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Abstract. In this paper, we explore a general method to derive Hp ! Lp boundedness
from Hp ! Hp boundedness of linear operators, an idea originated in the work of Han
and Lu in dealing with the multiparameter flag singular integrals ([19]). These linear
operators include many singular integral operators in one parameter and multiparameter
settings. In this paper, we will illustrate further that this method will enable us to prove
the Hp ! Lp boundedness on product spaces of homogeneous type in the sense of
Coifman and Weiss ([5]) where maximal function characterization of Hardy spaces is not
available. Moreover, we also provide a particularly easy argument in those settings such
as one parameter or multiparameter Hardy spaces Hp.Rn/ and Hp.Rn �Rm/ where the
maximal function characterization exists. The key idea is to prove kf kLp � Ckf kHp

for f 2 Lq \Hp (1 < q <1; 0 < p � 1). It is surprising that this simple result even in
this classical setting has been absent in the literature.
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1 Introduction

The purpose of this paper is to develop a general method to derive Hp ! Lp

boundedness from Hp ! Hp boundedness of linear operators for the product
spaces of homogeneous type in the sense of Coifman and Weiss ([5]). The orig-
inal idea was first used in the recent work of Han and Lu [19] where the multi-
parameter Hardy space Hp theory associated with the flag singular integrals and
boundedness of flag singular integrals on Hp spaces and from Hp to Lp spaces
were established. The crucial idea is to prove the following inequality:

kf kLp � Ckf kHp for f 2 Lq \Hp; 1 < q <1; 0 < p � 1: (1.1)
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Using this inequality, the Hp to Lp boundedness follows immediately from the
boundedness on Hp spaces. We should point out that, in the product spaces of
homogeneous type, the maximal function characterizations of Hardy spaces seem
to be impossible at the present time. Thus, establishing (1.1) is not a trivial task in
this setting.

In this paper, we will illustrate further that this inequality also holds on product
spaces of homogeneous type in the sense of Coifman and Weiss ([5]) and thus
enables us to prove the Hp ! Lp boundedness. Moreover, we also provide a
particularly easy argument in those settings such as the classical one parameter
or multiparameter Hardy spaces Hp.Rn/ and Hp.Rn �Rm/ where the maximal
function characterizations do exist. The key idea proving kf kLp � Ckf kHp

for f 2 Lq \ Hp (1 < q < 1; 0 < p � 1) in these classical settings using
the maximal function characterizations is rather simple. However, it is surprising
that the Hp.Rn/ to Lp.Rn/ boundedness for singular integral operators has been
missing in the literature even in these classical cases. It is the main goal of this
paper to demonstrate this crucial idea in proving the Hp to Lp boundedness.

As we pointed out earlier, an application of an inequality of type (1.1) can easily
lead to the Hp ! Lp boundedness from the Hp.Rn/ to Hp.Rn/ boundedness
of singular integral operators. We state these results as

Theorem 1.1. Let 0 < p � 1. If T is a linear operator which is bounded on
Lq.Rn/ for some q, 1 < q < 1, and on Hp.Rn/, then T can be extended to be
a bounded operator from Hp.Rn/ to Lp.Rn/.

Theorem 1.2. Let 0 < p � 1. If T is a linear operator which is bounded on
Lq.Rn � Rm/ for some q, 1 < q < 1, and on Hp.Rn � Rm/, then T can be
extended to be a bounded operator from Hp.Rn �Rm/ to Lp.Rn �Rm/.

It turns out that the proofs of these two theorems are surprisingly simple, though
these theorems have been absent in the literature. Indeed, in the books of Garcia-
Cuerva and Rubio De Francia [11, Theorem 7.7, page 320], Stein [30, Theorem 4,
page 115] and Grafakos [12, Theorem 6.7.3, page 474], it was proved that convo-
lution operators satisfying certain conditions are bounded onHp.Rn/. Therefore,
these results, by the above Theorems 1.1 and 1.2, directly imply the Hp ! Lp

boundedness for all these convolution operators as corollaries of our theorems. We
state this result as

Corollary 1.3. Let 0 < p � 1 and N D Œ n
p
� n�. Let K be a CN function on

Rnn¹0º that satisfies
j@ˇK.x/j � Ajxj�n�jˇ j
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for all multiindices jˇj � N and all x 6D 0. Let W be a tempered distribution
that coincides with K on Rnn¹0º whose Fourier transform is a bounded function
satisfying jbW .�/j � B . Then the operator T .f / D f �W initially defined for f in
the Schwartz class whose support vanishes in a neighborhood of the origin admits
an extension which is both bounded on Hp.Rn/ and bounded from Hp.Rn/ to
Lp.Rn/. Namely,

kT .f /kHp � Cn;p.AC B/kf kHp

and
kT .f /kLp � Cn;p.AC B/kf kHp

for some constant Cn;p.

We will also provide some examples on the Hp.Rn � Rm/ to Lp.Rn � Rm/
boundedness in the multiparameter settings in Section 4.

Corollary 1.4. The singular integral operators of convolution type or Journé’s
type in product spaces defined in Section 4 are Hp ! Lp bounded for all 0 <
p � 1.

In particular, these linear operators include certain classes of singular integrals
studied by R. Fefferman and E. M. Stein [9], J. L. Journé [24] and J. Pipher [27],
etc.

We mention in passing that the product Hardy spaceHp.Rn�Rm/was first in-
troduced by Gundy and Stein [13]. Chang–Fefferman [3, 4] developed the theory
of atomic decomposition. Atomic decomposition of the product Hp.Rn �Rm/
is more complicated than the classical Hp.Rn/. Indeed it was conjectured that
the product atomic Hardy space on Rm�Rn could be defined by rectangle atoms.
However, this conjecture was disproved by a counter-example constructed by
Carleson [1]. This leads that the role of cubes in the classical atomic decom-
position of Hp.Rn/ was replaced by arbitrary open sets of finite measures in the
product Hp.Rn �Rm/. This was carried out in [3], [4].

Since it is more complicated to state our applications in multiparameter set-
ting, we will state these results and give some brief proofs in Section 4 with more
details. The proof of Corollary 1.4 could also be derived using the deep atomic
decomposition of Chang–R. Fefferman and the R. Fefferman method by consider-
ing its action on rectangle atoms and combining it with Journé’s covering lemma.
This was done in [6]. Our approach of proving Hp ! Lp boundedness from
Hp ! Hp boundedness without using Journé’s covering lemma thus provides an
alternative way different from that of R. Fefferman [6]
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Proof of Theorem 1.1. Suppose f 2 Lq.Rn/ \ Hp.Rn/ and 1 < q < 1. Let
� be a Schwartz function in Rn with

R
Rn �.x/ dx D 1. We recall that f 2

Hp.Rn/ can be characterized as supt>0 j�t �f j 2 L
p. Note supt>0 j�t �f .x/j �

CM.f /.x/. Thus, supt>0 j�t � f .x/j 2 L
q.Rn/. Since

lim
t!0
k�t � f � f kLq.Rn/ D 0;

there is a sequence of tj ! 0 such that limtj!0 �tj � f .x/ D f .x/ for a.e.
x 2 Rn. Then we have for all 0 < p � 1

kf kLp.Rn/ � lim
tj!0

k�tj � f kLp.Rn/

and thus
kf kLp.Rn/ � kf kHp.Rn/:

Proof of Theorem 1.2. Suppose f 2 Lq.Rn � Rm/ \ Hp.Rn � Rm/. Let �.1/

be a Schwartz function in Rn and �.2/ be a Schwartz function Rm such thatR
Rn �

.1/.x/ dx D 1, and
R

Rm �
.1/.y/ dy D 1. Set

�ts.x; y/ D t
�ns�m�.1/.

x

t
/�.2/.

y

s
/:

By a result of Merryfield [26], f 2 Hp.Rn � Rm/ can be characterized as
supt;s>0 j�ts � f j 2 L

p. Note supt;s>0 j�ts � f .x; y/j � CMs.f /.x; y/, where

Ms.f /.x; y/ D sup
R

1

jRj

Z
R

jf .x; y/j dxdy

is the strong maximal function and the above supremum is taken among all rect-
angles R in Rn �Rm. Thus, supt;s>0 j�ts � f .x; y/j 2 L

q.Rn �Rm/. Since

lim
t!0; s!0

k�ts � f � f kLq.Rn�Rm/ D 0;

the same argument as in the proof of Theorem 1.1 shows that we have for all
0 < p � 1

kf kLp.Rn�Rm/ � kf kHp.Rn�Rm/

for f 2 Lq.Rn �Rm/ \Hp.Rn �Rm/.

