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A GEOMETRIC COVERING LEMMA AND NODAL SETS OF
EIGENFUNCTIONS

Xiaolong Han and Guozhen Lu

Abstract. The main purpose of this paper is two-fold. On one hand, we prove a sharper

covering lemma in Euclidean space Rn for all n ≥ 2 (see Theorem 1.5). On the other

hand, we apply this covering lemma to improve existing results for BMO and volume
estimates of nodal sets for eigenfunctions u satisfying 4u + λu = 0 on n-dimensional

Riemannian manifolds when λ is large (see Theorems 1.7, 1.8). We also improve the

BMO estimates for the function q = |∇u|2 + λ
n

u2 (see Theorem 1.10). Our covering

lemma sharpens substantially earlier results and is fairly close to the optimal one we can

expect (Conjecture 1.6).

1. Introduction

Let M be a smooth, compact and connected Riemannian manifold without bound-
ary. Let 4 denote the Laplacian on M . Assume throughout this paper that u is the
solution to 4u + λu = 0, λ > 1, i.e., u is an eigenfunction with eigenvalue λ. The
nodal set N of u is defined to be the set of points x ∈ M where u(x) = 0. Then out-
side the singular set S = {x|u(x) = 0,∇u(x) = 0}, N is a regular (n−1)-dimensional
submanifold of M . The main focus of the current paper concerns a geometric cover-
ing lemma in the Euclidean space Rn and applying it to the BMO norm and volume
estimates of nonzero sets of eigenfunctions on Riemannian manifolds.

Let D be the diameter of the manifold M , and H the upper bound of the absolute
value of the sectional curvature of M . It was conjectured by S.T. Yau (see Problem
73 of [Yau]) that

c1

√
λ ≤ Hn−1(N ) ≤ c2

√
λ,

where the constants c1 and c2 depend only on the geometry of the manifold (D and
H) and Hn−1(N ) is the (n − 1)-dimensional Hausdorff measure of N . When M is
real analytic, Donnelly and Fefferman have proved that this conjecture holds for all
dimensions [DF1]. In two dimensional smooth manifold, Brűning [B] derived the
optimal lower bound and Donnelly and Fefferman proved [DF2] that Hn−1(N ) ≤
c3λ

3/4, and subsequently Dong gave an alternative proof of this result in [D1].
For smooth n-dimensional manifolds, it was proved by Hardt and Simon [HS] that

Hn−1(N ) ≤ c3 exp(
√

λ log λ) where c3 depends on D and H. In fact, this estimate
holds for solutions to a general class of elliptic equations of second order with smooth
coefficients (see [HS]). F. Lin [Lin] further obtained an optimal upper bound estimate
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of the Hausdorff measures of nodal sets for solutions to second order elliptic equations
with analytic coefficients and parabolic equations with time independent analytic
coefficients. Furthermore, Han and Lin [HL1] derived such estimates for a general
class (time dependent) of second order parabolic equations without the assumption of
real analyticity. We also refer to the works by Han, Hardt and Lin [HHL], Han [H1]
on estimates of Hausdorff measure of singular sets of solutions to elliptic differential
equations, Han [H2] and the forthcoming book by Han and Lin [HL2] for more detailed
exposition on this subject.

In this paper, we are mainly interested in the BMO norm estimates and volume
estimates of nonzero sets of eigenfunctions on Riemannian manifolds. In [DF3], Don-
nelly and Fefferman established the growth property, estimates of the BMO norm
for log |u| and lower bounds for the volume of the nonzero set of eigenfunctions for
all n ≥ 2. The results of Donnelly and Fefferman were improved subsequently by
Chanillo and Muckenhoupt [CM] by employing a covering lemma intrinsic to the
growth property of the eigenfunctions and further improvement was obtained by the
second author of the current paper in [L1] and [L2] by deriving a sharper covering
lemma.

Concerning the BMO norm and volume estimates of nodal sets of eigenfunctions,
Donnelly and Fefferman proved the following in [DF3]:

Theorem 1.1. (BMO estimate for log |u|) Assume that u satisfies 4u + λu = 0 on
M , then for dim M = n ≥ 2,

‖ log |u|‖BMO ≤ cλ
n(n+2)

4 ,

where c = c(M) independent of λ.

