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Abstract In this work, we give new sufficient conditions for Littlewood—Paley—Stein
square function operators and necessary and sufficient conditions for Calder6n—
Zygmund operators to be bounded on Hardy spaces H?” with indices smaller than
1. New Carleson measure type conditions are defined for Littlewood—Paley—Stein
operators, and the authors show that they are sufficient for the associated square func-
tion to be bounded from H?” into L”. New polynomial growth BM O conditions are
also introduced for Calderén—Zygmund operators. These results are applied to prove
that Bony paraproducts can be constructed such that they are bounded on Hardy spaces
with exponents ranging all the way down to zero.
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1 Introduction

The purpose of this work is to prove new Hardy space H” (R") bounds for Littlewood—
Paley—Stein square functions and Calder6n—Zygmund integral operators where the
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index p is allowed to be small. Part of the novelty of the work here is that it draws
an explicit connection between Calderén—Zygmund operators and Littlewood—Paley—
Stein square functions.

It is well known by now that one way to define the real Hardy spaces H? for
0 < p < oo is by using certain convolution-type Littlewood—Paley—Stein square
functions. This has been explored by many mathematicians; some of the fundamental
developments of this idea can be found in the work of Stein [20,21] and Fefferman and
Stein [10]. In particular, Fefferman and Stein proved that one can define H” = H? (R")
using square functions of the form

1

So f(x) =(Z|Qkf(x)|2) :

keZ

associated to integral operators Qx f = v * f for an appropriate choice of Schwartz
function ¥ € ., where Yy (x) = 2kn w(ka). There are also results in the direction of
determining the most general classes of such convolution operators that can be used to
define Hardy spaces, or more generally Triebel-Lizorkin spaces; see for example the
work of Bui, Paluszyriski, and Taibelson [4,5]. Generalized classes of non-convolution
type Littlewood—Paley—Stein square function operators were studied, for example, in
[8,9,19]. Although all of the bounds in these articles are relegated to Lebesgue spaces
with index p € (1, 0co), which for this range of indices coincide with Hardy spaces.
In the current work, we consider a general class of non-convolution type Littlewood—
Paley—Stein square function operators acting on Hardy spaces with indices smaller
than 1.

Before we state our Hardy space estimates for Littlewood—Paley—Stein square func-
tions, we define our classes of Littlewood—Paley—Stein square function operators.
Given kernel functions A : R? — C for k € Z, define

Arf(x) = /R Mc(x, ) f(V)dy
for appropriate functions f : R” — C. Define the square function associated to {A}
by

1

Saf(x) = (Z |Akf<x>|2) :

keZ
We say that a collection of operators Ay for k € Z is a collection of Littlewood—Paley—

Stein operators with decay N and smoothness L+6, written {Ax} € LPSO(N, L+$6),
for N > 0, an integer L > 0 and 0 < § < 1, if there exists a constant C such that

(e, )| < C Y (x — y) (1.1)
| DY (x, y)| < C21* N (x — y) forall || =y + -+ ay < L (1.2)

Birkhduser



J Fourier Anal Appl (2016) 22:159-186 161

| DY, ) = Du(x, )| = Cly = v/ P2 (0 (v = y) + 0 (r = )
for all || = L. (1.3)

Here we use the notation dDII(V(x) =211 4 2Kx)"N for N > 0, x € R*, and k € Z.
We also use the notation D F(x,y) = 9¢F(x,y) and DYF(x,y) = 8;‘F(x, y)
for F : R* — Cand « € Ng. It can easily be shown that LPSO(N, L + 8) C
LPSO(N',L+68)forall0 <8 <8§<1and0 < N’ <N.

Our goal in studying square functions of the form S, is to prove boundedness
properties from H? into L?. Note that it is not reasonable to expect S to be bounded
from H” into H” when 0 < p < 1 since Spf > 0. It is also not hard to see
that the condition {Ax} € LPSO(N, L + §) alone, for any N > 0, L > 0, and
0 < § < 1, is not sufficient to guarantee that S to be bounded from H? into L? for
any 0 < p < oo. In fact, this is not true even in the convolution setting. This can
be seen by taking Ax(x, y) = @r(x — y) for some ¢ € % with non-zero integral,
where @ (x) = 2k"cp(2kx). The square function S, associated to this convolution
operator is not bounded from H?” into L? forany 0 < p < oo. Hence some additional
conditions are required for Ay in order to assure H” to L” bounds. For 1 < p < oo,
this problem was solved in terms of Carleson measure conditions on Ay 1(x); see for
example [6,7,17,19]. We give sufficient conditions for such bounds when the index p
is allowed to range smaller than 1. The additional cancellation conditions we impose
on Ay involve generalized moments for non-concolution operators Ag. Define the
moment function [[Ag]]g(x) by the following. Given {Ay} € LPSO(N, L + §) and
a € Nj with |a| < N —n

[[Ax]ly (x) = 2k /R M (x, V) (x — y)*dy

fork € Zand x € R".Itis worth noting that [[ Ax]]o(x) = Ax1(x), which is a quantity
that is closely related to L? bounds for Sy, see for example [8,9,19]. We use these
moment functions to provide sufficient conditions of H” to L? bounds for S, in the
following theorem.

Theorem 1.1 Let {Ay} € LPSO(N, L + ), where N = n + 2L + 28 for some
integer L >0and0 < § < 1. If

dpe (e, 1) = D AN (0 8,2p-k dx (14)
keZ

is a Carleson measure for all o € Nj with |a| < L, then Sy can be extended to a
bounded operator from H? into L? for all n+”T+5 <p=<l

Here we say that a non-negative measure du(x, ) on R’fl =R" x (0,00) isa
Carleson measure if there exists C > 0 such that du(Q x (0, £(Q))) < C|Q] for all
cubes O C R”, where £(Q) denotes the sidelength of Q. We only prove a sufficient
condition here for boundedness of S from H? into L?, but it is reasonable to expect

Birkhauser



162 J Fourier Anal Appl (2016) 22:159-186

that the Carleson measure conditions in (1.4) are also necessary. We hope to resolve
this issue entirely with a full necessary and sufficient condition in future work. We also
provide a quick corollary of Theorem 1.1 to the type of operators studied in [8,9,19],
among others.

Corollary 1.2 Let {A;} € LPSO(n +268,8) and 0 < § < 1. If Sp is bounded on
L2, then Sy extends to a bounded operator from HP into LP for all n"ﬂ <p<lLl

Corollary 1.2 easily follows from Theorem 1.1 and the following observation. If
S, is bounded on L2, then duo(x, 1), as defined in (1.4) for « = 0, is a Carleson
measure; see [6,17] for proof of this observation.