The second main purpose of this paper is to prove such a general result when
the maximal characterization of the Hardy space is not available, for instance,
Hp.X �X/, where only the Littlewood–Paley characterization exists. The main
theorem is as follows:
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Theorem 1.5. Let 1
1C�

< p � 1. If T is a linear operator which is bounded on
Lq.X�X/ for some q, 1 < q <1, and onHp.X�X/, then T can be extended
to be a bounded operator from Hp.X �X/ to Lp.X �X/.

Here the Hardy spaceHp.X�X/ for 1
1C�

< p � 1 was established in [21] on
the product X �X of two spaces of homogeneous type in the sense of Coifman
and Weiss ([5], see more details in the next section).

The crucial ideas to prove Theorem 1.5 can be summarized as follows:

Step 1. Establish the density result of Lq.X�X/\Hp.X�X/ inHp.X�X/

for 1 < q <1 and 0 < p � 1 close to 1.

Step 2. Establish kf kLp.X�X/ � Ckf kHp.X�X/ for f 2 Lq.X � X/ \

Hp.X �X/.

As we mentioned earlier, there is no maximal characterization for the product
Hardy space Hp.X � X/. Therefore, establishing the above two steps is not
completely trivial. After we have derived the above two steps, we will conclude
that for each f 2 Lq \Hp; 1 < q <1, the Lp norm of Tf is dominated by the
Hp norm of Tf and hence, the proof of Theorem 1.5 will follow.

The organization of this paper is as follows: In Section 2, we recall some prelim-
inaries on multiparameter Hardy spaces in spaces of homogeneous type. Section 3
proves a density result which states that for 1 < q <1,Lq.X�X/\Hp.X�X/

is dense in Hp.X �X/. In Section 3, we also show that if f 2 Lq.X �X/ \

Hp.X �X/; then f 2 Lp.X �X/ and there is a constant Cp > 0 which is inde-
pendent of theLq norm of f such that kf kp � Cpkf kHp : These two results lead
us to prove the Hp ! Lp boundedness for singular integrals in multiparameter
Hardy spaces of homogeneous type where the maximal function characterization
is not available. Section 4 provides some examples of Hp ! Lp boundedness of
singular integral operators in multiparameter setting which includes those studied
by R. Fefferman and Stein [9] and Journé [24]. These boundedness results can be
obtained by our general principle demonstrated in this paper and avoid Journé’s
covering lemma [24].

2 Preliminaries

We begin by recalling some necessary definitions and notation on spaces of homo-
geneous type.

A quasi-metric � on a set X is a function � W X �X �! Œ0;1/ satisfying

(1) �.x; y/ D 0 if and only if x D y;

(2) �.x; y/ D �.y; x/ for all x; y 2 X;
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(3) there exists a constant A 2 Œ1;1/ such that for all x; y and z 2 X,

�.x; y/ � AŒ�.x; z/C �.z; y/�:

Any quasi-metric defines a topology, for which the balls B.x; r/ D ¹y 2 X W

�.x; y/ < rº form a base. However, the balls themselves need not be open when
A > 1.

The following spaces of homogeneous type are variants of those introduced by
Coifman and Weiss in [5].

Definition 2.1. Let � 2 .0; 1�. A space of homogeneous type, .X; �; �/� , is a set
X together with a quasi-metric � and a nonnegative Borel regular measure � on
X and there exist constants C0 > 0 such that for all 0 < r < diam X and all
x; x

0

; y 2 X,

�.B.x; r// � r; (2.1)

j�.x; y/ � �.x
0

; y/j � C0�.x; x
0

/� Œ�.x; y/C �.x
0

; y/�1�� : (2.2)

Through out the paper, we assume that �.X/ D1.
We first recall the following construction given independently by Christ in [2]

and by Sawyer–Wheeden in [28], which provides an analogue of the grid of Eu-
clidean dyadic cubes on spaces of homogeneous type. We will follow the state-
ment given in [2].

Lemma 2.2. Let .X; �; �/ be a space of homogeneous type. Then there exists a
collection ¹Qk˛ � X W k 2 Z; ˛ 2 Ikº of open subsets, where Ik is some index
set, and constant ı D 1=2, and C1; C2 > 0, such that

(i) �.X n
S
˛Q

k
˛/ D 0 for each fixed k and Qk˛ \Q

k
ˇ
D ˆ if ˛ ¤ ˇ;

(ii) for any ˛; ˇ; k; l with l � k, either Ql
ˇ
� Qk˛ or Ql

ˇ
\Qk˛ D ˆ;

(iii) for each .k; ˛/ and each l < k there is a unique ˇ such that Qk˛ � Q
l
ˇ

;

(iv) diam.Qk˛/ � C1.
1
2
/k;

(v) each Qk˛ contains some ball B.zk˛ ; C2.
1
2
/k/, where zk˛ 2 X.

In fact, we can think of Qk˛ as being a dyadic cube with diameter rough .1
2
/k

centered at zk˛ . As a result, we consider CQk˛ to be the dyadic cube with the same
center as Qk˛ and diameter C diam.Qk˛/. In the following, for k 2 Z and � 2 Ik ,
we will denote by Qk;v� , v D 1; 2; : : : ; N.k; �/, the set of all cubes QkCJ� � Qk� ,
where J is a fixed large positive integer, and denote by yk;v� a point in Qk;v� .
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Now we introduce the approximation to identity on X.

Definition 2.3 ([23]). A sequence ¹Skºk2Z of operators is said to be an approxi-
mation to identity of order " 2 .0; ��, if there exists a constant C > 0 such that for
all k 2 Z and all x; x0; y; y0 2 X, Sk.x; y/, the kernel of Sk , is a function from
X �X into C satisfying

jSk.x; y/j � C
2�k"

.2�k C �.x; y//1C"
I (2.3)

jSk.x; y/ � Sk.x
0; y/j � C

� �.x; x0/

2�k C �.x; y/

�" 2�k"

.2�k C �.x; y//1C"

for �.x; x0/ �
1

2A
.2�k C �.x; y//I

(2.4)

jSk.x; y/ � Sk.x; y
0/j � C

� �.y; y0/

2�k C �.x; y/

�" 2�k"

.2�k C �.x; y//1C"

for �.y; y0/ �
1

2A
.2�k C �.x; y//I

(2.5)

jSk.x; y/ � Sk.x; y
0/ � Sk.x

0; y/C Sk.x
0; y0/j

� C
� �.x; x0/

2�k C �.x; y/

�"� �.y; y0/

2�k C �.x; y/

�"
�

2�k"

.2�k C �.x; y//1C"

for �.x; x0/; �.y; y0/ �
1

2A
.2�k C �.x; y//I

(2.6)

Z
X

Sk.x; y/d�.y/ D

Z
X

Sk.x; y/ d�.x/ D 1: (2.7)

We remark that by a construction of Coifman, in what follows, we will use an
approximation to the identity of order with " D � .

