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1. Introduction

A number of potential characterizations of balls are known in the literature. For instance, a single

layer potential is given by

u(x) =
⎧⎨
⎩

A
∫
∂Ω

−1
2π log 1

|x−y| dσy, N = 2,

A
∫
∂Ω

1
(N−2)ωN

1
|x−y|N−2 dσy, N � 3,

(1.1)

where A > 0 is the constant source density on the boundary of the domain Ω . It is shown that if u

is constant in Ω̄ , then Ω can be proved to be a ball under different smoothness assumptions on the

domain Ω . See [23] for the case of N = 2 and [26] for the case of N � 3. We also refer the reader to

the book of C. Kenig [19] on this subject of layer potential.

It is also well known that the gravitational potential of a ball of constant mass density is constant

on the surface of the ball. This property actually provides a characterization of balls as well. Indeed,

Fraenkel [14] proves the following

Theorem A. (See [14].) Let Ω ⊂ RN be a bounded domain and ωN be the surface measure of the unit sphere

in RN . Consider

u(x) =
⎧⎨
⎩

1
2π

∫
Ω
log 1

|x−y| dy, N = 2,

1
(N−2)ωN

∫
Ω

1
|x−y|N−2 dy, N � 3.

(1.2)

If u(x) is constant on ∂Ω , then Ω is a ball.

This result has been extended by Reichel [27] to more general Riesz potential, but under a more

restrictive assumption on the domain Ω , i.e., Ω is assumed to be convex. In [27], Reichel considers

the integral equation

u(x) =
⎧⎨
⎩

∫
Ω
log 1

|x−y| dy, α = N,∫
Ω

1
|x−y|N−α dy, α �= N,

(1.3)

and proves the following theorem.

TheoremB. (See [27].) LetΩ ⊂ RN be a bounded convex domain and α > 2, if u(x) defined by (1.3) is constant

on ∂Ω , then Ω is a ball.

Moreover, Reichel in [27] raised two open questions for (1.3):

Question 1. Is Theorem B true if we remove the convexity assumption of Ω?

Question 2. Is there an analogous result as Theorem B for the logarithmic Riesz potential

u(x) =
∫
Ω

|x− y|α−N log
1

|x− y| dy? (1.4)

Recently in [22], the authors answered the above two open questions to some extent. As for Ques-

tion 1, instead of the convexity assumption on Ω , we only assume that Ω is a bounded C1 domain

for Theorem B to be true. As far as Question 2 is concerned, we proved in [22] that when Ω is a C1

bounded domain with diamΩ < e
1

N−α , then the analogous result holds.
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It is known that u satisfying (1.3) is equivalent to saying that u satisfies the following fractional

Laplacian equation

(−�)
α
2 u(x) = χΩ(x) (1.5)

in the sense of distribution. Therefore, our results in [22] also solve the overdetermined problem to

the differential equation (1.5) when Ω is a bounded C1 domain. Namely, if Ω is a bounded and open

C1 domain and u satisfying (1.5) is a constant on ∂Ω , then Ω is a ball.

The overdetermined problems have attracted a lot of attention in the past decades. In his seminal

paper [28], Serrin proved that overdetermined boundary problem characterizes the geometry of the

underlying set. That is, if Ω is a bounded C2 domain and u ∈ C2(Ω̄) is a solution of

⎧⎨
⎩

	u = −1 in Ω̄,

u = 0,
∂u

∂n
= const on ∂Ω,

(1.6)

then Ω is a ball, moreover, u is radially symmetric with respect to its center of the ball.

Since the work of [28], there have been many generalizations to general equations. For instance,

the overdetermined problem for the equation

⎧⎨
⎩

div
(
A
(|�u|)�u

) = −1 in Ω̄,

u = 0,
∂u

∂n
= constant on ∂Ω

(1.7)

was studied in [10–12,18] and references therein, under certain suitable assumptions. The interested

reader may also refer to [3,9,4,25,31,13,32] and references therein, for other general elliptic equations.

See also [1,26,29] and reference therein for overdetermined problems in an exterior domain or general

domain.