Another purpose of this work is to prove a characterization of Hardy space bounds
for Calderén—Zygmund operators. Some of the earliest development of singular inte-
gral operators on Hardy spaces is due to Stein and Weiss [22], Stein [21], and
Feffermand and Stein [10]. It was proved by Fefferman and Stein [10] that if T is a
convolution-type singular integral operator that is bounded on L2, then T is bounded
on H? for pg < p < oo where 0 < pg < 1 depends on the regularity of the kernel
of T. The situation is considerably more complicated in the non-convolution setting,
which can be observed in the T'1 type Theorems in [1,8,12,13,23]. In the 1980’s David
and Journé proved the celebrated 7’1 theorem that provided necessary and sufficient
conditions for Lebesgue space L?” bounds for non-convolution Calderén—Zygmund
operators when 1 < p < oo, which coincides with the Hardy space bounds for this
range of indices. In [12,13,23], the authors give sufficient 71 type conditions for a
Calderén—Zygmund operator to be bounded on H? for 0 < p < 1. The conditions in
[12,13,23] are too strong though, in the sense that they are not necessary for Hardy
space bounds. The fact that the conditions in [12,13,23] are not necessary can be
seen by comparing to the full necessary and sufficient conditions provided in [1] when
po < p < 1,where pp = -7-1/ and y is aregularity parameter for the kernel of 7'. This
can also be seen by considering the Bony paraproduct, which we prove (in Theorem
1.5) is bounded on H? for py < p < 1 and pg can be taken arbitrarily close to zero.
One of the main purposes of this article is to prove at full necessary and sufficient
T'1 type theorem for Calderén—Zygmund operators on Hardy spaces (Theorem 1.6),
thereby generalizing results pertaining to H” bounds from [1,10,12,13,23].

We say that a continuous linear operator 7' from .# into .#" is a Calder6n—Zygmund
operator with smoothness M + y, for any integer M > O and 0 < y < 1, if T has
function kernel K : R?"\{(x, x) : x € R"} — C such that

(Tf, g)= /Rzn K(x,y)f(y)gx)dydx

whenever f, g € Cg° = Ci°(R") have disjoint support, and there is a constant C > 0
such that the kernel function K satisfies

a B
|5 DK e )| = oy o all ] < 1,
B B C|x—x/|7/
(D5 DK (. 3) = DEDYK (.| = i for ] < o
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=M, |x —x'| <|x —yl/2,

Cly —y'l"
|x _y|n+|a\+M+y

DYDY K (x, y) — DYDY K (x, y)| < for || < |A|

=M, |y—y|<lx—yl/2

We will also define moment distributions for an operator T € CZO(M + y), but we
require some notation first. For an integer M > 0, define the collections of smooth
functions of polynomial growth Oy = Oy (R™) and of smooth compactly supported
function with vanishing moments Djy; = Dy (R") by

Oy = [f e C®M®") : sup |f(x)]- A+ |x|)_M < oo] and

xeR?

Dy = [f eC{)’O(R”):/ f(x)x%dx = 0 for all |« SM].
Rn

Let n € C3°(R") be supported in B(0,2), n(x) = 1 forx € B(0,1), and 0 <
n < 1. Define for R > 0, nr(x) = n(x/R). We reserve this notation for n and ng
throughout. In [12,13,23], the authors define Tf for f € Oy where T is a linear
singular integral operator. We give an equivalent definition to the ones in [12,13,23].
Let TbeaCZO(M + y) and f € Oy for some integer M > 0and 0 < y < 1. For
¥ € C°(R"), choose Ry > 1 minimal so that supp(¥/) C B(0, Ro/4), and define

B

Dy K (0,
(Tf.9) = lim (TG [).9) = 3 /]R %xﬁ(me(y) = 1R DS (Y (x)dy dx.

|Bl=M

This limit exists based on the kernel representation and kernel properties for 7 €
CZO(M + y) and is independent of the choice of 1, see [12,13,23] for proof of this
fact. The choice of Ry here is not of consequence as long as Ry is large enough so that
supp(¥) C B(0, Ry/4); we choose it minimal to make this definition precise. The
definition of (7' f, ¥) depends on v here through the support properties of ¥ € C¢°,
but for ¢ € Dy, it follows that (T f, ) = limg_. o (T (ng f), ¥) since the integral
term above vanishes for such 1. Now we define the moment distribution [[T']], € D;W
forT € CZO(M + y) and o € Njj with || < M by

LT ) = Jim [ It 9 me(3) s = )"y d

for Y € Dy, where K € .77(R?") is the distribution kernel of 7. We abuse notation
here in that the integral in this definition is not necessarily a measure theoretic integral;
rather, it is the dual pairing between elements of . (R?") and . (R?"). Throughout
this work, we will use K to denote distributional kernels and K to denote function
kernels for Calderén—Zygmund operators. When we write X in an integral over R>",
the integral is understood to be a the pairing of X € .#/(R*") with an element of
. (R?"). 1t is not hard to show that this definition is well-defined by techniques from
[12,13,23]. This distributional moment associated to 7 generalizes the notion of 7'1
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as used in [8] in the sense that ([[T]]o, ¥) = (T1, ¢ ) for all ¥ € Dy and hence
[[T1lo = T1. We will also use a generalized notion of BM O here to extend the
cancellation conditions T'1, T*1 € BM O, which were used in the 7'1 Theorem from
[8]. Let M > 0 be an integer and F' € D), /P, that is D}, modulo polynomials. We
say that F € BM Oy if

> MK O F () dx 8,y
keZ

is a Carleson measure forany ¥ € Dy, where QO f = Y f and ¥y (x) = 2K (2K x).
This definition agrees with the classical definition of BM O. That is, for F € BM Oy,

D QkF (x)1*dx 8,y

keZ

is a Carleson measure, and hence F € BM O by the BM O characterization in terms
of Carleson measures in [6,17]. A similar polynomial growth BM Oy, was defined
by Youssfi [24]. We use this polynomial growth BM Oy, to quantify our cancellation
conditions for operators T € CZ O (M + y) in the following result.

Theorem 1.3 Let T € CZO(M + y) be bounded on L* and define L = | M /2] and
§=(M—2L+y)/2. If T*(x*) = 0in D}, forall || < L and [[T]le € BM Oy

forall |a| < L, then T extends to a bounded operator on H? for H+"T+a <p=<1L

Recall here that the operator T* is defined from .% into .’ via (T* f, g) = (T'g, f),
and the definition of T* is extended to an operator from Oy to D), by the methods
discussed above. Note also that this is not a full necessary and sufficient theorem
for Hardy space bounds as described above. This theorem will be used to prove the
boundedness of certain paraproduct operators, which in turn allow us to prove the full
necessary and sufficient theorem, which is stated in Theorem 1.6 at the end of this
section.

The choice of L and § here are such that L > 0 is an integer, 0 < § < 1, and
2(L +68) = M + y. Itis also not hard to see that 7*(x*) = O for all |«| < L if and
onlyif [[T*]], = Oforall || < L. We prove Theorem 1.6 by decomposing an operator
T € CZO(M + y) into a collection of operators {A;} € LPSO(n+2L+28, L+6')
for 0 < 8’ < § and applying Theorem 1.1. This decomposition of T into a collection
of Littlewood—Paley—Stein operators is stated precisely in the next theorem.