To recall the definition of Hp.X �X/, we need to introduce the space of test
functions on X �X.

Definition 2.4 ([21]). For i D 1; 2, fix i > 0 and ˇi > 0. A function f defined
on X�X is said to be a test function of type .ˇ1; ˇ2I 1; 2/ centered at .x0; y0/ 2
X �X with width r1; r2 > 0 if f satisfies the following conditions:

(1) jf .x; y/j � C
r
1
1

.r1 C �.x; x0//
1C1

r
2
2

.r2 C �.y; y0//
1C2
I
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(2) jf .x; y/ � f .x
0

; y/j

� C
� �.x; x

0

/

r1 C �.x; x0/

�ˇ1 r
1
1

.r1 C �.x; x0//
1C1

r
2
2

.r2 C �.y; y0//
1C2

for �.x; x
0

/ �
1

2A
Œr1 C �.x; x0/�I

(3) jf .x; y/ � f .x; y
0

/j

� C
� �.y; y

0

/

r2 C �.y; y0/

�ˇ2 r
1
1

.r1 C �.x; x0//
1C1

r
2
2

.r2 C �.y; y0//
1C2

for �.y; y
0

/ �
1

2A
Œr2 C �.y; y0/�I

(4) jŒf .x; y/ � f .x
0

; y/� � Œf .x; y
0

/ � f .x
0

; y
0

/�j

� C
� �.x; x

0

/

r1 C �.x; x0/

�ˇ1� �.y; y
0

/

r2 C �.y; y0/

�ˇ2 r
1
1

.r1 C �.x; x0//
1C1

�
r
2
2

.r2 C �.y; y0//
1C2

for �.x; x
0

/ �
1

2A
Œr1 C �.x; x0/� and �.y; y

0

/ �
1

2A
Œr2 C �.y; y0/�I

(5)
Z

X

f .x; y/d�.x/ D 0 for all y 2 XI

(6)
Z

X

f .x; y/d�.y/ D 0 for all x 2 X:

If f is a test function of type .ˇ1; ˇ2I 1; 2/ centered at .x0; y0/ 2 X�X with
width r1; r2 > 0, then we write f 2 G .x0; y0I r1; r2Iˇ1; ˇ2I 1; 2/ and define the
norm of f by kf kG .x0;y0Ir1;r2Iˇ1;ˇ2I1;2/ D inf¹C W (1), (2), (3) and (4) holdº.

We denote by G .ˇ1; ˇ2I1; 2/ the class of G .x0; y0I r1; r2Iˇ1; ˇ2I1; 2/with
r1 D r2 D 1 for fixed .x0; y0/ 2 X �X. It is easy to see that

G .x1; y1I r1; r2Iˇ1; ˇ2I 1; 2/ D G .ˇ1; ˇ2I 1; 2/

with an equivalent norm for all .x1; y1/ 2 X � X. We can easily check that
G .ˇ1; ˇ2I 1; 2/ is a Banach space with respect to the norm in G .ˇ1; ˇ2I 1; 2/.

For any 0 < ˇ1; ˇ2; 1; 2 < � , the space VG .ˇ1; ˇ2I 1; 2/ is defined to be the
completion of G .�; � I �; �/ in G .ˇ1; ˇ2I 1; 2/. We define kf k

VG .ˇ1;ˇ2I1;2/
D

kf kG .ˇ1;ˇ2I1;2/: Then, obviously, VG .ˇ1; ˇ2I 1; 2/ is a Banach space. Hence
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we can define the dual space
�
VG .ˇ1; ˇ2I 1; 2/

�0
to be the set of all linear func-

tionals L from VG .ˇ1; ˇ2I 1; 2/ to C with the property that there exists a C � 0
such that for all f 2 VG .ˇ1; ˇ2I 1; 2/,

jL.f /j � Ckf k
VG .ˇ1;ˇ2I1;2/

:

In [21], to define the product Hardy space Hp.X � X/, they first introduced
the Littlewood–Paley–Stein square function on X �X by

g.f /.x1; x2/ D

² 1X
k1D�1

1X
k2D�1

jDk1Dk2.f /.x1; x2/j
2

³1=2
;

where Dki D Ski � Ski�1 with Ski being an approximation to the identity for
i D 1; 2, and proved that kg.f /kp � kf kp for 1 < p < 1. Then Hp.X �X/

is defined as follows.

Definition 2.5. Let ¹Ski ºki2Z be an approximation to the identity of order � , i D
1; 2. Set Dki D Ski � Ski�1 for all ki 2 Z. For 1

1C�
< p � 1 and 1

p
�

1 < ˇi ; i < � , the Hardy space Hp.X � X/ is defined to be the set of all
f 2

�
VG .ˇ1; ˇ2; 1; 2/

�0
such that kg.f /kLp.X�X/ <1, and we define

kf kHp.X�X/ D kg.f /kLp.X�X/:

In order to verify that the definition ofHp.X�X/ is independent of the choice
of approximations to the identity, in [21] the following min-max type inequality
for Hp.X �X/ is proved.

Lemma 2.6. Let all the notation be the same as in Definition 2.5. Moreover, for
i D 1; 2, let ¹Pki ºki2Z be another approximation to the identity of order � and
Eki D Pki � Pki�1 for all ki 2 Z. And let ¹Qki ;vi�i W ki 2 Z; �i 2 Iki ; vi D

1; : : : ; N.ki ; �i /º and ¹Q
k
0

i
;v
0

i

�
0

i

W k
0

i 2 Z; �
0

i 2 Ik0
i

; v
0

i D 1; : : : ; N.k
0

i ; �
0

i /º be sets of

dyadic cubes of X as mentioned in Lemma 2.2. Then, for 1
1C�

< p <1, there is a

constantC > 0 such that for all f 2
�
VG .ˇ1; ˇ2; 1; 2/

�0
with 1

p
�1 < ˇi ; i < � ,² 1X

k1D�1

1X
k2D�1

X
�12Ik1

X
�22Ik2

N.k1;�1/X
v1D1

N.k2;�2/X
v2D1

sup
z12Q

k1;v1
�1

;z22Q
k2;v2
�2

jDk1Dk2.f /.z1; z2/j
2�
Q
k1;v1
�1

.�/�
Q
k2;v2
�2

.�/

³1=2
Lp.X�X/
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� C

² 1X
k
0

1D�1

1X
k
0

2D�1

X
�
0

12Ik
0

1

X
�
0

22Ik
0

2

N.k
0

1;�
0

1/X
v
0

1D1

N.k
0

2;�
0

2/X
v
0

2D1

inf
z12Q

k
0

1
;v
0

1

�
0

1

;z22Q
k
0

2
;v
0

2

�
0

2

jE
k
0

1

E
k
0

2

.f /.z1; z2/j
2�
Q
k
0

1
;v
0

1

�
0

1

.�/�
Q
k
0

2
;v
0

2

�
0

2

.�/

³1=2
Lp.X�X/

:

As a consequence of Lemma 2.6, we define the discrete Littlewood–Paley–Stein
square function by

gd .f /.x1; x2/

D

² 1X
k1D�1

1X
k2D�1

X
�12Ik1

X
�22Ik2

N.k1;�1/X
v1D1

N.k2;�2/X
v2D1

jDk1Dk2.f /.y1; y2/j
2

� �
Q
k1;v1
�1

.x1/�
Q
k2;v2
�2

.x2/

³1=2
;

where y1 and y2 are any fixed points in Qk1;v1�1 and Qk2;v2�2 , respectively, and we
have

kf kHp.X�X/ D kg.f /kLp.X�X/ � kgd .f /kLp.X�X/:

To prove Lemma 2.6, in [21] they established the discrete Calderón reproducing
formula on X �X.

