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Abstract

Let X be a metric space with doubling measure, and L be a non-negative,
self-adjoint operator satisfying Davies-Gaffney bounds on L2(X). In this article we
present a theory of Hardy and BMO spaces associated to L, including an atomic (or
molecular) decomposition, square function characterization, and duality of Hardy
and BMO spaces. Further specializing to the case that L is a Schrödinger operator
on R

n with a non-negative, locally integrable potential, we establish additional
characterizations of such Hardy spaces in terms of maximal functions. Finally, we
define Hardy spaces Hp

L(X) for p > 1, which may or may not coincide with the
space Lp(X), and show that they interpolate with H1

L(X) spaces by the complex
method.
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CHAPTER 1

Introduction

The development of the theory of Hardy spaces in R
n was initiated by Stein and

Weiss [SW], and was originally tied closely to the theory of harmonic functions.
On the other hand, real variable methods were introduced into this subject in the
seminal paper of Fefferman and Stein [FS], the evolution of whose ideas led eventu-
ally to a characterization of Hardy spaces via the so called “atomic decomposition”,
obtained by Coifman [C] when n = 1, and in higher dimensions by Latter [L]. In
this context, atoms are compactly supported building blocks, enjoying a vanishing
moment condition, whose (countable and suitably convergent) linear combinations
generate the entire space. The connection between the results of [FS] and those of
[C] and [L] may be seen most directly via the duality pairing with the space BMO,
and via the “tent space” theory of Coifman, Meyer and Stein [CMS] (in which con-
nection see also the work of Calderón and Torchinsky [CT] and Wilson [Wi]). The
advent of the atomic method enabled the extension of the real variable theory of
Hardy spaces to a far more general setting, that of a “space of homogeneous type”,
in the work of Coifman and Weiss [CW1],[CW2] (cf. Macias and Segovia [MS]).
Nonetheless, it is now understood that there are important situations in which the
classical Coifman-Weiss theory is not applicable, and these situations, being tied to
the theory of partial differential operators generalizing the Laplacian, return us in
some sense to the original point of view of [SW]. That is, we shall consider Hardy
spaces that are adapted to a linear operator L, in much the same way that the
classical Stein-Weiss spaces are adapted to the Laplacian. On the other hand, the
real variable techniques of [FS],[C],[L], [CW1], [CW2] and [CMS] will still be of
fundamental importance to us here.

First Auscher, Duong and McIntosh [ADM], and then Duong and Yan, [DY1],
[DY2], introduced Hardy and BMO spaces explicitly adapted to an operator L
whose heat kernel enjoys a pointwise Gaussian upper bound (but see also the earlier,
more specific work of Auscher and Russ [AR]). In their approach, modeled on
Duong’s earlier work on weak-type (1, 1) bounds for generalized singular integrals
(e.g., [DR], [DM]), the heat semigroup or resolvent replaces the usual averaging
operator over cubes or balls (in this connection, see also the work of Martell [M] on
adapted sharp functions), and, in lieu of a standard vanishing moment condition,
“cancellation” becomes a matter of membership in the range of L. Subsequent work
on this subject has been based on these two cornerstones.

Recently, in [AMR] and in [HM], the authors treated Hardy spaces (and in
the latter paper, BMO spaces) adapted, respectively, to the Hodge Laplacian on a
Riemannian manifold with doubling measure, or to a second order divergence form
elliptic operator on R

n with complex coefficients, in which settings pointwise heat
kernel bounds may fail. Thus, although the two cornerstones mentioned above still
underlie the foundation of the subject, the results and (to some extent) methods

1
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of [ADM, DY1, DY2] are not directly applicable. Nonetheless, much of the
theory, with some variations, was carried out in [AMR] and [HM] using only
Davies-Gaffney type estimates in place of pointwise kernel bounds. In particular,
the adapted H1 spaces were shown to possess a molecular decomposition, as in the
work of Taibleson and Weiss [TW]. Molecules are building blocks similar to atoms,
but lacking the compact support property of the latter.

In the present work, we extend the results of [AMR] in several ways. After
treating several preliminary matters in Sections 2 and 3, we develop in Sections
4-6 the theory of H1 and BMO spaces adapted to an arbitrary non-negative, self-
adjoint operator L satisfying Davies-Gaffney bounds, in the general setting of a
metric space with a doubling measure, and for our H1

L space we obtain an atomic
decomposition (that is, in which the building blocks are compactly supported).
In particular, specializing to the case of the Hodge Laplacian on a Riemannian
manifold with doubling measure, this sharpens the result of [AMR], who obtain
a decomposition in terms of non-compactly supported molecules. To be more pre-
cise, we show that the adapted H1

L spaces defined in terms of atoms, in terms of
molecules, or in terms of square functions built with either heat or Poisson semi-
groups, are all equivalent, assuming sufficient “L-cancellation” of our atoms or
molecules. We also establish boundedness of certain maximal operators from our
adapted H1

L space into L1, although in the absence of any structural assumptions
on L, we do not obtain, in this general setting, a maximal function characterization
of our space. We then define an adapted BMOL space, and establish its duality
with H1

L.
We do not address the issue of non-selfadjoint operators as considered in [HM].

In the present monograph, self-adjointness is used in two ways: first, to establish
an L2 theory (cf. (3.14) below), and second, to obtain an atomic, as opposed to
molecular, decomposition. The first of these is in some sense non-essential: the
L2 theory is available for many non-selfadjoint operators, and were this the only
consideration, one could just as well take the L2 square function bound (3.14) as the
fundamental hypothesis, rather than self-adjointness. On the other hand, as regards
the second issue, self-adjointness would appear to be essential: we do not necessarily
expect that atomic (as opposed to molecular) decompositions will be available in
the non-selfadjoint setting. Certainly the method of proof here, based on the wave
equation, does not yield such a decomposition without self-adjointness. The atomic
decomposition has one particular consequence that we exploit: we also show that an
operator T which maps H1

L molecules uniformly into L1 is automatically bounded
from H1

L into L1, without further hypotheses on T ; this fact is analogous to results
obtained in the classical setting in [MSV], [HZ], [HLZ], [RV], [CYZ] and [YZ],
and is non-trivial, in light of the Meyer-Bownik example [B]. The proof of this
fact uses the atomic decomposition in the following way: we show (cf. Theorem
5.4 below) that a function f given as a finite linear combination of atoms has
an alternative decomposition as a finite linear combination of molecules, with the
further property that the �1 norm of the coefficients in the latter case is actually
comparable to the H1 norm of f . Our other main general result, namely, the
equivalence of the molecular H1

L space and its square function analogues, does not
require self-adjointness.

We then proceed to consider certain special cases of the general theory described
above. In Section 7, we suppose that the heat kernel enjoys a pointwise Gaussian
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bound, and prove some sharper results in the spirit of [DY2]. Further specializing in
Section 8 to the case that L is a Schrödinger operator on Rn, with a non-negative,
locally integrable potential, we exploit the explicit structure of the operator to
establish additional characterizations of H1

L in terms of non-tangential maximal
functions built either with heat or Poisson semigroups, by following the methods of
[FS]. We note that much of the adaptedH1/BMO theory for Schrödinger operators
was previously developed in the work of Dziubański and Zienkiewicz [DZ1, DZ2]
and of Dziubański et al [DGMTZ], in the presence of stronger assumptions on the
potential. Finally, following [AMR], in Section 9 we define the spaces Hp

L, p > 1
(which do not necessarily coincide with Lp), and we show that these spaces belong
to a complex interpolation scale.

We conclude this introduction by remarking that this work, as well as the earlier
cited papers [DY1], [DY2], [AMR], and [HM], can in some sense be viewed
as a companion to the Lp theory developed for general classes of operators in
[BK1],[BK2], [HMa] and [Au].

Acknowledgments. The authors thank the referee for a careful reading of the
manuscript, and for offering numerous valuable suggestions to improve its mathe-
matical and historical accuracy.

S. Hofmann thanks D. C. Yang for pointing out an error in the original version
of Lemma 3.3 of the cited paper [HM], which we had quoted without proof (as
Lemma 4.3) in an earlier version of this paper. We have addressed this issue here
by revising Definitions 2.2 and 2.4, leading now to a correct version of our Lemma
4.3 (Lemma 3.3 of [HM]).

L.X. Yan would like to thank X.T. Duong, A. McIntosh and Z. Shen for helpful
discussions, and thanks the Department of Mathematics of University of Missouri-
Columbia for its hospitality.





CHAPTER 2

Notation and preliminaries

2.1. Spaces of homogeneous type. Throughout the paper we shall make
the following standing assumptions:

X is a metric space, with distance function d, and

μ is a nonnegative, Borel, doubling measure on X.
(2.1)

Recall that a metric is doubling provided that there exists a constant C > 0 such
that for all x ∈ X and for all r > 0,

V (x, 2r) ≤ CV (x, r) < ∞,(2.2)

where B(x, r) := {y ∈ X : d(x, y) < r} and

V (x, r) := μ(B(x, r)).(2.3)

In particular, X is a space of homogeneous type. A more general definition1 and
further studies of these spaces can be found in [CW1, Chapter 3]. Note that the
doubling property implies the following strong homogeneity property,

(2.4) V (x, λr) ≤ CλnV (x, r)

for some C, n > 0 uniformly for all λ ≥ 1 and x ∈ X. In Euclidean space with
Lebesgue measure, the parameter n corresponds to the dimension of the space, but
in our more abstract setting, the optimal n need not even be an integer. There also
exist C and D, 0 ≤ D ≤ n so that

(2.5) V (y, r) ≤ C
(
1 +

d(x, y)

r

)D
V (x, r)

uniformly for all x, y ∈ X and r > 0. Indeed, property (2.5) with D = n is a direct
consequence of the triangle inequality for the metric d and the strong homogeneity
property (2.4). In the cases of the Euclidean space Rn and Lie groups of polynomial
growth, D can be chosen to be 0.

To simplify notation, we will often just use B for B(xB, rB). Also given λ > 0,
we will write λB for the λ−dilated ball, which is the ball with the same center as
B and with radius rλB = λrB. We set

(2.6) U0(B) := B, and Uj(B) := 2jB\2j−1B for j = 1, 2, . . . .

For 1 ≤ p ≤ ∞, the space of p-integrable functions on X is denoted by Lp(X),
the norm of a function f ∈ Lp(X) by ‖f‖Lp(X), and the scalar product in L2(X)
by 〈., .〉.

1We do not treat the more general version of a space of homogeneous type, in which one
assumes the existence of a pseudo-metric, rather than a true metric.

5
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2.2. Assumptions. Let (X, d, μ) be as in (2.1). The following will be assumed
throughout the paper unless otherwise specified:
(H1) L is a non-negative self-adjoint operator on L2(X);
(H2) The operator L generates an analytic semigroup {e−tL}t>0 which satisfies the
Davies-Gaffney condition. That is, there exist constants C, c > 0 such that for any
open subsets U1, U2 ⊂ X,

(2.7) |〈e−tLf1, f2〉| ≤ C exp
(
− dist(U1, U2)

2

c t

)
‖f1‖L2(X)‖f2‖L2(X), ∀ t > 0,

for every fi ∈ L2(X) with supp fi ⊂ Ui, i = 1, 2, where

dist(U1, U2) := inf
x∈U1,y∈U2

d(x, y).