Theorem 1.4 Let T € CZO(M + y) for some integer M > 0 and 0 < y < 1 be
bounded on L?, and fix ¢ € Dy. Also let L = |[M/2] and 8 = (M — 2L + y)/2.
If T*(x*) = 0in D), for all |a| < L, then {Ar} € LPSO(n +2L +28,L + &)
forall0 < &8 < 8, where Ay = Qi T and Q. f (x) = Yy * f(x). Furthermore, for
wrrss < P < 1, T extends to a bounded operator on HP if and only if S extends to
a bounded operator from H? into LP.

Throughout, we write L? = LP(R") and H? = HP(R") for0 < p < oo. We will
also apply Theorem 1.6 to Bony paraproducts operator, which were originally defined
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in [3] and famously applied in the 7'1 Theorem [8] (see also [2]). Let v € Dy 4 for
some L >0and ¢ € Cgo.Deﬁne Ovf =Yrxfand P f =g f.ForB € BMO,
define

Mpf(x) =Y 0;(QiB-Pif)x). (1.5)

JEZL

It easily follows that ITg € CZO(M + y) forall M > 0and 0 < y < 1. Itis well
known that l'[:g(l) = 0, and if one selects ¥ and ¢ appropriately, it also follows that
[Mg(1) = Bin BM O as well. We are not interested in an exact identification of ITg(1)
in this work, so we don’t worry about the extra conditions that should be imposed on
Y and @ to assure that ITg(1) = B.

Theorem 1.5 Let Tlg be as in (1.5) for p € BMO, ¥ € D11, and ¢ € Ci°. Then

I is bounded on H? for all ;—j— < p < 1.

By Theorem 1.5 it is possible to construct I1g so that it is bounded on H? for p > 0
arbitrarily small by choosing ¥ € Dy for L sufficiently large. It should be noted
that some Hardy space estimates for a variant of the Bony paraproduct in (1.5) were
proved in [15]. The paraproduct operators constructed here are different from the ones
constructed in [15]. So we provide a proof of Theorem 1.5 to verify the Hardy space
boundedness of the Bony paraproducts we use in this work. Finally, we state the first
necessary and sufficient boundedness theorem for Calderén—Zygmund operators on
Hardy spaces.

Theorem 1.6 Let T € CZO(M + y) be bounded on L* and define L = | M /2] and
8§ =(M—=2L+y)/2. Then T*(x*) = 0in D), forall || < L ifand only if T extends
to a bounded operator on H? for n-l-nT—HS <p<1l

Note that Theorem 1.3 is made obsolete by Theorem 1.6. We state Theorem 1.3
separately since we will use it to prove the stronger Theorem 1.6. More precisely, we
will prove Theorem 1.3, apply Theorem 1.3 to prove H? bounds for Bony paraproducts
in Theorem 1.5, and finally we will prove Theorem 1.6 with the help of Theorem 1.5
and a result from [12,13,23]. In this way, Theorems 1.3, 1.5, and 1.6 are proved in
that order, with each depending on the previous results.

The rest of the article is organized as follows. In Sect. 2, we establish some nota-
tion and preliminary results. Section 3 is dedicated to Littlewood—Paley—Stein square
functions and proving Theorem 1.1. In Sect. 4, we prove the singular integral operator
results in Theorems 1.3 and 1.4. In Sect. 5, we apply Theorem 1.6 to the Bony para-
products to prove Theorem 1.5. In the last section, we use Theorem 1.5 and a result
from [12,13,23] to prove Theorem 1.6.

2 Preliminaries
We use the notation A < B to mean that A < C B for some constant C. The constant

C is allowed to depend on the ambient dimension, smoothness and decay parameters
of our operators, indices of function spaces etc.; in context, the dependence of the
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constants is clear. Recall that we define @,I{V x) = 21 4+ 2k|x|)_N . It is easy to
verify that (I)}(V (x) < CIJIICV (x) for N < N, and it is well known that

N N N
@7k D (x) S Pyinj ) (X)-

We will use these inequalities many times throughout this work without specifically
referring to them.

We will use the following Frazier and Jawerth type discrete Calder6n reproduc-
ing formula [11] (see also [16] for a multiparameter formulation of this reproducing
formula): there exist ¢;, é ; € 7 for j € Z with infinite vanishing moment such that

fO =22 101¢i(x—co)p;* f(co)in L? Q.1)

JEZ p(Q)=2~UtNo)

for f € L?. The summation in Q here is over all dyadic cubes with side length
Q) = 2-U+No) | where Ny is some large constant, and ¢y denotes the center of
cube Q. Throughout this paper, we reserve the notation ¢; and é ; for the operators
constructed in this discrete Calderén decomposition.

We will also use a more traditional formulation of Calderén’s reproducing formula:
fix ¢ € C§°(B(0, 1)) with integral 1 such that

> Ouf=finL? 2.2)

keZ

for f € L?, where ¢/ (x) = 2"p(2x) —@(x), Y (x) = 2K (2Xx), and Q) f = Y f .
Furthermore, we can assume that ¢ has an arbitrarily large, but fixed, number of vanish-
ing moments. Again we will reserve the notation v, and Qy for convolution operators
with convolution kernels in D), for some M > 0. For this work, the most important
difference between the functions v and ¢ is that v is compactly supported, while ¢ is
necessarily not compactly supported. We will use formula (2.1) to decompose square
functions and formula (2.2) to decompose Calderén—Zygmund operators.

There are many equivalent definitions of the real Hardy spaces H? = HP (R") for
0 < p < co. We use the following one. Define the non-tangential maximal function

N? f(x) =sup sup

t>0 |x—y|<t

Lo =)+ fndal.

where ¢ € . with non-zero integral. It was proved by Fefferman and Stein in [10]
that one can define || f||gr = |IN? f]|Lr to obtain the classical real Hardy spaces
HP for 0 < p < oo. It was also proved in [10] that for any ¢ € . and f € HP for
0<p< oo,

Sfllae.
Lr

sup |gk * f|
keZ
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We will use a number of equivalent semi-norms for H”. Let ¢ € D), for some integer
M > n(1/p — 1), and let ¥ and Qy be as above, satisfying (2.2). For f € &%'/P
(tempered distributions modulo polynomials), f € H? if and only if

(Z|Qkf|2) < oo,

keZ Ly

and this quantity is comparable to || f||g». The space HP can also be characterized by
the operators ¢; and é ; from the discrete Littlewood—Paley—Stein decomposition in
(2.1). This characterization is given by the following, which can be found in [16, 18].
Given 0 < p < o0

D=

DD 18 fe)lPxo ~ [ fllur,

icZ —2—(j+Np)
JEL ((Q)=2-U+No o

where xg(x) = 1 forx € E and xg(x) = O for x ¢ E for a subset E C R”.' The
summation again is indexed by all dyadic cubes Q with side length £(Q) = 2~ (+No)
For a continuous function f : R” — Cand 0 < r < oo, define

r 2

M f(x) = M > fleore] |@f . 2.3)

2(Q)=2-U+No)

where M is the Hardy-Littlewood maximal operator. The following estimate was also
proved in [16].