Lemma 2.7. Let all the notation be the same as in Definition 2.5. Then there
are families of linear operators ¹ QDki ºki2Z and ¹ NDki ºki2Z such that for all f 2
VG .ˇ1; ˇ2I 1; 2/ with ˇi ; i 2 .0; �/,

f .x1; x2/ D

1X
k1D�1

1X
k2D�1

X
�12Ik1

X
�22Ik2

N.k1;�1/X
v1D1

N.k2;�2/X
v2D1

�.Qk1;v1�1
/�.Qk2;v2�2

/

� eDk1eDk2.x1; x2; yk1;v1�1
; yk2;v2�2

/Dk1Dk2.f /.y
k1;v1
�1

; yk2;v2�2
/

D

1X
k1D�1

1X
k2D�1

X
�12Ik1

X
�22Ik2

N.k1;�1/X
v1D1

N.k2;�2/X
v2D1

�.Qk1;v1�1
/�.Qk2;v2�2

/

�Dk1Dk2.x1; x2; y
k1;v1
�1

; yk2;v2�2
/Dk1Dk2.f /.y

k1;v1
�1

; yk2;v2�2
/;

(2.8)
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where yki ;vi�i is any point in Qki ;vi�i for i D 1; 2 and the series converges in both
the norm of VG .ˇ1; ˇ2I 1; 2/ and the norm of Lp.X � X/ with 1 < p < 1.
Moreover, QDki .x; y/, the kernel of QDki satisfies the conditions (2.3) and (2.4) of
Definition 2.3 with � replaced by any " < � andZ

X

QDki .x; y/d�.y/ D

Z
X

QDki .x; y/d�.x/ D 0I (2.9)

similarly, NDki .x; y/, the kernel of NDki satisfies the conditions (2.3) and (2.5) of
Definition 2.3 with � replaced by any " < � and (2.9), for all ki 2 Z with i D 1; 2.

For any f 2
�
VG .ˇ1; ˇ2I 1; 2/

�0, (2.8) also holds in
�
VG .ˇ1; ˇ2I 1; 2/

�0.
In this paper, we use the notation a � b and b . c for a; b; c � 0 to mean

that there exists a C > 0, so that a=C � b � C � a and b � C � c, respectively.
The value of C varies from one usage to the next, but it depends only on constants
quantified in the relevant preceding hypotheses. We use a _ b and a ^ b to mean
max.a; b/ and min.a; b/ for any a; b 2 R, respectively.

3 A density result and bounding the Lp norm by H p norm

In this section, we prove Theorem 1.5. To do this, we need the following two
results.

Proposition 3.1. For 1
1C�

< p � 1 and 1 < q <1, Lq.X �X/\Hp.X �X/

is dense in Hp.X �X/.

Proposition 3.2. For 1
1C�

< p � 1 < q <1, if f 2 Lq.X�X/\Hp.X�X/;

then f 2 Lp.X �X/ and there is a constant Cp > 0 which is independent of the
Lq norm of f such that

kf kp � Cpkf kHp :

Proof of Theorem 1.5. Let us assume the two propositions first. Then for f 2
Lq.X �X/\Hp.X �X/, we have T .f / 2 Lq.X �X/\Hp.X �X/. From
Proposition 3.2, we get that kT .f /kp � CpkT .f /kHp and Cp is independent of
theLq norm of T .f /. Since T is bounded onHp.X�X/, we have kT .f /kHp �

Ckf kHp . Moreover, by Proposition 3.1, we obtain that T can be extended to a
bounded operator from Hp.X �X/ to Lp.X �X/. This completes the proof of
Theorem 1.5.

Now we begin to prove the above two propositions.
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Proof of Proposition 3.1. Suppose f 2 Hp.X �X/ and set

W D ¹.k1; k2I �1; �2I v1; v2/ W jk1j � L1; jk2j � L2;

Qk1;v1�1
�Qk2;v2�2

� B.x0; r/ � B.x0; r/º;

where k1, k2 are positive integers and B.x0; r/ is a ball in X centered at x0 2 X

with radius r > 0. It is easy to see thatX
.k1;k2I�1;�2Iv1;v2/2W

�.Qk1;v1�1
/�.Qk2;v2�2

/eDk1eDk2.x1; x2; yk1;v1�1
; yk2;v2�2

/

�Dk1Dk2.f /.y
k1;v1
�1

; yk2;v2�2
/

is an Lq function, 1 < q <1, for any fixed L1, L2 and r . To show this proposi-
tion, it suffices to show thatX

.k1;k2I�1;�2Iv1;v2/2W c

�.Qk1;v1�1
/�.Qk2;v2�2

/eDk1eDk2.x1; x2; yk1;v1�1
; yk2;v2�2

/

�Dk1Dk2.f /.y
k1;v1
�1

; yk2;v2�2
/

tends to zero in the Hp norm as L1, L2 and r tend to infinity. In fact, from the
min-max type inequality in Lemma 2.6, we can see that

kf kHp �

² 1X
k1D�1

1X
k2D�1

X
�12Ik1

X
�22Ik2

N.k1;�1/X
v1D1

N.k2;�2/X
v2D1

jDk1Dk2.f /.y
k1;v1
�1

; yk2;v2�2
/j2�

Q
k1;v1
�1

.x1/�
Q
k2;v2
�2

.x2/

³ 1
2

p

:

(3.1)

And repeating the same proof of Lemma 2.6 yields that X
.k1;k2I�1;�2Iv1;v2/2W c

�.Qk1;v1�1
/�.Qk2;v2�2

/eDk1eDk2.x1; x2; yk1;v1�1
; yk2;v2�2

/

�Dk1Dk2.f /.y
k1;v1
�1

; yk2;v2�2
/


Hp

�

² 1X
k
0

1D�1

1X
k
0

2D�1

ˇ̌̌̌ X
.k1;k2I�1;�2Iv1;v2/2W c

�.Qk1;v1�1
/�.Qk2;v2�2

/

�D
k
0

1

D
k
0

2

eDk1eDk2.x1; x2; yk1;v1�1
; yk2;v2�2

/

�Dk1Dk2.f /.y
k1;v1
�1

; yk2;v2�2
/

ˇ̌̌̌2³ 1
2

p

:
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� C

² X
.k1;k2I�1;�2Iv1;v2/2W c

jDk1Dk2.f /.y
k1;v1
�1

; yk2;v2�2
/j2

� �
Q
k1;v1
�1

.x1/�
Q
k2;v2
�2

.x2/

³ 1
2

p

:

Since f 2 Hp.X �X/, from (3.1) we can get that the last term tends to zero as
L1, L2 and r tend to infinity. This completes the proof of the proposition.

Proof of Proposition 3.2. To show this result, we first use Coifman’s idea to con-
struct an approximation to the identity ¹Skºk on X which satisfies the following
conditions: There exists a constantC > 0 such that for all k 2 Z and x; x0; y 2 X,

(i) Sk.x; y/ D 0 if �.x; y/ > C2�k and kSkk1 � C2k;

(ii) jSk.x; y/ � Sk.x0; y/j � C2k.1C�/�.x; x0/�;

(iii)
R

X Sk.x; y/ d�.y/ D 1, a.e. x 2 X;

(iv) Sk.x; y/ D Sk.y; x/.

We can check that such a ¹Skºk satisfies all the conditions in Definition 2.3. More-
over, we can see that for each fixed y, when considering Sk.x; y/ as a function of
variable x, it supports on ¹x 2 X W �.x; y/ � C2�kº. Set Dk D Sk � Sk�1, then
we can see that similar results hold for Dk with only (iii) replaced by

(iii)0
R

X Dk.x; y/ d�.y/ D 0, a.e. x 2 X.