In [4], more general elliptic equations

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Sk
(
D2u

) =
(
n

k

)
in Ω,

u = 0 on ∂Ω, k ∈ {1, . . . ,n},
∂u

∂n
= 1 on ∂Ω

(1.8)

are considered, where Sk(D
2u) = (

n
k

)
is the k-elementary symmetry function of the eigenvalue of D2u.

Note that, when k = 1, it is the Poisson equation while k = n it leads to the Monge–Ampère equation.

The authors show that Ω is a ball and u is radially symmetric. The interested reader may refer to [12]

and references therein, for quasilinear operator types of overdetermined problems.

There are many applications of overdetermined problems in mathematical physics. Many models

in fluid mechanics, solid mechanics, thermodynamics, and electrostatics are relevant to the overde-

termined Dirichlet or Neumann boundary problems of elliptic partial differential equations. Interested

reader may refer to the article [10] for a nice introduction in that aspect.

In this paper, we consider the Bessel-potential type equation:

u(x) =
∫
Ω

gα(x− y)dy, (1.9)

where gα is the Bessel kernel whose precise definition will be given in Section 2. Our main results

are
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Theorem 1. Let Ω be a C1 bounded domain. Assume that gα is the Bessel kernel and u in (1.9) is constant

on ∂Ω , then Ω is a ball.

Furthermore, we study more general Bessel-potential equation in bounded domains:

u(x) =
∫
Ω

gα(x − y)h
(
u(y)

)
dy. (1.10)

Then the following theorem is established.

Theorem 2. Assume that the nonnegative solution u(x) ∈ Lq(Ω) for some q > N
N−α , and h(u) satisfies:

(i) h(u) is continuous, increasing and h(0) = 0;

(ii) h′(u) is non-decreasing and h′(u) ∈ Lr+1 for some r > N
α .

If u(x) in (1.10) is constant on the boundary of Ω , then Ω is a ball.

Remark 1.1. Based on the assumption of (i) and (ii), we can infer that h(u)
u

∈ Lr+1(Ω) and h′(u) ∈
L

N
α (Ω).

Remark 1.2. In the above two theorems, if the conclusion that Ω is a ball is verified, then we can

easily deduce that u(x) is radially symmetric with respect to the center of the ball.

Heuristically, (1.10) is closely related to the following fractional equation

(I − 	)
α
2 u(x) = h

(
u(x)

)
χΩ(x)

in the sense of distribution. In the case of α = 2, it turns out to be the ground state of the Schrödinger

equation. In [24], the symmetry property of the solutions of the Bessel-potential integral equation

in RN is shown.

Our approach is a new variant of moving plane method – moving plane in integral forms. The

classical moving plane method based on maximum principle is developed in the pioneering works

by Alexandroff [2], Serrin [28] and Gidas, Ni and Nirenberg [16,17]. See also Caffarelli, Gidas and

Spruck [5], Chang and Yang [8], Wei and Xu [31], etc. Right after Serrin’s paper, a short proof was

presented by Weinberger [33] for the same result of [28].

The moving plane method in integral forms is much different from the traditional methods of

moving planes used for partial differential equations. Instead of relying on the differentiability and

maximum principles of the structure, a global integral norm is estimated. The method of moving

planes in integral forms can be adapted to obtain symmetry and monotonicity for solutions. The

method of moving planes on integral equations was developed in the work of [7], see also [20,8], the

book [6] and an exhaustive list of references therein, where the symmetry of solutions in the entire

space was proved. Moving plane method in integral form is also carried out in symmetry problems

arising from the integral equations over bounded domains, see the work of [21].

We remark here that results for the Bessel potential proved in this paper and those for the Riesz

potential or logarithmic Riesz potential in [22] can be extended to potentials corresponding to more

general kernels as long as the kernels are monotone and satisfy some integrability conditions. More

precisely, consider the integral equation for a bounded domain Ω ⊂ RN , i.e.,

u(x) =
∫
Ω

g
(|x− y|)dy.
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Assume that g(r) ∈ C1(R+) satisfies either

g′(r) < 0, ∀0 < r < diam(Ω),

or

g′(r) > 0, ∀0 < r < diam(Ω).