2.3. The classical Hardy space H1(Rn). It is well-known that the classical
Hardy space H1(Rn) can be characterized by means of the square or maximal

function associated with the Poisson semigroup e−t
√
L or the heat semigroup e−tL,

where L = −� is the Laplace operator, see [FS]. A slightly more general point of
view is as follows. Let ψ ∈ S(Rn),

∫
Rn ψ �= 0, where S(Rn) denotes the Schwartz

class of smooth functions, rapidly decreasing at infinity. Set ψt(x) := t−nψ
(
x
t

)
for

x ∈ Rn and t > 0. The radial maximal function acting on a tempered distribution
f ∈ S ′(Rn) is defined as

(Mψf)(x) := sup
t>0

|(f ∗ ψt)(x)|, x ∈ R
n.

Then f belongs to the Hardy space H1(Rn) if and only if Mψf ∈ L1(Rn) (see, e.g.,
[St2]).

An important characterization of the Hardy space H1(Rn) is in terms of atoms.
Recall that a function a ∈ L2(Rn) is called a H1(Rn)-atom if there exists a ball B
in R

n satisfying
1) supp a ⊂ B;
2) ‖a‖L2(Rn) ≤ |B|−1/2;

3)
∫
B
a(x)dx = 0.

Here and elsewhere, |B| denotes the Lebesgue measure of the set B ⊂ Rn. Replacing
balls by cubes in (1)-(3) above leads to an equivalent definition.

It is obvious that any H1(Rn)-atom a is in H1(Rn). The basic result about
atoms is the following atomic decomposition theorem (see [C], [CW2] and [L]):
a real-valued function f defined on Rn belongs to H1(Rn) if and only if it has a
decomposition

f =

∞∑
j=0

λjaj in L1(Rn),

where the aj ’s are H1(Rn)-atoms and
∑∞

j=0 |λj | < ∞. Furthermore,

‖f‖H1(Rn) ≈ inf
( ∞∑

j=0

|λj |
)
,

where the infimum is taken over all such decompositions, and the constants of
proportionality are absolute.
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2.4. Hardy spaces via atoms. We now introduce the notion of a (1, 2,M)-
atom associated to operators on spaces (X, d, μ) as in (2.1).

Definition 2.1. Let M be a positive integer. A function a ∈ L2(X) is called
a (1, 2,M)-atom associated to the operator L if there exist a function b ∈ D(LM )
and a ball B such that

(i) a = LMb;
(ii) supp Lkb ⊂ B, k = 0, 1, . . . ,M ;
(iii) ||(r2BL)kb||L2(X) ≤ r2MB V (B)−1/2, k = 0, 1, . . . ,M .

In what follows, let us now assume that
(2.8)

M ∈ N and M >
n0

4
, where n0 := inf

{
n : sup

B⊆X

λ≥1

[ V (λB)

λnV (B)

]
< ∞

}
.

I.e., n0 is the optimal n satisfying (2.4). We denote by D(T ) the domain of an
unbounded operator T , and by T k the k-fold composition of T with itself, in the
sense of unbounded operators. Also, let L be as in (H1)-(H2).

Definition 2.2. The atomic Hardy space H1
L,at,M (X) is defined as follows. We

shall say that f =
∑

λjaj is an atomic (1, 2,M)-representation (of f) if {λj}∞j=0 ∈
�1, each aj is a (1, 2,M)-atom, and the sum converges in L2(X). Set

H
1
L,at,M (X) :=

{
f : f has an atomic (1, 2,M)-representation

}
,

with the norm given by

||f ||H1
L,at,M (X) =

inf
{ ∞∑

j=0

|λj | : f =

∞∑
j=0

λjaj is an atomic (1, 2,M)-representation
}
.

The space H1
L,at,M (X) is then defined as the completion of H1

L,at,M (X) with respect
to this norm.

Remark. The assumption of L2 convergence as a starting point is natural given
that we consider here operators for which we assume only an L2 theory. Indeed,
it is not clear that arbitrary �1 atomic or molecular representations (i.e., for which
one does not assume L2 convergence) make sense in this context. An essentially
equivalent, but more complicated method to address this difficulty, in which L2

convergence of the molecular sums is achieved via truncations of scale, appears in
[HM, HM2]. An alternative approach, based on convergence of molecular sums
in the dual to a BMO-like space, has recently appeared in [JY].

2.5. Hardy spaces via molecules. Given (X, d, μ) as in (2.1), M as in (2.8),
and ε > 0, we next describe the notion of a (1, 2,M, ε)-molecule associated to an
operator L as in (H1)-(H2).

Definition 2.3. A function m ∈ L2(X) is called a (1, 2,M, ε)-molecule asso-
ciated to L if there exist a function b ∈ D(LM ) and a ball B such that

(i) m = LMb;
(ii) For every k = 0, 1, 2, . . . ,M and j = 0, 1, 2, . . . , there holds
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‖(r2BL)kb‖L2(Uj(B)) ≤ r2MB 2−jεV (2jB)−1/2,

where the annuli Uj(B) have been defined in ( 2.6).

Definition 2.4. We fix ε > 0. The Hardy space H1
L,mol,M (X) is defined as

follows. We say that f =
∑

λjmj is a molecular (1, 2,M, ε)-representation (of f) if
{λj}∞j=0 ∈ �1, each mj is a (1, 2,M, ε)-molecule, and the sum converges in L2(X).
Set

H
1
L,mol,M (X) =

{
f : f has a molecular (1, 2,M, ε)-representation

}
,

with the norm given by

||f ||H1
L,mol,M (X) =

inf
{ ∞∑

j=0

|λj | : f =
∞∑
j=0

λjmj is a molecular (1, 2,M, ε)-representation
}
.

The space H1
L,mol,M (X) is then defined as the completion of H1

L,mol,M (X) with
respect to this norm.

Eventually, we shall see that any fixed choice of M > n0/4 and ε > 0, yields
the same space.

2.6. Hardy spaces via square and maximal functions. For any x ∈ X
and α > 0, the cone of aperture α and vertex x is the set

Γα(x) :=
{
(y, t) ∈ X × (0,∞) : d(y, x) < αt

}
.(2.9)

For simplicity, we will often write Γ(x) in place of Γ1(x). Given an operator L
satisfying (H1)-(H2) and a function f ∈ L1(X), consider the following quadratic
and non-tangential maximal operators associated to the heat semigroup generated
by L

(2.10) Shf(x) :=
(∫∫

Γ(x)

|t2Le−t2Lf(y)|2 dμ(y)

V (x, t)

dt

t

)1/2
, x ∈ X,

and

(2.11) Nhf(x) := sup
(y,t)∈Γ(x)

( 1

V (y, t)

∫
B(y,t)

|e−t2Lf(z)|2dμ(z)
)1/2

, x ∈ X,

where we use an extra averaging in the space variable for the non-tangential maxi-
mal function in order to compensate for the lack of pointwise estimates on the heat
semigroup (an idea originating in [KP]).

One can also consider the Poisson semigroup generated by the operator L and
the operators

(2.12) SP f(x) :=
(∫∫

Γ(x)

|t
√
Le−t

√
Lf(y)|2 dμ(y)

V (x, t)

dt

t

)1/2
, x ∈ X,

and

(2.13) NP f(x) := sup
(y,t)∈Γ(x)

( 1

V (y, t)

∫
B(y,t)

|e−t
√
Lf(z)|2dμ(z)

)1/2
, x ∈ X,

for f ∈ L2(X).
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In order to define the Hardy spaces based upon these various operators, we
follow [AMR] and first define the L2 adapted Hardy space

(2.14) H2(X) := H2
L(X) := R(L),

that is, the closure of the range of L in L2(X). Then L2(X) is the orthogonal sum
of H2(X) and the null space N(L). In the sequel, we shall often drop the subscript
L when referring to H2(X) = H2

L(X).
Before proceeding further, let us observe at this point that there are fairly

general circumstances under which N(L) = {0}, and thus H2(X) = L2(X). Indeed,
suppose that the space X satisfies the “Ahlfors-David” condition V (x, t) ≈ tn, for
all x ∈ X and every t > 0 (compare to the weaker (2.4)), and suppose that the
heat semigroup e−tL satisfies, for some p > 2, the hypercontractive estimate

(2.15) ‖e−tLf‖Lp(X) ≤ Ct
n
2 ( 1

p−
1
2 )‖f‖L2(X), ∀t > 0.

Then, writing

e−tL − I =

∫ t

0

∂

∂s
e−sLds = −

∫ t

0

Le−sLds,

we see that f ∈ N(L) implies that e−tLf = f . Consequently, for such f , letting
t → ∞ in (2.15), we obtain that f = 0, since f ∈ L2(X).

We note that, in particular, this last observation shows that if the heat kernel
Wt(x, y) of L satisfies the classical pointwise Gaussian bound

|Wt(x, y)| ≤ Ct−n/2e−|x−y|2/ct,

then H2
L(X) = L2(X).

Having introduced the space H2(X) = H2
L(X), we may now define the spaces

H1
L,Sh

(X), H1
L,Nh

(X), H1
L,SP

(X), and H1
L,NP

(X) as the respective completions of

{f ∈ H2(X) : ‖Tf‖L1(X) < ∞}, where T denotes, respectively, Sh,Nh, SP or NP ,
with respect to the norm ‖Tf‖L1(X); e.g.,

(2.16) ‖f‖H1
L,Sh

(X) := ‖Shf‖L1(X), f ∈ H2(X),

and H1
L,Sh

(X) is the completion of {f ∈ H2(X) : ‖Shf‖L1(X) < ∞}, with respect

to the norm defined in (2.16).
Then the following result holds.

Theorem 2.5. Suppose M > n0

4 and ε > 0. For an operator L satisfying (H1)-

(H2), the Hardy spaces H1
L,Sh

(X), H1
L,SP

(X), H1
L,at,M (X), and H1

L,mol,M (X) co-
incide. Furthermore,

‖f‖H1
L,Sh

(X) ≈ ‖f‖H1
L,SP

(X) ≈ ‖f‖H1
L,at,M (X) ≈ ‖f‖H1

L,mol,M (X),

with implicit constants depending only on n0, M , ε, and L.

2.7. BMO spaces associated to operators. The classical space of func-
tions with bounded mean oscillations on Rn, denoted by BMO(Rn), was originally
introduced by John-Nirenberg in [JN]. Recall that a locally integrable function f
is said to be in BMO(Rn) if

‖f‖BMO(Rn) = sup
B

1

|B|

∫
B

|f(y)− fB |dy < ∞,
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where the supremum is taken over all balls B ⊂ R
n, and fB stands for the mean of

f over B, i.e.

fB =
1

|B|

∫
B

f(y)dy.

C. Fefferman and E.M. Stein have proved in [FS] that BMO(Rn) is the dual of
H1(Rn). For a definition of the BMO space on spaces of homogeneous type we
refer the reader to [CW2].

Another goal of this paper is to generalize the classical notion of BMO. This
generalization is suitably adapted to the operator L and preserves the characteristic
properties of the classical BMO spaces, including the duality relationship with the
corresponding atomic H1 space.

In defining our adapted BMO spaces, we follow the approach in [HM]. Let
φ = LMν be a function in L2(X), where ν ∈ D(LM ). For ε > 0 and M ∈ N, we
introduce the norm

‖φ‖M1,2,M,ε
0 (L) := sup

j≥0

[
2jεV (x0, 2

j)1/2
M∑
k=0

‖Lkν‖L2(Uj(B0))

]
,

where B0 is the ball centered at some x0 ∈ X with radius 1, and we set

M1,2,M,ε
0 (L) := {φ = LMν ∈ L2(X) : ‖φ‖M1,2,M,ε

0 (L) < ∞}.