Let Sk1 and Sk2 be two approximations to the identity on X that satisfy all
the above conditions, Dk1 D Sk1 � Sk1�1, Dk2 D Sk2 � Sk2�1. And then we
substitute such Dk1Dk2 into Definition 2.5, Lemma 2.6 and 2.7. And then we
define a square function as follows:

G .f /.x1; x2/ D

² 1X
k1D�1

1X
k2D�1

X
�12Ik1

X
�22Ik2

N.k1;�1/X
v1D1

N.k2;�2/X
v2D1

jDk1Dk2.f /.y
k1;v1
�1

; yk2;v2�2
/j2�

Q
k1;v1
�1

.x1/�
Q
k2;v2
�2

.x2/

³ 1
2

;

(3.2)

where Dk1Dk2 is the same as that in (2.8), Lemma 2.6. By Lemma 2.6, for
f 2 Lq.X �X/ \Hp.X �X/, we have

kG .f /kp � Ckf kHp :



742 Y. Han, J. Li, G. Lu and P. Wang

Now let f 2 Lq.X �X/ \Hp.X �X/, and set

�i D ¹.x1; x2/ 2 X �X W G .f /.x1; x2/ > 2
i
ºI

e�i D °.x1; x2/ 2 X �X WMs.��i /.x1; x2/ >
C

100

±
I

Bi D
°
R � X �X W �.R \�i / >

1

2
�.R/; �.R \�iC1/ �

1

2
�.R/

±
;

where R ranges over all the dyadic rectangles in X �X and C is a constant to be
chosen later. It is easy to see that each dyadic rectangle R belongs to only one Bi .

Since f 2 Lq.X � X/, then by the discrete Calderón reproducing formula
(2.8) in Lemma 2.7,

f .x1; x2/ D

1X
k1D�1

1X
k2D�1

X
�12Ik1

X
�22Ik2

N.k1;�1/X
v1D1

N.k2;�2/X
v2D1

�.Qk1;v1�1
/�.Qk2;v2�2

/

�Dk1Dk2.x1; x2; y
k1;v1
�1

; yk2;v2�2
/

�Dk1Dk2.f /.y
k1;v1
�1

; yk2;v2�2
/

D

X
i

1X
k1D�1

1X
k2D�1

X
�12Ik1

X
�22Ik2

N.k1;�1/X
v1D1

N.k2;�2/X
v2D1

�
¹Q

k1;v1
�1

�Q
k2;v2
�2

2Bi º
.k1; k2I �1; �2I v1; v2/

� �.Qk1;v1�1
/�.Qk2;v2�2

/

�Dk1Dk2.x1; x2; y
k1;v1
�1

; yk2;v2�2
/

�Dk1Dk2.f /.y
k1;v1
�1

; yk2;v2�2
/

,
X
i

fi .x1; x2/;

where the series converges in Lq norm hence it also converges almost everywhere.
We claim that

kfik
p
p � C2

ip�.�i /;

which together with the fact 1
1C�

< p � 1 yields that

kf kpp �
X
i

kfik
p
p �

X
i

C2ip�.�i / � CkG .f /k
p
p � Ckf k

p
Hp :
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To show the claim, note that Coifman’s construction yields thatDki .xi ; y
ki ;vi
�i /

is a function of xi with compact support ¹xi 2 X W �.xi ; y
ki ;vi
�i / � 2C2�ki º, for

i D 1; 2. Thus, by choosing a constant C small enough, when Qk1;v1�1 �Q
k2;v2
�2 2

Bi , we can obtain that Dk1.x1; y
k1;v1
�1 /Dk2.x2; y

k2;v2
�2 / is supported in e�i . Here

C only depends on C , A and J . This yields that for each i , fi .x1; x2/ is supported
in e�i . Thus, by using the Hölder inequality, we have

kfi .x1; x2/k
p
p � �.

e�i /1�pq kfikpq :
We now estimate theLq norm of fi . By the duality argument, for all h 2 Lq

0

.X�

X/ with khkq0 � 1,

jhfi ; hij D

ˇ̌̌̌Z
X�X

1X
k1D�1

1X
k2D�1

X
�12Ik1

X
�22Ik2

N.k1;�1/X
v1D1

N.k2;�2/X
v2D1

�
¹Q

k1;v1
�1

�Q
k2;v2
�2

2Bi º
.k1; k2I �1; �2I v1; v2/�.Q

k1;v1
�1

/�.Qk2;v2�2
/

�Dk1Dk2.h/.y
k1;v1
�1

; yk2;v2�2
/Dk1Dk2.f /.y

k1;v1
�1

; yk2;v2�2
/

� �
Q
k1;v1
�1

.x1/�
Q
k2;v2
�2

.x2/ d�.x1/d�.x2/

ˇ̌̌̌

�

� 1X
k1D�1

1X
k2D�1

X
�12Ik1

X
�22Ik2

N.k1;�1/X
v1D1

N.k2;�2/X
v2D1

�
¹Q

k1;v1
�1

�Q
k2;v2
�2

2Bi º
.k1; k2I �1; �2I v1; v2/

� jDk1Dk2.h/.y
k1;v1
�1

; yk2;v2�2
/j2

� �
Q
k1;v1
�1

.x1/�
Q
k2;v2
�2

.x2/ d�.x1/d�.x2/

� 1
2

q

�

� 1X
k1D�1

1X
k2D�1

X
�12Ik1

X
�22Ik2

N.k1;�1/X
v1D1

N.k2;�2/X
v2D1

�
¹Q

k1;v1
�1

�Q
k2;v2
�2

2Bi º
.k1; k2I �1; �2I v1; v2/

� jDk1Dk2.f /.y
k1;v1
�1

; yk2;v2�2
/j2

� �
Q
k1;v1
�1

.x1/�
Q
k2;v2
�2

.x2/d�.x1/d�.x2/

� 1
2

q0
:
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Since� 1X
k1D�1

1X
k2D�1

X
�12Ik1

X
�22Ik2

N.k1;�1/X
v1D1

N.k2;�2/X
v2D1

�
¹Q

k1;v1
�1

�Q
k2;v2
�2

2Bi º
.k1; k2I �1; �2I v1; v2/

� jDk1Dk2.h/.y
k1;v1
�1

; yk2;v2�2
/j2�

Q
k1;v1
�1

.x1/�
Q
k2;v2
�2

.x2/

� 1
2

q0

�

� 1X
k1D�1

1X
k2D�1

X
�12Ik1

X
�22Ik2

N.k1;�1/X
v1D1

N.k2;�2/X
v2D1

jDk1Dk2.h/.x1; x2/j
2

� �
Q
k1;v1
�1

.x1/�
Q
k2;v2
�2

.x2/d�.x1/d�.x2/

� 1
2

q0

� Ckhkq0

� C;

the claim follows from the following estimate:

