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Abstract Motivated by recent results on the best constants and extremal functions
for a family of the Caffarelli-Kohn—Nirenberg inequalities in [17,23], we will study
weighted Moser—Onofri-Beckner inequalities on the Euclidean space RY. We also
set up sharp weighted versions of the logarithmic Sobolev inequalities together with
their best constants and optimizers.
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1 Introduction

To study the prescribed Gauss curvature problem on two-dimensional sphere S?, in
[25], Moser established the following exponential type inequality on the 2-dimensional
sphere S? with an optimal constant: Forevery 8 < 4, there exists a constant C () > 0
such that for all u € H'(S?)
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B (u—u)?
/Sz xp <4nfSz |Vu|2da)> do < C(B).

Here dw denotes the standard surface measure on S2, normalized so that sz do =1,
andu = fSQ udw. Moreover, the constant 47 is sharp in the sense that if 8 > 47, then

/ B —u)
sup eXp| —F—— 5 — |do = o0
ueH'(S?) S2? 47'[_[82 |VI/[| dw

As a consequence of this result, we have that the functional

1
J(u):—/ |Vu|2da)+/uda)—ln(/ e”dco),
4 Js2 S2 s2

is bounded from below on H!(S?).

Moser used the following classical Schwarz rearrangement argument: every smooth
function u is associated to a function u* such that u* is constant on the parallel circles
and such that for any continuous function f:

/f(u)dw:/f(u*)da).
§? S?

Moreover, the well-known Pélya—Szego inequality

/|Vu*|pda)§/ [Vul? do (1.1)
S2? S?

plays a crucial role in the approach of Moser and enables him to reduce the consid-
eration to a one-dimensional problem. Onofri, using conformal invariance and results
in a paper of Aubin [4], showed in [26] that actually J () is bounded from below by
0, and that modulo conformal transformations, # = 0 is the optimizer: For § > 1,

inf  Jg(u) =0,
ueH (S?) p)

whileif0 < 8 < 1

inf  Jg(u) = —oo0.
ueH'(S?) ﬂ( )

Jﬁ(u)zé/ |Vu|2da)+/ udw — In /e”dw
4 SZ SZ SZ

Other proofs for this result were provided by Hong in [22] and by Osgood—Phillips—
Sarnak in [27]. Also, in 2005, Ghigi made use of the convex analysis, in particular, the
well-known Prékopa-Leindler inequality, to give a new proof of the Moser—Onofri

Here
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inequality in [19]. See Chaps. 16—18 in the book [20] of Ghoussoub and Moradifam
for more details.
The Moser—Onofri inequality was also extended into higher-dimensional N -spheres

SV. For instance, Beckner in [5] proved that for a real-valued function F defined on
o0

the sphere S with an expansion in spherical harmonics F = ZYk,
k=0

(N +k)
1 Fq / d — 2 de.
n(fswe E>§ ST ZF(N)F(k) T

Here d¢ denotes the normalized surface measure. Moreover, equality happens if and
only if ef is given by the Jacobian determinant of a conformal transformation of the
N-sphere. Also, in [9], Carlen and Loss used the method of competing symmetries to
derive the sharp version of the logarithmic Hardy-Littlewood—Sobolev inequality and
deduce Beckner’s result as an application.

Sharp Moser inequalities and a weak form of the Moser—Onofri type inequalities
were also derived on spheres in complex space C" by Cohn and the second author in
[11] using a sharp representation formula for functions on complex spheres in terms
of complex tangential gradients (we refer to [10] for more background of complex
tangential gradients). In these results, the smaller complex tangential gradient |Vcu|
replaces the real tangential gradient |V, u|, and also the critical exponent is % rather

2N—-1
than AIN—2>
It is worth noting that if we use the stereographic projection from S? to R?, then
we could obtain the following Euclidean version of the Moser—Onofri inequality: for

allu € L'(R?, dp) such that Vi € L2(R?, dx) with du = %mdx,

1
In <f e”du) —f udp < — |Vu|2dx.
RZ R 16

This Euclidean Moser—Onofri inequality can also be deduced as a limiting procedure
based on other functional inequalities [16] or from optimal mass transport [3].

Effort has also been made in [15] in order to get the Euclidean Moser—Onofri—
Beckner inequality on R". More precisely, Del Pino and Dolbeault proved that for
any smooth compactly supported function u

In |:/ e”d,uN} —/ udpy < ozN/ Hy (x, Vu)dx.
RN RN RN

The best constant oy is given by

which differ from the real Moser inequality on the sphere in R?V.

