by the Hölder inequality and Fubini’s theorem, we have that

Ep ( f ) ≤ ‖∇ f ‖p

for every f ∈ W 1,p (Rn) and p ≥ 1. Moreover, since the ratio
‖∇ f ‖p
Ep( f )

is not uniformly
bounded from above by any constant (see [8] and [42]), this affine Moser–Trudinger
inequality is actually stronger than the standard Moser–Trudinger inequality.

Our first result is a sharp version of the singular affine Moser–Trudinger inequality
on bounded domains which extends the result of [8]:

Theorem 1.1 Let	 be a domain with finite measure in Euclidean n-space R
n, n ≥ 2

and 0 ≤ β < n. Then there exists a constant mn,β > 0 such that

1

|	|1− β
n

∫
	

exp
(
α |u| n

n−1

)
|x |β dx ≤ mn,β

for anyα ≤
(
1 − β

n

)
αn, any u ∈ W 1,n

0 (	)with En (u) ≤ 1. The constant
(
1 − β

n

)
αn

is sharp in the sense that if α >
(
1 − β

n

)
αn, then the above inequality can no longer

hold with some mn,β independent of u.

When 	 has infinite volume, the above results become meaningless. In this case,
the subcritical Moser–Trudinger type inequalities for unbounded domains were con-
sidered in [7] when n = 2 and [9] and [1] for the general case n ≥ 2. More precisely,
they proved that for any u ∈ W 1,n(Rn) with ‖∇u‖n ≤ m < 1 and ‖u‖n ≤ M < ∞,
there exists a constant C (m, M) > 0 and α > 0 independent of u such that

∫
Rn

φn,1

(
α |u| n

n−1

)
dx ≤ C (m, M)

where

φn,1(t) = et −
n−2∑
i=0

t i

i ! .

The sharp form is given as follows:

Theorem ([9] and [1]) For any α ∈ (0, αn), there exists a constant Cα > 0 such
that

∫
Rn

φn,1

(
α |u| n

n−1

)
dx ≤ Cα ‖u‖nn , ∀u ∈ W 1,n (

R
n) , ‖∇u‖n ≤ 1,
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304 N. Lam et al.

This inequality is false for α ≥ αn.

It can be noted that unlike in the case of the bounded domains, the best constant αn

cannot be achieved. Thus, the above result can be considered as the subcritical Moser–
Trudinger type inequality on unbounded domains.We also note that the proofs given in
[1] and [9] use the symmetrization argument in Euclidean spaces. On the Heisenberg
group where such a symmetrization argument fails, the subcritical Moser–Trudinger
inequality has been established in [20].

As our next result,wewill study the singular affineMoser–Trudinger type inequality
on unbounded domains:

Theorem 1.2 Let 0 ≤ β < n. For any α ∈
(
0,

(
1 − β

n

)
αn

)
, there exists a constant

Cα,β > 0 such that

∫
Rn

φn,1

(
α |u| n

n−1

)
|x |β dx ≤ Cα,β ‖u‖n−β

n ,

for any u ∈ W 1,n (Rn) with En (u) ≤ 1. This inequality is false for α ≥
(
1 − β

n

)
αn in

the sense that if α ≥
(
1 − β

n

)
αn, then the above inequality can no longer hold with

some Cα,β independent of u.

As a consequence of Theorem 1.2, we have the following singular subcritical
Moser–Trudinger type inequality which extends the result of [1] for β = 0 to the
singular case 0 ≤ β < n:

Theorem 1.3 Let 0 ≤ β < n. For any α ∈
(
0,

(
1 − β

n

)
αn

)
, there exists a constant

Cα,β > 0 such that

∫
Rn

φn,1

(
α |u| n

n−1

)
|x |β dx ≤ Cα,β ‖u‖n−β

n ,

for any u ∈ W 1,n (Rn) with ‖∇u‖n ≤ 1. This inequality is false for α ≥
(
1 − β

n

)
αn

in the sense that if α ≥
(
1 − β

n

)
αn, then the above inequality can no longer hold with

some Cα,β independent of u.

We notice that if we replace the norm ‖∇u‖n by the full norm ‖∇u‖n + ‖u‖n in
the Sobolev space W 1,n (Rn), the best constants in the Moser–Trudinger inequalities
in unbounded domains can be attained. Thus, they can be considered as the critical
Moser–Trudinger inequalities on unbounded domains. In fact, these results are studied
in the work of [34] and [24] using symmetrization argument. We also note that on the
Heisenberg group where symmetrization does not work, such a sharp critical Moser–
Trudinger inequality was proved in [17].
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We recall that in the paper [3], the authors used the blow-up technique to study an
improvement of the Moser–Trudinger inequality in the spirit of Lions [26]. In fact,
they proved that

Cα (	) := sup
u∈W 1,2

0 (	), ‖∇u‖2≤1

∫
	

e4πu
2
(
1+α‖u‖22

)
dx < ∞ iff 0 ≤ α < λ1 (	) ,

λ1 (	) = inf
u∈W 1,2

0 (	)\{0}
‖∇u‖22
‖u‖22

.

We note that λ1(	) is the first eigenvalue for the Dirichlet problem of the Laplace
operator on 	 ⊂ R

2. It is easy to see that this inequality is stronger than the original
one of Moser where 4π is the best constant, while this inequality of [3] has the
constant 4π

(
1 + α ‖u‖22

)
which is larger than 4π for u 
= 0. This result is extended

to L p norms in the two-dimensional case in [27] and to the high dimensional case
in [40] and [43]. Such a blow-up analysis technique was used by Y. X. Li in his
works in proving the existence of extremal functions forMoser–Trudinger inequalities
on compact Riemannian manifolds (see [21] and [22]), and has also been used to
establish the existence of extremal functions of the Adams inequality for Paneitz
operator on compact Riemannian manifolds of dimension four in [23] and for bi-
Laplacian operator on domains in R

4 in [28].
Our next main theorem is to establish an even sharper affine Moser–Trudinger

inequality in the entire space in the spirit of P. L. Lions [26] in which he proved a
sharpened version of Moser’s result on domains of finite measure. More precisely, we
will prove that

Theorem 1.4 Let 0 ≤ β < n and τ > 0. Then there exists a constant C = C (n, β) >

0 such that for all α ≤
(
1 − β

n

)
αn and u ∈ C∞

0 (Rn) \ {0}, En (u) < 1, we have

∫
Rn

φn,1

(
2

1
n−1 α

(1+En(u)n)
1

n−1
|u| n

n−1

)

|x |β dx ≤ C (n, β)
‖u‖n−β

n∣∣1 − En (u)n
∣∣1− β

n

.

Moreover, the constant
(
1 − β

n

)
αn is the best possible in the sense that if α >(

1 − β
n

)
αn, then there is no uniform finite constant C(n, β) independent of u such

that the above inequality holds. As a consequence, we have that there exists a constant
C = C (n, β, τ ) > 0 such that

M4,α ≤ M3,α ≤ M1,α ≤ C (n, β, τ ) ,

M4,α ≤ M2,α ≤ M1,α ≤ C (n, β, τ ) ,

for all 0 ≤ α ≤
(
1 − β

n

)
αn, where
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306 N. Lam et al.

M1,α = sup
u∈W 1,n(Rn), En(u)n+τ‖u‖nn≤1

∫
Rn

φn,1

(
2

1
n−1 α

(1+En(u)n)
1

n−1
|u| n

n−1

)

|x |β dx

M2,α = sup
u∈W 1,n(Rn), En(u)n+τ‖u‖nn≤1

∫
Rn

φn,1

(
α |u| n

n−1

)
|x |β dx

M3,α = sup
u∈W 1,n(Rn), ‖∇u‖nn+τ‖u‖nn≤1

∫
Rn

φn,1

(
2

1
n−1 α

(1+‖∇u‖nn)
1

n−1
|u| n

n−1

)

|x |β dx

M4,α = sup
u∈W 1,n(Rn), ‖∇u‖nn+τ‖u‖nn≤1

∫
Rn

φn,1

(
α |u| n

n−1

)
|x |β dx .