Proposition 2.1 Foranyv >0, .2 <r <p <1l,and f € H?
1
5 2
> (M@ ) S If e,
JEZL »
where ./\/l; is defined as in (2.3).

The next result is a rehash of an estimate proved in [16]; their estimate was in the
multiparameter setting, whereas the one here is the single parameter version.

Proposition 2.2 Let f : R" — C a non-negative continuous function, v > 0, and

n
i <T < 1. Then

> lolopt (=) fleg) S 2TV MY £ (x)
2(Q)=2-"U+No)
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for all x € R"*, where M; is defined in (2.3) and the summation indexed by £(Q) =

2=U+No) s the sum over all dyadic cubes with side length 2~U+N0) gnd cq denotes
the center of cube Q.

Proof Define

AO = {Q dyadlc : E(Q) = 2_(j+NO) and |_x — CQI < 2_(j+N())}

A= {Q dyadic : £(Q) = 2 UTN0 and 20-1-U+N) — |y — ] < 2‘—<j+1v0>}

for £ > 1. Now for each Q € Ay

CI)"+U

2min(j,k)n
min(j,k) (x —co)

_ min(j,k)n jn
- (1+2min(j,k)|x_CQ|)n+u =2 =27,

and for each Q € Ay when £ > 1

2min(j,k)n 2min(j,k)n
qDﬂm—;lv(j,k) (x —cg)

T (042G Rx — g = (14 2mnGD l TGN iy
< pmin(j.k)ny—(n+v) min(j.k) g —(n+v)l+n+v+n+v)(j+No)
< pmax(0,j—k)vo—(n+v)yjn

Since | J, A¢ makes up the collection of all dyadic cubes with side length 2-G+No) it
follows that

> oIkl (= co) flcg)

min(j,k)
2(Q)=2-U+No)

— i Z 2—(j+N0)nq)n+u

min(j,k)(x —cg)f(co)
£=0 QeA,

g Z f(CQ)+2maX(0,j—k)v Zz—l(n+v) Z f(CQ)

Qe =1 Q€A

00 r
S 2max(0,j—k)v Z 2—K(ﬂ+l)) Z f(CQ)r

£=0 QecAy

For Q € Ay and y € Q it follows that

x —y| <|x — CQ| +y— CQ| < 2—(+No) + 2¢=(j—No) < 2+1=(j+No)
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Hence UQeAg 0 C B(x, 20+1=G+No)y We also have that |Ae| > 21=2). g0
U Q > 2—(j+N0)n2n(Z—2) — 2—2712([—(]‘4—1\/0))11 > |B(0, 1)|_12_2n|B(0, 2[—(j+N())|.
Q€A

Now we estimate the sum in Q above:

> fleo) <

» Mocs, 00 > fleg)dy

Och, — UQEA[ 0l UQEA@ ) QcAy
1
< 240" fleo) xo()dy
| UQEA( Ql UQeAg Q QeAy
Zén
< - d
~ |B(x’2£+1—(1+No))| B(x,2t+1-(+No)) QZA f(CQ) XQ(y) Y
E r
2 n
BGr, 205G e aev1-0no, > flepxow) | dy

Q€A
-

S2MI D] fleoixo | | @

Q€A

Then we have that
> lelep . (x—co) flco)
g(Q)zzf(jJrNo)

r ES

o
< pmax(0.j—ky Zz—anw—n/r) M Z fco)xo (x)
=0 QeAy

r LS

< gmax(Q.j—kw | g Z fleolxo (x)
£{(Q)=2-U+

O

We will also need some Carleson measure estimates for the result in Theorem 1.1.
The next proof is a well known argument that can be found in [6,17].

Proposition 2.3 Suppose

dpx. ) = D" pr(x)8,_p-x dx 24)
keZ

is a Carleson measure, where i is a non-negative, locally integrable function for all
k € Z. Also let ¢ € .#, and define P f = @i * f, where g (x) = 25 (2kx) for
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k € Z. Then

1

?
(Z |Pkf|1’uk) S llur forall 0 < p < oo

kGZ Lpr

and

1
2
(Z|Pkf|2,U«k) S flar forall0 < p <2.

keZ Lr

Proof Let f € HP, and we begin the proof of the the first estimate above by looking
at

/R 2P )P () dx

keZ

_ p/o du ([@c, 0 ‘/R o (x — ) f()dy

Define Ej) = {x : IN? f(x)| > A}, and it follows that

> A k”d—k.
A

[(m) : ‘ /]R TG = ) f()dy

> )»] C ’E\)L,
where E = {(x,t) : B(x,t) C E}. Therefore

e ~ dxr
/R D IPf OV dx < p / du(E)rr ==

keZ 0

o pdX 0 ;11D p
Sp | ExlA TZHN Fler = gp-
0

Here we use that d M(E) < |E| for any open set E C R", which is a well known
estimate for Carleson measures. In the case p = 2, the second estimate coincides with
the first and hence there is no more to prove. When 0 < p < 2, we setr = % > 1l and

then the Holder conjugate of r is /' = 52— . Now applying the first estimate above, we

2—p-°
finish the proof.

P

)
2 2
/ (Z|Pkf(x>|2uk<x>) dx < / sup|Pkf(x>|<2‘p”’/2(Z|Pkf(x>|1’uk<x>) dx
R" \ ez R™ & keZ

2
(Z |Pkf(x)pMk(x))
keZ

< ‘ ‘(wa)ﬂfp)l’ﬂ’

L’

Lr
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14
2

p(2—p)
i (/R Z|Pkf(x)pﬂk(x)dx)

keZ
2-p)/2 2/2
SHAEST P00 2 = 11118,

3 Hardy Space Estimates for Square Functions

In this section we prove Theorem 1.1. To do this, we first prove a reduced version of
the theorem.

Lemma 3.1 Assume {Ar} € LPSO(n + 2L + 26, L + 8) for some integer L > 0
and 0 <8 < LLIfA(y*) =O0forallk € Z and |a| < L, then ||Sa fllre S| fllar
forall f € H”ﬂLzand”+L+5 <p<L

We call this a reduced version of Theorem 1.1 because we have strengthened the
assumptions of from the Carleson measure estimates for (1.4) to the vanishing moment
type assumption above; Ag(y*) = 0 for |o| < L.

Proof Fixv € (n/p —n, L+ §), which is possible since our assumption on p implies
that;—n < L +34. Alsofixr € (0,1) such that .-~ <r < p.Let f € HP N L?,
and we decompose

+v

Acf(x) =D D101 * flco)Ar® (x)

Jj€Z Q

=" 371014; + f(e) / A B ().