We note that if φ ∈ M1,2,M,ε
0 (L) with norm 1, then φ is a (1, 2,M, ε)-molecule

adapted to B0. Conversely, if m is a (1, 2,M, ε)-molecule adapted to any ball, then

m ∈ M1,2,M,ε
0 (L).

Let (M1,2,M,ε
0 (L))∗ be the dual of M1,2,M,ε

0 (L), and let At denote either (I +

t2L)−1 or e−t2L. We claim that if f ∈ (M1,2,M,ε
0 (L))∗, then we can define (I−At)

Mf
in the sense of distributions and prove it belongs to L2

loc(X). Indeed, if ϕ ∈ L2(B)
for some ball B, it follows from the Davies-Gaffney estimate (2.7) that (I−At)

Mϕ ∈
M1,2,M,ε

0 (L) for every ε > 0. Thus,

(2.17)
∣∣〈(I −At)

Mf, ϕ〉
∣∣ = ∣∣〈f, (I −At)

Mϕ〉
∣∣

≤ Ct, rB dist(B,x0)‖f‖(M1,2,M,ε
0 (L))∗‖ϕ‖L2(B)V (B)1/2.

Since B was arbitrary, the claim follows. Similarly, (t2L)MAtf ∈ L2
loc(X).

In order to define our adapted BMO spaces we need to introduce one more
space. For any M ∈ N, we set

EM :=
⋂
ε>0

(M1,2,M,ε
0 (L))∗.(2.18)

Definition 2.6. Suppose M ≥ 1 and let L be an operator satisfying (H1)-
(H2). An element f ∈ EM is said to belong to BMOL,M (X) if

(2.19) ‖f‖BMOL,M (X) := sup
B⊂X

( 1

V (B)

∫
B

|(I − e−r2BL)Mf(x)|2dμ(x)
)1/2

< ∞,

where the sup is taken over all balls B in X.

Throughout the paper we make the convention that the space BMOL,M (X) is
understood as classes of functions modulo elements in the null space of the operator
LM0 , where M0 is the least integer strictly bigger than n0/4.
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Eventually, we will see that this definition is independent of the choice of M >
n0/4 (up to “modding out” elements in the null space of the operator LM0 , as these

are annihilated by (I − e−r2BL)M0). Compared to the classical definition, in (2.19)

the heat semigroup e−r2BL plays the role of averaging over the ball, and the power
M > n0/4 provides the necessary cancellation.

The natural analogue of the Fefferman-Stein duality result [FS] is the following:

Theorem 2.7. Suppose M ∈ N and M > n0

4 . For an operator L satisfying the
conditions (H1)-(H2), there holds (recall the convention made after Definition 2.6)

(H1
L,at,M (X))∗ = BMOL,M (X).

The proof of Theorem 2.7 is done in Section 6.

2.8. Historical notes. Hardy and BMO spaces explicitly adapted to an op-
erator L were introduced by Auscher, Duong and McIntosh [ADM], and by Duong
and Yan, [DY1], [DY2], in the case that heat kernel of L enjoys a pointwise Gauss-
ian upper bound. The definitions of their adapted Hardy and BMO spaces were
similar to those given above, except that the parameter M may always be taken
to be 1 in the presence of pointwise kernel bounds. In turn, their approach was
modeled on Duong’s earlier work on weak-type (1, 1) bounds for singular integrals
satisfying a generalized Hörmander condition (e.g., [CD1], [DR], [DM]), in which
the heat semigroup or resolvent replaces the usual averaging operator over cubes
or balls (in this connection, see also the work of Martell [M] on adapted sharp
functions).

Extensions of the results of [ADM, DY1, DY2], to settings in which pointwise
kernel bounds may fail, and are replaced by Davies-Gaffney estimates, appear first
in [AMR] and in [HM]. We remark that the present results include those of
[AMR], in which the Hardy spaces were adapted to a first order Dirac operator
D, and were defined in terms of square functions of the form

Sψf(x) :=
(∫∫

Γ(x)

|ψ(tD)f(y)|2 dμ(y)

V (x, t)

dt

t

)1/2
,

where ψ has sufficient decay at infinity and sufficient cancellation at the origin. In

particular, the choice of ψ(ζ) = ζ2e−ζ2

is acceptable, and since D2 = Δ (the Hodge
Laplacian), one obtains in that case precisely the “heat” square function Sh defined
in (2.10), with L = Δ.





CHAPTER 3

Davies-Gaffney estimates

Let (X, d, μ) be as in (2.1). Let L(Lp(X), Lq(X)) stand for the space of
bounded linear operators from Lp(X) into Lq(X), for 1 ≤ p, q ≤ +∞, and write
‖T‖Lp(X)→Lq(X) for the operator norm of T ∈ L(Lp(X), Lq(X)). When p = q we
will simply use L(Lp(X)) instead of L(Lp(X), Lp(X)).

3.1. Self-improving properties of Davies-Gaffney estimates. Suppose
that, for every z ∈ C+ = {z ∈ C : Re z > 0}, Sz is a bounded linear operator
acting on L2(X) and that the mapping C+ � z → Sz ∈ L(L2(X)) is a holomorphic
function of z. Assume in addition that

‖Sz‖L2(X)→L2(X) ≤ 1, ∀z ∈ C+.(3.1)

We say that the family of operators {Sz : z ∈ C+} satisfies the Davies-Gaffney
estimate if there exist constants C, c > 0 such that

(3.2) |〈Stf1, f2〉| ≤ C exp
(
− dist(U1, U2)

2

c t

)
‖f1‖L2(X)‖f2‖L2(X), ∀ t > 0,

for every fi ∈ L2(X) with supp fi ⊂ Ui, Ui ⊂ X, i = 1, 2. Of course, the case if
U1 = U2 = X is just (3.1).

Note that semigroups of operators generated by non-negative self-adjoint op-
erators always satisfy (3.1), and among them many examples of interest satisfy
(3.2). Recall that, if L is a non-negative, self-adjoint operator on L2(X), and
EL(λ) denotes its spectral decomposition, then for every bounded Borel function
F : [0,∞) → C, one defines the operator F (L) : L2(X) → L2(X) by the formula

F (L) :=

∫ ∞

0

F (λ)dEL(λ).(3.3)

In the case in which Fz(λ) := e−zλ for z ∈ C+, one sets e−zL := Fz(L) as given by
(3.3). By the spectral theory, the family Sz = {e−zL}z∈C+

(also called semigroup
of operators generated by L) satisfies condition (3.1).

Examples of families of operators for which condition (3.2) holds includes semi-
groups generated by second order elliptic self-adjoint operators in divergence form,
Schrödinger operators with real potential and magnetic field (see, for example
[Si2]). Condition (3.2) is well-known to hold for Laplace-Beltrami operators on
all complete Riemannian manifolds (see [Da2],[Ga]). In the more general setting
of Laplace type operators acting on vector bundles, condition (3.2) is proved in
[Si1].

Condition (3.2) also holds in the setting of local Dirichlet forms (see, [Stu], for
instance). In this case the metric measure spaces under consideration are possibly
not equipped with any differential structure. However, the semigroups associated

13
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with these Dirichlet forms satisfy usually Davies-Gaffney estimates with respect to
an intrinsic distance.

Proposition 3.1. Assume that the operator L satisfies (H1)-(H2). Then for
every K ∈ N, the family of operators

{(tL)Ke−tL}t>0

satisfies the Davies-Gaffney condition ( 3.2), with c, C > 0 depending on K,n0 and
D only.

We note that, in particular, specializing to the case that U1 = U2 = X, we have
the uniform bound

(3.4) sup
t>0

‖(tL)Ke−tL‖L2(X)→L2(X) ≤ C < ∞.

In order to prove Proposition 3.1, we recall a result which appears as Lemma
6.18 in [Ou].

Lemma 3.2. Suppose that F is an analytic function defined on C+. Assume
that, for two numbers A, b > 0,

|F (z)| ≤ A, ∀ z ∈ C+(3.5)

and

|F (t)| ≤ Ae−
b
t , ∀ t > 0.(3.6)

Then for every z = reiθ, r > 0 and θ ∈ (−π
2 ,

π
2 ),

|F (z)| ≤ A exp
(
− b

2r
cos θ

)
.(3.7)

Proof of Proposition 3.1. By assumption, L is a non-negative self-adjoint
operator on L2(X). Thus, it follows from spectral theory that the family Sz =
{e−zL}z∈C+

, the semigroup of operators generated by L, satisfies condition (3.1).
Fix U1, U2 ⊂ X open (not necessarily proper) subsets ofX and let f, g ∈ L2(X)

with supp f ⊂ U1 and supp g ⊂ U2. Define,

F (z) := 〈e−zLf, g〉 :=
∫
X

e−zLf(x)g(x) dμ(x).

It follows from the holomorphy of the semigroup on L2(X) that the function F is
holomorphic on C+. By the Davies-Gaffney condition (3.2),

|F (t)| ≤ e−
dist(U1,U2)2

ct ‖f‖L2(U1)‖g‖L2(U2), ∀ t > 0.

In addition, it follows from condition (3.1) that

|F (z)| ≤ ‖f‖L2(U1)‖g‖L2(U2), ∀ z ∈ C+.

We then apply Lemma 3.2 to obtain that for every z = reiθ, r > 0 and θ ∈ (−π
2 ,

π
2 ),

(3.8) |F (z)| ≤ exp
(
− dist(U1, U2)

2

2cr
cos θ

)
‖f‖L2(U1)‖g‖L2(U2), ∀ z ∈ C+.

The proof of Proposition 3.1 then follows from (3.8) and the Cauchy formula, to
the effect that, for every t > 0,

(tL)Ke−tL = (−1)KK!
tK

2πi

∫
|ζ−t|=ηt

e−ζL dζ

(ζ − t)K+1
,
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where η > 0 is small enough, and the integral does not depend on η (the choice
η = 1

2 sin
θ
2 insures that {ζ : |ζ − t| ≤ ηt} is contained in

∑
(θ) = {z ∈ C : z �=

0, |argz| < θ}). �
3.2. Finite speed propagation for the wave equation and Davies-

Gaffney estimates. Let L be a non-negative self-adjoint operator. By (3.3) it

follows that for every t > 0, the operator cos(t
√
L) is well-defined on L2(X). Thus

it makes sense to make the following definition.

Definition 3.3. A non-negative self-adjoint operator L is said to satisfy the
finite speed propagation property for solutions of the corresponding wave equation
if there exists a constant c0 > 0 such that

〈cos(t
√
L)f1, f2〉 = 0(3.9)

for all 0 < c0t < d(U1, U2) and Ui ⊂ X, fi ∈ L2(Ui), i = 1, 2.

In particular, if Kcos(t
√
L)(x, y) denotes the integral kernel of the operator

cos(t
√
L), then (3.9) entails that for every t > 0,

supp Kcos(t
√
L) ⊂ Dt :=

{
(x, y) ∈ X ×X : d(x, y) ≤ c0t

}
.(3.10)

As a consequence of (3.10), it follows that Kcos(t
√
L)(x, y) = 0 for all (x, y) �∈ Dt.