Moreover, the constant
(
1 − β

n

)
αn in the above supremums is sharp in the sense that

when α >
(
1 − β

n

)
αn, M1,α = M2,α = M3,α = M4,α = ∞.

Again, since the ratio
‖∇ f ‖p
Ep( f )

is not uniformly bounded from above by any constant,
our affine Moser–Trudinger type inequalities (Theorems 1.1, 1.2 and 1.4) are truly
stronger than the standard Moser–Trudinger type inequalities. Moreover, as a conse-
quence of Theorem 1.4, we have the following sharpMoser–Trudinger type inequality
in the whole space in the spirit of P. L. Lions:

Theorem 1.5 Let 0 ≤ β < n and τ > 0. Then there exists a constant C =
C (n, β, τ ) > 0 such that

sup
u∈W 1,n(Rn), ‖∇u‖nn+τ‖u‖nn≤1

∫
Rn

φn,1

(
2

1
n−1 α

(1+‖∇u‖nn)
1

n−1
|u| n

n−1

)

|x |β dx ≤ C (n, β, τ ) < +∞,

for all 0 ≤ α ≤
(
1 − β

n

)
αn. The constant

(
1 − β

n

)
αn is the best possible in the sense

that if α >
(
1 − β

n

)
αn, then the integral is still finite but the supremum is infinite.

We note here that since

2
1

n−1

(
1 − β

n

)
αn

(
1 + ‖∇u‖nn

) 1
n−1

≥
(
1 − β

n

)
αn,

Theorem 1.5 is stronger than the Moser–Trudinger type inequality in [24,34].
We now turn to the discussion of high order Adams inequalities. Regarding the

case of higher order derivatives, since the symmetrization is not available, D. Adams
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[2] proposed a new idea to find the sharp constants for higher order Moser’s type
inequality, namely, to express u as the Riesz potential of its gradient of order m, and
then apply O’Neil’s result on the rearrangement of convolution functions and use
techniques of symmetric decreasing rearrangements. To state Adams’s result, we use
the symbol∇mu,m is a positive integer, to denote them-th order gradient for u ∈ Cm ,
the class of m-th order differentiable functions:

∇mu =
{

�m
2 u for m even

∇ �m−1
2 u for m odd

,

where ∇ is the usual gradient operator and � is the Laplacian. We use ||∇mu||p to
denote the L p norm (1 ≤ p ≤ ∞) of the function |∇mu|, the usual Euclidean length
of the vector ∇mu. We also use Wk,p

0 (	) to denote the Sobolev space which is a

completion of C∞
0 (	) under the norm of

⎡
⎣||u||pL p(	) +

k∑
j=1

||∇ j u||pL p(	)

⎤
⎦
1/p

. Then

Adams proved the following:

Theorem (Adams [2], 1988). Let 	 be an open and bounded set in R
n. If m is a

positive integer less than n, then there exists a constant C0 = C(n,m) > 0 such that

for any u ∈ W
m, n

m
0 (	) and ||∇mu||

L
n
m (	)

≤ 1, then

1

|	|
∫

	

exp(β|u(x)| n
n−m )dx ≤ C0

for all β ≤ β(n,m) where

β(n, m) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n
wn−1

[
πn/22m�(m+1

2 )

�( n−m+1
2 )

] n
n−m

when m is odd

n
wn−1

[
πn/22m�(m2 )

�( n−m
2 )

] n
n−m

when m is even

.

Furthermore, the constant β(n,m) is best possible in the sense that for any β >

β(n,m), the integral can be made as large as possible.

It’s easy to check that β(n, 1) coincides with Moser’s value of αn and β(2m,m) =
22mπm�(m + 1) for both odd and even m. In fact, Adams’s result was extended
recently by Tarsi [37] to a larger space, namely, the Sobolev space with homogeneous

Navier boundary conditions W
m, n

m
N (	) :

W
m, n

m
N (	) :=

{
u ∈ Wm, n

m : � j u = 0 on ∂	 for 0 ≤ j ≤
[
m − 1

2

]}
.

We note that the Moser–Trudinger–Adams type inequality was extended to spheres
in R

n by Beckner in [4].
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308 N. Lam et al.

Concerning the Adams inequality for unbounded domains, in the spirit of Adachi–
Tanaka [1], Ogawa and Ozawa [31] in the case n

m = 2 and Ozawa [32] in the general
case proved that there exist positive constants α and Cα such that

∫
Rn

φn,m

(
α |u| n

n−m

)
dx ≤ Cα ‖u‖

n
m
n
m

, ∀u ∈ Wm, n
m

(
R
n) ,

∥∥∇mu
∥∥

n
m

≤ 1,

where

φn,m(t) = et −
j n
m

−2∑
j=0

t j

j !

j n
m

= min
{
j ∈ N : j ≥ n

m

}
≥ n

m
.

Their approach of proving the above result is similar to the idea of Yudovich [41],
Pohozaev [33] and Trudinger [39] and thus, the problem of determining the best
constant cannot be investigated in thisway. It seems that it is still left as anopenproblem
to determine the best constant for the above inequality. Thus, it is very interesting to
identify the best constants in such inequalities.

The next aim is to study the sharp subcritical Adams type inequalities in some
special cases. More precisely, we will prove that

Theorem 1.6 For any α ∈ (0, β (n, 2)), there exists a constant Cα > 0 such that

∫
Rn

φn,2

(
α |u| n

n−2

)
dx ≤ Cα ‖u‖

n
2
n
2
, ∀u ∈ W 2, n2

(
R
n) , ‖�u‖ n

2
≤ 1. (1.1)

Theorem 1.7 For any α ∈ (0, β (2m,m)), there exists a constant Cα > 0 such that

∫
R2m

φ2m,m

(
α |u|2

)
dx ≤ Cα ‖u‖22 , ∀u ∈ Wm,2

(
R
2m

)
,

∥∥∇mu
∥∥
2 ≤ 1. (1.2)

It was proved in [12] that the inequality (1.1) in Theorem 1.6 does not hold when
α > β (n, 2), neither does inequality (1.2) in Theorem 1.7 when α > β (2m,m).

The critical Adams type inequality was also studied using the full norm in order to
get the best constant. Indeed, it was investigated in [35] when m is even and in [16]
when m is odd. It was established in [15] for the fractional derivative case in Sobolev
spaces of fractional orders. Moreover, the sharp singular Adams inequalities were also
proved in [19]. We now state the sharp critical Adams inequality in fractional order
Sobolev spaces proved by Lam and Lu in [15] as follows:

Theorem Let 0 < α < n be an arbitrary real positive number, p = n
α
and τ > 0.

Then it holds that

sup
u∈Wα,p(Rn),

∥∥∥(τ I−�)
α
2 u

∥∥∥
p
≤1

∫
Rn

φn,α

(
β0 (n, α) |u|p′)

dx < ∞

123



Sharp Affine and Improved Moser–Trudinger–Adams Type Inequalities. . . 309

where

β0 (n, α) = n

ωn−1

[
πn/22α� (α/2)

�
( n−α

2

)
]p′

.

Furthermore, this inequality is sharp, i.e., ifβ0 (n, α) is replaced by any γ > β0 (n, α),
then the supremum is infinite.