JEZ Q

The summation in Q is over all dyadic cubes with side lengths £(Q) = 2~U+No),
Then we have the following almost orthogonality estimates

[ mnss oy

¢ D*¢° (x)
‘/R NI R OEY T(y—X) dy

lee|<L

< / QI (5 )2 |y — y[)L+d (q;’;_“”(y — o) + P (x — CQ)) dy
< QULAD(—H) /

(L+8)(j—k) gn+L+3
S2 ! (Dmm(] k)(x - CQ)

S (x = y) (O (3 = cg) + B (x — cg)) dy

n
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Also, using the vanishing moment properties of ¢ ;, we have the following estimate,

c D% (x, .
‘/Rn kk(x,y)qﬁjg(y)dy‘ = ‘/R M) = D %(ﬂc -0 ¢,°dy

la|=L

~

< / ¢Z+L+3(x _ y)(2k|y _ CQl)L+5¢?+2L+28(y _ CQ)dy
R"
+/ ¢Z+L+5(x _ CQ)(2k|y _ CQ|)L+6©7’+2L+26()7 _ CQ)dy

< QD)) / O (x — )@ (y —cg)dy

n

N 2(L+r3)(/<—j)/ O (x — c) @ (y — c)dy

n

(L+8)(k—J) gyn-+L+3
S2 ! q)?nin(j,k)(x —cg).

Therefore
' /R . y>¢;’Q(y>dy‘ <27 @ = co).

Applying Proposition 2.2 yields

A F OIS DD 10165 % fleg)2 FHIHartr . (x —co)
jezZ Q
S Z27(L+8)|j7k|2vmax(O,kfj)M}]’_(¢;j * f)(x)
JEZ
< D 2 VM@ + N0,

JEL
where € = L 48§ — v > 0; recall that these parameter are chosen such that v < L + 4.

Applying Proposition 2.1 to ./\/l;(q; j * f) (recall that r was chosen such that 1= <
r < p) yields the appropriate estimate below,

ISafllee S| 20| 2227V M@+ )

keZ | jeZ
Lr
1
2 2
S X i Mm@ )] S
J.keZ I
This completes the proof of Lemma 3.1. O
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Next we construct paraproducts to decompose Ag. Fix an approximation to identity
operator Py f = ¢ * f, where ¢ (x) = 2k”<p(2kx) and ¢ € . with integral 1. Define
fora, B € Nj

e 2

B—a
Mg = ) = ),/ ey Tdya=p

o % B

Here we say o« < § for @ = (ay, ..., n), B = (B1, ..., Bn) € Ng if o; < B; for all
i =1,..,n Itis clear that [M, g| < oo for all , B € Njj since ¢ € .. Also note
that when |«| = |B]

_[EDiPigra=g
Map = [o o # Bandlal = |B] G-b

We consider the operators Py D* defined on ./, where D is taken to be the distrib-
utional derivative acting on .. Hence P D* f (x) is well defined for f € .’ since
PDY f(x) = (pf, D* ) = (=DI*!(D¥(¢7), f)and D*(¢}) € .. In fact, this gives

a kernel representation for Py D%; estimates for this kernel are addressed in the proof
of Proposition 3.2. We also have

[[PeD*1]p(x) = 2\ /R ok (x — )35 ((x — Pdy =251 Mg, g.
For k € Z, define

AL F ) = Ap ) — [[ARDTo(x) - Pkf(x) and (32)

(m) (m—1) (m 1)]]m(x) «
AP e ="V = D (= pe e b0 el ppe o). 3.3)

loe|=m
forl <m < L.

Proposition 3.2 Let {Ay} € LPSO(N, L + §), where N = n + 2L + 2§ for some
integer L > 0 and 0 < § < 1, and assume that

dptg (x, 1) = D |[[AKTa ()8, —p-+ dx (3.4)
keZ

is a Carleson measure for all a € Njj such that |a| < L. Also let A,((m) be as in as in

(3.2) and (3.3) for 0 <m < L. Then A,Em) € LPSO(N, L + 8) for the same N, L,
and §, and satisfy the following:

(1) [[A{1]e = 0 for all @ € N}, with |a| <m < L.

Birkhauser



174 J Fourier Anal Appl (2016) 22:159-186

(2) dpum(x,t) is a Carleson measure for all 0 < m < L, where d i, is defined

dpm (e, 1) = D > IIA Tl (028, _y dx.

keZ la|<L

Proof Since {Ar} € LPSO(n+2L 428, L +§), we know that |[[Ax]]ly (x)] < 1 for
all |«| < L. Then to verify that {A,((m)} e LPSOn+2L+25,L+68)forO0<m <L,
itis sufficient to show that {2~ %¢ P, D} € LPSO(n+2L+28, L+6) foralla € NG-
For f € ./, we have the following integral representation for 271/ P, D* f, which
was alluded to above,

2 PD® £ ) = (=127 (D), f) = (DI D ) £ ().

Since ¢ € ., it easily follows that D¢ € . forall € Njj and that {2~k p D} €
LPSO(n+2L+ 28, L+ 6). Now we prove (1) by induction: the m = 0 case for (1)
is not hard to verify

[[AI<{0>]]0 = Arl = [[Axllo - Pl = [[Axllo — [[Ax]lo = 0.

Now assume that (1) holds for m — 1, that is, assume [[A,(Cm_l)]]a = 0 for all || <
m — 1. Then for |B| <m — 1

AT,

- (=D My 5 =0.

(AL = A PN — D

|a|=m

The first term here vanished by the inductive hypothesis. The second term is zero since
|B] < m = |a| and hence M, g = 0. For || = m,

B A(m—l) N
A 1 =AY "1 — D %(_l)lalM&ﬂ
le|=m ’

=" "g — 1A Mg =0,
where the sum collapses using (3.1). By induction, this verifies (1) for all m < L.

Given the Carleson measure assumption for duy (x, t) in (3.4), one can easily prove
(2) if the following statement holds: forall0 <m < L

> A )| = A+ G 3 A, where Co= >" [ Magl.
le|<L le|<L lal,|BI=L
3.5)

We verify (3.5) by induction. For m = 0, let |8] < L, and it follows that
[ADg = [[AxTls — [[A&To - [[Pellg = A&l — [[Ax]lo - Mog
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Then

SAM sl = D AdIs 4+ D A0l Mol < (14 Co) D I[[ALIIgl-

[BI=L IBI=L IBI=L IBI=L

Now assume that (3.5) holds for m — 1, and consider

> A = 3 A e+ X D0 AT el M)

BI<L IBI<L |pl=t l@1=m

T+ >0 IMapl ] D a1

la|<m,|B|<L IBl=L

(1 +Co) D |UAy "1p] < (1 + o™ D7 [[1Ag].

IBI=L IBI<L

A

IA

We use the inductive hypothesis in the last inequality here to bound the [[A "~ D1] B-
Then by induction, the estimate in (3.5) holds for all 0 < m < L, and completes the
proof. O

Now we use Lemma 3.1 and the paraproduct operators A,((m) along with Propositions
2.3 and 3.2 to prove Theorem 1.1.