Theorem 1.2. (Estimates for nodal sets) Assume that u satisfies 4u + λu = 0
on M , let B ⊂ M be any ball and Ω ⊂ B by any of the connected components of
{x ∈ B : u(x) 6= 0}. If Ω intersects the middle half of B, then for n ≥ 2

|Ω| ≥ C(M,n)λ−
n+n2(n+2)

2 (log λ)−4n|B|,

where C(M,n, ε) is independent of λ and u.

The BMO estimate for eigenfunctions in the work [DF3] employs the growth prop-
erty of the eigenfunctions together with a Vitali’s covering lemma, and then the vol-
ume estimates of nodal sets follows from the BMO estimates and the growth property.
The growth property proved in [DF3] reads as follows:

Theorem 1.3. Assume that u satisfies 4u + λu = 0 on M . Let B(x,R) denote the
ball centered at x of radius R. Then

(1.1)
∫

B
“

x,(1+λ−
1
2 )R

” |u|2 ≤ c

∫
B(x,R)

|u|2,

(1.2)

[∫
B(x,R)

| 5 u|2
]1/2

≤ c

√
λ

R

[∫
B(x,R)

|u|2
]1/2

.
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Soon after Donnelly and Fefferman’s work [DF3], Chanillo and Muckenhoupt [CM]
discovered the idea of using a more delicate covering lemma which is more suitably
adapted to the growth property of eigenfunctions. They introduced a covering lemma
akin to, but quite different than, the classical Besicovitch covering lemma and used
such a covering lemma to sharpen the BMO and volume estimates of nodal sets of
eigenfunctions by Donnelly and Fefferman [DF3].

For the classical Besicovitch lemma in Rn, we refer to the books by Wheeden and
Zygmund [WZ] for such a lemma in terms of cubes and by Ziemer [Z] in terms of
balls.

We first recall the covering lemma introduced in [CM] which is of its independent
interest.

Theorem 1.4. Let n ≥ 2 and δ > 0 be small enough, then given any finite collection
of balls {Bα}α∈I in Rn, one can select a subcollection B1, · · ·, BN such that

(i)
⋃
α

Bα ⊂
N⋃

i=1

(1 + δ)Bi

and

(ii)
N∑

i=1

χBi
(x) ≤ c(n)δ−n,

where c(n) is a constant only dependent on the dimension n but independent of δ and
the given collection of balls, (1 + δ)B denotes a ball concentric with the ball B but
with 1 + δ times of the radius of B.

Incorporating the above covering lemma when δ = λ−
1
2 with the growth property,

Chanillo and Muckenhoupt [CM] were able to sharpen the BMO estimates for log |u|
in Theorem (1.1) to

‖ log |u|‖BMO ≤ cλn log λ

and the volume estimates in Theorem (1.2) to

|Ω| ≥ C(M,n)λ−2n2−n
2 (log λ)−2n|B|

which improve those of Donnelly and Fefferman [DF3].
The above covering lemma Theorem 1.4 is not sharp in the sense that the bounds

in (ii) are not best possible when δ → 0.
It was subsequently improved by the second author in [L1], [L2] and the bound in

(ii) was sharpened to cδ−n+ 1
2 log( 1

δ ) for all n ≥ 2. Furthermore, improved BMO and
volume estimates for nodal sets of eigenfunctions were derived in [L1], [L2]. More
precisely, it was proved in [L1] that in the two-dimensional case

‖ log |u|‖BMO ≤ C(M, ε)λ
15
8 +ε

and in [L2] that for all n ≥ 3,

‖ log |u|‖BMO ≤ C(M)λn− 1
8 (log λ)2,

|Ω| ≥ C(M,n)λ−2n2−n
4 (log λ)−4n|B|.

Though the improvement in [L1] on the upper bounds in (ii) of Theorem 1.4 in two
dimension to δ−

7
4 log(1

δ ) from the estimate δ−2 appears to be minor, its proof given in
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[L1] was fairly nontrivial and rather complicated, and was consequently very lengthy.
It involved many geometric considerations and quite some steps to accomplish.

One of the primary purposes of the current paper is to sharpen further the upper
bounds in (ii) of the covering lemma in [L1], [L2], and in the meantime we carry out
a completely different but considerably simpler argument of its proof.

We now state our new covering lemma as

Theorem 1.5. (Covering Lemma) Let n ≥ 2 and δ > 0 be small enough, then given
any finite collection of balls {Bα}α∈I in Rn, one can select a subcollection B1, · · ·, BN

such that

(1.3)
⋃
α

Bα ⊂
N⋃

i=1

(1 + δ)Bi

and

(1.4)
N∑

i=1

χBi
(x) ≤ cδ−

n
2 log(

1
δ
),

where c is a constant independent of δ.