Moreover,

ε−1

ε∫
0

∣∣g(r)∣∣rN−1 dr → 0

and

ε∫
0

∣∣g′(r)
∣∣rN−1 dr → 0,

as ε → 0. Then we can show u is constant on ∂Ω if and only if Ω is a ball. We refer the reader to an

updated version of [22] for more details.

The paper is organized as follows. In Section 2, we present some preliminaries on Bessel potential.

In Section 3, we carry out the proof of Theorem 1. While in Section 4, we derive the proof of Theo-

rem 2. Throughout this paper, the positive constant C is frequently used in the paper. It may differ

from line to line, even within the same line. It also may depend on u in some cases.

2. Preliminaries on Bessel potential

In this section, we recall some basic properties of the Bessel potentials. The interested readers may

refer to [15,30,34] for more details.

Definition 1. The Bessel kernel gα with α � 0 is defined by

gα(x) = 1

r(α)

∞∫
0

exp

(
−π

δ
|x|2

)
exp

(
− δ

4π

)
δ

α−N−2
2 dδ, (2.1)

where r(α) = (4π)
α
2 Γ (α

2
).

For convenience, we set Gα(x, δ) := 1
r(α)

exp(−π
δ
|x|2)exp(− δ

4π )δ
α−N−2

2 .

Definition 2. The Bessel potentials Bα( f ), f ∈ Lp(Rn) with 1 � p � ∞, are given by

Bα( f ) =
{
gα ∗ f , α > 0,

f , α = 0,
(2.2)

where ∗ denotes the convolution of functions.
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Lemma 2.1. For 0 < α < N, there exists C such that

gα(x) � C

|x|N−α
e−C |x| (2.3)

for all x ∈ RN . Moreover, it also follows that

∣∣Dgα(x)
∣∣ � C

|x|N−α+1
e−C |x|. (2.4)

By using the Lp to Lq boundedness of the fractional integral (see [30]), the following Hardy–

Littlewood–Sobolev type inequality can be easily derived:

Lemma 2.2. Let 0 < α < N and 1 < p < q < ∞ satisfying 1
p

− 1
q

= α
N
. Then there exists constant C such that

for all f in Lp(RN ), we have

∥∥Bα( f )
∥∥
Lq

� C‖ f ‖Lp . (2.5)

3. Proof of Theorem 1

In this section, we first introduce some notations. Choose any direction and, rotate coordinate

system if it is necessary such that x1-axis is parallel to it. For any λ ∈ R , define

Tλ = {
(x1, . . . , xN ) ∈ Ω

∣∣ x1 = λ
}
.

Since Ω is bounded, if λ is sufficiently negative, the intersection of Tλ and Ω is empty. Then, we

move the plane Tλ all the way to the right until it intersects Ω . Let

λ0 = min{λ: Tλ ∩ Ω̄ �= ∅}.
For λ > λ0, Tλ cuts off Ω . We define

Σλ = {x ∈ Ω | x1 < λ}.

Set

xλ = {2λ − x1, . . . , xN }

and

Σ ′
λ = {xλ ∈ Ω | x ∈ Σλ}.

At the beginning of λ > λ0, Σ ′
λ remains within Ω . As the plane keeps moving to the right, Σ ′

λ will

still stay in Ω until at least one of the following events occurs:

(i) Σ ′
λ is internally tangent the boundary of Ω at some point Pλ not on Tλ .

(ii) Tλ reaches a position where it is orthogonal to the boundary of Ω at some point Q .

Let λ̄ be the first value such that at least one of above positions is reached.

We assert that Ω must be symmetric about T λ̄; i.e.,

Σλ̄ ∪ T λ̄ ∪ Σ ′̄
λ

= Ω. (3.1)
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If this assertion is true, then for any given direction in RN , we can show that there also exists a

plane T λ̄ such that Ω is symmetric about T λ̄ . Since Ω is connected, then the only domain with those

properties is a ball, see [2]. This thus proves our theorem.

We will first establish some lemmas. Throughout the paper we assume 2 � α < N .

Lemma 3.1. u is in C1(Ω̄) in (1.9).

Remark. In fact, we can show that u ∈ Cl(RN ) for all 1 � l < α.