N'TVT(F)
AN —

aN =

Here we denote for X, Y € RV

Ry X, V)= 1X+YVN —1xIN =N XN 2Xx .Y
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and

Xa

N=2

NIXIVT N -1

- . Y.
1+ |xv=1 N

HN(X,Y)=Rn (

The Euclidean Moser—Onofri inequality has also been studied in the presence of
weights. For example, the following result has been set up recently in [16,17] using
the weighted Caffarelli-Kohn—Nirenberg inequalities: Let 0 < s < 2. Then for any
u:ue L' (R? duy) and |[Vu| € L? (R?, dx),

1
1 u ) — _— Vul?
“(/Rf dus) /Rzudusfg(z_s)ﬂfRzl ul? dx,

2—s 1 dx
21 (14 ) bl

where

dus =

Motivated by the above discussions, in this article, we will set up the following
version of the weighted Euclidean Moser—Onofri—Beckner inequality:

Theorem 1.1 Let 0 < s < N and assume that u is any smooth compactly supported
function. Then we have

In [/ e“d,uN,si| —/ udpy s < aN,s/ Hy (x, Vu) dx. (1.2)
RN RN RN

Here
N—sT(§+1) N=\~N dx
dMN,S_ N (1+|X|N71) s
N ¥ x|
and
N M r(3)
OlN,S = T
N-—s 2(N — H)NN=Ig 3

It is easy to check that the equality in (1.2) is attained by constants. However, we
do not know whether or not (1.2) can be achieved by nonconstant optimizers. This
question is still left open.

Corollary 1.1 When N =2, Ry (X, Y) = |Y > and Hp (X, Y) = L |Y|%. So we get
the following weighted Euclidean Moser—Onofri inequality:

1
1 u _ <— | vup
n[/Rzeddm,s] /R2udu2,s_8ﬂ(2_s)/RN| ul? dx,
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where

2—s -2 dx
d — (1 2—3‘) .
H2.s _27_[ + |x] I

Corollary 1.2 When N =4,
RuX,Y) =Y +2|XP|YP +4|YPX Y +4(X-Y)?

and

2
41X|73 3
Ho (X, v) =Ry (-5 x 2y
1+1x)5 4

B IX|3|Y2 27 (X3 YR,

4
=(Z) |[Y*+18 5 - Y
(4> (1+|X|%‘) 414X

x|~ 5
+36————— (X - ¥)2.

<1+ IXI%>

Hence, we get the following weighted Euclidean Moser—Onofri—Beckner inequality:

In [/ e”dm,s] —/ udpigs
R4 R4
1 9 I} L vap
x|’ x x|3 |Vu
< ﬁ/ ZVul 66— (—-Vu) + 18 | dx.
6(4 —5)°m* Jp4 16 1+x|3 |x| <1+|x|%>

Here

4—5 4-s\—4 dx
dugs = 5— (141515

2 X

As we can see, this inequality contains inhomogeneous Sobolev—Orlicz norms which
are quite different (and unexpected) from the results of Onofri [26] and Beckner [5].

From (1.2), for smooth compactly supported function u, we get that

. 1 e(u—u) . 1 —
lim — In e duy s <oy lim = Hy (x, eV (u—u))dx,
e—0¢ RN e—0¢&“ JrN

with

u= / udpy s.
RN
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We also note that

2
— I
In U ef“‘—“)dmv,s] - _/ lu —u)* duy.s + o(e?),
RN 2 RN

and
/ Hy (x, eV(u — ) dx = 82/ Gy (x, V (u — ) dx + o(&?).
RN RN

Hence, as a byproduct, we obtain a Poincaré type inequality:

Corollary 1.3 For 0 < s < N and u being a smooth compactly supported function,
we have

1

! / u— TP s < s / Gy (x. Viydr.,
2 Jry RN

Here

.1 o1 N|X|~~T N-—1
gy (X,Y) = lim —2HN(X,8Y)= lim _ZRN — X, € Y
e—0 & e—0¢ 1+ |X|¥T N

N-2
NIX|"¥T _ N-—1
=Ly| - X X, Y),
1+ |X|71 N

and
Ly(X,Y)=li 172 (X, eY) L& IX 4+tY|V|
s = lim — ,&Y) = ——= —
N e—0 &2 N 2 dr? =0
1 _
= SNIXIV TV =2) (1) + XY

As in [17], we will obtain Theorem 1.1 as a result from the limiting process of a
particular family of the Caffarelli-Kohn—Nirenberg (CKN) inequalities. More specifi-
cally, the proof of Theorem 1.1 will reply on the following weighted CKN inequalities
established recently in [17,23]:

Theorem A Let0 <s < N. Whenr = Ng,;_ll and g > N, we have

N \v(1-H N\ %
CKN(N, s, q,r) = 4=
N —s N

< q >$(1—3)(N>5 F(q,]jv,—_l\lf r¥+1)
oy

qg—N
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Moreover,

_N-1
Vo (x) =a(l+ﬂ|x|%) - for some a € R and B > 0,

are optimizers of CKN(N, s, q,r). Here

1/r
(fRN |u|r |x|Y)
CKN(N, s,q,1) = Sup | i
ueDq ! (RN) (fan IVuINdx)N(F?) (f]RN Jul |x|‘)r

and D, * (]RN ) is the completion of the space of smooth compactly supported functions
1/N q
under the norm ( [ |Vu|? dx) Ny (f]RN lu)? %) )

Theorem B Assume that
N
l<p< p+u<N0<s= a (ChH
N-p
-1 Np Np (g —p)

q
p<q<r_p—< ;a= .
I N-p (p—Dlpg—N(@q—plr

<N,

Denote by Dp e (RN ) the completion of the space of smooth compactly supported
1/q
(/]RN lu|? P ly) , and set