Our lastmain result in this paper is an improvedversionof theAdams type inequality
in the Sobolev space W 2,m

(
R
2m

)
. In this special case, it has been proved in [15] that:

Let 0 ≤ α < 2m and τ > 0. Then for all 0 ≤ β ≤ (
1 − α

2m

)
β(2m, 2), we have

sup
u∈W 2,m(R2m),

∫
R2m |�u|m+τ |u|m≤1

∫
R2m

φ2m,2

(
β |u| m

m−1

)
|x |α dx < ∞.

Moreover, the constant
(
1 − α

2m

)
β(2m, 2) is sharp in the sense that if β >(

1 − α
2m

)
β(2m, 2), then the supremum is infinite.

We should note this result does not require the restriction on the full standard norm
and hence, it extends the results in [19]. Indeed, the results there are for the special case
m = 2 and they require that the full standard norm

∫
R4

(|�u|2 + σ |∇u|2 + τ |u|2) dx
is less than 1.

We are now ready to state our last main result which is an improved version of the
sharp Adams inequality in the whole space in the spirit of P. L. Lions [3,26,27]:

Theorem 1.8 Let 0 ≤ β < 2m and τ > 0. Then there exists a constant C =
C (m, β) > 0 such that for all u ∈ C∞

0

(
R
2m

) \ {0}, ‖�u‖m < 1, we have for all

0 ≤ α ≤
(
1 − β

2m

)
β(2m, 2) the following inequality:

∫
R2m

φ2m,2

(
2

1
m−1 α

(1+‖�u‖mm)
1

m−1
|u| m

m−1

)

|x |β dx ≤ C (m, β)
‖u‖m− β

2
m∣∣1 − ‖�u‖mm

∣∣1− β
2m

.

Moreover, the constant
(
1 − β

2m

)
β(2m, 2) is the best possible in the sense that if

α >
(
1 − β

2m

)
β(2m, 2), then there is no uniform finite constant C(m, β) independent

of u such that the above inequality holds.
Consequently, we have that there exists a constant C = C (m, β, τ ) > 0 such that

sup
u∈W 2,m(R2m),

∫
R2m |�u|m+τ |u|m≤1

∫
R2m

φ2m,2

(
2

1
m−1 α

(1+‖�u‖mm)
1

m−1
|u| m

m−1

)

|x |β dx ≤ C (m, β, τ ) ,
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for all 0 ≤ α ≤
(
1 − β

2m

)
β(2m, 2). Moreover, the constant

(
1 − β

2m

)
β(2m, 2) is the

best possible in the sense that if α >
(
1 − β

2m

)
β(2m, 2), then the above supremum

is infinite.

As an application of our result, we will investigate the existence of nontrivial weak
solutions of the following biharmonic equation:

{
�2u + V (x)u = f (x, u) in R

4

u ∈ H2
(
R
4
) , (1.3)

where V is a continuous positive potential bounded away from zero and the nonlin-
earity f (x, u) behaves like exp

(
αu2

)
at infinity for some α > 0. We refer to Sect. 6

for more details on the assumptions on the potential V and the nonlinear term f .
The organization of the paper is as follows. In Sect. 2, we give the proofs of The-

orem 1.1 and 1.2, i.e., the sharp affine singular Moser–Trudinger inequalities both on
bounded and unbounded domains. Section 3 deals with the proof of Theorem 1.4,
namely, the affine Moser–Trudinger inequality on the entire spaces in the spirit of P.
L. Lions. This is one of the main theorems of this paper. Section 4 offers the proofs
of the sharp subcritical Adams type inequalities on the entire spaces when the restric-
tions are only on the norms of the highest order derivatives in the case of the second
order derivatives m = 2 and when the dimension n = 2m, i.e., Theorems 1.6 and
1.7. These are the second main results of this paper. The proof of the sharp Adams
type inequality on the entire space R

n in the spirit of Lions, namely, Theorem 1.8, is
given in Sect. 5. This is another main theorem of the paper. Section 6 includes the last
main result of the paper, namely, the application of our sharp inequalities to nonlinear
PDEs of bi-harmonic type equations with nonlinear term of exponential growth, i.e.,
the existence of nonnegative solutions to (1.3).

2 Proof of Theorems 1.1 and 1.2

2.1 Proof of Theorem 1.1

First, we note that for every f ∈ W 1,p (Rn) , p ≥ 1, Ep ( f �) ≤ Ep ( f ) and Ep ( f �) =
‖∇ f �‖p, where f � is the nonincreasing spherically symmetric rearrangement of f .
This can be found in [29] and [42]. Then we can assume that u is a positive smooth
decreasing symmetric function and 	 is a ball BR = B (0, R). The proof now is
similar to the standard Moser–Trudinger inequality using symmetrization. Indeed, we
have

En (u)n = ‖∇u‖nn
=

∫
BR

|∇u|n

= ωn−1

∫ R

0

(
u′(r)

)n
rn−1dr.
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Letting t = α
αn

= 1 − β
n , then we have

∫
	

exp
(
αn

(
1 − β

n

)
|u| n

n−1

)
|x |β dx =

∫
BR

exp
(
tαn |u| n

n−1

)
|x |(1−t)n

dx

= ωn−1

∫ R

0
exp

(
tαn |u| n

n−1

)
r tn−1dr.

Now, we define a function v as follows:

v(s) = t
n−1
n u

(
s
1
t

)
for s ∈ [

0, Rt ] .

Then, we can check that

ωn−1

∫ Rt

0

(
v′(r)

)n
rn−1dr = ωn−1

∫ R

0

(
u′(r)

)n
rn−1dr

= 1

and

1

t

∫ Rt

0
exp

(
αn |v(r)| n

n−1

)
rn−1dr =

∫ R

0
exp

(
tαn |u| n

n−1

)
r tn−1dr.

Hence, we get

sup
En(u)≤1

∫
	

exp
(
αn

(
1 − β

n

)
|u| n

n−1

)
|x |β dx ≤ 1

t
sup

‖∇v‖n≤1

∫
BRt

exp
(
αn |u| n

n−1

)
dx

= Cn,β

∣∣Rt
∣∣n

= Cn,β |	|1− β
n .

Now, noting that

sup
En(u)≤1

1

|	|1− β
n

∫
	

exp
(
α |u| n

n−1

)
|x |β dx ≥ sup

‖∇u‖n≤1

1

|	|1− β
n

∫
	

exp
(
α |u| n

n−1

)
|x |β dx,

we can conclude that
(
1 − β

n

)
αn is sharp in the sense of Theorem 1.1. Namely,

the supremum sup
En(u)≤1

1

|	|1− β
n

∫
	

exp
(
α|u| n

n−1
)

|x |β dx is infinite if α >
(
1 − β

n

)
αn . This

completes the proof of Theorem 1.1.
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2.2 Proof of Theorem 1.2

Fix α ∈
(
0,

(
1 − β

n

)
αn

)
, we want to prove that there exists a constantCα,β > 0 such

that ∫
Rn

φn,1

(
α |u| n

n−1

)
|x |β dx ≤ Cα,β ‖u‖n−β

n , (2.1)

for any u ∈ W 1,n (Rn) with En (u) ≤ 1. We will present here a new method, a
rearrangement-free argument, to study the inequality (2.1). In fact, using a new idea
of splitting the domain, we can prove Theorem 1.2 without using the symmetrization.

By a standard density argument, we can suppose that u ∈ C∞
0 (Rn) \ {0}, u ≥ 0

and En (u) ≤ 1.
Denote

	(u) = {x ∈ R
n : u (x) > 1},

I1 =
∫

	(u)

φn,1

(
α |u| n

n−1

)
|x |β dx,

I2 =
∫

Rn\	(u)

φn,1

(
α |u| n

n−1

)
|x |β dx .

First, we will estimate I1. First, it can be noted that since u ∈ C∞
0 (Rn), 	(u) is a

bounded domain. Moreover, the volume of 	(u) satisfies∫
Rn

|u|n ≥
∫

	(u)

|u|n ≥ |	(u)|.