Proposition 3.4. Let L be a non-negative self-adjoint operator acting on
L2(X). Then the finite speed propagation property ( 3.9) and Davies-Gaffney esti-
mate ( 3.2) are equivalent.

Proof. For the proof, we refer the reader to Theorem 2 in [Si2] and Theorem
3.4 in [CS]. See also [CCT] and [T]. �

Next let L be an operator satisfying (H1)-(H2). It follows from Proposition 3.4

and (H2) that the kernel Kcos(t
√
L)(x, y) of the operator cos(t

√
L) has the property

(3.10). By the Fourier inversion formula, whenever F is an even bounded Borel

function with F̂ ∈ L1(R), we can write F (
√
L) in terms of cos(t

√
L). Concretely,

by recalling (3.3) we have

F (
√
L) = (2π)−1

∫ ∞

−∞
F̂ (t) cos(t

√
L) dt,

which, when combined with (3.10), gives

KF (
√
L)(x, y) = (2π)−1

∫
|t|≥c−1

0 d(x,y)

F̂ (t)Kcos(t
√
L)(x, y) dt.(3.11)

Lemma 3.5. Let ϕ ∈ C∞
0 (R) be even, suppϕ ⊂ (−c−1

0 , c−1
0 ), where c0 is the

constant in ( 3.10). Let Φ denote the Fourier transform of ϕ. Then for every

κ = 0, 1, 2, . . . , and for every t > 0, the kernel K(t2L)κΦ(t
√
L)(x, y) of (t

2L)κΦ(t
√
L)

satisfies

suppK(t2L)κΦ(t
√
L)(x, y) ⊆

{
(x, y) ∈ X ×X : d(x, y) ≤ t

}
.(3.12)

Proof. For every κ = 0, 1, 2, . . . , we set Ψκ,t(ζ) := (tζ)2κΦ(tζ). Using the
definition of the Fourier transform, it can be verified that

Ψ̂κ,t(s) = (−1)κ
1

t
ψκ(

s

t
),
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where we have set ψκ(s) = d2κ

ds2κϕ(s). Observe that for every κ = 0, 1, 2, . . . , the
function Ψκ,t ∈ S(R) is an even function. It follows from formula (3.11) that

(3.13) K(t2L)κΦ(t
√
L)(x, y) = (−1)κ

1

2π

∫
|st|≥c−1

0 d(x,y)

d2κ

ds2κ
ϕ(s)Kcos(st

√
L)(x, y) ds.

Since ϕ ∈ C∞
0 (R) and suppϕ ⊂ (−c−1

0 , c−1
0 ), the claim in Lemma 3.5 follows readily

from this. �
Finally, for s > 0, we define

F(s) :=
{
ψ : C → C measurable : |ψ(z)| ≤ C

|z|s
(1 + |z|2s)

}
.

Then for any non-zero function ψ ∈ F(s), we have that {
∫∞
0

|ψ(t)|2 dt
t }1/2 < ∞.

Denote by ψt(z) = ψ(tz). It follows from the spectral theory in [Yo] that for any
f ∈ L2(X),{∫ ∞

0

‖ψ(t
√
L)f‖2L2(X)

dt

t

}1/2
=
{∫ ∞

0

〈
ψ(t

√
L)ψ(t

√
L)f, f

〉dt
t

}1/2
=
{〈∫ ∞

0

|ψ|2(t
√
L)

dt

t
f, f
〉}1/2

≤ κ‖f‖L2(X),(3.14)

(with equality if f ∈ H2(X)) where κ =
{ ∫∞

0
|ψ(t)|2dt/t

}1/2
, an estimate which

will be used often in the sequel.



CHAPTER 4

The decomposition into atoms

The aim of this chapter is to show that the “square function” and “atomic”
H1 spaces are equivalent, if the parameter M > n0/4. In fact, we shall prove

Theorem 4.1. Suppose that M > n0/4. Then H1
L,at,M (X) = H1

L,Sh
(X). More-

over,

‖f‖H1
L,at,M

≈ ‖f‖H1
L,Sh

,

where the implicit constants depend only on M , n0 and on the constants in the
Gaffney and doubling conditions.

Consequently, one may write H1
L,at in place of H1

L,at,M , when M > n0/4, as
these spaces are all equivalent. In fact, more generally, given Theorem 4.1, we have
the following:

Definition 4.2. The Hardy space H1
L(X) is the space

H1
L(X) := H1

L,Sh
(X) = H1

L,at(X) := H1
L,at,M (X), M > n0/4.

4.1. Strategy of the proof of Theorem 4.1.

Outline of the Proof. Recall that H1
L,at,M (X) and H1

L,Sh
(X) are, respec-

tively, the completions of H1
L,at,M (X) and of H1

L,Sh
(X) ∩H2(X).

We proceed in two stages: first, to show thatH1
L,at,M (X)⊂(H2(X)∩H1

L,Sh
(X)),

with

‖f‖H1
L,Sh

(X) ≤ C‖f‖H1
L,at,M (X)

(this is the content of Proposition 4.4 below); and second, to show the opposite con-
tainment with the reverse inequality (this is the content of Proposition 4.13 below).
Thus, the two completions H1

L,at,M (X) and H1
L,Sh

(X) have the same dense subset

H1
L,at,M (X) = H1

L,Sh
(X) ∩ H2(X), with equivalence of norms, and are therefore

the same space. The details of this two stage argument follow (respectively) in the
next two subsections. �

Before proceeding to the proof of Theorem 4.1, we record now for future refer-
ence two observations.

First, we note that the operator Sh is bounded on L2(X). Indeed, for every
f ∈ L2(X),∫

X

|Shf(x)|2dμ(x) =

∫
X

∫ ∞

0

∫
d(x,y)<t

|t2Le−t2Lf(y)|2 dμ(y)

V (x, t)

dt

t
dμ(x)

≈
∫ ∞

0

∫
X

|t2Le−t2Lf(y)|2 dμ(y)dt
t

≤ C‖f‖2L2(X),(4.1)

17
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where the last step in (4.1) is a particular case of (3.14), and the next-to-last step
is obtained by using condition (2.5) to deduce that, for d(x, y) < t,∫

d(x,y)<t

V (x, t)−1dμ(x) ≈
∫
d(x,y)<t

V (y, t)−1dμ(x) = 1.(4.2)

Next, we note the following technical lemma.

Lemma 4.3. Fix M ∈ N. Assume that T is a linear operator, or a non-negative
sublinear operator, satisfying the weak-type (2,2) bound

(4.3) μ{x ∈ X : |Tf(x)| > η} ≤ CT η−2‖f‖2L2(X), ∀η > 0,

and that for every (1, 2,M)-atom a, we have

‖Ta‖L1(X) ≤ C(4.4)

with constant C independent of a. Then T is bounded from H1
L,at,M (X) to L1(X),

and

‖Tf‖L1(X) ≤ C‖f‖H1
L,at,M (X).

Consequently, by density, T extends to a bounded operator from H1
L,at,M (X) to

L1(X).

Proof. Let f ∈ H
1
L,at,M (X), where f =

∑
λjaj is an atomic (1, 2,M)-

representation such that

‖f‖H1
L,at,M (X) ≈

∞∑
j=0

|λj |.

Since the sum converges in L2 (by Definition 2.2), and since T is of weak type (2, 2),
we have that at almost every point,

(4.5) |T (f)| ≤
∞∑
j=0

|λj | |T (aj)|,

with equality without absolute value if T is linear. Indeed, for every η > 0, we have
that, if fN :=

∑
j>N λjaj , then,

μ
{
|T (f)| −

∞∑
j=0

|λj | |T (aj)| > η
}

≤ lim sup
N→∞

μ
{
|T (fN )| > η

}
≤ CT η−2 lim sup

N→∞
‖fN‖22 = 0,

from which (4.5) follows. In turn, (4.5) and (4.4) imply the desired L1 bound
for Tf . The last claim in the statement is a routine consequence of the non-
negative sublinearity of T and the triangle inequality, much as in the case when T
is linear. �

We now are ready to present the two stage proof of Theorem 4.1
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4.2. H
1
L,at,M (X) ⊆ H1

L,Sh
(X) ∩ H2(X) for all M > n0/4. This stage of the

proof is contained in the following Proposition.

Proposition 4.4. Suppose that M > n0

4 and that L satisfies (H1)-(H2). Then

H1
L,at,M (X) ⊂ H1

L,Sh
(X) ∩H2(X), and

‖f‖H1
L,Sh

(X) ≤ C‖f‖H1
L,at,M (X)

for some C = C(M,n0) > 0.

Proof. We begin by noting that H1
L,at,M (X) ⊂ H2(X). Indeed, by definition,

a (1, 2,M)-atom belongs to R(L) (in fact, to R(LM )), and therefore so does any
finite linear combination of atoms. Moreover, by definition, every f ∈ H1

L,at,M (X)

is an L2 limit of such a finite linear combination, whereby f ∈ R(L) = H2(X).
It remains to show that the square function maps H

1
L,at,M (X) into L1. To

this end, we observe that by Lemma 4.3, it will be enough to show that for every
(1, 2,M)-atom a associated to a ball B of X, we have ‖Sha‖L1(X) ≤ C. By Hölder’s
inequality, we may write

‖Sha‖L1(X) ≤ C

∞∑
j=0

V (2jB)1/2‖Sha‖L2(Uj(B)).(4.6)

Since Sh is bounded on L2(X), we can write

‖Sha‖L2(Uj(B)) ≤ C‖a‖L2(B) ≤ CV (B)−1/2, for j = 0, 1, 2.(4.7)

Fix some j ≥ 3. We note that since a is a (1, 2,M)-atom associated to the ball
B, by definition, there exists a function b ∈ D(LM ), such that a = LMb, which
satisfies (ii) and (iii) in Definition 2.1. We then estimate the L2 norm of Sha on
Uj(B) by decomposing the domain of integration as follows.

‖Sha‖2L2(Uj(B))

=

∫
Uj(B)

∫ ∞

0

∫
d(x,y)<t

∣∣t2Le−t2La(y)
∣∣2 dμ(y)

V (x, t)

dt

t
dμ(x)

=

∫
Uj(B)

∫ ∞

0

∫
d(x,y)<t

∣∣(t2L)M+1e−t2Lb(y)
∣∣2 dμ(y)

V (x, t)

dt

t4M+1
dμ(x)

=

∫
Uj(B)

(∫ rB

0

+

∫ d(x,xB)/4

rB

+

∫ ∞

d(x,xB)/4

)∫
d(x,y)<t

... dμ(y) dt dμ(x)

=: Ij + IIj + IIIj , respectively.