1/r
d.
(Joo " )

CKN(N, u, s, p,q,r) = il;p , T~
D R q
ue ( ) (.[RN |VM|P |x\“> (fRN |u| |x‘3)

functions with the norm (I]RN [Vu|? |x|,4)

Then

CKN(N, u,s, p,q,r)

—1
+lza_rol—g)

_ ( N-—-p ) q
T\N-p—u
1 ¥
8 (q—p>“( Pq ) (NiJ—tI(N—p))F
pvT) \N(g—p) Pq r(””%)r@%

and is achieved when

~|—

Sl

N—p—u p_ 7%
ux)=A(1+B|x| ¥-r »-T for some A € R, B > 0.
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1694 N. Lam, G. Lu

The proof of Theorem A will be provided in Sect. 2 (see Lemma 2.1) for the
completeness, while the proof of Theorem B could be found in [23].

The CKN inequalities were introduced by Caffarelli, Kohn, and Nirenberg in their
1984 paper [7]. They play an important role in geometric analysis, partial differential
equations, and other branches of modern mathematics. They also generalize many
well-known inequalities such as Gagliardo—Nirenberg inequalities, Sobolev inequali-
ties, Hardy—Sobolev inequalities, and Nash’s inequalities.

There is another well-known inequality that has a close connection to the CKN
inequalities and has been studied extensively in the literature. That is the following
sharp L?-logarithmic Sobolev inequality:

Theorem C Let p > 1. For any smooth function f such that fRN |f1Pdx =1, we

have
N
/ 1P f17 dx < Yin L,,/ VP dx |,
RN )4 RN

where

1)

N

r(z+

)4
r(vet +1)

S}

—1
p(p—1\"" _
L”:ﬁ( 7 ) i

The L'-logarithmic Sobolev inequalities were studied by Ledoux in [24]. Their
optimizers, which are the characteristic functions of the balls, were found by Beckner
in [6]. The fact that the sharp L2-logarithmic Sobolev inequality is equivalent to
the sharp Gross logarithmic Sobolev inequality for the Gaussian measure [21] was
pointed out, for example by Carlen in [8]. The optimizers in this case were also
proved in [8] and are exactly the Gaussians u (x) = (nr)’% exp (—47 |x|?). The
optimal L”-logarithmic Sobolev inequalities together with their extremal functions
with 1 < p < N were investigated by Del Pino and Dolbeault in [14,15]. Also, Gentil
set up in [18] the general sharp L”-logarithmic Sobolev inequalities for all p > 1 and
under arbitrary norm on RY, using the Prékopa—Leindler inequality and a particular
Hamilton—Jacobi equation. It is also worth noting that one can apply the optimal mass
transport to provide other proofs for the sharp L”-logarithmic Sobolev inequalities.
See [2,12] for example.

The second purpose of this paper is to use Theorem A to derive a version of the
sharp weighted L -logarithmic Sobolev inequalities. More precisely, we will prove
the following:

Theorem 1.2 Let 0 < s < N. Forany u € D (RN) such that fRN lu|V )ICS =1,

we have q
In SL(N,s)/ IVu|V dx z/ |V 1n Ju N 22 (1.3)
RN RN x|*
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with

v oo (N NN —pN-t 1 T (5 +1)
(’S)_<N s) (ﬁ)N eN-1 T(N)

The equality happens in (1.3) when

u(x) = exp (—b | x| %:S) )

where

N
2

Nrm
r(

N—1T(N—=1)

b>0and bV =
> 0an +1)N—s NN

0=

We will also apply Theorem B to deduce the following sharp weighted L?-
logarithmic Sobolev inequalities:

Theorem 1.3 Assume (C1). For any u € D,’jjf (RN) such that fRN lu|? “)% =1, we
have

N dx dx
Tm(Lsv, o) [ 1Vu? S wrmpr 2 a4
p RN x| RN |x[*
with
p( N—p e p—1\""! r(5+1 £ 1"
o 255) 02 ()
NAN=p—p e r(veten)) VT

The equality happens in (1.4) when

N—p—p p
M(X)ZGXP<—bIXI P P1>,

where

N N2

-1 - /1 —1
b= 0and s = NI NP )(_) PF<NP_),
r(3+1) W—p—wp \p p

The rest of the paper is organized as follows: in Sect. 2, we will show several key
computations that will be used in the proofs of our main results. Weighted Moser—
Onofri-Beckner inequality will then be studied in Sect. 3. Finally in Sects. 4 and
5, we will establish sharp versions of the weighted L" and L”-logarithmic Sobolev
inequalities correspondingly.
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1696 N.Lam, G. Lu

2 Some Important Lemmas

In this section, we will show some useful estimations and results that will be used in
the next sections.