Second, if we set v(x) = u(x)−1 in	(u), then it is clear that v(x) ∈ W 1,n
0 (	(u)),

and En (v) = En (u). Put ε = αn
α

(1− β
n )−1 > 0. Then using the following elementary

inequality:
(a + b)p − bp ≤ εbp + (1 − (1 + ε)

− 1
p−1 )1−pa p,

for all a, b > 1 and p > 1, we have in 	(u) that
|u(x)| n

n−1 = (v(x) + 1)
n

n−1 ≤ (1 + ε)|v(x)| n
n−1 + (1 − 1

(1 + ε)n−1 )
1

1−n .

Hence, by Theorem 1.1,

I1 =
∫

	(u)

φn,1

(
α |u| n

n−1

)
|x |β dx

≤
∫

	(u)

exp (α|u| n
n−1 )

|x |β dx

=
∫

	(u)

exp (α(v + 1)
n

n−1 )

|x |β dx
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≤
∫

	(u)

exp
(
α(1 + ε)|v| n

n−1 + αCε

)
|x |β dx

≤
∫

	(u)

exp
(
αn(1 − β

n )|v| n
n−1 + αCε

)
|x |β dx

≤ eαCε |	(u)|1− β
n

≤ Cα,β‖u‖n−β
n .

To estimate I2, we first note that u ≤ 1 in R
n \ 	(u). As a consequence, we have

I2 =
∫

Rn\	(u)

φn,1

(
α |u| n

n−1

)
|x |β dx

≤
∫

{u≤1}
1

|x |β
∞∑

j=n−1

αk

k! |u|k n
n−1

≤
∫

{u≤1}
1

|x |β
∞∑

j=n−1

αk

k! |u|n

≤ eα

∫
{u≤1, |x |≤‖u‖n}

1

|x |β |u|n + eα

∫
{u≤1, |x |>‖u‖n}

1

|x |β |u|n .

Now, since 0 ≤ β < n, we can fix γ > 0 such that β < γ < n (say γ = n+β
2 ), then∫

{u≤1, |x |≤‖u‖n}
1

|x |β |u|ndx

≤
∫

{u≤1, |x |≤‖u‖n}
1

|x |β |u|γ dx

≤
(∫

|x |≤‖u‖n

(
1

|x |β
) 1

1−γ /n

dx

)1−γ /n (∫
Rn

(|u|γ )
n
γ dx

) γ
n

= Cα,β‖u‖γ
n ‖u‖n−β−γ

n

= Cα,β‖u‖n−β
n ,

where in the second inequality, we used the Hölder inequality.
We also have that ∫

{u≤1, |x |>‖u‖n}
1

|x |β |u|ndx

≤ 1

‖u‖β
n

∫
Rn

|u|n

= ‖u‖n−β
n .
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Therefore we get the following inequality:

I2 ≤ Cα,β‖u‖n−β
n .

Finally, noting that
∫

Rn

φn,1

(
α|u| n

n−1
)

|x |β dx = I1 + I2, we have the inequality (2.1).

Now, it remains to show that there exists a sequence {uk} in W 1,n (Rn) \ {0} with
En (uk) ≤ 1 such that

1

‖uk‖n−β
n

∫
Rn

φn,1

(
α |uk | n

n−1

)
|x |β dx → ∞ as k → ∞.

In fact, such a sequence can be showed explicitly. More precisely, we set

uk(x) = 1

α
n−1
n

n

⎧⎪⎨
⎪⎩
k

n−1
n if 0 ≤ |x | ≤ e−k/n

k− 1
n n ln 1

|x | , if e−k/n ≤ |x | ≤ 1

0, if 1 < |x |
.

By calculation, we have |∇uk | = 1

α
n−1
n

n

k− 1
n n 1

|x |χB(0,1)\B(0,e−k/n) and then

En (uk)
n ≤

∫
Rn

|∇uk |ndx

=
∫
e−k/n≤|x |≤1

1

αn−1
n

k−1nn
1

|x |n dx
= 1.

Also,

∫
Rn

|uk |ndx = 1

αn−1
n

∫
e−k/n≤|x |≤1

k−1nn
(
ln

1

|x |
)n

dx

+ 1

αn−1
n

∫
0≤|x |≤e−k/n

kn−1dx

→0 as k → ∞.

Moreover, we have

∫
Rn

exp
(
αn(1 − β

n )|uk | n
n−1

)
− ∑n−2

j=0

(
αn(1− β

n )
) j

j ! |uk | j n
n−1

|x |β dx

=
∫
e−k/n≤|x |≤1

exp
(
(1 − β

n )n
n

n−1 k− 1
n−1 |ln |x || n

n−1

)
|x |β dx
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−
∫
e−k/n≤|x |≤1

∑n−2
j=0

(
1− β

n

) j
n
j n
n−1

j ! k− j
n−1 |ln |x || j n

n−1

|x |β dx

+
∫
0≤|x |≤e−k/n

exp
(
k(1 − β

n )
)

− ∑n−2
j=0

(
k
(
1− β

n

)) j

j !
|x |β dx

≥ −
n−2∑
j=1

k− j
n−1

∫
0≤|x |≤1

(
1 − β

n

) j
n j n

n−1

j ! |x |β |ln |x || j Q
Q−1 dξ

+
ωn−1

(
e(1− β

n )k − ∑n−2
j=0

((1− β
n )k) j

j !
)

(n − β) e

(
1− β

n

)
k

→ ωn−1

n − β
> 0 as k → ∞

since

∫
0≤|x |≤1

|ln |x || j n
n−1

|x |β dx < +∞ for any j ∈ {1, . . . , n − 2}.

The proof of Theorem 1.2 is now completed.

3 Proof of Theorem 1.4

First, we need to prove that there exists a constant C = C (n, β) > 0 such that for
u ∈ C∞

0 (Rn) \ {0}, En (u) < 1, we have

∫
Rn

φn,1

(
2

1
n−1

(
1− β

n

)
αn

(1+En(u)n)
1

n−1
|u| n

n−1

)

|x |β dx ≤ C (n, β)
‖u‖n−β

n∣∣1 − En (u)n
∣∣1− β

n

.

Indeed, let u ∈ C∞
0 (Rn) \ {0}, En (u) < 1, u ≥ 0. We fix the following notation:

A(u) = (
1 − En (u)n

) 1
n ,

α (u) = 1 + En (u)n

2
,

ε(u) = α (u)
1

n−1

En (u)n/(n−1)
− 1,

C(u) = (1 − 1

(1 + ε (u))n−1 )
1

1−n ,
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β(u) = α (u)
1

n−1 ,

	 (u) = {
x ∈ R

n : u(x) > A(u)
}
.

We have that

C(u) =
[
1 + En (u)n

1 − En (u)n

] 1
n−1

,

C (u) |A(u)| n
n−1

β(u)
= 2

1
n−1 .

We note that since u ∈ C∞
0 (Rn), 	(u) is a bounded domain. Moreover, since

∫
Rn

|u|n dx ≥
∫

	(u)

|u|n dx

≥
∫

	(u)

|A(u)|n dx
= |A(u)|n |	(u)|

we get

|	(u)| ≤ ‖u‖nn
|A(u)|n

= ‖u‖nn
1 − En (u)n

.

On 	(u), we define functions

v(x) = u(x) − A(u),

w(x) = (1 + ε(u))
n−1
n v(x).

Then, it’s clear that v,w ∈ W 1,n
0 (	 (u)).