Proof of Lemma 3.1. Fix η ∈ C∞
0 (RN ) satisfying 0 � η � 1, and η(t) = 0 as |t| � 1, and η(t) = 1 as

|t| � 2. Define for any ε ,

uε(x) =
∫
Ω

ηε(y)gα(x− y)dy,

where ηε = η(
|x−y|

ε ). Thanks to (2.3) and (2.4), we can easily deduce that

uε → u;
Dxi uε →

∫
Ω

Dxi gα(x − y)dy

uniformly in Ω as ε → 0. Therefore, the lemma follows. �
In order to assert (3.1), we introduce

uλ(x) = u(xλ),

Ωλ = Ω \ (
Σλ ∪ Σ ′

λ

)
.

Lemma 3.2. For λ0 < λ < λ̄ and u(x) in (1.9), u(x) < uλ(x) for any x ∈ Σλ .

Proof. For any x ∈ Σλ , we rewrite u(x) and u(xλ) as

u(x) =
∫
Σλ

gα(x− y)dy +
∫
Σλ

gα(xλ − y)dy +
∫
Ωλ

gα(x− y)dy,

and

uλ(x) =
∫
Σλ

gα(xλ − y)dy +
∫
Σλ

gα(x− y)dy +
∫
Ωλ

gα(xλ − y)dy.

Then

u(x) − uλ(x) =
∫
Ωλ

[
gα(x− y) − gα(xλ − y)

]
dy. (3.2)
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Since |x − y| > |xλ − y| for x ∈ Σλ and y ∈ Ωλ , due to the explicit formula of gα , gα(x − y) <

gα(xλ − y), which implies

uλ(x) > u(x)

and then the lemma holds. �
Lemma 3.3. u(x) satisfies (1.9) and suppose λ = λ̄ in the first case; i.e., Σ ′

λ is internally tangent to the bound-

ary of Ω at some point P λ̄ not on T λ̄ , then Σλ̄ ∪ T λ̄ ∪ Σ ′̄
λ

= Ω .

Proof. Thanks to Lemma 3.2, uλ̄(x) � u(x) for x ∈ Σλ̄ . We argue by contradiction. Suppose Σλ̄ ∪ T λ̄ ∪
Σ ′̄

λ
� Ω; that is, Ωλ̄ �= ∅. At P , from (3.2), u(P λ̄) > u(P ). It is a contradiction since P λ̄, P ∈ ∂Ω and

u(P λ̄) = u(P ) = constant. Therefore, the lemma is completed. �
Lemma 3.4. u(x) satisfies (1.9) and suppose that the second case occurs: i.e., T λ̄ reaches a position where is

orthogonal to the boundary of Ω at some point Q , then Σλ̄ ∪ T λ̄ ∪ Σ ′̄
λ

= Ω .

Proof. Since u(x) is constant on the boundary and Ω ∈ C1, ∇u is parallel to the normal at Q . As

implied in the second case, ∂u
∂x1

|Q = 0. We denote the coordinate of Q by z. Suppose Ωλ̄ �= ∅, there
exists a ball B � Ωλ̄ . Choosing a sequence {xi}∞1 ∈ Σλ̄ \ T λ̄ such that xi → z as i → ∞. It is easy to

see that xi
λ̄

→ z as i → ∞. Since B � Ωλ̄ , we can also find a τ > 0 such that diamΩ > |xi
λ̄

− y| > τ

for any y ∈ B and any xi
λ̄
.

From (3.2) and (2.1), choosing a unit vector e1 = (1,0, . . . ,0), by Mean Value Theorem,

u(xi) − u(xi
λ̄
)

(xi − xi
λ̄
) · e1

=
∫
Ωλ̄

∞∫
0

Gα(xi − y, δ) − Gα(xi
λ̄
− y, δ)

(xi − xi
λ̄
) · e1

dδ dy

=
∫
Ωλ̄

∞∫
0

Gα(ξ − y, δ)

(
−2π

δ
(ξ − y) · e1

)
dδ dy

>

∫
B

∞∫
0

Gα(ξ − y, δ)

(
−2π

δ
(ξ − y) · e1

)
dδ dy

> C, (3.3)

where ξ is some point between xi
λ̄
and xi . Nevertheless,

lim
i→∞

u(xi
λ̄
) − u(xi)

(xi
λ̄
− xi) · e1

= ∂u

∂x1

∣∣∣∣
Q

= 0,

which contradicts (3.3). Therefore, Ωλ̄ = ∅. �
Combining Lemmas 3.3 and 3.4, Theorem 1 is proved.