Lemma 2.1 LetO <s < N. Whenr = N/‘f,;fl and g > N, we have

< N )zv'/(l—‘f) <q—N>l_3
CKN (N, s,q,r) =

N —s N7
Lo ! _ (-9
x( q )N(l_r <ﬁ)r F(q;v_—l\ll)r(%+l)
g—N q P (2 A5 ) rav)

Moreover,

N—

Vo (x) :ot(l +ﬂ|x|%) % forsome a € R and B > 0,

are optimizers of CKN (N, s, g, r) . Here

1/r
(Sl )
CKN (N, s,q,r) = sup 1 ,
ueD)  (RN) (fion IVl dx)ﬁ(1—7) (fRN |u|? I%)

’

~|—

and D(])\{ ;q (RN ) is the completion of the space of smooth compactly supported functions

1/q
under the norm (f]RN IVulpdx)l/N + (fRN K %) )

Proof Set

rq 1/r
GN(N,q,r)=  sup (fRN]M )

e ®Y) (fon VY dx)ﬁ(l_%) (fpw lul? dx)%

Then from the results in [1,13,14], we get that GN (N, g, r) is equal to

<q_N)1‘f( q >1‘v(1?)<ﬁ>i F(q‘][v,—_,é r+n\" -’
NJm q—N q F(N—lN_>F(N) 7

2
N g—N
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_N-1
and can be achieved by Uy (x) = o (1 + B IXI%) " for some o € R and B > 0.

We now set Vo = Dy Up, that is Uy = Dy Vo where

Dy su(x) := (?)

o N
DN,SM(X) = (m)

z|-

u(Fys(x)),

Z|-

u(Fyl(x),

and

.
FN,s(x) = |x|¥=sx,

1 _s
FN’S(x) = |x|” ¥x.

We will show that Vj is a maximizer of CKN (N, s, g, r). Indeed, for any v, we need
to show

1/r 1/r
(S 10l &) (S V0l )
— 1

(e 1901 )™ 7 (o ot 85)7 (fr I9V01Y ) V70 (o Vol 85)

<

By Lemma 2.2 in [23], we get

/ o N N
v =
RN xI* N-—s\N-—s
dx N N
ol =
RN xI* N-—-s\N-s

/ Vo[V dx / |VDy sv|" dx.
RN RN

<~

/ (Dy v ()" dx,
RN

/ (DN,SU (x))q dx,
RN

2

v

Hence

1/r
(f]RN |v|r ﬁ%)
L(-4 ;
(fa V0[N dx)N(l B (fRN v|? I%)
- ( . )M—z) (Jiaw [P0 (0] )"
N — (-4 1
U (90w ) (s D ] )
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)W—‘f) (f 100 ()1 dx) "
12 1
(J IVUIN dx) V=D (J 1Ug ()19 dx)

(Fivor &)
([ 19 VoIV dx) V177 (f%'q \d—|)l

We note that we have the equality in the last row because Uy is radially symmetric.

Moreover, we also obtain

N A\ (-
CKN (N, s,q,r) = (N > GN(N, q,r).
-5

A direct calculation shows that

N—-1

Vo (x) =« (1 +5 lelh\’]:i>_q_N for some @ € R and g > 0.

Lemma 2.2 Letg > N > s > 0and

_N-1
vq(x)=(1+|x|%) N
Then
/ <1+| |%)—N dx 1 Nn%
X|N= = _—
RN W T N—sT(T+1)
1 d _
Y A R
q JrY Ix[*  N(N =)
N N—s\V"aNN2p T
RN|VVq| dx = N I‘(ﬁ) q
2
1
+0<ﬁ) as g — oo.
q
Moreover,
N—s\"2N—-—sN-—s
ANV, = (N — 1)( )
q—N q—NN—1
_g-1 _9y_2g-N—-1
%(Hr%:{ N L =
7=
x _a=L (N_py_a=L
_(1+r,Nv:‘§> N NG s (v 2
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Proof 1f we perform the change of variable:

N—-1 —l+s

! AR N—1/1-t\T+ -1
= Tthatisr: <—> and dr = (_> '_zdt,
1+FN—.1 t N —s P p

then
N=s\—N dx
/ <1+|x|N—1>
RN |x|S
o s\ —N
:(,()N_lf (1 +r1NV—1> rN—l—sdr
0
_N-1 Nz% /ltN L=\ N N=1=s 1\ 7 ldt
_N—SF(%‘H)O ! t 2
N — % y
Nm
B (=0 = : @1
M % / —SF(%H)
Moreover,

dx Nos\ 425 dx
Lol = [ () 2
RN |x| RN le‘

—1

o
—5 q-—N
=CUN—1/ (l+r%71> i rN=1=sqr,
0
Again, we perform the same change of variables, then
o] _gN=1
/ (1+r%j) TN N-l-sg,
0
N1l vt (1= \ M=V o\ 5
= /[qq—N _ _ _dt
N —sJo t t 12

N—1[! ¥y N—-1_(N>-N
= /tq-Nq (1-n""2dr = B( ,N—l)
0

N —s N —s
N -1 rNwN-1)

N =s v (q(N 1) k)

:N—l '(N-1) (g — N)N-!
N —=s TV g (N =1 —k) +kN]

where B3 is the Euler beta function. Hence, as ¢ — o0

1 q dx N—1 1 WN_1
— |Vq| 5 — WN—1 = . (22)
q [x] N—sN(N-1) N(N-—y)
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Now, noting that V,, is a radial function: V, (x) =V, (r) withr = |x|, we get