Using the following elementary inequality:

(a + b)p − bp ≤ εbp +
(
1 − (1 + ε)

− 1
p−1

)1−p
a p, ∀p > 1, a, b, ε > 0,

we can deduce that

|u(x)| n
n−1 = (v(x) + A(u))

n
n−1

≤ (1 + ε (u) )|v(x)| n
n−1 +

(
1 − 1

(1 + ε (u))n−1

) 1
1−n |A(u)| n

n−1

= |w(x)| n
n−1 + C (u) |A(u)| n

n−1 .
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Moreover, since on 	(u),

∇w = (1 + ε(u))
n−1
n ∇v = (1 + ε(u))

n−1
n ∇u,

we obtain

En (w)n ≤ (1 + ε(u))n−1 En (u)n

= α (u)

= 1 + En (u)n

2
.

Hence, by Theorem 1.1, we have

∫
	(u)

exp

(
2

1
n−1

(
1− β

n

)
αn

(1+En(u)n)
1

n−1
|u| n

n−1

)

|x |β dx

≤
∫

	(u)

exp

(
αn

(
1− β

n

)
β(u)

|w(x)| n
n−1

)
exp

(
αn

(
1− β

n

)
C(u)|A(u)| n

n−1

β(u)

)

|x |β dx

≤ exp

⎛
⎝αn

(
1 − β

n

)
C (u) |A(u)| n

n−1

β(u)

⎞
⎠∫

	(u)

exp

(
αn

(
1− β

n

)
β(u)

|w(x)| n
n−1

)

|x |β dx

≤ exp

(
2

1
n−1 αn

(
1 − β

n

))∫
	(u)

exp
(
αn

(
1 − β

n

)
| w(x)
En(w)

| n
n−1

)
|x |β dx

≤ C (n, β) |	(u)|1− β
n

= C (n, β)
‖u‖n−β

n∣∣1 − En (u)n
∣∣1− β

n

.

Now, noting that on the domain R
n\ 	(u), we have |u(x)| ≤ 1, we can deduce

easily that

∫
Rn\	(u)

φn,1

(
2

1
n−1

(
1− β

n

)
αn

(1+En(u)n)
1

n−1
|u| n

n−1

)

|x |β dx ≤ C (n, β) ‖u‖n−β
n .
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Hence, we can conclude that

∫
Rn

φn,1

(
2

1
n−1

(
1− β

n

)
αn

(1+En(u)n)
1

n−1
|u| n

n−1

)

|x |β dx ≤ C (n, β)
‖u‖n−β

n∣∣1 − En (u)n
∣∣1− β

n

.

Now, if we have En (u)n + τ ‖u‖nn ≤ 1, then

‖u‖n−β
n∣∣1 − En (u)n

∣∣1− β
n

≤ 1

τ 1−
β
n

.

Thus

M1,α = sup
u∈W 1,n(Rn), En(u)n+τ‖u‖nn≤1

∫
Rn

φn,1

(
2

1
n−1 α

(1+En(u)n)
1

n−1
|u| n

n−1

)

|x |β dx ≤ C (n, β, τ ) .

Finally, when α >
(
1 − β

n

)
αn , we have that

sup
u∈W 1,n(Rn), ‖∇u‖nn+τ‖u‖nn≤1

∫
Rn

φn,1

(
α |u| n

n−1

)
|x |β dx = +∞,

and hence we can conclude that
(
1 − β

n

)
αn is sharp.

The proof is now completed.

4 Proof of Theorems 1.6 and 1.7

4.1 Proof of Theorem 1.6

Fix α ∈ (0, β (n, 2)), we will prove that there exists a constant Cα > 0 such that for
all u ∈ C∞

0 (Rn) \{0}, u ≥ 0 and ‖�u‖ n
2

≤ 1, we have

∫
Rn

φn,2

(
α |u| n

n−2

)
dx ≤ Cα ‖u‖

n
2
n
2
.

Indeed, set

	(u) = {
x ∈ R

n : u(x) > 1
}
.
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Since u ∈ C∞
0 (Rn), we have that 	(u) is a bounded set. Moreover, we have

|	(u)| ≤
∫

	(u)

|u| n2 ≤ ‖u‖
n
2
n
2

< ∞.

Thus, on R
n \ 	(u), we have |u(x)| ≤ 1. Thus,

I1 =
∫

Rn\	(u)

φn,2

(
α |u| n

n−2

)
dx

≤
∫

Rn\	(u)

∞∑
j= j n

2
−1

(
α |u| 2m

2m−2

) j

j ! dx

≤
∫

Rn\	(u)

eα |u| n2 dx

≤ Cα ‖u‖
n
2
n
2
.

Next, set

I2 =
∫

	(u)

φn,2

(
α |u| n

n−2

)
dx .

Since 0 < α < β (n, 2), we can fix ε = β(n,2)
α

− 1 > 0. On 	(u), we define

v(x) = u(x) − 1. Thus v ∈ W
2, n2
N (	(u)). Also, ‖�v‖ n

2
≤ 1 and

|u(x)| n
n−2 = (v(x) + 1)

n
n−2 ≤ (1 + ε)|v(x)| n

n−2 + Cε.

Here Cε is a constant depending only on α and n.
Using the Adams inequality for bounded domains on the Sobolev space with homo-

geneous Navier boundary conditions W
2, n2
N (	 (u)) (see [37]), we get

I2 =
∫

	(u)

φn,2

(
α |u| n

n−2

)
dx

=
∫

	(u)

φn,2

(
α |v(x) + 1| n

n−2

)
dx

≤
∫

	(u)

exp
(
α(1 + ε)|v(x)| n

n−2 + αCε

)
dx

≤ Cα

∫
	(u)

exp
(
β (n, 2) |v(x)| n

n−2

)
dx

≤ Cα|	(u)|
≤ Cα ‖u‖

n
2
n
2
.
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Finally, noting that

∫
Rn

φn,2

(
α |u| n

n−2

)
dx = I1 + I2,

we get our desired result.
If α > β (n, 2), it was showed in [12] that the inequality is false.

4.2 Proof of Theorem 1.7

Lemma 4.1 For any α ∈ (0, β (2m,m)), there exists a constant Cα > 0 such that

∫
R2m

φ2m,m

(
α |u|2

)
dx ≤ Cα, ∀u ∈ Wm,2

(
R
2m

)
,

∥∥∇mu
∥∥
2 ≤ 1, ‖u‖2 = 1.

Proof Fix α ∈ (0, β (2m,m)). We first note that for every ε > 0, there exists Cε > 0
such that for every u ∈ Wm,2

(
R
2m

)
and 0 < τ < 1:

∥∥∥(τ I − �)
m
2 u

∥∥∥2
2

≤ (1 + ε)
∥∥∇mu

∥∥2
2 + Cετ ‖u‖22 . (4.1)

Indeed, by Fourier transform, we get that

∥∥∥(τ I − �)
m
2 u

∥∥∥2
2

=
m∑
j=0

(
m

j

)
τm− j

∥∥∥∇ j u
∥∥∥2
2
.

Now, by interpolation inequalities, noting that 0 < τ < 1, we can conclude (4.1).
Using (4.1), we can fix 0 < ε, τ < 1 such that for all u ∈ Wm,2

(
R
2m

)
, ‖∇mu‖2 ≤

1, ‖u‖2 = 1, we have

∥∥∥(τ I − �)
m
2 u

∥∥∥2
2

≤ β (2m,m)

α
.

Thus, using Theorem D, we get

∫
R2m

φ2m,m

(
α |u|2

)
dx =

∫
R2m

φ2m,m

⎛
⎜⎝α

∥∥∥(τ I − �)
m
2 u

∥∥∥2
2

∣∣∣∣∣∣∣
u∥∥∥(τ I − �)

m
2 u

∥∥∥
2

∣∣∣∣∣∣∣

2⎞
⎟⎠ dx

≤
∫

R2m
φ2m,m

⎛
⎜⎝β (2m,m)

∣∣∣∣∣∣∣
u∥∥∥(τ I − �)

m
2 u

∥∥∥
2

∣∣∣∣∣∣∣

2⎞
⎟⎠ dx

≤ Cα.