Though we do not know yet if the above lemma is the best possible result, we
believe that the above lemma is fairly sharp and close to the optimal one. Indeed, we
conjecture the following covering lemma.

Conjecture 1.6. The upper bound in (1.4) can be improved to cδ−
n−1

2 for all n ≥ 2
and it is sharp.

The sharpness of the above conjecture, if it is true, is demonstrated by an example
(see Example 5.1 in Section 5). However, we still do not have a proof that it is indeed
true.

The second main purpose of this paper is to get a better BMO estimate of eigen-
functions and volume estimates of nodal sets. The main results are the following

Theorem 1.7. (BMO estimate for log |u|) For u, λ as above, then for n ≥ 3,

‖ log |u|‖BMO ≤ cλ
3n
4 (log λ)2,

where c = c(M) independent of λ; and for n = 2,

‖ log |u|‖BMO ≤ cλ3/2+ε,

where c = c(ε,M) independent of λ.

Theorem 1.8. (Estimates for nodal sets) For u, λ as above, let B ⊂ M be any ball,
and let Ω ⊂ B by any of the connected components of {x ∈ B : u(x) 6= 0}. If Ω
intersects the middle half of B, then for n ≥ 3,

|Ω| ≥ C(M,n)λ−
3n2
4 −n

2 (log λ)−2n|B|,

and for n = 2 and any given ε > 0,

|Ω| ≥ C(M,n, ε)λ−4−ε|B|,

where C(M,n) and C(M,n, ε) are independent of λ and u.
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Some lower bound estimates for the volume in real analytic manifolds or two-
dimensional C∞ surfaces have also been recently obtained by Mangoubi in [M].

It was proved by Dong [D2] the following

Theorem 1.9. Assume that 4u+λu = 0 on M and dim M = n. Let q = |∇u|2+ λ
nu2.

Then

Hn−1(N ) =
1
2

∫
M

|∇u|2 + λ|u|
√

q
.

He further proved in [D2] that for n ≥ 3,

‖ log q‖BMO ≤ cλn log λ.

As another application of our covering Theorem (1.5), we also improve the BMO
estimate for the functions q as follows.

Theorem 1.10. (BMO estimate for log q) For q, λ as above, then for n ≥ 3,

‖ log q‖BMO ≤ cλ
3n
4 (log λ)2,

where c = c(M) independent of λ.

We end this introduction with the following remark. The major contribution of this
paper is really the covering Theorem 1.5. The covering lemma itself is of great interest
in harmonic analysis and it seems to be a challenging task to derive the optimal bounds
(see Conjecture 1.6). Applying this covering lemma to estimate the BMO norms of
the eigenfunctions and the volume of the nodal sets is the motivation to establish this
covering lemma. Nevertheless, to make this paper self-contained we have also chosen
to include sufficient details to deduce theses estimates of applications. If the reader is
only interested in the applications to BMO and volume estimates of eigenfunctions,
one only needs to read Sections 2 and 3. A reader who is only interested in the
covering lemma and its proof only needs to read Sections 4 and 5.

This paper is organized as follows: Section 2 gives the proofs of Theorems 1.7 and
1.8 in two dimensional case; Section 3 deals with the proofs of Theorems 1.7 and 1.8
when the dimension n ≥ 3 and Theorem 1.10. Section 4 is devoted to the proof of
the new covering Theorem 1.5; Section 5 justifies the sharpness of the bound cδ−

n−1
2

in Conjecture 1.6.
One word about notations: throughout this note, C and c will always denote

generic positive constants independent of the given balls {Bα}α∈I and δ > 0; ρ(B)
will denote the radius of the ball B; B(x, r) will denote the ball centered at x and of
radius r and Bδ denotes the concentric ball with B and with radius (1 + δ)ρ(B).

Acknowledgement: The main result of this paper was announced in [HaL] at a
Special AMS meeting in 2009. Invited presentations of these results were also given
at the International Conference on Differential Geometry and Differential Equations
in Shaoxing, China, at Fudan University, Nanjing University and Nanjing University
of Science and Technology in June, 2010. The second author wishes to thank all the
organizers and hosts for their kind invitations. Part of the work was done while the
second author was visiting Beijing Normal University. The authors also wish to thank
the support of US NSF grant DMS0901761.
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2. Proof of Theorems 1.7 and 1.8 in dimension two

This section is devoted to the proof of Theorems 1.7 and 1.8 in dimension two.
Now we start the proof of Theorem 1.7 by showing the following lemmas.