C2qi�.�i /

�

Z
e�in�i G .f /q.x1; x2/d�.x1/d�.x2/

�

Z
e�in�i

� 1X
k1D�1

1X
k2D�1

X
�12Ik1

X
�22Ik2

N.k1;�1/X
v1D1

N.k2;�2/X
v2D1

�
¹Q

k1;v1
�1

�Q
k2;v2
�2

2Bi º
.k1; k2I �1; �2I v1; v2/jDk1Dk2.f /.y

k1;v1
�1

; yk2;v2�2
/j2

� �
Q
k1;v1
�1

.x1/�
Q
k2;v2
�2

.x2/

�q
2

d�.x1/d�.x2/

D

Z
X�X

� 1X
k1D�1

1X
k2D�1

X
�12Ik1

X
�22Ik2

N.k1;�1/X
v1D1

N.k2;�2/X
v2D1

�
¹Q

k1;v1
�1

�Q
k2;v2
�2

2Bi º
.k1; k2I �1; �2I v1; v2/jDk1Dk2.f /.y

k1;v1
�1

; yk2;v2�2
/j2

� �
¹.Q

k1;v1
�1

�Q
k2;v2
�2

/\e�in�i º.x1; x2/
�q
2

d�.x1/d�.x2/



Hp ! Hp boundedness implies Hp ! Lp boundedness 745

� C

Z
X�X

� 1X
k1D�1

1X
k2D�1

X
�12Ik1

X
�22Ik2

N.k1;�1/X
v1D1

N.k2;�2/X
v2D1

�
¹Q

k1;v1
�1

�Q
k2;v2
�2

2Bi º
.k1; k2I �1; �2I v1; v2/jDk1Dk2.f /.y

k1;v1
�1

; yk2;v2�2
/j2

�Ms

�
�
¹.Q

k1;v1
�1

�Q
k2;v2
�2

/\e�in�i º�2.x1; x2/
�q
2

d�.x1/d�.x2/

� C

Z
X�X

² 1X
k1D�1

1X
k2D�1

X
�12Ik1

X
�22Ik2

N.k1;�1/X
v1D1

N.k2;�2/X
v2D1

�
¹Q

k1;v1
�1

�Q
k2;v2
�2

2Bi º
.k1; k2I �1; �2I v1; v2/jDk1Dk2.f /.y

k1;v1
�1

; yk2;v2�2
/j2

� �
Q
k1;v1
�1

.x1/
�
Q
k2;v2
�2

.x2/

³q
2

d�.x1/d�.x2/;

where in the last inequality we have used the fact that

�

�
Qk1;v1�1

�Qk2;v2�2
\ e�in�i� > 1

2
�.Qk1;v1�1

�Qk2;v2�2
/

when Qk1;v1�1 �Q
k2;v2
�2 2 Bi , and thus

�
.Q
k1;v1
�1

�Q
k2;v2
�2

/
.x1; x2/ �

1

2
Ms

�
�
Q
k1;v1
�1

�Q
k2;v2
�2

\.e�i n�i /
�
.x1; x2/;

and in the second to the last inequality we have used the vector-valued Fefferman–
Stein inequality for strong maximal functions. This finishes the proof of the propo-
sition.

4 Examples of multiparameter singular integrals bounded on
H p.Rn �Rm/

We end this paper with some examples on how our general results of bounded-
ness on Hardy spaces Hp.X �X/ make sense and imply in the simplest case of
product spaces of two Euclidean spaces. In particular, our Theorem 1.2 will imply
the Hp.Rn � Rm/ to Lp.Rn � Rm/ boundedness of a certain class of product
singular integrals. We first remark that our results hold on X � Y with two differ-
ent homogeneous spaces X and Y. Second, all the theorems proved in this paper
on X � Y can be made very precise on Rn � Rm by using Calderón reproducing
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formulas with explicitly constructed approximation of identity via Fourier trans-
form. In particular, the definitions of Hardy spaces Hp.X � Y/ can be made for
all 0 < p � 1 when X D Rn and Y D Rm.

To state the realization of our main results on Rn � Rm, we need to start with
some preliminaries. Let S.Rn/ denote the set of all Schwartz functions in Rn.
Then the test functions defined on Rn �Rm can be given by

 .x; y/ D  .1/.x/ .2/.y/

where  .1/ 2 S.Rn/,  .2/ 2 S.Rm/, and satisfy
P
j2Z j

b .1/.2�j �1/j2 D 1 for

all �1 2 Rnn¹.0/º, and
P
k2Z j

b .2/.2�k�2/j2 D 1 for all �2 2 Rmn¹0º, and the
moment conditionsZ

Rn
x˛ .1/.x/ dx D

Z
Rm

 .2/.y/yˇ dy D 0

for all nonnegative integers ˛ and ˇ.
Let f 2 Lp, 1 < p < 1. Thus g.f /, the Littlewood–Paley–Stein square

function of f , is defined by

g.f /.x; y/ D

²X
j

X
k

j j;k � f .x; y/j
2

³ 1
2

;

where
 j;k.x; y/ D 2

jnCkm .1/.2jx/ .2/.2ky/: (4.1)

By taking the Fourier transform, it is easy to see the following continuous ver-
sion of Calderón’s identity holds on L2.Rn �Rm/,

f .x; y/ D
X
j

X
k

 j;k �  j;k � f .x; y/: (4.2)

Using the orthogonal estimates and together with Calderón’s identity on L2

allows us to obtain the Lp estimates of g for 1 < p < 1. Namely, there exist
constants C1 and C2 such that for 1 < p <1,

C1kf kp � kg.f /kp � C2kf kp:

In order to use the Littlewood–Paley–Stein square function g to define the
Hardy space, one needs to extend the Littlewood–Paley–Stein square function to
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be defined on a suitable distribution space. For this purpose, we introduce the
product test function space on Rn �Rm.

Definition 4.1. A Schwartz test function f .x; y/ defined on Rn�Rm is said to be
a product test function on Rn �Rm if f 2 S.Rn �Rm/ andZ

Rn
f .x; y/x˛ dx D

Z
Rm

f .x; y/yˇ dy D 0

for all indices ˛; ˇ of nonnegative integers.
If f is a product test function on Rn �Rm we denote f 2 S1.Rn �Rm/ and

the norm of f is defined by the norm of Schwartz test functions.

We denote by .S1.Rn �Rm//0 the dual of S1.Rn �Rm/.
Now we need to establish the discrete Calderón reproducing formula as follows.

Theorem 4.2. Suppose that  j;k are the same as in (4.1). Then

f .x; y/ D
X
j;k

X
I;J

jI jjJ je j;k.x; xI ; y; yJ / j;k � f .xI ; yJ /; (4.3)

where e j;k.x; xI ; y; yJ / 2 S1.Rn � Rm/, I � Rn, J � Rm are dyadic cubes
with side-length `.I / D 2�j�N and `.J / D 2�k�N for a large fixed integer N ,
and xI ; yJ are any fixed points in I; J , respectively. Moreover, the series in (4.3)
converges in the norm of S1.Rn �Rm/ and in the dual space .S1.Rn �Rm//0.

The proof of this theorem is similar to that of Lemma 2.7 and we shall omit it
here.

Since the functions  j;k constructed above belong to the space S.Rn � Rm/,
the Littlewood–Paley–Stein square function g can be defined for all distributions
in .S.Rn � Rm//0. Formally, we can define the multiparameter Hardy space as
follows.

Definition 4.3. Let 0 < p < 1. The multiparameter Hardy space is defined as
Hp.Rn � Rm/ D ¹f 2 .S/0 W g.f / 2 Lp.Rn �Rm/º. If f 2 Hp.Rn � Rm/,
the norm of f is defined by kf kHp D kg.f /kp.

To establish the Hardy space theory on Rn�Rm, we need the following discrete
Calderón-type identity.

Theorem 4.4. Let 0 < p � 1 and M be a large fixed integer such that M >

max
�
n. 1
p
� 1/;m. 1

p
� 1/

�
. Suppose that  j;k are the same as in (4.1) and that
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 1;  2 are Schwartz functions supported in the unit ball in Rn and Rm, respec-
tively, and satisfy the moment conditionsZ

Rn
x˛ .1/.x/ dx D

Z
Rm

 .2/.y/yˇ dy D 0

for 0 � j˛j; jˇj � M . Then there exists an operator T �1N such that for f 2
L2.Rn �Rm/ \Hp.Rn �Rm/,

f .x; y/ D
X
j;k

X
I;J

jI jjJ je j;k.x � xI ; y � yJ / � j;k � .T �1N f /
�
.xI ; yJ /; (4.4)

where I � Rn, J � Rm are dyadic intervals with interval-length `.I / D 2�j�N ,
`.J / D 2�k�N for a fixed large integer N depending on M , and xI , yJ are
any fixed points in I , J respectively. For each j , k, I , J and xI , yJ as above,e j;k.x�xI ; y�yJ / is also a Schwartz function with compact support and satisfies
the same moment conditions as  j;k . Moreover, the series in (4.4) converges in the
norm of L2.Rn �Rm/ and Hp.Rn �Rm/.