Let us first estimate the term Ij . Set

Ej(B) := {y ∈ X : d(x, y) ≤ rB for some x ∈ Uj(B)}.(4.8)

If z ∈ B and y ∈ Ej(B), then for x ∈ Uj(B) with d(x, y) ≤ rB we have

d(y, z) ≥ d(x, xB)− d(x, y)− d(z, xB)

≥ d(x, xB)− 2rB ≥ d(x, xB)/2 ≥ 2j−2rB,
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and, thus, dist(Ej(B), B) ≥ 2j−2rB. Using estimate (4.2) and Proposition 3.1 with

K = M + 1, ‖b‖L2(B) ≤ r2MB V (B)−1/2 and (2.8), we see that

Ij ≤ C

∫ rB

0

∫
Ej(B)

∣∣(t2L)M+1e−t2Lb(y)
∣∣2dμ(y) dt

t4M+1

= C

∫ rB

0

∥∥(t2L)M+1e−t2Lb
∥∥2
L2(Ej(B))

dt

t4M+1

≤ C‖b‖2L2(B)

∫ rB

0

exp
(
− dist(Ej(B), B)2

ct2

) dt

t4M+1

≤ Cr4MB V (B)−1

∫ rB

0

( t

2jrB

)4M+1 dt

t4M+1

≤ C2−j(4M+1−n0)V (2jB)−1
[
2−jn0

V (2jB)

V (B)

]
≤ C2−j(4M−n0)/2V (2jB)−1,

which is of the right order. In order to estimate the second term IIj , observe that
if z ∈ B and

y ∈ Fj(B) := {y ∈ X : d(x, y) ≤ d(x, xB)

4
for some x ∈ Uj(B)},

then for x ∈ Uj(B) with d(x, y) ≤ d(x,xB)
4 we have

d(y, z) ≥ d(x, xB)− d(x, y)− d(z, xB)

≥ 3d(x, xB)

4
− rB ≥ d(x, xB)

2
≥ 2j−3rB,

and hence dist(Fj(B), B) ≥ 2j−3rB. Estimate (4.2), together with Proposition 3.1
and the condition M > n0/4 shows that

IIj ≤ C

∫ ∞

rB

∫
Fj(B)

∣∣(t2L)M+1
e−t2Lb(y)

∣∣2dμ(y) dt

t4M+1

≤ C‖b‖2L2(B)

∫ ∞

rB

exp
(
− dist(Fj(B), B)2

ct2

) dt

t4M+1

≤ Cr4MB V (B)−1

∫ ∞

rB

( t

2jrB

)2M+
n0
2 dt

t4M+1

≤ C2−j(4M−n0)/2V (2jB)−1,

which suits our purpose. Finally, for the term IIIj we obtain

IIIj ≤ C

∫ ∞

2j−1rB

∫
X

|(t2L)M+1e−t2Lb(y)|2dμ(y) dt

t4M+1

≤ C

∫ ∞

2j−1rB

dt

t4M+1
‖b‖2L2(B)

≤ C2−4MjV (B)−1 ≤ C2−j(4M−n0)/2V (2jB)−1

by the condition M > n0/4. Combining the estimates for Ij , IIj and IIIj obtained
above, we may conclude that for every j ≥ 3,

‖Sha‖L2(Uj(B)) ≤ C2−j(4M−n0)/4V (2jB)−1/2.
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The latter, together with (4.6), (4.7), and the condition M > n0/4, gives that
‖Sha‖L1(X) ≤ C. We have therefore proved that a ∈ H1

L,Sh
(X) with ‖a‖H1

L,Sh
(X) ≤

C. Hence, the proof of Proposition 4.4 is completed. �

Remark 4.5. It turns out that, assuming Gaussian upper estimates for the
heat kernel of the operator L, we can take M = 1 in Proposition 4.4 and in other
similar results (this observation was made previously in [AMR]). We will come
back to this point in Section 7.

We now turn to the reverse estimate.

4.3. The inclusion (H1
L,Sh

(X)∩H2(X)) ⊆ H1
L,at,M (X) for all M ≥ 1. The

aim of this section is to establish an atomic (1, 2,M)-representation for functions
in the space H1

L,Sh
(X)∩H2(X). This atomic decomposition will be obtained using

Lemma 3.5 and adapting the arguments in [CMS] and [Ru] to the present situation.
4.3.1. Tent spaces on spaces of homogeneous type. We begin by reviewing tent

spaces on X following [CMS] and [Ru]. For any x ∈ X and α > 0, recall (2.9) and
for any closed subset F ⊆ X define a saw-tooth region Rα(F ) :=

⋃
x∈F

Γα(x). For

simplicity we will write R(F ) instead of R1(F ). If O is an open subset of X, and
we denote by Ec the complement of a set E, then the “tent” over O, denoted by

Ô, is defined as

Ô :=
[
R(Oc)

]c
= {(x, t) ∈ X × (0,∞) : d(x,Oc) ≥ t}.(4.9)

Lemma 4.6. For a measurable function F defined on X × (0,∞), consider

AαF (x) :=
(∫∫

Γα(x)

|F (y, t)|2 dμ(y)

V (x, αt)

dt

t

)1/2
, α > 0,(4.10)

and set AF (x) = A1F (x). Then there exists a constant C > 0 depending only on
n0 in ( 2.8) and the constant D in ( 2.5) of X such that

‖AαF‖L1(X) ≤ C‖AF‖L1(X).

Proof. The argument is similar to that of Proposition 4 in [CMS] correspond-
ing to the case X = Rn. See also Theorem 7.1 in [FOS]. �

Following [CMS] and [Ru], given 0 < p < ∞, the “tent space” T p
2 (X) is defined

as the space of measurable functions F on X×(0,∞), for which AF ∈ Lp(X). This
is equipped with ‖F‖Tp

2 (X) := ‖AF‖Lp(X). Observe that T p
2 (X) is a Banach space

when p ∈ [1,∞).
For future reference, we note that for any compact set K in X × (0,∞), and

for 1 ≤ p < ∞, we have∫
K

|F (x, t)|2dμ(x) dt ≤ C(K, p)‖A(F )‖2Lp(X),(4.11)

as one may verify, in the more delicate case p < 2, by observing that the doubling
property implies that

|F (x, t)| ≈
∫
d(x,y)<t

|F (x, t)|V (y, t)−1dμ(y),

and then using Minkowski’s integral inequality and compactness of K.
The duality for tent spaces is as follows:
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Proposition 4.7. The pairing 〈F,G〉 �→
∫
X×(0,∞)

F (x, t)G(x, t)dμ(x)dt/t re-

alizes T p′

2 (X) as equivalent with the dual of T p
2 (X) if 1 < p < ∞ and 1/p+1/p′ = 1.

In the sequel,
[
,
]
θ
and
(
,
)
θ,q

denote the complex and real method of inter-

polation described in [BL], respectively. Then we have the following results of
interpolation of tent spaces.

Proposition 4.8. Suppose 1 ≤ p0 < p < p1 ≤ ∞, with 1/p = (1−θ)/p0+θ/p1
and 0 < θ < 1. Then[

T p0

2 (X), T p1

2 (X)
]
θ
= T p

2 (X)

and
(
T p0

2 (X), T p1

2 (X)
)
θ,q

= T p
2 (X), if p = q.

Next we review the atomic theory for tent spaces as originally developed in
[CMS], and extended to the setting of spaces of homogeneous type in [Ru].

Definition 4.9. A measurable function A on X × (0,∞) is said to be a T 1
2 -

atom if there exists a ball B ⊂ X such that A is supported in B̂ (defined in ( 4.9))
and ∫∫

X×(0,∞)

|A(x, t)|2dμ(x)dt
t

≤ 1

V (B)
.(4.12)

Note that if A is a T 1
2 -atom supported in B̂, then we have

(4.13) ‖A‖T 1
2 (X) =

∫
X

(∫∫
Γα(x)

|A(y, t)|2 dμ(y) dt

V (x, t)t

)1/2
dμ(x)

=

∫
CαB

(∫∫
Γα(x)

|A(y, t)|2 dμ(y) dt

V (x, t)t

)1/2
dμ(x)

≤ CαV (B)1/2
(∫

X

∫∫
d(x,y)<αt

|A(y, t)|2 dμ(y) dt

V (x, t)t
dμ(x)

)1/2
≤ CαV (B)1/2

(∫∫
X×(0,∞)

(∫
d(x,y)<αt

1

V (x, t)
dμ(x)

)
|A(y, t)|2 dμ(y) dt

t

)1/2
≤ Cα,

where for the last inequality in (4.13) we have used (4.2) and (4.12).
It has been proved in [Ru] that every F ∈ T 1

2 (X) has an atomic decomposition.
For future reference, we record this result below.

Proposition 4.10. For every element F ∈ T 1
2 (X) there exist a numerical

sequence {λj}∞j=0 ⊂ �1 and a sequence of T 1
2 -atoms {Aj}∞j=0 such that

(4.14) F =
∞∑
j=0

λjAj in T 1
2 (X) and a.e. in X × (0,∞).

Moreover,
∞∑
j=0

|λj | ≈ ‖F‖T 1
2 (X),

where the implicit constants depend only on the homogeneous space properties of
X.
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Finally, if F ∈ T 1
2 (X) ∩ T 2

2 (X), then the decomposition ( 4.14) also converges
in T 2

2 (X).

Proof. Except for the final part of the proposition, concerning T 2
2 conver-

gence, this is Theorem 1.1 in [Ru], and we refer the reader to that paper for the
proof. The T 2

2 convergence is only implicit there, so we shall sketch the proof here.
To this end, we first note that by (4.2) (cf. (4.1)), we have

(4.15) ‖F‖2T 2
2 (X) :=

∫
X

(AF )2dμ =

∫
X

∫ ∞

0

∫
d(x,y)<t

|F (y, t)|2 dμ(y)

V (x, t)

dt

t
dμ(x)

≈
∫ ∞

0

∫
X

|F (y, t)|2 dμ(y)dt
t

Suppose now that F ∈ T 1
2 ∩ T 2

2 . We recall that, in the constructive proof of the
decomposition (4.14) in [Ru], one has that

λjAj = F 1Sj
,

where {Sj} is a collection of sets which are pairwise disjoint (up to sets of measure
zero), and whose union covers X × (0,∞). Thus, by (4.15),

‖
∑
j>N

λjAj‖2T 2
2 (X) ≈

∫ ∞

0

∫
X

|
∑
j>N

1Sj
F (y, t)|2 dμ(y)dt

t

=
∑
j>N

∫∫
Sj

|F |2 dμ(y)dt
t

→ 0,

as N → ∞, where we have used disjointness of the sets Sj and dominated conver-
gence. It therefore follows that F =

∑
λjAj in T 2

2 . �

Next, we discuss some preliminary matters en route to the atomic decomposi-
tion ofH1

L,Sh
(X)∩H2(X) (Proposition 4.13 below). LetM ≥ 1, and for the remain-

der of this section let ϕ, c0, and Φ be as in Lemma 3.5, but with the added assump-
tions that ϕ ≥ 0, with ϕ ≥ c > 0 on (−1/(2c0), 1/(2c0)). Set Ψ(x) := x2(M+1)Φ(x),
x ∈ R. Consider the operator πΨ,L : T 2

2 (X) → L2(X), given by

πΨ,L(F )(x) :=

∫ ∞

0

Ψ(t
√
L)
(
F (·, t)

)
(x)

dt

t
,(4.16)

where the improper integral converges weakly in L2. The bound

(4.17) ‖πΨ,LF‖L2(X) ≤ CM‖F‖T 2
2 (X), M ≥ 0,

follows readily by duality and the L2 quadratic estimate (3.14).
Moreover, we have the following analogue of the well-known argument of The-

orem 6 of [CMS].

Lemma 4.11. Suppose that A is a T 1
2 (X)-atom associated to a ball B ⊂ X (or

more precisely, to its tent B̂). Then for every M ≥ 1, there is a uniform constant
CM such that C−1

M πΨ,L(A) is a (1, 2,M)-atom associated to the concentric double
2B.