Proof of Theorem 1.1 By density, it is sufficient to prove that ||Sa fllLr < || f]lur
for f € HP N L?. We bound A in the following way using the definitions of A,({m) in
(3.2) and (3.3);

AL ) f] < A1) - Pef )]+ 1AL £ ()
< A1) - Pef o)l + 1A £
+ D7 AL a ()] 27 P D £ ()]

la]=1

< A1) - Pof o)l + 1A £l

L
+ 7> A e 275 PD® £ ().

m=1 |a|=m

By Propositions 2.3 and 3.2, it follows that

1 1

2 L 2
(Z|Aklpkf|2) +2 2] (Zl[[Ai’"‘“naz“'kPkD“fF)

keZ Ly m=1 |a|=m keZ
S ae.

LP
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Also by Lemma 3.1, it follows that

(Zm,i“ﬂz) S M ar-

keZ Lp

Therefore S, can be extended to a bounded operator from H? into L. O

4 Hardy Space Bounds for Singular Integral Operators

In this section, we prove Theorem 1.3. This is a reduced version of Theorem 1.6 in
the sense that we have strengthened the assumptions on 7', and hence obtain only a
sufficient condition, not necessary. We will apply Theorem 1.1 to prove Theorem 1.3.
In order to do so, we prove the decomposition result in Theorem 1.4.

Proof of Theorem 1.4 Let s € Dy . Itis not hard to check that 7*v’ (y) is the kernel
of O, T, where wlf(y) =Yr(y —x). Alsolet L = |[M/2]and 6 = (M —2L +y)/2.
We first verify (1.1)=(1.3) for [x — y| > 237%. Assume that |x — y| > 237%. Then for
la] <L

DJK (x,
arer o= [ (&wn- ¥ 2D 008 ) it - xdu
e pm P
B rya
=/ DKy~ > PPEED () v~ vydu
K IBI=M P!
|x — u|M+Y
S/IRH |x_y|n+|ol|+M+y|1/fk(u_x)|du

- 2—k(M+y)
~ k4 lx — y|)n+|ot|+M+y /R" Vi = x)ldu

S 2‘a|k©Z+M+|a‘+V (x _ y) S 2|a|kq>ll’(l+2L+23(x _ y)

If M > 1, then this estimate holds for all |¢| < L + 1. In this case, the above estimate
implies that (1.3) also holds for N = n 4+ 2L 4 2§ and any 0 < § < 1. So it remains
to verify (1.3) for M = 0, in which case L =0 and § = y/2.If |y — y'| > 27X, then
property (1.3) easily follows from the estimate just proved with « = 0. Otherwise
we assume that |y — y'| < 27% and it follows that |x — y'| > |x — y| — |y — /| >
|x — y|/2 > 2!7% Then

T ) = T ()
= ‘/]Rn (K(”’ y) — K(u, y/)) Vi (u — x)du

/Rn ((K G, y) = K@, ) = (K(x, y) = K(x,¥))) Y (u — x)du
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s/R > IDEKE, y) — DEKE ¥l — x| [P — v)ldu
1B1=1
forsome & = cx + (1 —c)uwith0 <c < 1

ly =¥ |x — ul
5/ Whﬂk(u—xﬂdu

ly —y'|r27* _ 2%k
YTt =y

18 Jn+2L+426
=yl d)k

y (x —y).

Recall this is the situation where M =0, L = 0,8 = y/2,and |y — /| < 2% and
hence in the last line n + y = n 4+ 2L + 28 and 27%|y — y/|” < 2%%|y — y/|3. This
completes the proof of (1.1)—(1.3) for |x — y| > 23k,

When |x — y| < 237%, we decompose Q4T further. Let ¢ € Cg° with integral 1
such that fﬂ(x) =2"p(2x) — ¢(x) and J € Dy Then

TP = lim PYT*YE() =D QT Wi ) + AT (). 4D
L=k

This equality holds pointwise almost everywhere since T is a continuous operator
from L2 to L* and ¥ € Dy . Note that V.Y € Dy, and it is only this property that
will be used throughout the rest of this proof. So we abuse notation to make this proof
a bit easier to read. For the remainder of the proof, we will simply write V¢ = Yy and
Q¢ = Q¢ with the understanding that these two can actually be allowed to be different
elements of Dy,. Let @ € Njj with || < L. Using the hypothesis 7*(x*) = 0 for
] < L we write

< |Agr(x, Y)| + [Bgr(x,y)|, where

ot {roz. v

DO( X( )
A (x, y) =211 T(D*VP@) [ v — D M(u—y)“ du,
‘”_y‘§21—£ \0(|§L o
DO[ )C( )
By (x,y) =240 TD* )W) | V@) — > PO ) g
lu=yl>2!7¢ MES

The Ay x term is bounded as follows,

A ke, )1 < 29T (D* YY) - Xy ity

DD[ X( )
(w,f(w— > fl’!‘y(—y)“) T XB(y.21-0)

le| <L

X

LDO
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Let0 <38’ < 8" < 8. The By term is bounded using the kernel representation of 7

|Bg i (x, y)I

<2t / K@ v)— >
lu—y|>21=¢ JR"

IBI<L

DRI
< i - 3 %(u—yw du

[ul<L

DP K, y)

5 v — 0P I(D¥Y)] (w)ldv

- _ I L+6 /
< 2@|0[\ / / &l(Daw)y(v”dvzk}z(zklu _ y|)L+6/ du
mzzl om—t <|y—y|<2m+1-tJRn lu — y|n+L+5 Vi

o0 —
< 2““‘ 2/ / 2 (L+6)e |(D(¥,(//)y(v)ldvzkn(zkzm—Z)L-Hs//du
~ el 2m—£<|u_y‘§2m+l—l Rn 2("+L+6)(m_e) ¢

oo

< bl Z 9(m—=Ony—(L+8)ly—(n+L+8)(m—E) ykno(L+8 " (k+m—20)

m=1

o0
< oklalp(L—lul+3") (k=0) pkn S0 "= < oklalpd (k=0 @n+2L2 ()

m=1

It is not crucial here that we took 8" < 8" < §, but this estimate will be used again later
where our choice of 8" < §” will be important. It follows that the kernel 7*v (y) of
O T satisfies

0eTHY ()] =2

ST Y. vy

>k

5 zk\otl ZZB ”(k—é)cbZJrZLJrZS(x —y) 5 2k\a|®z+2L+28(x —y).
>k

This verifies that 7" (y) satisfies (1.1) for |x — y| < 23k We also verify the 8-
Holder regularity estimate (1.2) for 7y (y) with 8 in place of §: let « € N{j with
|| = L. It trivially follows from the above estimate that

> |prrw - )
=k 27 <|y—y|
< Z 25" (=0 (2l |y — /)3 2Hlel (¢Z+2L+25 (x— y) + QIR y/))
0=k: 270 <|y—y/|
< okl Z 26" =860 2k |y, _ 3|y (¢Z+2L+25(x —y) IR y/))
=k 27t <|y—y'|

< pkllal+8)y o (¢Z+2L+26(x )+ ¢Z+2L+2a(x _ y/)) .