��
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Next, we will use our Lemma 4.1 to prove Theorem 1.7. Indeed, for every u ∈
Wm,2

(
R
2m

)
, ‖∇mu‖2 ≤ 1, we let

uλ(x) = u (λx) ,

where

λ = ‖u‖
1
m
2

then we have

‖uλ‖22 = λ−2m ‖u‖22 = 1.∫
R2m

φ2m,m

(
α |uλ|2

)
dx = λ−2m

∫
R2m

φ2m,m

(
α |u|2

)
dx,

∥∥∇muλ

∥∥
2 = ∥∥∇mu

∥∥
2 ≤ 1

Applying Lemma 4.1, we have

∫
R2m

φ2m,m

(
α |u|2

)
dx = λ2m

∫
R2m

φ2m,m

(
α |uλ|2

)
dx

≤ λ2m .Cα

= Cα ‖u‖22 .

5 Proof of Theorem 1.8

The method here is similar to the proof of Theorem 1.4. Indeed, fix u ∈ C∞
0

(
R
2m

) \
{0}, ‖�u‖m < 1, u ≥ 0. We will use the following notation:

A(u) = (
1 − ‖�u‖mm

) 1
m ,

α (u) = 1 + ‖�u‖mm
2

,

ε(u) =
(
1 + ‖�u‖mm

) 1
m−1

2
1

m−1 ‖�u‖
m

m−1
m

− 1,

C(u) =
(
1 − ‖�u‖mm
1 + ‖�u‖mm

) 1
1−m

,

β(u) =
(
1 + ‖�u‖mm

2

) 1
m−1

,

	 (u) =
{
x ∈ R

2m : u(x) > A(u)
}

.
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We note here that

C (u) |A(u)| m
m−1

β(u)
= 2

1
m−1 .

Now since u ∈ C∞
0

(
R
2m

)
, we have that	(u) is a bounded domain and the volume

of 	(u) satisfies

|	(u)| ≤ ‖u‖mm
|A(u)|m

= ‖u‖mm
1 − ‖�u‖mm

,

since

∫
R2m

|u|m dx ≥
∫

	(u)

|u|m dx

≥
∫

	(u)

|A(u)|m dx

= |A(u)|m |	(u)| .

On the domain 	(u), we define two functions

v(x) = u(x) − A(u),

w(x) = (1 + ε(u))
m−1
m v(x).

Then, it’s clear that v,w ∈ W 2,m
N (	 (u)).

Now, if we make use of the following elementary inequality:

(a + b)p − bp ≤ εbp +
(
1 − (1 + ε)

− 1
p−1

)1−p
a p, ∀p > 1, a, b, ε > 0,

we can get the following inequalities

|u(x)| m
m−1 = (v(x) + A(u))

m
m−1

≤ (1 + ε (u) )|v(x)| m
m−1 +

(
1 − 1

(1 + ε (u))m−1

) 1
1−m |A(u)| m

m−1

= |w(x)| m
m−1 + C (u) |A(u)| m

m−1 .

Moreover, since on 	(u),

�w = (1 + ε(u))
m−1
m �v = (1 + ε(u))

m−1
m �u,
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we obtain

‖�w‖mm ≤ (1 + ε(u))m−1 ‖�u‖mm
= α (u)

= 1 + ‖�u‖mm
2

.

Hence, by the singular Adams type inequality (Theorem 1.2 in [19]), we have

∫
	(u)

φ2m,2

⎛
⎝ 2

1
m−1

(
1− β

2m

)
β(2m,2)

(1+‖�u‖mm)
1

m−1
|u| m

m−1

⎞
⎠

|x |β dx

≤
∫
	(u)

exp

((
1− β

2m

)
β(2m,2)

β(u)
|w(x)| m

m−1

)
exp

((
1− β

2m

)
β(2m,2)C(u)|A(u)| m

m−1

β(u)

)

|x |β dx

= exp

⎛
⎝

(
1 − β

2m

)
β(2m, 2)C (u) |A(u)| m

m−1

β(u)

⎞
⎠∫

	(u)

exp

((
1− β

2m

)
β(2m,2)

β(u)
|w(x)| m

m−1

)

|x |β dx

≤ exp

(
2

1
m−1

(
1 − β

2m

)
β(2m, 2)

)∫
	(u)

exp
((

1 − β
2m

)
β(2m, 2)| w(x)

‖�w‖m | m
m−1

)
|x |β dx

≤ C (m, β) |	(u)|1− β
2m

= C (m, β)
‖u‖m− β

2
m∣∣1 − ‖�w‖mm

∣∣1− β
2n

.

Also, on the exterior domainR
2m\ 	(u), we have |u(x)| ≤ 1. Hencewe can deduce

easily that

∫
R2m\	(u)

φ2m,2

(
2

1
m−1

(
1− β

2m

)
β(2m,2)

(1+‖�u‖mm)
1

m−1
|u| m

m−1

)

|x |β dx ≤ C (m, β) ‖u‖m− β
2

m .

Thus, we finally can conclude that

∫
Rn

φ2m,2

(
2

1
m−1

(
1− β

2m

)
β(2m,2)

(1+‖�u‖mm)
1

m−1
|u| m

m−1

)

|x |β dx ≤ C (m, β)
‖u‖m− β

2
m∣∣1 − ‖�w‖mm

∣∣1− β
2n

.
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Now, if
∫
R2m |�u|m + τ |u|m ≤ 1, then

‖u‖m− β
2

m∣∣1 − ‖�w‖mm
∣∣1− β

2n

≤
(
1

τ

)1− β
2n

.

As a consequence,

sup
u∈W 2,m(R2m),

∫
R2m |�u|m+τ |u|m≤1

∫
R2m

φ2m,2

(
2

1
m−1 α

(1+‖�u‖mm)
1

m−1
|u| m

m−1

)

|x |β dx ≤ C (m, β, τ ) ,

for all 0 ≤ α ≤
(
1 − β

2m

)
β(2m, 2).

When α >
(
1 − β

2m

)
β(2m, 2), the supremum is infinite since

sup
u∈W 2,m(R2m),

∫
R2m |�u|m+τ |u|m≤1

∫
R2m

φ2m,2

((
1 − β

2m

)
β(2m, 2) |u| m

m−1

)
|x |β dx = +∞

by a result in [15].
The proof now is completed.

6 Biharmonic Equation in R
4 with Exponential Critical Growth

This section is devoted to the study of biharmonic equation in R
4 when the nonlin-

earity has the exponential critical growth in the sense of the Adams inequality. More
precisely, we study the existence of nontrivial weak solutions of the critical periodic
and asymptotic periodic problem:

{
�2u + V (x)u = f (x, u) in R

4

u ∈ H2
(
R
4
)
, u ≥ 0

. (6.1)

Here the potential V : R
4 → R is continuous and V (x) ≥ V0 > 0 for all x ∈ R

4.
Moreover, we assume that

(V )There exists a continuous 1-periodic functionW : R
4 → R (i.e.,W (x + p) =

W (x) for all x ∈ R
4 and p ∈ Z

4) such that W (x) ≥ V (x) for all x ∈ R
4 and

W (x) − V (x) → 0 as |x | → ∞.
( f 1) There exists a continuous 1-periodic function f0 : R

4 × R → R (i.e.,
f (x + p, u) = f (x, u) for all x ∈ R

4, p ∈ Z
4 and u ∈ R) such that 0 ≤

f0 (x, s) ≤ f (x, s) for all (x, s) ∈ R
4 × [0,∞), and for all ε > 0, there exists

η > 0 such that for all s ≥ 0 and |x | ≥ η : | f (x, s) − f0(x, s)| ≤ εe32π
2s2 .