YV, =V ()2
= r -,
q q r
and so
N-2 N-2 X
A A A A
Hence

AnVy =V (v, [V vv,)
_ Z% <(v(; BIRAG x—’)

=Z‘v;(r) RAC- i’+2‘v )

+3 Vo) %—2_ v (r)‘ (%) 2V, () V) (r

=V (r))N_2 v =
—w-nlvef [ v, <r>+v”<r)}

Noting that

N — -\ g=N 1=s
Vo ) === = (1) T

and

we obtain
B N-2
N — N—s —:,711/ 1—s
AV, =(N—1) 7(14—er1) e
q—
—1
N—s =N Jd= 1 | N—s g—1 N—s N—s
y qN(1+er> ”N]F'ququiNNfll L=
P
N—s 1—s N:s 4N Z—Y:N
_q—NN—l (1+rN I r 1

@ Springer

N=2x; X
il v
r r

i i

q

Xi
)—
r

1 ’ N-2_,
+(N—1)‘Vq(r)‘ v/ (r)




Moser—Onofri-Beckner and Logarithmic Sobolev Inequalities 1701

_ g\ N2 - ov—2)
=(N—1)<N S) (1) A

qg—N
- - - =S 72q7N71 —5 -5 7ﬂ —5—
x N As,x i |:q ]11(1 +r%> TN (1+r}”\’]7.1) quleNj|
q— - q—
N—s\"2?N—-sN-—s
=(N-1)
q—N qg—NN-1
_ 4=l (Ny_py_24—N-1
k(1 i) W27 v-n+24
Nos\— Sy (N-2)- iy - 2-5- (2:3)
_ (1 _|_r/vfi) =N N T (N =D
Next, since
N—-1 N—-1
N—s\ ~g=N N —1 N-s\—o—ny—1 N—s N—s X
VY, =V (14 ¥ ) 7 = S () vt
q—N N—1 [x|
we get that

N_ N —s _q_;lN —5
/ !VVq}Ndx=< ]j) / (1 B A ) Y
RN q — RN

_ N o0 s _L_IN s
= <N s> a)N—l/ <l +r%) N AN NS,
qg—N 0

We perform the same change of variables again:

=\ N—1/1 ]
_t —5 — _t —5 —
t = ~ thatisr = (—) and dr = (—) . —zdt,
1 4y t N —s t t
and obtain
/ AR
RN
N—1(N—s\" Doty (1= \ V= w1V g\ A= (VD
= (=) o[ ()T ()
N—-s\gq—N 0 t t

N—1/N-=s\" U g

_ < s) Q)N—I/ fgN-N 1(1 HN-1
N—-—s\gq—N 0
N—1/(N-s\"

:N_s q—N C()N,]B fN N,N
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1702 N.Lam, G. Lu

N—-s\g—N (5+1) r(N(q—n)
N2-N
_(N—S)N_IN—1< N )N na¥ T (AT
_ N _
N N q—N r(7_|_1) F(Nq(le))
_(N—s)N_lN—1< N )N Nr% T(N)
- _ N _
N N \¢-N) T(&F+1) I]cV:1<N(liNl) k)
Hence, as ¢ — oo
N
Nm? I'(N) 1

N-1 vV, [V dx = (N = 1) (N — s)N-!
7 /m' q = ( (N =) F(3+) IV W=k NN =1
N

_(N=9"' Nx
B N r¥+1)

In other words,

N
v,V dx =
/RN| ol ax N o r(¥+1
2

Now, we consider the limit when g || N of
r qN—l>

qg—N q q—
N1 In{ —— In| —————
n(Nﬁ)+n<q—N>+n(p(uN_2>

- <3v_¢l‘nv>N (7%%) Fquz)

We have
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Hence
(52) (25) )
Nom) Na=N F(T_I(F—ZN)
N—
q g(N —1—k)+ Nk
| )
(Nﬁ)N E g-N
N—1
(Nf) H(q(N—l—k)—I—Nk)
N N-—1
(N\/_)NH(N(N—I—kH—Nk)
_ \N-1
=LN[N(N—1)]N_1=%
(Ny7) (V)
Soasg | N,
N r(qd= _ V-1
Nln(q N)—I—ln( A )—l—ln 4 %ln(%).
VSN () (V)

Lemma 2.3 For0 <s < N and b > 0, we have

/ (Nbl |%’f) dx N-1/1 Nilr(N 1

ex — X - = WN-— —_— —

o P k- Vv =5 \ Vb

)N
N—s

/ ‘Vexp<—b|x|~—n)

]RN

Proof We first consider the integral

N—s
/ ‘exp (—b |x|N=T
RN

N—s
In ’exp (—b [x] Nfl)

oy dx 0 Nt
/ exp (_k [x] ) 5 = a)N—lf exp (—kr )r Sdr.
RN x| 0

1
By the change of variable t = kr", thatis r = (%)” t7 and dr = (%)" %t%_ldt, we
get
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N—1—s 1
dx © 1 " N-1-s (1\7 1 1
—k |x|" = wN_ - T (=) = ldr
Jy e i) i =on [ e () (i)
L1\ 7 [
n N—s
= wN_1— (—) f exp (—1) ton T la
n \ k 0