On the other hand, for the situation where |y — y'| < 27, we consider

> T = v )| = 1Ak v 301+ Brite v, ),
2k 2702 ]y—y/|
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where
Ags(x, y, y') = 20 / TP, — (D)) )
lu—y|<22-¢
DO( X
x| v (u) — Z #(u—y)“ du, and
lo|<L ’
Bei(x,y,y) =2 /| - T((D" )] = (D"¥)} (@)

DD[ X
A FAOES #@)(u—yr" du.

la|<L
The Ay i term is bounded as follows,

| Ak (e, y, Y01 < 29T (D" )y — (D*Y)} ) - xpyar-v)llLi

DRy
X W;’:(M) - Z %(M -nH- XB(y,21-t)

lul<L ’ ™
S 212 T (D)) — (D)) |22 Dk
< 2l|a| (2[ Iy _ y/|)§/2(L+8)(k—l)2kn

< oklerln(6—=8") (k=) (2k|y _ y;l)a/ (®Z+2L+28(x —W+ ¢Z+2L+25 (x — y')) '

Recall the selection of §” such that 0 < §’ < §” < 8. The By x term is bounded using
the kernel representation of 7

/” K@.v)— > DiRGY)  _ yy

v!

|Be(x. y. y)] = 240 /

lu—y|>21-¢ |v|<L

X (DY)} W) — (D)) ) [ Y — Y w— )" | dudv

[ul=L
L+8
<2€Ia|/ / v —yI**
~ |lu—y|>21-¢ JR" |M—)’|”+L+‘s

x (DY) (v) — (D*¥)) (W)ldv 2" (2% — y )"+ du

DHFY ()
—

< zmi RGUU .
= / / sorrroa s @1y =y
el Y2 <u—y| <21t JRn 2 (n+L+8)(m—0)

x (@15 =)+ @ — ) dv 2 @~y du

00
5 2l|ot| z 2n(m—l)2—(L+8)Z2(n+L+8)(l—m) (2/é|y _ yll)é’zknz(L-HS ") (k+m—0)

m=1
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o0
< 2k|a|2(5—k)\a\28’(2—k) (2k|y _ y/|)5’2kn2(L+5 "y (k—¢€) Z 28 "—8)m
m=1

< okl 9k |y y/|) 26" =8 k=0 (@Z+2L+28 (x—y) + ¢Z+2L+28(x . y/)) .

It follows that

o0
D 1AekGe, 3, Y01+ [Bea(x, v, ¥
o=k
o0
< 2k|a|(2k|y . y’l)a (¢Z+2L+28 (x —y) + ¢Z+2L+28 (x — y’)) Z (8" =8 (k—0)

=k
5 2k|c{|(2k|y _ y/|)8 (®Z+2L+25 (x _ y) + ®Z+2L+2(5 (x _ y/))

We now check that P, T*vr; (y), the second term from (4.1), also satisfies the appro-
priate size and regularity estimates. For all @ € N{j

0 Py )] = 295 (T (0% y )1 = 2K T 15 0287 S 2l 220 — ),

Here ||T||2.2 is the L? operator norm of 7. Therefore T*y; (y) satisfies size and
regularity properties (1.1) and (1.2) with 8’ in place of §, and hence {Q;T} €
LPSO(n + 2L +28,L + &) for all 8 € (0,6). It is trivial now to note that for
axr+s < P =1, T is bounded on H? if and only if S4 is bounded from H” into L”
since ||Tf||gr =~ ||SA f||Lr by the Littlewood—Paley—Stein characterization of H”
in [10]. O

Lemmad.l Let T € CZO(M + y) be bounded on L* and satisfy T*(x%) = 0 for
all lw| < L = [M/2]. For € Dy, define

dpy (e, 1) = D > QT o (X)*8, o dx,

la|<L keZ

where Qi f = Y % f and Yy (x) = 2Ky (2% x). If [T 1]y € BM Oy forall || < L,
then d .y is a Carleson measure for any € Dy p.

Proof Assume that [[T]ly € BM Oy for all @] < L. Let ¥ € Dy, and it
follows that {Q;T} € LPSO(L,§") for all 8 < 8, where Qy f is defined as above
and L = [M/2] and 8 = (M — 2L + y)/2. We also define QF f = v/ « f,
where Y#(x) = (=DPly(x)xP. It follows that ¥# € Dy ip. Now let o € Nj
such that |o| < L. Note that for B < «, it follows that # € Dy, and hence
{QfT} € LPSO(n+2L+268,L+¢§)forall0 < 8" < §as well. Then it follows that

O TNa(x) = 2/*1F /R TR )@ = y)*dy

R— 0

= Jim 2 [ K U e () = ) dudy
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R—o00

— lim ,32 o g2 /R K )0 @ — )~ y)*Pdudy

= lim > Ca,ﬂz(lal_lﬂl)k/2 /C(M,y)(lﬁf)x(u)me(y)(u—,V)a_ﬂdudy
R2n
Bz«

R—o00

= cap20BK (171, wf)Y).

B=a

Let O C R” be a cube with side length £(Q). It follows that

2-k<p(0)” ¢ 2-k<e(0)” @

DI /Q 2= (1T Y1, (o))

P=a2-k<¢(Q)

2
> /l[[QkT]]a(x)Idef > /(an,gz('“"f‘)"‘<[[T]]a_,a,(w,f)’“>) dx
B=<a

2
dx S 10|

The last inequality holds since [[T]lq—g € BM O\y|— | and wf € Dy C Dig— 18|
forall B < «. O

Motivated by the proof of Lemma 4.1, we pause for a moment to introduce an
alternative testing condition to [[T]l, € BM O\y in Theorem 1.6. The following
proposition introduces a perturbation of the definition of [[T]], with necessary and
sufficient conditions for [[T']ly € BM O\ for |a| < L.

Proposition 4.2 LetT € CZO(M +y) withT*(y%) = 0 for |a| < L. Then [[T1ly €
BM Oy for all |a| < L if and only if

dpy(x,1) = Z Zzzk‘“u (TGL, ¥if) 128,y + dx

le|<L keZ

is a Carleson measure for ally € Dy, where Qy f = Yrex f and G, () = (u—x)~.

The quantity (T Gy, 1//) is very closely related to ([[T]]y, ¥). One can obtain the
distribution 7 G}, by replacing (1 — y)* with (x — y)* in the definition of [[T']]. This
gives an alternative testing condition for [[T]]o € BM O\ that could be convenient
in some situations.

Proof Similar to the proof of Lemma 4.1, it follows that

DTGy ) = dim 2 K ) nr () = ) dudy

R
= > a2 (TN, ).

B=a

Here ¢4 g are binomial coefficients and are bounded uniformly for ||, |[8] < L
depending on L. Likewise we have that

2 (TN vF) = D a2 (TG, ).

B=a
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Lemma 4.2 easily follows. O
Finally we prove Theorem 1.3.