Remark 4.5. This theorem can be proved in the same way as in [19]. The dif-
ference between Theorem 4.2 (see also the second equality in Lemma 2.7) and
Theorem 4.4 are that our Calderón reproducing formula in Theorem 4.4 has the
operator T �1N acting on f . The purpose to preserve T �1N in the Calderón repro-
ducing formula is that we would like to make e j;k.x � xI ; y � yJ / have compact
support, which plays an important role in the discrete Littlewood–Paley character-
ization of the Hardy spaces Hp.Rn �Rm/.

Proof. For any f 2 L2.Rn �Rm/ \Hp.Rn �Rm/, by using (4.2), we have

f .x; y/ D
X
j;k

 j;k �  j;k � f .x; y/

D

X
j;k

X
I;J

Z
I

Z
J

 j;k.x � u; y � v/ j;k � f .u; v/ dudv

D

X
j;k

X
I;J

hZ
I

Z
J

 j;k.x � u; y � v/ dudv
i
 j;k � f .xI ; yJ /

CR.f /.x; y/;

where for each j , k, I � Rn, J � Rm are dyadic intervals with interval-length
`.I / D 2�j�N , `.J / D 2�k�N for a fixed large integer N depending on M and
xI , yJ are any fixed points in I , J , respectively.
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Note that

R.f /.x; y/

D

X
j;k

X
I;J

Z
I

Z
J

 j;k.x � u; y � v/
�
 j;k �f .u; v/ �  j;k �f .xI ; yJ /

�
dudv

D

X
j;k

X
I;J

Z
I

Z
J

 j;k.x � u; y � v/

Z
Rn�Rm

�
 j;k.u � u

0; v � v0/

�  j;k.xI � u
0; yJ � v

0/
�
f .u0; v0/ du0dv0dudv

D

Z
Rn�Rm

R.x; y; u0; v0/f .u0; v0/ du0dv0;

where R.x; y; u0; v0/ is the kernel of R.
Next, we need the following: there exists a constant C > 0 such that for any

f 2 L2.Rn �Rm/ \Hp.Rn �Rm/,

(a) kR.f /kL2.Rn�Rm/ � C2
�N kf kL2.Rn�Rm/;

(b) kR.f /kHp.Rn�Rm/ � C2
�N kf kHp.Rn�Rm/.

In fact, for any 0 < p � 1, using the discrete Calderón reproducing formula for
f 2 L2.Rn �Rm/ \Hp.Rn �Rm/, we have

kg.R.f //kp �
°X
j;k

X
I;J

ˇ̌
 j;k �R.f /.� ; �/

ˇ̌2
�I .�/�J .�/

± 1
2

p

�

°X
j;k

X
I;J

X
j 0;k0

X
I 0;J 0

ˇ̌
 j;k �R

�
jI 0jjJ 0je j 0;k0. � ; xI 0 ; � ; yJ 0/ � j 0;k0

�f .xI 0 ; yJ 0/
�ˇ̌2
�I .�/�J .�/

± 1
2

p
;

where j , k, I , J and j 0, k0, I 0, J 0, xI 0 , yJ 0 are the same as in Theorem 4.2.
Now, from the definition of R.x; y; u0; v0/ and using the cancellation and

smoothness conditions, we can obtain the following almost orthogonality estimate:ˇ̌̌�
 j;k �R

�e j 0;k0. � ; xI 0 ; � ; yJ 0/�.x; y/ˇ̌̌
� C2�N 2�jj�j

0jK2�jk�k
0jK 2�.j^j

0/K

.2�.j^j
0/ C jx � xI 0 j/.nCK/

�
2�.k^k

0/K

.2�.k^k
0/ C jy � yJ 0 j/.mCK/

;
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whereK < M and max
�

n
nCK

; m
mCK

�
< p. Then, using the above almost orthog-

onality estimate, we can obtain that for any x 2 I and y 2 J ,ˇ̌
 j;k �R.f /.x; y/

ˇ̌
� C2�N 2�jj�j

0jK2�jk�k
0jK

�

°
Ms

�X
I 0;J 0

j j 0;k0 � f .xI 0 ; yJ 0/j�I 0.�/�J 0.�/
�r± 1

r
.x; y/:

Thus,

kg.R.f //kp

� C2�N
°X
j 0;k0

°
Ms

�X
I 0;J 0

j j 0;k0 � f .xI 0 ; yJ 0/j�I 0�J 0
�r± 2

r
.� ; �/

± 1
2

p

� C2�N
°X
j 0;k0

X
I 0;J 0

j j 0;k0 � f .xI 0 ; yJ 0/j
2�I 0�J 0

± 1
2

p

� C2�N kf kHp.Rn�Rm/:

This implies that (b) holds. It is clear that the above estimates still hold when p is
replaced by 2, which implies that (a) holds.

We now denote T �1N D
P1
iD0Ri , where

TN .f /.x; y/ D
X
j;k

X
I;J

h Z
I

Z
J

 j;k.x � u; y � v/ dudv
i
 j;k � f .xI ; yJ /:

Then, (a) and (b) together show that if N is large enough, then both TN and T �1N
are bounded on L2.Rn �Rm/\Hp.Rn �Rm/. Hence, we can get the following
reproducing formula:

f .x; y/ D
X
j;k

X
I;J

jI jjJ je j;k.x � xI ; y � yJ / j;k � .T �1N f /.xI ; yJ /;

where e j;k.x � xI ; y � yJ / D 1
jI j

1
jJ j

R
I

R
J  j;k.x � u; y � v/ dudv satisfies the

properties mentioned in Theorem 4.4.
This completes the proof of Theorem 4.4.

We now recall some basic definitions about the product Hardy space on Rn �
Rm.

Definition 4.6. Suppose that f .x1; x2/ 2 L2..Rn�Rm//. Let .1/.x1/,  .2/.x2/
be functions as above. The discrete Littlewood–Paley function of f , gN .f /, is
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defined by

gN .f /.x1; x2/ D

²X
j;k

X
I;J

j j;k � .T
�1
N f /.xI ; yJ /j

2�I .x1/�J .x2/

³ 1
2

; (4.5)

where T �1N is the same as above, I � Rn and J � Rm are cubes with `.I / D
2�j�N , `.J / D 2�k�N , N is a large fixed integer, and �I and �J are the charac-
teristic function of I and J , xI , yJ are any fixed points in I and J , respectively.

Similar to [19] and [20], the above discrete Littlewood–Paley function in (4.5)
can characterize the product Hardy spaces. More precisely, we have

Theorem 4.7. For 0 < p � 1, let N be the same as in Theorem 4.4. Then for
f 2 L2..Rn �Rm// \Hp.Rn �Rm/, we have

kf kHp.Rn�Rm/ � kgN .f /kLp.Rn�Rm/:

This theorem is a direct consequence of the following min-max type inequality.