Lemma 2.1. Let u, λ as before, 1 ≤ q < ∞, then u satisfies the Reverse-Holder
inequality:

(2.1)
[

1
|B|

∫
B

|u|q
]1/q

≤ c
√

λ

[
1
|B|

∫
B

|u|2
]1/2

,

where c depends on q.

Proof. By the Poincaré inequality, for any ball B, we have

(2.2)
[

1
|B|

∫
B

|u− uB |q
]1/q

≤ c|B|1/2

[
1
|B|

∫
B

| 5 u|p
]1/p

,

where uB = 1
|B|

∫
B

u and 1 < p < 2, 1/q = 1/p − 1/2, and c = c(p, q). Applying
Hőlder’s inequality and (1.2) to the right side of (2.2), we obtain[

1
|B|

∫
B

|u− uB |q
]1/q

≤ c
√

λ

[
1
|B|

∫
B

|u|2
]1/2

.

By Minkowski’s inequality, Lemma 2.1 follows for 2 < q < ∞, for the case 1 < q ≤
2, we can apply Hőlder inequality again. �

Our Theorem 1.7 in dimension two will follow frow the following:

Lemma 2.4. Suppose w > 0, q > 2, ε > 0 and 1+ε
q′ ≥ 1, where 1/q′ = 1 − 1/q.

Assume also that for any ball B = B(x,R) ⊂ R2,

(2.3)
∫

B(x,(1+λ−1/2)R)

w ≤ c0

∫
B(x,R)

w,

(2.4)
(

1
|B|

∫
B

wq

)1/q

≤ c1λ
1
|B|

∫
B

w,

then
|| log w||BMO ≤ cλ3/2+ε,

where c = c(c0, c1, ε).

Theorem 1.7 in dimension two will follow from Lemma 2.4 if we choose w = |u|2.
In order to prove Lemma 2.4, we need the following

Lemma 2.5. Let w, q, 0 < ε < 1 satisfy the hypothesis of Lemma 2.4, k is an integer,
let B be a fixed ball, E ⊂ B ,then there exist c2, c3 such that if

(2.5) |E| ≥
(
1− c2λ

−3/2−ε(log λ)−1
)k

|B|,

then

(2.6)
∫

E

w ≥
(
c3λ

−1/2(log λ)−1
)k

∫
B

w,

where c2 = c2(c1), c3 = c3(c0).
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Proof. We will use induction on k as done in [CM] in higher dimension n ≥ 3 (see
[L1] for the two dimension case). We first verify the lemma for k=1. To do so, we
claim that if ε > 0, |E| ≥ (1 − cλ−1−ε)|B| for some appropriate c = c(c1), then∫

E
w ≥ 1/2

∫
B

w. To show this, we first note that |B\E| ≤ cλ−1−ε|B|. If we choose
q > 2 such that 1+ε

q′ ≥ 1, thus by (2.4),∫
B\E

w ≤
(∫

B

wq

)1/q

|B\E|1/q′

≤ c1c
1/q′λ

− 1+ε
q′ +1

∫
B

w ≤ c1c
1/q′

∫
B

w.

If we choose c such that c1c
1/q′ < 1/2, then

∫
B\E w ≤ 1/2

∫
B

w, this implies∫
E

w > 1/2
∫

B
w. Note that the choice of c is dependent on ε since c1 = c1(q) and q

is dependent on ε. Thus if c2 ≤ c, and |E| ≥ (1− c2λ
−3/2−ε(log λ)−1)|B|, then∫

E

w ≥ 1/2
∫

B

w ≥ c3

(
λ−1/2(log λ)−1

) ∫
B

w,

and we are done for the case k = 1. Now we assume the statement is true for k − 1.
We may assume |E| ≤ (1 − cλ−1−ε)|B|, otherwise, there is nothing to prove. Thus
for each density point x of E, we can select a ball Bx ⊂ B such that x ∈ Bx, and

|Bx

⋂
E|

|Bx|
= 1− cλ−1−ε.

Applying the cover lemma Theorem 1.5 when n = 2 to the balls Bx with the choice
δ = λ−1/2, and without loss of generality, assume Bx are finite, and define

E1 =

[
N⋃

i=1

(1 + λ−1/2)Bi

] ⋂
B.