Proof. Fix a ball B and let A be a T 1
2 (X)-atom A associated to B̂. Thus,∫

X×(0,∞)

|A(x, t)|2dμ(x)dt/t ≤ V (B)−1.
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We write

a := πΨ,L(A) = LM b,

where

b :=

∫ ∞

0

t2M t2LΦ(−t
√
L)
(
A(·, t)

)dt
t
.

We observe that the functions Lkb, k = 0, 1, ...,M, are supported on the ball 2B,

by Lemma 3.5, since A is supported in B̂. Consider some g ∈ L2(2B) such that
‖g‖L2(2B) = 1. Then for every k = 0, 1, . . . ,M we have

(4.18)
∣∣∣ ∫

X

(r2BL)
kb(x) g(x)dμ(x)

∣∣∣
=
∣∣∣ lim
δ→0

∫
X

(∫ 1/δ

δ

t2Mr2kB Lkt2LΦ(−t
√
L)
(
A(·, t)

)
(x)

dt

t

)
g(x) dμ(x)

∣∣∣
=
∣∣∣ ∫

̂B

A(x, t)t2Mr2kB Lkt2LΦ(−t
√
L)g(x)

dμ(x)dt

t

∣∣∣
≤ r2MB ‖A‖T 2

2 (X)

(∫
̂B

∣∣(t2L)k+1Φ(−t
√
L)g(x)

∣∣2 dμ(x)dt
t

)1/2
≤ Cr2MB V (B)−1/2‖g‖L2(2B).

Here, the third line is obtained by using the compactness of the t interval to inter-
change the order of integration, and the fourth line by using that A is a T 1

2 -atom

supported in B̂ (hence, 0 < t < rB), and that k ≤ M. The last inequality follows
from (3.14). We then have the (1, 2,M)-atomic bounds

‖(r2BL)kb‖L2(2B) ≤ Cr2MB V (B)−1/2, k = 0, 1, ...,M,

finishing the proof. �

We will also use the following elementary fact.

Lemma 4.12. Let B1, B2 be Banach spaces, and let T be a bounded linear
operator from B1 into B2. Suppose that

∑
Fi converges in B1. Then

∑
fi :=∑

T (Fi) converges in B2.

Proof. We have that

lim sup
N→∞

∥∥∥ N∑
i=0

fi − T
( ∞∑
i=0

Fi

)∥∥∥
B2

= lim sup
N→∞

∥∥∥T( ∞∑
i=N+1

Fi

)∥∥∥
B2

≤ C lim sup
N→∞

∥∥∥ ∞∑
i=N+1

Fi

∥∥∥
B1

= 0,

so that the desired conclusion follows. �

We are now ready to establish the atomic decomposition of H1
L,Sh

(X)∩H2(X).

Our argument here follows the (now standard) tent space approach of [CMS], as
modified in [AMR] to treat the situation in which pointwise kernel bounds may be
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lacking1. A similar approach, again following [CMS] and [AMR], appears in [JY].
A more complicated adaptation of the methods of [CMS] was used in [HM, HM2].

Proposition 4.13. Suppose M ≥ 1 and L satisfies (H1)-(H2). If f ∈
H1

L,Sh
(X) ∩ H2(X), then there exist a family of (1, 2,M)-atoms {aj}∞j=0 and a

sequence of numbers {λj}∞j=0 ⊂ �1 such that f can be represented in the form

f =
∑∞

j=0 λjaj, with the sum converging in L2(X), and

‖f‖H1
L,at,M (X) ≤ C

∞∑
j=0

|λj | ≤ C‖f‖H1
L,Sh

(X),

where C is independent of f . In particular,

H1
L,Sh

(X) ∩H2(X) ⊆ H
1
L,at,M (X).(4.19)

Proof. Let f ∈ H1
L,Sh

(X) ∩H2(X), and set

F (·, t) := t2Le−t2Lf.

We note that F ∈ T 2
2 (X) ∩ T 1

2 (X), by (3.14) and the definition of H1
L,Sh

(X).
Therefore, by Proposition 4.10, we have that

F =
∑

λj Aj ,

where each Aj is a T 1
2 -atom, the sum converges in both T 1

2 (X) and T 2
2 (X), and

(4.20)
∑

|λj | ≤ C‖F‖T 1
2 (X) = C‖f‖H1

L,Sh
(X).

Also, by L2-functional calculus ([Mc]), and using that f ∈ H2(X), we have the
“Calderón reproducing formula”

(4.21) f(x) = cΨ

∫ ∞

0

Ψ(t
√
L)(t2Le−t2Lf)(x)

dt

t

= cΨ πΨ,L(F ) = cΨ
∑

λj πΨ,L(Aj),

where by (4.17) and Lemma 4.12 the last sum converges in L2(X). Moreover, by
Lemma 4.11, for every M ≥ 1, we have that up to multiplication by some harmless
constant CM , each aj := cΨ πΨ,L(Aj) is a (1, 2,M)-atom. Consequently, the last
sum in (4.21) is an atomic (1, 2,M)-representation, so that f ∈ H1

L,at,M (X), and

by (4.20) we have
‖f‖H1

L,at,M (X) ≤ C‖f‖H1
L,Sh

(X).

The proof is completed. �
4.4. Equivalence of H1

L,SP
(X) and H1

L,at,M (X) when M > n0/4. We

recall that H1
L,SP

(X) is defined to be the completion of the set {f ∈ H2(X) :

‖SP f‖L1(X) < ∞}, with respect to the norm

‖f‖H1
L,SP

(X) := ‖SP f‖L1(X),

where the operator SP is defined in (2.12). We have the following:

Theorem 4.14. Suppose that M > n0/4. Then H1
L,SP

(X) = H1
L,Sh

(X) =

H1
L,at,M (X), with equivalence of norms.

1In particular, it is the idea of [AMR] to exploit the fact that a T 1
2 -atomic decomposition,

of an element in T 1
2 ∩ T 2

2 , converges also in T 2
2 .
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We start with the following auxiliary result.

Lemma 4.15. Fix a number K ∈ N. For all closed sets E,F in X with
dist(E,F ) > 0, and with f ∈ L2(X) supported in E, we have∥∥(t√L)2Ke−t

√
L
∥∥
L2(F )

≤ C
( t

dist(E,F )

)2K+1

‖f‖L2(E), ∀t > 0,

and also∥∥(t√L)2K+1e−t
√
L
∥∥
L2(F )

≤ C
( t

dist(E,F )

)2K+1

‖f‖L2(E), ∀t > 0.

Proof. The proof in [HM] of a similar result deals with the case of diver-
gence form elliptic operators in Rn, but carries out to the present context mutatis
mutandis. We therefore give only a brief sketch of the argument.

The subordination formula

e−t
√
Lf =

1√
π

∫ ∞

0

e−u

√
u
e−

t2

4uLfdu(4.22)

allows us to estimate∥∥(t√L)2Ke−t
√
L
∥∥
L2(F )

≤ C

∫ ∞

0

e−u

√
u

∥∥∥( t2L
4u

)K
e−

t2

4uLf
∥∥∥
L2(F )

uKdu

≤ C‖f‖L2(E)

∫ ∞

0

e−ue−
u dist(E,F )2

ct2 uK−1/2du.(4.23)

Then we make the change of variables u �→ s := udist(E,F )2

ct2 to bound the last term
in (4.23) by

C‖f‖L2(E)

∫ ∞

0

e
−s t2

dist(E,F )2 e−s
(
s

t2

dist(E,F )2

)K−1/2 t2

dist(E,F )2
ds

≤ C‖f‖L2(E)

( t

dist(E,F )

)2K+1
∫ ∞

0

e−ssK−1/2ds

≤ C
( t

dist(E,F )

)2K+1

‖f‖L2(E)

which proves the first estimate in the conclusion of the lemma. To prove the second

estimate, we note that t
√
Le−t

√
Lf = −t ∂(e−t

√
Lf)/∂t, so that the subordination

formula now yields

t
√
Le−t

√
Lf = 2

1√
π

∫ ∞

0

e−u

√
u

t2L

4u
e−

t2

4uLfdu.

The rest of the argument follows as before. �

We now turn to the Hardy spaces H1
L,SP

(X) defined in terms of the square

function associated to the Poisson semigroup {e−t
√
L}t>0. As was the case for the

space H1
L,Sh

(X), it is enough to establish the following analogue of Propositions 4.4
and 4.13.

Proposition 4.16. Let L be an operator satisfying (H1)-(H2), and suppose
that M > n0/4. Then H1

L,SP
(X) ∩ H2(X) = H1

L,at,M (X), with equivalence of
norms. More precisely, we have
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(i) Suppose M > n0

4 . Then H
1
L,at,M (X) ⊆ H1

L,SP
(X) ∩H2(X), and

‖f‖H1
L,SP

(X) ≤ C‖f‖H1
L,at,M (X),

for some C independent of f .
(ii) Conversely, if f ∈ H1

L,SP
(X) ∩H2(X), then for every M ≥ 1, there exist

a family of (1, 2,M)-atoms {aj}∞j=0 and a sequence of numbers {λj}∞j=0 ⊂ �1 such

that f can be represented in the form f =
∑∞

j=0 λjaj, with the sum converging in

L2(X), and

‖f‖H1
L,at,M (X) ≤ C

∞∑
j=0

|λj | ≤ C‖f‖H1
L,SP

(X),

where C is independent of f . In particular,

H1
L,SP

(X) ∩H2(X) ⊆ H
1
L,at,M (X).(4.24)

Proof. The proof of part (i) is almost identical to that of Proposition 4.4
except that we use Lemma 4.15, withK = M , in lieu of the Davies-Gaffney estimate
(2.7). A careful examination of the proof of Proposition 4.4 reveals that in fact, we
did not use the full strength of the Davies-Gaffney estimates, but rather only the
polynomial decay bounds provided by the case K = M of Lemma 4.15.

To prove part (ii), we repeat essentially verbatim the proof of Proposition 4.13,

replacing t2Le−t2L by t
√
Le−t

√
L. We omit the details. �

4.5. Inclusion among the spaces H1
L,at,M (X), H1

L,Nh
(X) and H1

L,NP
(X).

Recall the spaces H1
L,at,M (X), H1

L,Nh
(X) and H1

L,NP
(X) from Definition 2.2 and

from §2.6 In this section, we will prove the following result.

Proposition 4.17. Suppose M > n0/4. For an operator L satisfying (H1)-
(H2) the following inclusions hold:

H1
L,at,M (X) ⊆ H1

L,Nh
(X) and H1

L,at,M (X) ⊆ H1
L,NP

(X).

Proof. We first prove the inclusion H1
L,at,M (X) ⊆ H1

L,Nh
(X). Denote by M

the Hardy-Littlewood maximal operator in X. For f ∈ L2(X), and x ∈ X, we use
the Davies-Gaffney estimate (2.7) to obtain (recall (2.11) and (2.6))

(4.25) Nhf(x) ≤ C sup
(y,t)∈Γ(x)

∞∑
j=0

( 1

V (y, t)

∫
B(y,t)

|e−t2L(fχUj(B(y,t)))(z)|2dμ(z)
)1/2

≤ C sup
(y,t)∈Γ(x)

∞∑
j=0

V (y, t)−1/2‖e−t2L(fχUj(B(y,t)))‖L2(B(y,t))

≤ C sup
(y,t)∈Γ(x)

∞∑
j=0

V (y, t)−1/2

× exp
(
− dist2(Uj(B(y, t)), B(y, t))

ct2

)
‖f‖L2(Uj(B(y,t)))

≤ C sup
x∈B(y,t)

∞∑
j=0

2−j(n+1)/22jn/2
( 1

V (2jB(y, t))

∫
2jB(y,t)

|f(z)|2dμ(z)
)1/2

≤ C
[
M(|f |2)(x)

]1/2
.
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Thus, we have the weak-type (2,2) bound

μ{Nhf > η} ≤ μ{
[
M(|f |2)

]1/2
> η/C} ≤ C η−2‖f‖L2(X),

since the Hardy-Littlewood maximal theorem holds in spaces of homogeneous type.
Consequently, by Lemma 4.3 we need only to establish a uniform L1 bound on

atoms, i.e., that there exists a constant C > 0 such that for every (1, 2,M)-atom a
associated to a ball B of X,

‖Nha‖L1(X) ≤ C.(4.26)

We write

(4.27) ‖Nha‖L1(X) ≤
10∑
j=0

‖Nha‖L1(Uj(B)) +
∞∑

j=11

‖Nha‖L1(Uj(B)) =: I + II.