N—s

=wN11<1) ' r(N_S). (2.6)
n \k n

Similarly,

n n dx © n\ .n+N—1—s
exp (—k [x] ) [x| T = ON—1 exp (—kr )r dr
RN |x] 0

nt+N—1-s 1

/00 Co(L) T e () Ly,
= WN_ eXxX —_ — n - —tn
N—1 ) p X X "

N—s

11\t Nes
= wN_]1— <7> / exp(—t)t n» dt
n \k 0
1\ N —
= wy_1— (7) r ( 'y 1) . 2.7)
n \k n
Hence
/ ( Nb| |%> dx N-1/1 N_IF(N 1 (2.8)
exp (— x| N= =oy_1— | — -1, .
v P xF ~ NN =5 \ Ve
and

/RN exp (b 1x1¥5)| " in fexp (< 11| |i)|c

N=s N—s dx
- —b/ exp <—Nb |x|N—l> x| ¥ 2
RN x]®
b NoT(1 NF(N) (2.9)
= —DWN-— e . .
NN =5 \ Vb
Also, since V exp (—b |x|%> =-b %j exp (—b |x|N:§) || M= 1 ﬁ’ we get

N—s N
/ ‘Vexp (—b |x|m)’ dx
]RN

I
Y
S

=
[
| 2
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N —s N N-—s N—s dx
=|b exp( Nb|x|N1>|x|Nl
N —1 RN [x|®

N—s\" N—1/1)\"
:<bN—l> wNilN—s(N7b> I'(N). (2.10)

3 Weighted Moser-Onofri-Beckner Inequality: Proof of Theorem 1.1

Proof of Theorem 1.1 By Lemma 2.1, we have

1-6 1-6

L — —
(Jrn |V”|Ndx)N0 (f]RN vl %) ! (fRN [VVy | dx) (fRN Vgl \xP) !
N—1 =
Ng-1 Nig-D m
(fRN lv| N1 Iifs) ! ( Ixﬁ) !

where

’

N-1

V, (x) = (1 +|x|%)_”.

Let u be a smooth compactly supported function such that fRN udpy,s = 0 and set

N -1
vy =Vy 1+ Ng u).

We have that

q—N N(q 1)
(f]RN |Vvq}Ndx>N(Nl> ( RN |”q|q xI° ) - Jaw [vg| ™ Sc_xf

Sy |VV‘7|N S Vel Ii}lcf Jrw |V¢1|ﬁ L

First, we have by (2.1)

lim V| V= = lim 1+ |x| 5=

p—>00 JpN |x]’ p—00

f (1+1 I%)_N & 1
RN * IxI* N s ON-L

N=1 N(g=1)
e Ay (14 1) dr
RN

and

) N(q 1) dx ) N(q 1) N —1 Nlel
lim |vq| lim |V | 1+ u
P00 x| pooo Ng

N—s\—N dx
[ i e
RV [x|®
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SO
Na dy

Jrw [vg] F / ot
fRN|Vq|Nadx RY i oN-1

x|

Also, by (2.2), when g — oo

g dx oy—1 1
|Vq| s NN —
RN Ix|I*  N(N-—s)q

lim ]v ]q dr =
g—o0 Jgn 1T xS '
but
\Y
i Jry |Uq|q% . Jen |V‘1|q (1+NN_611”) Ii)lcs |
im ———— = lim =1.
4= [en |Vl |i)\cs a—ee Jav Vel ﬂ%
Now, with
N —1
Xy=\(1+ Ng ul|Vy,
y,=N"1yy
e 7RO
then

N—1\" N2 N—1)\"
w) + Vg |VV [T TV, V(14 N
q

9, = 9w, (1+ )

+RN (Xg, Yy) -

We estimate the second term as follows:

N
N-2 N -1
Ve |VVe|" TV, -V 1+ u
RN Ngq
N
N -1 -
= (1+ w) v (Velwve|* vy,
RV Nq

/ pp Nt N|VV|N / Nt NVAV
= — u - u .
RN Ng ! RN Ng 9oNTa

Thus,

N N—-1)\"
/RN’VU(A =—/RN(1+ Na u> VqANVq—i—/RNRN(Xq,Yq).
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Now, we note that

N1 q q

N-1 N-—1 Nes\—gsw I N —s  Nves | ox
—(1+ 5—u)q (14 o7 it

qu

Ng q—N N —1 [x]
Nos g X 1
— —(N —9) |x|¥-17 ——————F—ae.a8q — O
x| 14 |x| V=1

and

N —

Nq a

As a consequence, both X, and Y, in Ry (X g Yq) are of the order of é Hence, when
qg —> 00

—s 1 N -1
qN’RN (Xq, Yq) - Ry |[—(N —5) le%_1 X > Vu
Xl g xyv=t N

=Hy (x, Vu).