Then E1 ⊂ B, and as the proof given in [L1], we can show

|E| ≤
(
1− c2λ

−3/2−ε(log λ)−1
)
|E1|,∫

E

w ≥ c3λ
−1/2(log λ)−1

∫
E1

w

for some c2 = c2(c1), c3 = c3(c0).
This suffices to complete the proof of Lemma 2.4. �

Now we prove Theorem 1.7 in dimension two. The proof will be the same as that
given in [CM] in higher dimension. In order to get the precise estimate, we need to
carry out the details.

Proof. It will be enough to assume 1
|B|

∫
B

w = 1. It is also sufficient to show

|{x ∈ B : w−1(x) > t}| ≤ |B|
tcλ−3/2−ε(log λ)−2 .

It is equivalent to show

|{x ∈ B : w(x) < t}| ≤ tcλ−3/2−ε(log λ)−2
|B|.
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Let us denote by E = {x ∈ B : w(x) < t}. Select k0 such that

|E| ≈ [1− c2λ
−3/2−ε(log λ)−1]k0 |B|.

Thus

k0 ≈ c
(
λ3/2+ε log λ

)
log

(
|B|
|E|

)
.

Then by Lemma (2.4), and the normalization 1
|B|

∫
B

w = 1, we have

|B| =
∫

B

w ≤
(
c−1
3 λ1/2 log λ

)k0
∫

E

w

≤
(
c−1
3 λ1/2 log λ

)k0

t|E|.

Thus
|B|
|E|

≤ t ek0 log(c−1
3 λ1/2 log λ)

≤ t

(
|B|
|E|

)(cλ3/2+ε log λ) log(c−1
3 λ1/2 log λ)

≤ t

(
|B|
|E|

)c′λ3/2+ε(log λ)2

.

Thus
|E| ≤ tc

′λ−3/2−ε(log λ)−2
|B|,

where c′ is dependent on the constant c. Since ε is arbitrary, we can then have

|E| ≤ tc
′′λ−3/2−ε

|B|.

�

Applying Theorem 1.7 in dimension two, we can derive Theorem 1.8 in dimension
two as done in [DF3]. We shall not present the proof here.

3. Proof of Theorems 1.7, 1.10 and 1.8 in higher dimensions

We begin with the following lemma which is really the key to derive the BMO
estimate Theorem 1.7 and 1.10 using the covering Theorem 1.5.

Lemma 3.1. Suppose n ≥ 3 and w > 0 and assume that

(3.1)
∫

B(x,(1+λ−1/2)R)

w ≤ c0

∫
B(x,R)

w,

(3.2)
(

1
|B|

∫
B

w
n

n−2

)n−2
n

≤ c1λ
1
|B|

∫
B

w,

then
|| log w||BMO ≤ cλ

3n
4 (log λ)2,

where c = c(c0, c1).
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Using the sharp Poincaré inequality of type L2 → L
2n

n−2 and the growth property
Theorem 1.3, for any eigenfunction u it satisfies(

1
|B|

∫
B

|u|
2n

n−2

)n−2
2n

≤ c
√

λ

(
1
|B|

∫
B

|u|2
) 1

2

.

Theorem 1.7 will follow if we choose w = |u|2 in Lemma 3.1, and Theorem 1.10
follows by choosing w = q = |∇u|2 + λ

nu2 in Lemma 3.1 (we point out here it was
verified in [D2] that w satisfies the assumptions (3.1) and (3.2) of Lemma 3.1).

To show Lemma 3.1, we first need to show the following

Lemma 3.3. Let w satisfy the hypothesis of Lemma 3.1, k is an integer, let B be a
fixed ball, E ⊂ B, then there exist c2, c3 such that if

|E| ≥
(
1− c2λ

− 3n
4 (log λ)−1

)k

|B|,

then ∫
E

w ≥
(
c3λ

−n
4 (log λ)−1

)k
∫

B

w,

where c2 = c(c1), c3 = c(c0).

The proof of Lemma 3.3 is similar to the case in dimension two and that in [CM]
by adapting the covering Theorem 1.5 proved in this paper. We shall only sketch the
proof of Lemma 3.3.

Proof. We first want to show if |E| ≥ (1− cλ−
n
2 )|B| for some appropriate c = c(c1),

then
∫

E
w ≥ 1/2

∫
B

w. To show this, we first note that |B\E| ≤ cλ−
n
2 |B|. Thus,∫

B\E
w ≤

(∫
B

w
n

n−2

)n−2
n

|B\E| 2n

≤ c1c
1/q′λ

− 1+ε
q′ +1

∫
B

w ≤ c1c
2
n

∫
B

w.