Proof of Theorem 1.3 By density, it is sufficient to prove the appropriate estimates
for f € HP N L% Let ¢ € Dy4r such that Calderén’s reproducing formula (2.2)
holds for Qxf = Yk * f, where L = |[M/2]. By Theorem 1.4, it follows that
{Ax} ={0kT} e LPSO(n+2L+68,L+¢) forallO < 8’ <é=M-2L+vy)/2.
So fix a §’ € (0, §) close enough to § so that 1oy < p-ByLemmad4.1,
it follows that

TS < LT

dp(e, ) = > " IOk Tl () dx 8,y

keZ |a|<L

is a Carleson measure. By Theorems 1.1 and 1.4, it also follows that S5 can be extended
to a bounded operator from H? into L?, and hence T can be extended to a bounded
operator on H?. O

5 An Application to Bony Type Paraproducts

In this section, we apply Theorem 1.6 to show that the Bony paraproduct operators
from [3] are bounded on H?”, which was stated in Theorem 1.5. Let ¢ € Dy for
some L > 0and ¢ € C{°. Define Q f = Y * fand Py f = ¢y x f.For p € BMO,
recall the definition of ITg in (1.5)

Mpfx)=> 0Q;(Q;B- Pif) ).

JEZ

It follows that [Tg € CZO(M + y) forall M > 0and 0 < y < 1. We will focus
on the properties 7*(x*) = 0 and [[T]]le € BM Oy for || < L. Once we prove
these two things, we obtain Theorem 1.5 by applying Theorem 1.6. We first give the
definition of the Fourier transform that we will use and prove a lemma that will be
used to prove the Hardy space bounds for ITg. For f € L'(R") and & € R”, define

7© = FLAE) = /R F@etds.

Lemma 5.1 Let € Dy for some integer M, and —M < s < M. Define V(x)
and Vi(x) by V(&) = €] - (&) and Vi (x) = 2V (2kx). Also define

Ty f(x) =D Vi f(x).

keZ

Then Ty is bounded on H' and on BMO.
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Proof We verify this lemma by showing that the convolution kernel of Ty has uni-
formly bounded Fourier transform. The kernel of Ty is

K(x) = V().

keZ

Then

K@ <D IV el => e epye™e?

keZ keZ
< D> @7MED min@ ¥, 24g DM
keZ
< 2 min@ M|, 2017 S 1.
keZ

Note that since ¥ € Dyy1, it follows that | (£)| < min(|€], |€]~HM+!. It follows
that 7y is bounded on H! and on BM O; see [10]. O

Proof of Theorem 1.5 As remarked above, it is clear that I1g € CZO (M + y) for all
M > 0and0 < y < 1. Soitisenoughto show that 7*(x*) = Oand [[T]ly € BM O\q
for |¢| < L. For f € Dy, we check the first condition.

(s, £) = lim >7(0; (08 Pif) . nr- 2

JEZ

' Z/Rn Q;Bw)P; f)Q;(nr - x*)u)du
JEZ

I
5

R—o00

Z/Rn Q;BW)P; f () Q;(x*)w)du =0

JEL

since Q;(x%) = 0 for |a| < L. We also verify the BM O\ conditions. Let |a| < L,
and compute

([T M. ) = Jim > /]R Vi =0)Q;B() ( /}R NGRS y)“m(y)dy) ¥ wdvdu
JEL

= > fim 3 [ vw—010,80)
jez B

p=a

X (/R” i —y)u-— V)W — y)“—unR(y)dy) Y (w)dv du

= capCay 271 /]R 9= 0BV v du

n=ae JEL
=D cupCap 27 0,09 0 B(x),
n<a jen
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where 00 (x) =ty (x), ¥} (6) = 27"y 0 @1x), and QY () = ¥+ £ (x).
Now we consider

20607 [0l 0, 1] ) =24 g Hu T HT e &)
= (e tenpee) (e iEn v weinreTs) fe

=F WiV * f]©),

where W and V are defined by W(£) = &7y (5), VU9 (§) = |5]ly 00 &) (&),
Wi(x) = 2k W (2¥x), and Vj(”) (x) = 2/"V W (2/x). Here Cq, are binomial coeffi-
cients, and C;, = fR,, @(x)x*dx. By Lemma 5.1, it follows that

Ty FG0) = > VI s f(x)

JEL
defines an operator that is bounded on BM O. Then

D> 26D 0, 0900 =D Wi w VM x Bx) = Wi (T B)(X),

JEZL JEZL

and we have the following

> apCap 200 Q‘“’Q,ﬂ(x)

/Q > 22k (g a. wi) 1P = / >

27k<e(Q) 2, k<e(Q) [p=« jez
2
<D leanCayl / > Wik (Tywp )|
n=a 2, k<e(0)

Note that |W(§)| < min(|&], |€]~1) as well, and since Tywp € BMO with

Ty BIl S 1IBllBMmo, it also follows that

|Q|/Q > 22 e v7) P < D leauCan u|/ > Wi * (Tyoo )0

2-k<0(Q) h=a @rk<(0)
SHTywBlizmo S11Blsmo-
Therefore [[I1g]], € BMOM for |a| < L, and by Theorem 1.6 it follows that ITg is

boundedon H? forall .—7— < p < l,where L = [M/2]and§ = (M —2L +1)/2.
O

RTLT

6 Proof of Theorem 1.6

Finally, we return to the proof of Theorem 1.6. We have waited to this point to do
so since we will need both Theorem 1.3 and the Bony paraproduct construction in
Theorem 1.5.

Birkhduser



J Fourier Anal Appl (2016) 22:159-186 185

We need one other result from [12,13,23]; we state Theorem 3.13 from [12] adapted
to our notation and restricted to the Hardy space setting.

Theorem 6.1 [[12]]LetT € CZO(M+vy) be bounded on L*? anddefine L = | M /2]
and§ = (M — 2L + y)/2. IfT*(x"‘) =0inD), forall |a| < L and T1 = 0 in D,

then T is bounded on H? for all —*— +L+5 <p< 1.

In the notation of [12], this theorem is stated'with q=2,0<p<1,J =n/p,
L=1|J—n]=|n/p—n),a=0,and H’ = Fy*.

Proof of Theorem 1.6 Let T € CZO(M + y) be bounded on L? and define L =
[M/2] and § = (M — 2L + y)/2. Assume that T*(x%) = 0 in D}, for all |a| < L.
Then T1 € BM O, and by Theorem 1.5 there exists [T € CZO(M + 1) such that
(1) = 7(), I*(y*) = 0 for |a| < M, and IT is bounded on H?” for all +L+1 <
p <1.Then T = S 4 I1, where S = T — II. Noting that S*(y%) = 0 for all |o| < L
and S1 = 0, by Theorem 6.1 it follows that S is bounded on H? for all
Therefore T is bounded on H? for all m <p<l.

Now assume that 7' is bounded on H?” for all

follows that Tv € H? N L? for all

n+L+8
n .
nrLTe <p =< 1. For Iﬂ (S DL, 1t

n+L+5 < p < 1. Itis not hard to show that

/ Ty (x)x%dx

is an absolutely convergent integral for any |«| < sup{n/p —n
L + 6. By Theorem 7 in [14], it follows that

. n —
' n+L+8 <p= 1} =

/ Ty (x)x%dx =0

for all @ € Njj with |a| < L + 8. Since § > 0, this verifies that T*(y*) = 0 for all
x| < L. m]
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