( f 2) f (x, s) = o1(s) near the origin uniformly with respect to x ∈ R
4.
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( f 3) f (x, s) ≤ Ce32π
2s2 for all (x, s) ∈ R

4 × [0,∞).
( f 4) There existsμ > 2 such that 0 ≤ μF(x, s) < s f (x, s) and 0 ≤ μF0(x, s) <

s f0(x, s), all (x, s) ∈ R
4 × (0,∞). Here

F(x, s) =
∫ s

0
f (x, t)dt.

F0(x, s) =
∫ s

0
f0(x, t)dt.

( f 5) for each fixed x ∈ R
4, the functions s → f0(x, s)/s and s → f (x, s)/s are

increasing;
( f 6) there are constants p > 2 and Cp > 0 such that

f0(x, s) ≥ Cps
p−1, for all (x, s) ∈ R

4 × R
+,

where

Cp >

[
μ(p − 2)

p (μ − 2)

](p−2)/2

S p
p ,

Sp = inf
u∈H2(R4)�{0}

[∫
R4

(|�u|2 + W1 |u|2) dx
]1/2

(∫
R4

|u|p dx
)1/p .

Here W1 = max
x∈R4

W (x).

( f 7) For any set A of positive measure, at least one of the nonnegative continuous
functions f (x, s) − f0(x, s) and W (x) − V (x) is positive on A.

It is easy to see from the Sobolev embedding that Sp > 0.
Since we are interested in nonnegative solutions, we also assume that

f0(x, s) = f (x, s) = 0 for all (x, s) ∈ R
4 × (−∞, 0] .

We denote by X0 the Sobolev space H2
(
R
4
)
endowed with the norm

‖u‖0 =
[∫

R4

(
|�u|2 + W (x) |u|2

)
dx

]1/2

and by X the Sobolev space H2
(
R
4
)
endowed with the norm

‖u‖ =
[∫

R4

(
|�u|2 + V (x) |u|2

)
dx

]1/2
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Our first concern is about the existence of solutions for the periodic critical problem:

{
�2u + W (x)u = f0(x, u) in R

4

u ∈ H2
(
R
4
)
, u ≥ 0

. (P)

In view of Adams type inequalities (Theorems 1.6, 1.7, 1.8), we have that the func-
tionals

J0(u) = 1

2

∫
R4

(
|�u|2 + W (x) |u|2

)
dx −

∫
R4

F0(x, u)dx

J (u) = 1

2

∫
R4

(
|�u|2 + V (x) |u|2

)
dx −

∫
R4

F(x, u)dx

arewell defined.Moreover, by standard arguments, they are inC1 and∀ϕ ∈ C∞
0

(
R
4
) :

DJ0(u)ϕ =
∫

R4
(�u�ϕ + W (x) uϕ) dx −

∫
R4

f0(x, u)ϕdx

DJ (u)ϕ =
∫

R4
(�u�ϕ + V (x) uϕ) dx −

∫
R4

f (x, u)ϕdx .

Thus, critical points of J0, J are weak solutions of (P), (6.1) respectively.
First, we will prove that

Theorem 6.1 The equation (P) has a nontrivial weak solution.

Theorem 6.2 The equation (6.1) has a nontrivial weak solution.

6.1 The Periodic Equation (P)

From the conditions on the potential W and nonlinear term f0, it’s now standard to
check that J0 satisfies the mountain-pass geometry:

Lemma 6.1 (i) There exist ρ, θ > 0 such that if ‖u‖0 = ρ, then J0(u) ≥ θ .
(ii) For any u ∈ H2

(
R
4
) \ {0} with u ≥ 0, we have J0(tu) → ∞ as t → ∞.

Consequently, we can get a (bounded) Palais–Smale sequence of the functional J0
at the minimax level M0 = inf

γ∈�0
max
t∈[0,1]J0 (γ (t)) where

�0 =
{
γ ∈ C

(
[0, 1] , H2

(
R
4
))

: J0 (γ (0)) ≤ 0, J0 (γ (1)) ≤ 0
}

.

That is

J0 (un) → M0, DJ0 (un) → 0.

Then
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Lemma 6.2 We have M0 ∈
[
θ,

μ−2
2μ

]
. Also, the (PS)M0 sequence (un) is bounded

and its weak limit u0 satisfies DJ0 (u0) = 0.

Proof It’s clear that M0 ≥ θ . Now, we can fix ε > 0 small enough and a function
vp,ε ∈ H2

(
R
4
)
such that

Sp ≤

[∫
R4

(∣∣�vp,ε
∣∣2 + W1

∣∣vp,ε
∣∣2) dx

]1/2
[∫

R4

∣∣vp,ε
∣∣p dx

]1/p ≤ Sp+ε,

∫
R4

(∣∣�vp,ε
∣∣2 + W1

∣∣vp,ε
∣∣2) dx ≤ Cp

p

∫
R4

∣∣vp,ε
∣∣p dx .

Then,

M0 ≤ max
t∈[0,1]J0

(
tvp,ε

)

≤ max
t∈[0,1]

[
t2

2

∫
R4

(∣∣�vp,ε
∣∣2 + W1

∣∣vp,ε
∣∣2) dx − t pCp

p

∫
R4

∣∣vp,ε
∣∣p dx

]

=
(
1

2
− 1

p

) (
Sp + ε

)p/(p−2)

C2/(p−2)
p

<
μ − 2

2μ
.

Now, by the standard Ambrosetti–Rabinowitz condition, it’s clear that (un) is
bounded and then we can assume that

un ⇀ u0 ∈ X0

un → u0 in Ls
loc

(
R
4
)

un (x) → u0 (x) in R
4.

By ( f 4), we have

M0 = lim
n→∞J0 (un)

= lim
n→∞

[
J0 (un) − 1

μ
DJ (un) un

]

≥ μ − 2

2μ
lim sup
n→∞

‖un‖20 .

Hence, lim sup
n→∞

‖un‖20 = m ≤ 2μM0
μ−2 < 1.
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By Adams type inequalities, we can find positive numbers γ, q�1 and C > 0 such
that

hn(x) = e32π
2γ u2n(x) − 1 ∈ Lq

(
R
4
)

,

‖hn‖q ≤ C, ∀n ∈ N.

Consequently,

∫
R4

f0 (x, un(x)) ϕ(x)dx →
∫

R4
f0 (x, u0(x)) ϕ(x)dx, ∀ϕ ∈ C∞

0

(
R
4
)

.

Now, we can conclude that

DJ0 (u0) = 0.

��
Lemma 6.3 Let (un) ∈ H2

(
R
4
)
be a sequence with un ⇀ 0 and

lim sup
n→∞

‖un‖20 ≤ m < 1.

If there exists R > 0 such that

lim inf
n→∞ sup

y∈R4

∫
BR(y)

|un|2 dx = 0,

we then have
∫

R4
F0(x, un)dx,

∫
R4

f0(x, un)undx → 0 as n → ∞.

Proof Using Lemma 8.4 in [11] (which claims that: Let 1 < p ≤ ∞, 1 ≤ q < ∞
(if p < 4, we assume more that q 
= p∗ = 4p

4−p ). If (un) is bounded in Lq
(
R
4
)
such

that (|∇un|) is bounded in L p
(
R
4
)
and if there exists R > 0 such that

lim
n→∞ sup

y∈R4

∫
BR(y)

|un|q dx = 0,

then un → 0 in Lr
(
R
4
)
for min (q, p∗) < r < max (q, p∗) (we denote that p∗ = ∞

if p ≥ 4)), we get with p = 4 and q = 2 that

un → 0 in Lr
(
R
4
)
for all r > 2.