In concert, Kolmogorov’s inequality, the Hardy-Littlewood Maximal Theorem, and
the doubling property (2.2) show that for every j = 0, 1, . . . , 10,∫

Uj(B)

Nha(x)dμ(x) ≤ C

∫
Uj(B)

[
M(|a|2)(x)

]1/2
dμ(x)

≤ CV (Uj(B))1/2
∥∥∥|a|2∥∥∥1/2

L1(X)

≤ CV (B)1/2‖a‖L2(X) ≤ C,

which gives I ≤ C.
To handle the second sum in (4.27), fix some number 0 < η < 1 such that

ηM − n0/4 > 0 and split the region over which the sup is taken in the definition
of Nha according to whether t ≤ c 2ηjrB , or t ≥ c 2ηjrB . Consider first the case
t ≤ c 2ηjrB. In this scenario, set

Wj(B) := 2j+3B\2j−3B, Rj(B) := 2j+5B\2j−5B, and Ej(B) := (Rj(B))c

for every j ≥ 11. For x ∈ Uj(B), d(x, y) < t and t ≤ c 2ηjrB thus we have
y ∈ Wj(B). Moreover, dist(Wj(B), B) ≈ C2jrB and V (2jB) ≈ V (y, 2jrB). Then
Proposition 3.1 guarantees that for x ∈ Uj(B),

N (1)
h a(x) := sup

(y,t)∈Γ(x)

t≤c 2ηjrB

( 1

V (y, t)

∫
B(y,t)

|e−t2La(z)|2dμ(z)
)1/2

≤ C sup
x∈B(y,t)

( t

2jrB

) 2ηM
1−η +

n0
2
(V (2jB)

V (y, t)

)1/2( 1

V (2jB)

∫
2jB

|a(z)|2dμ(z)
)1/2

≤ C2−2ηMj
[
M(|a|2)(x)

]1/2
.

Now we treat the case t ≥ c 2ηjrB. Consider the following modifications of the
non-tangential maximal function: for every f ∈ L2(X) set

(4.28) NM
h f(x) := sup

(y,t)∈Γ(x)

( 1

V (y, t)

∫
B(y,t)

|t2MLMe−t2Lf(z)|2dμ(z)
)1/2

.

The same argument as in (4.25) shows that NM
h f(x) ≤ C

[
M(|f |2)(x)

]1/2
, uni-

formly for x ∈ X. For every x ∈ Uj(B), we use the fact that a = LM b in order to
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obtain

N (2)
h a(x) := sup

(y,t)∈Γ(x)

t≥c 2ηjrB

( 1

V (y, t)

∫
B(y,t)

|e−t2La(z)|2dμ(z)
)1/2

= sup
(y,t)∈Γ(x)

t≥c 2ηjrB

t−2M
( 1

V (y, t)

∫
B(y,t)

|t2MLMe−t2Lb(z)|2dμ(z)
)1/2

≤ C2−2ηMjr−2M
B (NM

h b)(x)

≤ C2−2ηMjr−2M
B

[
M(|b|2)(x)

]1/2
.

Once again, Kolmogorov’s inequality, the Hardy-Littlewood Maximal Theorem and
the definition of n0 in (2.8), give that

II ≤
∞∑

j=11

C2−2ηMj

∫
Uj(B)

([
M(|a|2)(x)

]1/2
+ r−2M

B

[
M(|b|2)(x)

]1/2)
dμ(x)

≤
∞∑

j=11

C2−2ηMjV (2jB)1/2
(
‖a‖L2(X) + r−2M

B ‖b‖L2(X)

)
≤

∞∑
j=11

C2−2(ηM−n0
4 )j ≤ C.

Altogether this shows that ‖Nha‖L1(X) ≤ C and proves claim (4.26). As a byprod-

uct, the inclusion H1
L,at,M (X) ⊆ H1

L,Nh
(X) is also obtained.

To prove that H1
L,at,M (X) ⊆ H1

L,NP
(X), one may use the technique of Stein

[St3] to bound NP by Nh plus a controllable square function, an idea suggested
to the first author in this context by P. Auscher. The details may be found in
[HM], Section 7, and are omitted here. Hence, the proof of Proposition 4.17 is
complete. �

In closing, we note that it remains an open problem to make a direct comparison
between the spaces H1

L,NP
(X) and H1

L,Nh
(X).





CHAPTER 5

Relations between atoms and molecules

We begin with the following molecular analogue of Lemma 4.3.

Lemma 5.1. Fix M ∈ N. Assume that T is a linear operator, or a non-negative
sublinear operator, bounded on L2(X), and that for every (1, 2,M, ε)-molecule m,
we have

‖Tm‖L1(X) ≤ C(5.1)

with constant C independent of m. Then T is bounded from H1
L,mol,M (X) to L1(X),

and

‖Tf‖L1(X) ≤ C‖f‖H1
L,mol,M (X).

Consequently, as in Lemma 4.3, by density, T extends to a bounded operator from
H1

L,mol,M (X) to L1(X).

The proof is identical to the argument in the atomic case (Lemma 4.3 above),
and is omitted.

Next, we have the following result.

Theorem 5.2. Suppose that L satisfies (H1)-(H2). Let ε > 0 and M > n0/4.
Then H1

L,mol,M (X) ⊆ H1
L,Sh

(X) ∩H2(X) and

‖f‖H1
L,Sh

(X) ≤ C‖f‖H1
L,mol,M (X).

Before proving the theorem, we state an immediate corollary.

Corollary 5.3. For all M > n0/4 and ε > 0, we have that

H1
L,mol,M (X) = H1

L,at,M (X) = H1
L,Sh

(X) =: H1
L(X).

Proof of Corollary 5.3. We have already shown that H1
L,at,M (X) =

H1
L,Sh

(X), and that H1
L,at,M (X) = H1

L,Sh
(X)∩H2(X), with equivalence of norms.

Moreover, every (1, 2,M)-atom is, in particular, a (1, 2,M, ε)-molecule for every
ε > 0, hence H1

L,at,M (X) ⊆ H1
L,mol,M (X), with

‖f‖H1
L,mol,M (X) ≤ ‖f‖H1

L,at,M (X), ∀f ∈ H
1
L,at,M (X).

Also, by Theorem 5.2, H1
L,mol,M (X) ⊂ H1

L,Sh
(X) ∩H2(X) = H1

L,at,M (X), with

‖f‖H1
L,at,M (X) ≈ ‖f‖H1

L,Sh
(X) ≤ C‖f‖H1

L,mol,M (X).

Consequently, H1
L,mol,M (X) = H1

L,Sh
(X)∩H2(X) = H1

L,at,M (X), with equivalence

of norms, so that the completions H1
L,Sh

(X), H1
L,at,M (X), H1

L,mol,M (X) are all the

same, independently of M > n0/4, or ε > 0. �

31
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Proof of Theorem 5.2. By Lemma 5.1 and Definition 2.4, it will be enough
to show that Sh maps allowable (1, 2,M, ε)-molecules uniformly into L1. To this
end, let m be a (1, 2,M, ε)-molecule, adapted to the ball B with radius rB. In
particular, we have that

(5.2) ‖m‖L2(X) ≤ CV (B)−1/2.

Hence, by the doubling property and L2 boundedness of Sh, we have that

‖Shm‖L1(16B) ≤ CV (B)1/2‖Shm‖L2(X) ≤ C.

Writing now ‖Shm‖1 = ‖Shm‖L1(16B)+
∑∞

j=5 ‖Shm‖L1(Uj(B)), where we recall that

Uj(B) := 2jB \ 2j−1B, we see that it is enough to prove that

(5.3) ‖Shm‖L2(Uj(B)) ≤ C2−jαV (2jB)−1/2,

for some α > 0 and for each j ≥ 5. To this end, we write

‖Shm‖2L2(Uj(B))

=

∫
Uj(B)

∫ ∞

0

∫
d(x,y)<t

∣∣∣(t2Le−t2L m
)
(y)
∣∣∣2 dμ(y)

V (x, t)

dt

t
dμ(x)

=

∫
Uj(B)

∫ 2θ(j−5)rB

0

∫
d(x,y)<t

+

∫
Uj(B)

∫ ∞

2θ(j−5)rB

∫
d(x,y)<t

=: I2 + II2,

where θ ∈ (0, 1) will be chosen momentarily. Then by Fubini’s theorem, (4.2),
the definition of a (1, 2,M, ε)-molecule (Definition 2.3), and (3.4), we have for an
appropriate b ∈ D(LM ),

II2 ≤
∫ ∞

2θ(j−5)rB

∫
X

∣∣∣(t2(M+1)LM+1e−t2L b
)
(y)
∣∣∣2 dμ(y) dt

t4M+1

≤ C
(
2θjrB

)−4M ‖b‖2L2(X) ≤ C2−j(4θM−n0)2−jn0V (B)−1

≤ C2−j(4θM−n0)V (2jB)−1 ,

where in the last step we have used (2.8). Taking square roots, and choosing θ
sufficiently close to 1, we obtain (5.3) for the contribution of the term II, with
α = (4θM − n0)/2 > 0.

We now treat the term I. We set

Ũj(B) := 2j+1B \ 2j−2B, Ûj(B) := 2j+2B \ 2j−3B,
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and observe that, by Fubini’s Theorem, (4.2) and the triangle inequality

I2 ≤
∫ 2θ(j−5)rB

0

∫
˜Uj(B)

∣∣∣(t2Le−t2L m
)
(y)
∣∣∣2 dμ(y) dt

t

�
∫ 2θ(j−5)rB

0

∫
˜Uj(B)

∣∣∣(t2Le−t2L (12j−3Bm)
)
(y)
∣∣∣2 dμ(y) dt

t

+

∫ 2θ(j−5)rB

0

∫
˜Uj(B)

∣∣∣(t2Le−t2L (1
̂Uj(B)m)

)
(y)
∣∣∣2 dμ(y) dt

t

+

∫ 2θ(j−5)rB

0

∫
˜Uj(B)

∣∣∣(t2Le−t2L (1X\2j+2Bm)
)
(y)
∣∣∣2 dμ(y) dt

t

=: (I1)
2 + (I2)

2 + (I3)
2.