If we choose c such that c1c
2
n < 1/2, then

∫
B\E w ≤ 1/2

∫
B

w, this implies
∫

E
w >

1/2
∫

B
w. Thus if c2 ≤ c, and |E| ≥ (1− c2λ

− 3n
4 (log λ)−1)|B|, then∫

E

w ≥ 1/2
∫

B

w ≥ c3

(
λ−

n
4 (log λ)−1

) ∫
B

w,

and we are done for the case k = 1. Now we assume the statement is true for k − 1.
We may assume |E| ≤ (1− cλ−

n
2 )|B|, otherwise, there is nothing to prove. Thus for

each density point x of E, we can select a ball Bx ⊂ B such that x ∈ Bx, and

|Bx

⋂
E|

|Bx|
= 1− cλ−

n
2 .

Applying the cover lemma Theorem 1.5 when n ≥ 3 to the balls Bx with the choice
δ = λ−1/2, and without loss of generality, assume Bx are finite, thus there exist a
finite number of balls {Bi}N

i=1 such that

(i)
⋃
α

Bα ⊂
N⋃

i=1

(1 + λ−
1
2 )Bi
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and

(ii)
N∑

i=1

χBi
(x) ≤ cλ

n
4 log λ,

where c is a constant independent of λ.
We then define

E1 =

[
N⋃

i=1

(1 + λ−1/2)Bi

] ⋂
B.

Then E1 ⊂ B, and as the proof given in dimension two in Section 2 (see also [CM]),
we can show

|E| ≤
(
1− c2λ

− 3n
4 (log λ)−1

)
|E1|.

Using the growth property (3.1) of w as assumed in Lemma 3.1 and combining it
with the covering Theorem 1.5, we get∫

E1

w ≤
N∑

i=1

∫
(1+λ−

1
2 )Bi

w ≤ c0

N∑
i=1

∫
Bi

w.

By the choice of each Bi and the reverse Holder inequality assumption (3.2) in
Lemma 3.1, one can show that ∫

Bi\E
w <

1
2

∫
Bi∩E

w.

Thus, ∫
E

w ≤ 2c0

N∑
i=1

∫
Bi∩E

w

= 2c0

N∑
i=1

N∑
i=1

∫
E

χBi
w

= 2c0

∫
E

(
N∑

i=1

χBi
)w

≤ c0cλ
n
4 log(λ)

∫
E

w.

Therefore, ∫
E

w ≥ c3λ
−n

4 (log λ)−1

∫
E1

w

for some c2 = C(c1), c3 = C(c0). This completes the proof of Lemma 3.3. �

Remark: The proof of Theorem 1.8 follows from Theorem 1.7 using the same
techniques as done in [DF3]. We shall not repeat it here.
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4. Proof of the covering lemma: Theorem 1.5

Before we give the proof of the new covering Theorem 1.5, let us give some defini-
tions we will use in the proof. All the collections of balls here are finite. We also use
the notation Bδ = (1 + δ)B.

Definition 4.1 (δ-proper cover). Given δ ≥ 0, a subcollection of balls {B1, ..., BN} ⊂
{Bα}α∈I in Rn is called a δ-proper cover of {Bα}α∈I if

(4.1)
⋃
α∈I

Bα ⊂
N⋃

i=1

Bδ
i

and

(4.2) Bj 6⊂
N⋃

i=1,i 6=j

Bδ
i

for every j = 1, ..., N .
If C = {B1, ..., BN} ⊂ {Bα}α∈I satisfies (4.1), then it is called a δ − cover of

{Bα}α∈I . If S = {B1, ..., BN} ⊂ {Bα}α∈I satisfies (4.2), then it is called a δ−proper
subcollection of {Bα}α∈I .

Lemma 4.2. Given a collection of balls {Bα}α∈I in Rn, there exists δ0 > 0 such that
for ∀δ ∈ [0, δ0], there exists a δ-proper cover of {Bα}α∈I .

Proof. We will prove Lemma 4.2 by induction on the cardinality of the collection of
balls, namely |I|.

It is obvious that a collection of a single ball has a δ-proper cover for any δ ≥ 0. If
this lemma is true for every collection {Bα}α∈I with |I| ≤ k, we will prove that it is
also true for {Bα}α∈I with |I| = k + 1.