4. Proof of Theorem 2

We show that the assumptions in Theorem 2 imply u ∈ C1(Ω̄). First we introduce a regularity

lifting lemma in [6].
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Lemma 4.1 (Regularity lifting). Let V be a Hausdorff topological vector space. Suppose there are two extended

norms (i.e. the norm of an element in V might be infinity) defined on V ,

‖ · ‖X ,‖ · ‖Y : V → [0,∞].

Assume that the spaces

X := {
v ∈ V : ‖v‖X < ∞}

and Y := {
v ∈ V : ‖v‖Y < ∞}

are complete under the corresponding norms, and the convergence in X or in Y implies the convergence in V .

Let T be a contracting map from X into itself and from Y into itself. Assume that f ∈ X, and that there

exists a function g ∈ Z := X ∩ Y such that f = T f + g in X. Then f also belongs to Z .

Lemma 4.2. If u, h(u) satisfy the assumptions in Theorem 2, then u ∈ C1(Ω̄).

Proof. Define the linear operator

Tuv =
∫
Ω

gα(x− y)
h(u)

u
v dy.

For any real number a > 0, set

{
ua(x) = u(x),

∣∣u(x)
∣∣ > a,

ua(x) = 0, if otherwise.

Let ub(x) = u(x) − ua(x).

Since u(x) satisfies (1.10), we can write it as

ua(x) = Tuaua + g(x) − ub(x) (4.1)

with g(x) = ∫
Ω

gα(x− y)h(ub)dy.

Due to the continuity of h(u) and Lemma 2.1, g(x) ∈ L∞(Ω).

As for Tua v , apply Lemma 2.2, then Hölder’s inequality again, for any t > N
N−α ,

‖Tua v‖Lt (Ω) � C

∥∥∥∥h(ua)

ua
v

∥∥∥∥
L

Nt
N+αt (Ω)

� C

∥∥∥∥h(ua)

ua

∥∥∥∥
L
N
α (Ω)

‖v‖Lt (Ω).

Choose a > 0 sufficiently large, then

‖Tua v‖Lt (Ω) � 1

2
‖v‖Lt (Ω).

Therefore, Tua is a contracting map. By the regularity lifting lemma above, ua ∈ Lt ∩ Lq for any

t > N
N−α . This also implies that u ∈ Lm(Ω) for any m � 1.

Next we show that u ∈ L∞(Ω). For any x ∈ Ω , choose a ball BR(x) with fixed radius R such that

Ω � BR(x), then by Hölder’s inequality,
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∣∣u(x)
∣∣ �

∣∣∣∣
∫
Ω

1

|x− y|N−α
h(u)dy

∣∣∣∣

�
∥∥|x− y|α−N

∥∥
L

r
r−1 (BR (x))

∥∥∥∥h(u)

u

∥∥∥∥
Lr+1(Ω)

‖u‖Lr(r+1)(Ω)

� C,

due to the fact that r > N
α implies that −(N − α) r

r−1
+ N > 0 and r(r + 1) > N

N−α , the assumption

of h(u), and the fact that u ∈ Lm for any m > 0. Thanks to the continuity of h(u), furthermore, we can

infer that h(u) < C . We claim that u ∈ C1(Ḡ). Fix η ∈ C∞
0 (RN ) satisfying 0 � η � 1, and η(t) = 0 as

|t| � 1, and η(t) = 1 as |t| � 2. Define for any ε ,

uε(x) =
∫
Ω

ηε(y)gα(x− y)h
(
u(y)

)
dy,

where ηε(y) = η(
|x−y|

ε ). As in Lemma 3.1, we can deduce that

uε → u;
Dxi uε →

∫
Ω

Dxi gα(x− y)h(u)dy

uniformly in Ω as ε → 0. Therefore, we have verified the claim. The lemma follows. �
Since |xλ − yλ| = |x− y| and |xλ − y| = |x− yλ|, for any solution in (1.10), we rewrite u(x) and uλ(x)

in the following forms:

u(x) =
∫
Σλ

gα(x− y)h
(
u(y)

)
dy +

∫
Σλ

gα(xλ − y)h
(
uλ(y)

)
dy +

∫
Ωλ

gα(x− y)h
(
u(y)

)
dy,

and

uλ(x) =
∫
Σλ

gα(xλ − y)h
(
u(y)

)
dy +

∫
Σλ

gα(x− y)h
(
uλ(y)

)
dy +

∫
Ωλ

gα(xλ − y)h
(
u(y)

)
dy.