Next, we have from (2.4) that

_/ V,A V—/ vy, [N ax = (X2 i S
N qANYVg = o q = N F(%) q >

and from (2.3) that

gV, ANV,

=qN_1(N—1) N-s\"2*N-—s gq—1N-—s
q q—Ng—NN -1

N—1_ g-1 2g—N-1
Nos\— 7N~ avN-2D—"—F— 1= 1-
x (1 +rﬁ> =N a=N N T (V=225

N—1 N-s\"?*N-sN-—s
—q¢  (N=1D
qg—N gq— NN —1

N—-1 -1 -1
—7‘1—(1\/72)7;7—,\,

(14 )

' 7N -5 -5 —S 7N+1 —5 —5—
e () RO (1 8 e

1— 2-5-N
FvT (V-D)+ 555

—s\—N —s —s —s —s—
= (N — S)N (1 +r%—’ ) rli’—l(Niz) I:rZI{I—I — (1 + ]/'II:]/—] ) er—lN]
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NN 1
=— (V=N (14r5) T

rS

=—(N— s)N_l WON—1N,s 85 ¢ — OO.

Hence

1 N-1 1
_/RN VqANundx:qN—_l(N—s) wN_lANudMN,S+O(qN_1>

So

/ Vo, [ / <1+NN_1 + (1>>VA v, / Hy (x, Va)
v = — u o\ — N N N (X, VU
RV RV Nq q TGN Jrw

N 1 1
:/RN|VV¢,| dx—i—q—N/H%NHN(x,Vu)dx—l—o(q—N).

Letting ¢ — oo, we can deduce that

qg—N
N(N—1)
N o\ WD
Jen [ Vg | dx ~ iy Jev Hy (x, Vi) dx
Jrw |VVq|Ndx (M)N_I—NVN’ZJT%i
N N
r(%)
NN -1 ey
_ N(N-1)
~ (1 + ¥a1\/,3/ Hy (x, Vu) dx)
q RN
A exp [aN,S / Hy (x, Vu) dx} .
RN
Here
1 1 ( N )N—l r (&)
oy = = .
T NN -1 (N—s)N—l INN-275 N —s Z(N—l)NN_IJT%

N

r(%)

Finally, putting everything together, we obtain that with fRN uduy s = 0, then

/ e'duy.s < exp [aN,s/ Hy (x, Vu)dxi| .
RN RN

4 Weighted L" -Logarithmic Sobolev Inequality: Proof of Theorem 1.2

Proof of Theorem 1.2 We first recall that from Theorem A, we obtain
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1 q 1
~ (=) de \ 7 de \ /7
/ \Vu|V dx / | = CKN(N,s,q,r)i(/ u|” x) .
RV RV [x|® RN

xI®

Hence

1
v d
(1——)ln</ |Vu|Ndx) +21n<f ujq <
r RN r RN
1

W)q +1In(CKN (N, s, q.r)

Equivalently,

1

1 dx )7
N N ( N ul” —s)
1 ey [Vl dX)] > - 1q In Jo 1”5 Fo 1q1n(CKN(N,s,q,r))-
(fRN ME I%)tl r (fRN |u|? %)q r
Noting that r = N4=" we have | — 4 = Nq(;ivl) and
1
" (frn IVl dx) ™
T
(fi 1?5 )"
1
rodx \r
_N@-bh (fRN lul W) _N@-D
q—N

- I In(CKN (N,s,q,r)).

dx ¢ q-
(fRN |u|l] W)

Itisclearthatasg | N

=z~
Z|—

Uy IVl )

(S 1l %)

(Jiex [Vul™ dv)

(Jan 1™ )

— In

Q=
z|—

and by (2.5)

N(g—-1

1 N —N 1 N@—-11 N
= —1In +In =7 + —1In 4 + 4 )—1n<
N’ N —s JT N qg—N qg—N r q
1 (T (=) (F )
+—1In .

q
P (%A ) rav

In(CKN (N, s,q,r))
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N-1 N
—>i1n< N )+l1n (N—1) N1 r(f+1)
N’ N —s N (ﬁ)N N N I'(N)

=SL(N,s).

Now, we consider the limit when g || N of

~|—

1 (fRN |u|" %)

= 4 1 dx
In _ ¥an (oo 151 ) = i (few at? 55)
g—N 1 qg—N '
(fRN lue| 7 |x\‘)

By L’Hospital’s Rule, it is equal to

N(q 1)IRN|M| N 1]n|l't|1\ji% N -1 | </ | |N1[\1/711 dx)
n u|" =
NI=L gy — 1?2 x|®
(for V7 85 Ng—-1>" \Up |
& S ul? 10 ful
RN s 1 dx
— q x| + _211.1 / |M| — .
( dX> q RN x|
|x|®
Noting that [py [u|™ | i = 1, we get
1
U (v &) 1 . Vo dx
In — / [u]™ In - — [u]|™ In |u|
qg—N N —1 Jpn xI* N JrNv |x]®

@MMMQL

—————/WW &
S N(N-1) Jgy [x|*”

Putting everything together, we obtain

d
In(SL (N,s)/ [Vu|N dx 2/ lul™ In JuY al .
RV RV |x]*

Now, with

U (x) =exp (—b [x| xj) ,

where
N
N2
r(

N—IT(N—-1
)N—s NN-T

b>0and bV =

D=
+
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we have by (2.8), (2.9), and (2.10) that