Case 1: If ∃ C0 = {B1, ..., BN} $ {Bα}α∈I is a 0-cover of {Bα}α∈I (then 1 ≤
N ≤ k), i.e., ⋃

α∈I

Bα ⊂
N⋃

i=1

Bi

then by induction, ∃δ0 > 0, such that for ∀δ ∈ [0, δ0], there exists a δ-proper cover of
C0, which is then also a δ-proper cover of {Bα}α∈I .

Case 2: Assume that there is no 0-cover of {Bα}α∈I with |I| ≤ k. Let {Bα}α∈I =
{Bα1 , ..., Bαk+1}. Then

Bαj 6⊂
N⋃

i=1,i 6=j

Bαi

for every j = 1, .., k + 1. Therefore, there exists a sufficiently small δj > 0 such that

Bαj
6⊂

N⋃
i=1,i 6=j

Bδj
αi

.
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C j M j P j

Mi

Let δ0 = min(δ1, ..., δk+1) > 0, we can see

Bαj
6⊂

N⋃
i=1,i 6=j

Bδ0
αi
⊂

N⋃
i=1,i 6=j

B
δj

i

for every j = 1, .., k + 1, then {Bα1 , ..., Bαk+1} is the δ-proper subcollection of itself
for δ ∈ [0, δ0], and thus the δ-proper cover of itself for δ ∈ [0, δ0]. �

Lemma 4.3. Let δ > 0 be small enough, then given any collection of balls {Bα}α∈I

in Rn, and S = {B1, ..., BN} ⊂ {Bα}α∈I is a δ − proper subcollection of {Bα}α∈I

with r ≤ ri ≤ 2r for i = 1, ..., N , where r > 0, then

(4.3)
N∑

i=1

χBi
(x) ≤ cδ−

n
2

for all x ∈ Rn, where c is only dependent on n.

Proof. Let x0 ∈
⋂M

i=1 Bi, M = M(x0). By a translation we may suppose x0 = 0. For
x ∈ Rn, define Tr(x) = x/r, then {Tr(B1), ..., Tr(BM )} is a δ − proper subcollection
with the radius between 1 and 2. Without loss of generality, we may assume 1 ≤ ri ≤ 2
for i = 1, ...,M .

Now 0 ∈
⋂M

i=1 Bi and

(4.4) Bj 6⊂
M⋃

i=1,i 6=j

Bδ
i ,

which means ∀ j = 1, ...,M , ∃ Pj ∈ Bj and dist(Pj , Ci) ≥ (1 + δ)ri, for all i =
1, ...,M, i 6= j, in which Ci is the center of Bi. Thus we have

|Ci| < 2, |Pi| < 4, for i = 1, ...,M.

Denote Mj as the midpoint of Cj and Pj :

|Mj | = |Cj + Pj

2
| ≤ 4.
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CjMi + MiPi ≥ CjPi ≥ (1 + δ)rj ,

PjMi + MiCi ≥ PjCi ≥ (1 + δ)ri,

MiPi = MiCi ≤
1
2
ri.

Thus,

PjMi ≥ (1 + δ)ri −
1
2
ri > 0

and

CjMi ≥ (1 + δ)rj −
1
2
ri > 0.

(4.5) CjMj
2

+ MjMi
2 − 2 cos(π − θ) · CjMj ·MjMi = CjMi

2
,

(4.6) PjMj
2

+ MjMi
2 − 2 cos θ · PjMj ·MjMi = PjMi

2
.

Combining (4.5) and (4.6), and noticing that MjPj = MjCj ≤ 1
2rj ,

2MjMi
2

= CjMi
2

+ PjMi
2 − CjMj

2 − PjMj
2

≥ ((1 + δ)ri −
1
2
ri)2 + ((1 + δ)rj −

1
2
ri)2 − 2(

1
2
rj)2

≥ (
1
2

+ δ)2r2
i + (1 + δ)r2

j +
1
4
r2
i − (1 + δ)rirj

≥ (
δ

2
+ δ2)r2

i +
δ

2
r2
j

≥ δ + δ2,

where in the above we have used the inequality that rirj ≤
r2

i +r2
j

2 and ri ≥ 1, rj ≥ 1.
Then we get

MjMi ≥
√

δ√
2
.

Hence, M(
√

δ)n ≤ (4
√

2)n, i.e., M ≤ 4n+ 1
4 δ−

n
2 , and (4.3) of Lemma 4.3 follows. �

Now we will prove the main covering lemma: Theorem 1.5.