(Note that since (un) is bounded in H2
(
R
4
)
, we have |∇un| is bounded in L4

(
R
4
)

because of ∇un ∈ H1
(
R
4
)
and the Sobolev imbedding H1

(
R
4
)

↪→ L4
(
R
4
)
).
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This fact togetherwith theAdams-type inequalities imply that for κ > 1 sufficiently
close to 1 :

∫
R4

(
exp

(
32π2κu2n(x)

)
− 1

)
dx ≤ C.

By our assumptions on the nonlinear term, given ε > 0 there exist positive constants
Cε and q, γ > 1 sufficiently close to 1 such that

∣∣∣∣
∫

R4
f0(x, un)undx

∣∣∣∣
≤ ε

∫
R4

|un|2 dx + Cε

∫
R4

|un|
[
exp

(
32π2γ u2n(x)

)
− 1

]
dx

≤ C

(∫
R4

|un|q ′
dx

)1/q ′ (∫
R4

[
exp

(
32π2γ u2n(x)

)
− 1

]q
dx

)1/q

+ εC

≤ C

(∫
R4

|un|q ′
dx

)1/q ′ (∫
R4

[
exp

(
32π2qγ u2n(x)

)
− 1

]
dx

)1/q

+ εC

= C ‖un‖q ′ + εC

where q ′ = q/(q − 1). Hence

∫
R4

F0(x, un)dx,
∫

R4
f0(x, un)undx → 0 as n → ∞.

��

Now, by Lemma 6.2, we have that the weak limit u0 of the (PS)M0 sequence
satisfies DJ0 (u0) = 0. If u0 
= 0, then u0 is the nontrivial weak solution of (P). Now,
if u0 = 0, then there is a sequence (zn) ⊂ R

4, and R, A > 0 such that

lim inf
n→∞

∫
BR(zn)

|un|2 dx > A.

(If not, then by Lemma 6.4, we get

∫
R4

F(x, un)dx,
∫

R4
f (x, un)undx → 0 as n → ∞.

which implies that un → 0 in H2
(
R
4
)
. As a consequence, M0 = 0 which is impos-

sible.)
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Without loss of generality, we may assume that (zn) ⊂ Z
4. Setting ũn(x) = un(x−

zn), since W, f0, F0 are 1-periodic functions, we get

‖un‖0 = ‖ũn‖0
J0(un) = J0(̃un)

DJ0(̃u0) → 0.

As before, we can find a ũ0 in H2
(
R
4
)
such that ũn ⇀ ũ0 weakly in H2

(
R
4
)
and

DJ0(̃u0) = 0. Finally, we notice that by taking a subsequence and R sufficiently large,
we can get

A1/2 ≤ ‖ũn‖L2(BR(0)) ≤ ‖ũ0‖L2(BR(0)) + ‖ũn − ũ0‖L2(BR(0)) .

By the compact embedding H2
(
R
4
)

↪→ L2
loc

(
R
4
)
we have that ũ0 is nontrivial.

Also, since f0(x, s) = 0 for all s ≤ 0, we have that the nontrivial weak solution
here is nonnegative.

6.2 The Nonperiodic Equation (6.1)

Similarly as in the previous subsection, we may check that the functional energy J has
the geometry of themountain-pass theorem.Also,we can find a bounded Palais–Smale
sequence (vn) in H2

(
R
4
)
at the minimax level M :

J (vn) → M and DJ (vn) → 0, as n → ∞,

M = inf
γ∈�0

max
t∈[0,1]J (γ (t))

where

�0 =
{
γ ∈ C

(
[0, 1] , H2

(
R
4
))

: J (γ (0)) ≤ 0, J (γ (1)) ≤ 0
}

.

Furthermore, we also have M ∈ (κ, (μ − 2) /2μ] for some positive constant κ and
vn ⇀ v0 in H2

(
R
4
)
and that v0 is a critical point of functional J .

We also get that

lim sup
n→∞

‖vn‖2 ≤ m′ < 1

which again implies that for γ > 1 sufficiently close to 1, we have

∫
R4

(
exp

(
32π2γ v2n(x)

)
− 1

)
dx ≤ C

for some universal constantC > 0. So now, it’s sufficient to prove that v0 is nontrivial.
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Suppose that v0 = 0. First, we will prove that

lim
n→∞

∫
R4

|F0(x, vn) − F(x, vn)| dx = lim
n→∞

∫
R4

| f0(x, vn)vn − f (x, vn)vn| dx = 0.

Indeed, given ε > 0, there exists η > 0 such that by the Adams type inequalities and
Sobolev embeddings:

∫
|x |≥η

| f0(x, vn)vn − f (x, vn)vn| dx

≤ ε

∫
|x |≥η

∣∣∣(exp (
32π2γ v2n(x)

)
− 1

)
vn

∣∣∣

≤ ε

(∫
R4

∣∣∣(exp (
32π2γ v2n(x)

)
− 1

)∣∣∣q dx
)1/q (∫

R4
|vk |q ′

dx

)1/q ′

≤ Cε.

On the other hand, by the compact embedding H2
(
R
4
)

↪→ Lr
loc

(
R
4
)
, r ≥ 1:

∫
|x |≤η

| f0(x, vn)vn − f (x, vn)vn| dx

≤
(∫

R4

∣∣∣(exp (
32π2γ v2n(x)

)
− 1

)∣∣∣q dx
)1/q (∫

|x |≤η

|vn|q ′
dx

)1/q ′

+ ε

∫
R4

|vn|2 .

Combining these two inequalities, we have

lim
n→∞

∫
R4

|F0(x, vn) − F(x, vn)| dx = lim
n→∞

∫
R4

| f0(x, vn)vn − f (x, vn)vn| dx = 0.

We can also check easily that

∫
R4

[W (x) − V (x)] v2n (x) dx → 0 as n → ∞.

From these equations, we get

|J0 (vn) − J (vn)| → 0

‖DJ0 (vn) − DJ (vn)‖ → 0,

which implies

J0 (vn) → M

DJ0 (vn) → 0.
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As in the previous subsection, there is a sequence (zn) ⊂ Z
4, and R, A > 0 such that

lim inf
n→∞

∫
BR(zn)

|vn|2 dx > A.

Now, letting ṽn(x) = vn(x − zn), since W, f0, F0 are 1-periodic functions, we get

‖vn‖0 = ‖̃vn‖0
J0(vn) = J0(̃vn)

DJ0(̃vn) → 0.

Thenwecanfind a ṽ0 in H2
(
R
4
)
such that ṽn ⇀ ṽ0 weakly in H2

(
R
4
)
and DJ0 (̃v0) =

0.
Next, by Fatou’s lemma we have:

J0(̃v0) = J0(̃v0) − 1

2
DJ0(̃v0)̃v0

= 1

2

∫
R2m

[ f0(x, ṽ0 )̃v0 − 2F0(x, ṽ0)]

≤ lim inf
n→∞

1

2

∫
R4

[ f0(x, ṽn )̃vn − 2F0(x, ṽn)]

= lim
n→∞

[
J0(̃vn) − 1

2
DJ0(̃vn )̃vn

]
= M.

Similarly as in the previous section, we have that ṽ0 
= 0 and by ( f 5), we can get that

M ≥ J0(̃v0) = max
t≥0

J0(t ṽ0) ≥ M0.

On the other hand, by assumptions ( f 1), ( f 5) and ( f 7) :

M ≤ max
t≥0

J (tu0) = J (t1u0) < J0(t1u0) ≤ max
t≥0

J0(tu0) = J0(u0) = M0

and we get a contradiction. Therefore, v0 is nontrivial.
Since f (x, u) = 0 for all (x, u) ∈ R

4 × (−∞, 0], from standard arguments, it’s
easy to see that this weak solution is nonnegative.
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