Then,

u(x) − uλ(x) =
∫
Σλ

(
gα(x − y) − gα(xλ − y)

)(
h
(
u(y)

) − h
(
uλ(y)

))
dy

+
∫
Ωλ

(
gα(x− y) − gα(xλ − y)

)
h
(
u(y)

)
dy. (4.2)

Since gα(x− y) < gα(xλ − y) for x ∈ Σλ and y ∈ Ωλ , then

u(x) − uλ(x) �
∫
Σλ

(
gα(x− y) − gα(xλ − y)

)(
h
(
u(y)

) − h
(
uλ(y)

))
dy. (4.3)
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In order to start to move the plane, we define

Σ−
λ = {

x ∈ Σλ

∣∣ u(x) > uλ(x)
}
,

and

wλ(x) = u(x) − uλ(x).

Lemma 4.3. For λ sufficiently close to λ0 , assume u(x) satisfies (1.10), then u(x) � uλ(x) for any x ∈ Σλ .

Proof. Due to the fact that gα(x− y) > gα(xλ − y) for x ∈ Σλ and y ∈ Σλ , from (4.3)

u(x) − uλ(x) �
∫

Σ−
λ

(
gα(x − y) − gα(xλ − y)

)(
h
(
u(y)

) − h
(
uλ(y)

))
dy

�
∫

Σ−
λ

gα(x− y)
(
h
(
u(y)

) − h
(
uλ(y)

))
dy

=
∫

Σ−
λ

gα(x− y)h′(θu + (1 − θ)uλ

)
(u − uλ)dy, (4.4)

where h′(θu + (1− θ)uλ) is deduced by Mean Value Theorem and 0 < θ < 1.

Applying the estimate in (2.5), then Hölder’s inequality above, we get

‖wλ‖Lq(Σ−
λ ) � C

∥∥h′(θu + (1− θ)uλ

)
wλ

∥∥
L

nq
N+αq (Σ−

λ )

� C
∥∥h′(θu + (1− θ)uλ

)∥∥
L
N
α (Σ−

λ )
‖wλ‖Lq(Σ−

λ ).

By the assumption (ii) of h, if λ is close enough to λ0, then,

C
∥∥h′(θu + (1 − θ)uλ

)∥∥
L
N
α (Σ−

λ )
� 1

2
,

which implies that

‖wλ‖Lq(Σ−
λ ) = 0.

Hence Σ−
λ measures 0, furthermore, wλ(x) � 0 for any x ∈ Σλ . The lemma is completed. �

Lemma 4.4. Suppose λ < λ̄ and u(x) � uλ(x) in Σλ , then there exists ε > 0 such that u(x) < u
λ̂
(x) for any

x ∈ Σ
λ̂
, where λ̄ > λ̂ := λ + ε .

Proof. Since u(x) � uλ(x), then h(u) � h(uλ) by the assumption of h. Suppose there exists some

point x0 in Σλ such that u(x0λ) − u(x0) = 0; that is, from (4.2),

0 =
∫
Σλ

[
gα

(
x0 − y

) − gα

(
x0λ − y

)][
h(u) − h(uλ)

]
dy +

∫
Ωλ

[
gα

(
x0 − y

) − gα

(
x0λ − y

)]
h(u)dy.

Thus, h(u) ≡ 0 in Ωλ , which is impossible since h(u) > 0. Therefore, u(x) < uλ(x) in Σλ .
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We next show that the plane Tλ can be moved a little further. Since h′(u) ∈ L
N
α (Ω), by the con-

tinuity of integration, for any μ, there exists δ such that, for any measurable set E with |E| < δ,

then

∥∥h′(u)
∥∥
L
N
α (E)

< μ.