Lemma 4.8. Let 0 < p � 1 and let M ,  j;k , ‰j;k , �j;k and ĵ;k be the same
as in Theorem 4.4 and N; T �1N be the same as in Theorem 4.4. Then for any
f 2 Hp.Rn �Rm/, we have°X

j;k

X
I;J

sup
u2I;v2J

j j;k � f .u; v/j
2�I .�/�J .�/

± 1
2

p

�

°X
j;k

X
I;J

inf
u2I;v2J

j‰j;k � f .u; v/j
2�I .�/�J .�/

± 1
2

p

�

°X
j;k

X
I;J

sup
u2I;v2J

j�j;k � .T
�1
N f /.u; v/j2�I .�/�J .�/

± 1
2

p

�

°X
j;k

X
I;J

sup
u2I;v2J

j ĵ;k � .T
�1
N f /.u; v/j2�I .�/�J .�/

± 1
2

p
;

where I , J are the same as in Theorem 4.2.

The proof of the above lemma can be obtained by applying the Calderón repro-
ducing formulae in Theorem 4.2 and 4.4 and then repeating the same proof of the
min-max type inequality as in Lemma 2.6. For the detail, we omit it here.

The Calderón–Zygmund convolution operators on the product space Rn � Rm

studied by Fefferman and Stein [8] generalizes the double Hilbert transform inR2,
H.f / D p.v.f � 1

xy
. These operators are defined by T .f / D f � K acting on
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functions on Rn�Rm with the kernelK D K.x; y/, x 2 Rn, y 2 Rm. The kernel
satisfies the following basic assumptions:

(1) Size properties:

j@˛CˇK.x; y/j � C˛;ˇ jxj
�n�j˛j

jyj�m�jˇ j

for all multiindices ˛ and ˇ;

(2) Cancellation properties: Z
a<jxj<b

K.x; y/ dx D 0

for all 0 < a < b <1 and y 2 Rm, andZ
a<jxj<b

K.x; y/ dy D 0

for all 0 < a < b <1 and x 2 Rn.

To see that such convolution operators are bounded on Hp.Rn � Rm/ for
max. n

nC1
; m
mC1

/ < p � 1 for each f 2 Hp.Rn � Rm/ \ L2.Rn � Rm/, us-
ing Theorem (4.7) and the discrete Calderón identity we have

kTf kHp D kgN .Tf /kp

D

°X
j;k

X
I;J

j j;k �K � .T
�1
N f /.xI ; yJ /j

2�I .x1/�J .x2/
± 1
2

p

D

°X
j;k

X
I;J

j j;k �K �
X
j 0;k0

X
I 0;J 0

 j 0;k0.xI � xI 0 ; yJ � yJ 0/

� jI 0jjJ 0jj j 0;k0 � .T
�1
N f /.xI 0 ; yJ 0/j

2�I .x1/�J .x2/
± 1
2

p
;

(4.6)

where in the above we have used the dyadic cubes I , I 0 in Rn and J , J 0 in Rm

with `.I / D 2�j�N , `.J / D 2�k�N , `.I 0/ D 2�j
0�N and `.J 0/ D 2�k

0�N .
By an orthogonal estimate, that isˇ̌̌

 j;k �
X
j 0;k0

 j 0;k0.x1; x2/
ˇ̌̌
� CM2

�jj�j 0jM2�jk�k
0jM 2�.j^j

0/M

.2�.j^j
0/ C jx1j/nCMC1

�
2�.k^k

0/M

.2�.k^k
0/ C jx2j/mCMC1

for any fixed large integer M .
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Applying the similar estimate as in [9, page 125], we haveˇ̌̌
 j;k �K �

X
j 0;k0

 j 0;k0.x1; x2/
ˇ̌̌

� CM2
�jj�j 0jM2�jk�k

0jM 2�.j^j
0/M

.2�.j^j
0/ C jx1j/nCMC1

�
2�.k^k

0/M

.2�.k^k
0/ C jx2j/mCMC1

:

Substituting this estimate back into (4.6) and applying Fefferman–Stein’s vector
valued maximal function inequality, we can obtain the Hp boundedness of T . By
our main theorem, such an operator can be extended to be a bounded operator from
Hp.Rn �Rm/ to Lp.Rn �Rm/.

Similarly, we can consider a class of the product Calderón–Zygmund operators
T studied by Journé, which is defined by

Tf .x1; x2/ D

Z
Rn�Rm

K.x1; x2; y1; y2/f .y1; y2/ dy1dy2; .2:4/

where the kernel K.x1; x2; y1; y2/ is defined on Rn � Rm � Rn � Rm and there
exist constants C > 0 and " > 0 such that

(i) jK.x1; x2; y1; y2/j �
C

jx1 � y1j
n
jx2 � y2j

m I

(ii) jK.x1; x2; y1; y2/ �K.x01; x2; y1; y2/j � C
jx1 � x

0
1j
"

jx1 � y1j
nC"
jx2 � y2j

m
;

jK.x1; x2; y1; y2/ �K.x1; x2; y
0
1; y2/j � C

jy1 � y
0
1j
"

jx1 � y1j
nC"
jx2 � y2j

m
;

jK.x1; x2; y1; y2/ �K.x1; x
0
2; y1; y2/j � C

jx2 � x
0
2j
"

jx1 � y1j
n
jx2 � y2j

mC"
;

jK.x1; x2; y1; y2/ �K.x1; x2; y1; y
0
2/j � C

jy2 � y
0
2j
"

jx1 � y1j
n
jx2 � y2j

mC"

for 2jx1� x01j � jx1� y1j, 2jy1� y
0
1j � jx1� y1j, 2jx2� x

0
2j � jx2� y2j,

2jy2 � y
0
2j � jx2 � y2j, respectively;

(iii)
ˇ̌
ŒK.x1; x2; y1; y2/ �K.x

0
1; x2; y1; y2/�

� ŒK.x1; x
0
2; y1; y2/ �K.x

0
1; x
0
2; y1; y2/�

ˇ̌
� C

jx1 � x
0
1j
"

jx1 � y1j
nC"

jx2 � x
0
2j
"

jx2 � y2j
mC"

;
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ˇ̌
ŒK.x1; x2; y1; y2/ �K.x1; x2; y

0
1; y2/�

� ŒK.x1; x2; y1; y
0
2/ �K.x1; x2; y

0
1; y
0
2/�
ˇ̌

� C
jy1 � y

0
1j
"

jx1 � y1j
nC"

jy2 � y
0
2j
"

jx2 � y2j
mC"

;

for 2jx1�x01j � jx1�y1j, 2jx2�x
0
2j � jx2�y2j and 2jy1�y01j � jx1�y1j,

2jy2 � y
0
2j � jx2 � y2j, respectively.

For the Calderón–Zygmund operator T as above, the following result has been
proved in the recent paper of Han, Lee, Lin and Lin (see [16]).

Theorem 4.9 ([16]). Let T be a Calderón–Zygmund operator associated to the
kernel K that satisfies (i)–(iii) with T �1 .1/ D T �2 .1/ D 0. Then T is bounded on
Hp.Rn �Rm/ for max¹ n

nC"
; m
mC"
º < p � 1.

Here, T �1 .1/ D 0 and T �2 .1/ D 0 mean that, for all ' 2 C10;0.R
n �Rm/,Z

Rn

Z
Rn�Rm

K.x1; x2; y1; y2/'.y1; y2/ dy1dy2dx1 D 0

and Z
Rm

Z
Rn�Rm

K.x1; x2; y1; y2/'.y1; y2/ dy1dy2dx2 D 0;

where C10;0 is the class of all functions in C1 with support on the unit ball andR
' D 0.

Therefore, by Theorem 1.2, such operators can be extended to be bounded op-
erators from Hp.Rn �Rm/ to Lp.Rn �Rm/. This implies Corollary 1.4.

This type of theorem in the more difficult and complicated setting of three or
more parameters has been established by Y. Han, G. Lu and Z. Ruan [22].
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