1 N N N
ln(/ |VU|Ndx>N—lln (N_s) N2 N_l(i) I(N)
RN N N-1) T(§+1)N-s\N

N—1_ N-s 1 I'(N) 1.z
n —In— 4+ —In———,
N N-1 N r(%+1) N NN-I

oz

and

/ oo &=L, Nt NF(N)
RN T L A WY

__N—l(i)NF(N) NxT T(¥+1)W -5 NN
N—s\N F(3+1) NeZ2 (N =T (N =1)
N-1

Hence

d
In SL(N,s)/ VUM dx :[ N juN 25
RN RN |x]®

5 Weighted L?-Logarithmic Sobolev Inequality for 1 < p < N

Proof of Theorem 1.3 By Theorem B, we have

a 1—a
d P d q
(/ |Vu|1’—xﬂ)’(/ ul? ’Z)q CKN (N, 11,5, p.q.1)
v e " ]
dx 1/r
> / )
RN x|

Hence

dx % 1—a dx é 1
In [Vul? +{—)In [u|? +—InCKN (N, u,s,p,q,r)
RN [x|* a RN lx|® a
1 d 1/r
> —1In / lul” — ,
a R¥ [x|®
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and

S| =

1/r
dx
1 (f]RN |u|r W)

T +;lnCKN(N,,u,s,p,q,r)Z;1n T

(f Iul? %)q (fan lul? )"

5.1

Now, we will consider the limiting process when g | p of (5.1). In this case, it is easy
to see that

In

=

dx \7
— In (/ |Vu|P — )
RN x|*

(fRN |Vu|[7 %)

I

(fRN Jul? |x|3>q
Now, by L’Hospital’s Rule, we get

. %ln(fﬁN“”ruv)"%ln(JkN|“||xP>
lim

qlip q—p

In

Sy lae]" Infae| &5

-2 5 In (fRN |1/l|r QA) + 1 171 - d)cl)cIY

(p—Dr x| rp— fRN|u|rW
= lim :
e lul? Injul (&5

qlip 1 dx 1
+—ln< lu|? —X>———
42 fRN [x] q (fRN|u|q%)

1 d
:77___/ ulP In [u]? — .
pe(p—1) Jry x|’

Hence,asq | p

1/r
d.
1 (hﬂMHﬁ> 1 dx
—ln—l—)ﬁ |u|pln|u|p| |g'
a ( dx \ ¢ RN x|
S lul? W)

Now, we will consider the limit problem

hm—lnCKN(N W, S, p,q,r).

qlp a

First,

L N—p \Ehetaa
lim — In (—>
qlpa N—-—p—pn

.p—1 N-p .11 (g—p)(N—p) N-p

= lim In lim — In
alp p N—p—u glpaq—1plpg—N (g—p)] N—p—u

N —1 N—p
= ln .
N N—-—p—pn
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Next, by L’Hospital’s Rule

1
1 Np—q (N —p)\’
lim=In| ——™W— 2
glpa rq
i P DIPg-NG@=pIrl 1 (Np—q (N—p)) __=1
alp Np r(q—p) pq P
Also
¥
r%+1 1 r%+i1
lim — In # — —n 2—)
alpa F(NPleH) N F(NijlH)
Finally, let us consider the limit
a p—1 N
1 q-r\* Pq (T qq_,,)
lim — In
qlpa pT N(g—p) r (P_—1L>
P q—p
- 1
1 p=l N
. q—p pq g r (qq p)
= limIn
aip pym ) \N(q—p) r (p_—lw)
p q—p
— 1 %
p—L
. 1 PaN\ s -1 F(qqu)
=limln | (| —= (—) g—p) *
qlp pJmT )\ N r (p_—l Np—q(N—p)>
q—p
Noting that with n = q% — ococasq | p,and 7z = —NPTTI, we have by the

asymptotic approximations of the gamma function and by the Stirling’s formula that

— lasqg | pandn — oo.

< qg—7p )N(lzlz) r (q%) _ T(Nn?
g(p—1 F(p_—le—q(N—p)> " I'(n+2)
q=p

Hence

<L

—
—~

Q

— |
I

==
N—
=z

lim + In <q_p>a< Pq )

qlp a P N (g —p) r (
=1 1 P2 % 1 17%
= In (m) (W) [P (p - )] .
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Combining all the estimations, we obtain

1 d 1 d.
“In / [Vul? i f/ [P In [u|P Rl
p RN x| N JrN |x|¥

1

B - Es 1
Nop 1\ 5 F(%J“]) VA p?\” 1-1

5™ 0 () G o
N-p—n e F(N’%Jrl) pvT )\ N

Equivalently,

N dx dx
—In | LS(NV, p, n) |V'4|p—u > lul? In |u|P —.
p RN x| RN x|

Moreover, using the identities (2.6) and (2.7), we can check that

N dx dx
—In { LS(N, p, n) |VU|P—M = U In|U)P —,
p RN x| RN x|

where
N—p-—p p

U (x) = exp (—b |x| ~-p 1’1> ,

with
| NrY (N—py(p—1) (1N 1
P— —_ —_ —
b>0and b7 = — PP (-) I‘(Np—).
r(z+1) W=p-—mwp \p p

O
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