As shown in proving that wλ(x) < 0 in Σλ , we choose a compact set D � Σλ such that w
λ̂
(x) < 0

in D . Thus the set Σ−
λ̂

can only lie in F := {Σλ \ D} ∪ {Σ
λ̂
\ Σλ}. From (4.4),

w
λ̂

�
∫
F

gα(x− y)h′(θu + (1− θ)u
λ̂

)
w

λ̂
dy. (4.5)

Choosing ε small enough and D appropriately large so that |F | < δ, we have

∥∥h′(θu + (1− θ)u
λ̂

)∥∥
L
n
α (F )

< μ. (4.6)

Employing Lemma 2.2 to (4.5), we get

‖w
λ̂
‖Lq(F ) � C

∥∥h′(θu + (1 − θ)uλ

)
w

λ̂

∥∥
L

Nq
N+αq (F )

.

Then, by Hölder’s inequality,

‖w
λ̂
‖Lq(F ) � C

∥∥h′(θu + (1 − θ)u
λ̂

)∥∥
L
N
α (F )

‖w
λ̂
‖Lq(F ).

Thanks to (4.6), if μ is small enough, ‖w
λ̂
‖Lq(F ) = 0. Then, Σ−

λ̂
is empty; that is, u(x) � u

λ̂
(x). Using

the same argument at the beginning of the lemma, we shall show that u(x) < u
λ̂
(x) for any x ∈ Σ

λ̂
.

Therefore, the lemma holds. �
Lemma 4.5. Suppose u(x) satisfies (1.10) and λ = λ̄ in the first case; i.e., Σ ′

λ is internally tangent to the

boundary of Ω at some point P λ̄ not on T λ̄ , then Σλ̄ ∪ T λ̄ ∪ Σ ′̄
λ

= Ω .

Proof. If not, then Ωλ �= ∅. From (4.2), at P , u(P ) < u(P λ̄) since h(uλ̄) > h(u) in Σλ̄ and h(u) > 0

in Ωλ . However, u(P ) = u(P λ̄) by our assumption that u is constant on ∂Ω . Therefore, a contradiction

is derived. Hence Ωλ = ∅, which implies that Σλ̄ ∪ T λ̄ ∪ Σ ′̄
λ

= Ω . �
Lemma 4.6. u(x) satisfies (1.10) and suppose that the second case occurs; i.e., T λ̄ reaches a position where is

orthogonal to the boundary of Ω at some point Q , then, Σλ̄ ∪ T λ̄ ∪ Σ ′̄
λ

= Ω .

Proof. As deduced before, ∂u
∂x1

|Q = 0. Denote the coordinate Q by z. Suppose Ωλ̄ �= ∅, then there

exists a ball B � Ωλ̄ . Choose a sequence {xi}∞1 ∈ Σλ̄ \ T λ̄ such that xi → z as i → ∞. Correspondingly

xi
λ̄

→ z as i → ∞. Since B � Ωλ̄ , we can find a τ such that |xi
λ̄

− y| > τ for any y ∈ B and any xi
λ̄
.

By (4.2),

u(xi) − u(xi
λ̄
)

(xi − xi
λ̄
) · e1

�
∫
Ωλ̄

gα(xi − y) − gα(xi
λ̄
− y)

(xi − xi
λ̄
) · e1

h(u)dy

=
∫
Ωλ̄

∞∫
0

Gα(ξ − y, δ)

(
−2π

δ
(ξ − y) · e1

)
h(u)dδ dy
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>

∫
B

∞∫
0

Gα(ξ − y, δ)

(
−2π

δ

(
(ξ − y) · e1

))
h(u)dδ dy

> C . (4.7)

As before, ξ is some point between xi
λ̄
and xi and Mean Value Theorem is used above. However,

lim
i→∞

u(xi
λ̄
) − u(xi)

(xi
λ̄
− xi) · e1

= ∂u

∂x1

∣∣∣∣
Q

= 0.

It apparently contradicts (4.7). In the end, the lemma holds. �
With the help of Lemmas 4.5 and 4.6, Theorem 2 is confirmed.
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