Proof. By Lemma 4.2, there ∃δ0 > 0 such that for ∀δ ∈ [0, δ0], there exists

{B1, ..., BN} ⊂ {Bα}α∈I

as its δ-proper cover. Then it clearly satisfies (i) of Theorem (1.5), we now prove (ii)
of Theorem (1.5).

Let x0 ∈
⋂M

i=1 Bi, M = M(x0). By a translation we may suppose x0 = 0. Now
0 ∈

⋂M
i=1 Bi and

(4.7) Bj 6⊂
M⋃

i=1,i 6=j

Bδ
i .
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Without loss of generality, we may assume r1 ≤ ... ≤ rM , since 0 ∈ B1 ∩ BM and
B1 ( Bδ

M , we have 2r1 ≥ δrM , then let K = K(0) = 2 + blog2
1
δ c, where b·c denote

the largest integer part, and let

Sj = {Bi|2j−1r1 ≤ ri < 2jr1, i = 1, ...M}

for j=1,...,K. We can see Sj is a δ − proper subcollection of {Bα}α∈I for j=1,...,K,
and since 2Kr1 ≥ rM , we have

{B1, ..., BM} ⊂
K⋃

j=1

Sj .

Denote Kj = |Sj |, thus Kj ≤ 4nδ−
n
2 by Lemma 4.2. Then

(4.8) M =
K∑

j=1

Kj ≤ K4nδ−
n
2 ≤ cδ−

n
2 log

1
δ

and (ii) of Theorem 1.5 follows. �

5. The sharpness of Conjecture 1.6

In this section, we will show that if it is replaced by cδ−
n−1

2 in the upper bound
in Conjecture 1.6, then it is the sharp estimate. Let S(x0, r) denote the boundary of
the ball B(x0, r) in Rn. First, let us give two unit balls centered at C1 and C2 such
that C1, C2 ∈ S(0, 1

2 ) ⊂ Rn, the sphere centered at the origin O with radius 1
2 .

Example 5.1. In the figure below, we take C1 and C2 in S(O, 1
2 ), and P1 such that

O, C1, P1 are on the same line and

OC1 = OC2 =
1
2
,

C1P1 = 1, C2P1 = 1 + δ.

Consider the plane formed by O, C1, C2, P1 and let θ = ∠C1OC2, we have

cos θ =
OC2

2
+ OP1

2 − C2P1
2

2OC2 ·OP1

∼ 1− θ2

2
,

θ ∼
√

8δ + 4δ2

3
∼ 2

√
2δ

3
,

C1C2 ∼
1
2
θ ∼

√
2δ

3
.

We now consider the given family of unit balls {B1, ..., BN} with centers of lattices
Ci ∈ S(0, 1

2 ) for i=1,...,N of size
√

δ (roughly speaking), thus it satisfies

(5.1) CiCj ≥
√

δ

for any two centers Ci and Cj.
Since CiCj ≥

√
δ >

√
2δ/3, ∃Pj ∈ Bj such that Pj /∈

⋃M
i=1,i 6=j Bδ

i for j=1,...,N,
and each ball must be selected such that the requirements in the covering lemma are
satisfied.
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C2

O C1 P1

Obviously,

N ∼
c( 1

2 )n−1

(
√

δ)n−1
∼ cδ−

n−1
2

and
N∑

i=1

χBi
(O) = N ∼ cδ−

n−1
2 .

We can provide a more precise example in R2:
Consider a family of unit discs centered at ( 1

2 cos θi,
1
2 sin θi) ∈ S(0, 1

2 ) ⊂ R2, θi =
2i
√

δ, i=1,...,N=b π√
δ
c−1. Then for any two centers Ci and Cj, CiCj &

√
δ >

√
2δ/3

when δ is small enough, and each disc must be selected to satisfy the criterion in the
covering Theorem 1.5. Then

N∑
i=1

χBi
(O) = b π√

δ
c − 1 ∼ cδ−

1
2 .

Added in Proof: After our paper was submitted for publication, there have been
some recent progress on lower bounds estimates of Hausdorff measures on nodal sets of
eigenfunctions by C. Sogge and S. Zelditch (Lower bounds on the Hausdorff measure of
nodal sets, Math. Research Letters, 18 (2011), 25-37), T. Colding and W. Minicozzi
(Lower bounds for nodal sets of eigenfunctions, To appear in Communications in
Mathematical Physics.) and D. Mangoubi (A remark on recent lower bounds for
nodal sets, http://arxiv.org/PS cache/arxiv/pdf/1010/1010.4579v2.pdf).
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