By (3.14), Definition 2.3 and the doubling property,

I2 ≤ C ‖m‖
̂Uj(B) ≤ C 2−jεV (2jB)−1/2,

which is (5.3) for the contribution of I2. For the other two terms, we have by the
generalized Davies-Gaffney estimates in Proposition 3.1,

(I1)
2 + (I3)

2 ≤ C‖m‖2L2(X)

∫ 2θ(j−5)rB

0

exp

(
−(2jrB)

2

c t2

)
dt

t

≤ CN‖m‖2L2(X)

∫ 2θ(j−5)rB

0

(
t

2jrB

)N
dt

t
≤ CNV (B)−12N(θ−1)j ,

where we have used (5.2) in the last step, and N is at our disposal. Having fixed
θ < 1 above, we may now choose N so large that N(1 − θ) ≥ 4M , and then use
(2.8) to obtain in turn the desired bound

(I1)
2 + (I3)

2 ≤ C V (B)−12−jn02−j(4M−n0) ≤ C V (2jB)−12−j(4M−n0),

whence (5.3) follows. �

Before we state the next theorem, let us make some observations. By (5.3) and
its proof, we claim that an L2 bounded linear operator mapping (1, 2,M) atoms
into (1, 2,M, ε) molecules for some ε > 0, has a bounded extension from H1

L(X)
into itself. Indeed, if f =

∑
λjaj ∈ H1

L,at,M (X), then by the L2 boundedness of T

we have that the sum (cf. (4.5))∑
λjmj :=

∑
λjT (aj) = T

(∑
λjaj

)
converges in L2, and is therefore a molecular (1, 2,M, ε)-representation of T (f), i.e.,
T (f) ∈ H

1
L,mol,M (X) (cf. Definition 2.4). Thus, for an appropriate choice of atomic

(1, 2,M)-representation of f , we obtain

‖T (f)‖H1
L,mol,M (X) ≤

∑
|λj | ≈ ‖f‖H1

L,at,M (X).

But we have observed in the proof of Corollary 5.3 thatH1
L,mol,M (X) = H1

L,at,M (X),

whose completion is H1
L, and the claim follows.
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Secondly, if we set D1
L,at,M (X) to be the space of all finite linear combinations

of (1, 2,M)-atoms, i.e.

D1
L,at,M (X) =

{
f : f =

N∑
i=0

λiai, λi ∈ C and ai are atoms
}
,

then the space D1
L,at,M (X) is a dense subspace of H1

L,at,M (X). In general, for every

f =
∑N

i=0 λiai, with ai (1, 2,M)-atoms, there exists a constant Cf such that

N∑
i=1

|λi| ≤ Cf‖f‖H1
L,at,M (X).

However, Cf can not be chosen universally for all f ∈ H1
L,at,M (X) (this can be seen

from Definition 2.1).
We can now state our next result.

Theorem 5.4. Suppose that L satisfies (H1)-(H2). Let ε = M − n0/4 >

0. Suppose f =
∑N

i=0 λiai, where {ai}Ni=0 is a family of (1, 2, 2M)-atoms and∑N
i=0 |λi| < ∞. Then there is a representation of f =

∑K
i=0 μimi, where the mi’s

are (1, 2,M, ε)-molecules and

C1‖f‖H1
L,at,M (X) ≤

K∑
i=0

|μi| ≤ C2‖f‖H1
L,at,M (X),(5.4)

with Cj = Cj(X,L,M, ε, n0) for j = 1, 2.

Proof. Since {ai}Ni=0 is a family of (1, 2, 2M)-atoms, by definition there exist
a family of functions {bi}Ni=0 and a family of balls {Bi}Ni=0 such that for every
0 ≤ i ≤ N , ai = L2Mbi satisfies conditions (ii) and (iii) in Definition 2.1. Fix a

point x0 ∈ X. By L2-functional calculus, for f =
∑N

i=0 λiai ∈ H2(X), we can write

f = CM

∫ ∞

0

(t2Le−t2L)M+2f
dt

t

= CM

∫ ∞

K1

(t2Le−t2L)M+2f
dt

t
+ CM

∫ 1/K2

0

(t2Le−t2L)M+2f
dt

t

+CM

∫ K1

1/K2

(t2Le−t2L)M+1
( [

t2Le−t2Lf
]
χB(x0,K3)c

)dt
t

+CM

∫ K1

1/K2

(t2Le−t2L)M+1
( [

t2Le−t2Lf
]
χB(x0,K3)

)dt
t

= : f1 + f2 + f3 + f4,(5.5)

where the parameters K1,K2 and K3 will be chosen later.
Let us start with the term f1. Set μ := N−1‖f‖H1

L,at,M (X). Substituting

f =
∑N

i=0 λiai into f1, we have

f1(x) = CM

N∑
i=0

λi

∫ ∞

K1

(t2Le−t2L)M+2ai(x)
dt

t
=

N∑
i=0

μimi,K1
(x),(5.6)
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where μi := CMμ, mi,K1
:= LMfi,K1

, and

fi,K1
(x) := μ−1λi

∫ ∞

K1

t2(M+2)L2e−(M+2)t2Lai(x)
dt

t
.

Then
∑N

i=0 |μi| = CM‖f‖H1
L,at,M (X). We now claim that, for an appropriate choice

of K1, for every i = 0, 1, . . . , N , the function mi,K1
is a (1, 2,M, ε)-molecule associ-

ated to the ball Bi. To see why this claim is true, observe that since ai = L2Mbi,
it follows from Proposition 3.1, with K = M +2, and Definition 2.1 (iii) (with 2M
in place of M , since ai is a 2M atom), that for every k = 0, 1, . . . ,M and for every
i = 0, 1, . . . , N ,

∥∥∥(r2Bi
L)kfi,K1

∥∥∥
L2(Uj(Bi))

≤ μ−1|λi|
∫ ∞

K1

t−2M
∥∥∥(t2L)2M+2e−(M+2)t2L(r2Bi

L)kbi

∥∥∥
L2(Uj(Bi))

dt

t

≤ Cμ−1|λi|‖(r2Bi
L)kbi‖L2(Bi)

∫ ∞

K1

t−2M
( t

2jrBi

)n0
2 +ε dt

t

≤ Cr2MBi
2−jεV (2jBi)

−1/2
[
μ−1|λi|

(rBi

K1

)2(M−n0
4 − ε

2 )
]
,

where j = 0, 1, 2, . . . . This gives∥∥∥(r2Bi
L)kfi,K1

∥∥∥
L2(Uj(Bi))

≤ r2MBi
2−jεV (2jBi)

−1/2

by choosing

K1 := C( max
0≤i≤N

rBi
)
[
μ−1 max

0≤i≤N
|λi|
] 1

2(M−n0
4

− ε
2
) .(5.7)

The claim is proved.
For the term f2, we let μ = N−1‖f‖H1

L,at,M (X), and write

f2(x) = CM

N∑
i=0

λi

∫ 1/K2

0

(t2Le−t2L)M+2ai(x)
dt

t
=

N∑
i=0

μimi,K2
(x),(5.8)

where μi := CMμ, mi,K2
:= LMfi,K2

, and

fi,K2
(x) := μ−1λi

∫ 1/K2

0

t2(M+2)L2e−(M+2)t2Lai(x)
dt

t
.

Then
∑N

i=0 |μi| = CM‖f‖H1
L,at,M (X). Using the condition ai = L2Mbi, Proposi-

tion 3.1 with K = 2, and Definition 2.1 (iii) (with 2M in place of M), we have for
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every k = 0, 1, . . . ,M , i = 0, 1, . . . , N , and for every j = 0, 1, . . . ,

∥∥∥(r2Bi
L)kfi,K2

∥∥∥
L2(Uj(Bi))

≤ μ−1|λi|
∫ 1/K2

0

t−2M
∥∥∥(t2L)2M+2e−(M+2)t2L(r2Bi

L)kbi

∥∥∥
L2(Uj(Bi))

dt

t

≤ μ−1|λi|
∥∥∥(r2Bi

L)kbi

∥∥∥
L2(Bi)

∫ 1/K2

0

t−2M

(
t

2jrBi

)2M+n0/2+ε
dt

t

≤ Cr2MBi
2−jεV (2jBi)

−1/2
[
μ−1|λi|

(
rBi

K2

)−(
n0
2 +ε)]

,

which gives ∥∥∥(r2Bi
L)kfi,K2

∥∥∥
L2(Uj(Bi))

≤ r2MBi
2−jεV (2jBi)

−1/2

by choosing

K2 := C max
0≤i≤N

r−1
Bi

·
[
μ−1 max

0≤i≤N
|λi|
] 2

n0+2ε

.(5.9)

This shows that for each 0 ≤ i ≤ N , the function mi,K2
is a (1, 2,M, ε)-molecule

associated to the ball Bi.
Consider the term f3. Let μ = N−1‖f‖H1

L,at,M (X). One can write

f3(x) = CM

N∑
i=0

λi

∫ K1

1/K2

(t2Le−t2L)M+1
( [

t2Le−t2Lai

]
χB(x0,K3)c

)
(x)

dt

t

=
N∑
i=0

μiFi,K1,K2,K3
(x),(5.10)

where μi := CMμ, mi,K1,K2,K3
:= LMfi,N,K2,K3

, and

fi,K1,K2,K3
:= μ−1λi

∫ K1

1/K2

t2(M+1)Le−(M+1)t2L
( [

t2Le−t2Lai

]
χB(x0,K3)c

)dt
t
.

Then
∑N

i=0 |μi| = CM‖f‖H1
L,at,M (X). We now claim that, for K1,K2 as above, and

for an appropriate choice ofK3, themi,K1,K2,K3
are (1, 2,M, ε)-molecules associated

to the ball Bi. To establish the claim, for every i = 0, 1, . . . , N and every j =
0, 1, 2, . . . , we set

Ω
(1)
x0,i,j,K3

:= B(x0,K3)
c ∩ (2j+2Bi\2j−2Bi)

and

Ω
(2)
x0,i,j,K3

:= B(x0,K3)
c ∩ (2j+2Bi\2j−2Bi)

c.
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Then B(x0,K3)
c = Ω

(1)
x0,i,j,K3

∪ Ω
(2)
x0,i,j,K3

for any j = 0, 1, 2, . . . . One has

fi,K1,K2,K3

= μ−1λi

∫ K1

1/K2

t2(M+1)Le−(M+1)t2L
( [

t2Le−t2Lai

]
χ
Ω

(1)
x0,i,j,K3

)dt
t

+ μ−1λi

∫ K1

1/K2

t2(M+1)Le−(M+1)t2L
( [

t2Le−t2Lai

]
χ
Ω

(2)
x0,i,j,K3

)dt
t

=: gi,K1,K2,K3
+ hi,K1,K2,K3

.

If K3 ≥ 3max0≤i≤N d(x0, xBi
), then for each j = 0, 1, . . . , we have that

dist(Ω
(1)
x0,i,j,K3

, Bi) ≥ max(2j−3rBi
, 16−1K3). Fix K1 and K2 as above. It follows

from Proposition 3.1 that for any k = 0, 1, ...,M,∥∥∥(r2Bi
L)kgi,K1,K2,K3

∥∥∥
L2(Uj(Bi))

≤ μ−1|λi|r2MBi

∥∥∥ ∫ K1

0

( t

rBi

)2M−2k

(t2L)k+1e−(M+1)t2L

( [
t2Le−t2Lai

]
χ
Ω

(1)
x0,i,j,K3

)dt
t

∥∥∥
L2(Uj(Bi))

≤ Cμ−1|λi|r2MBi

∫ K1

0

( t

rBi

)2M−k∥∥∥t2Le−t2Lai

∥∥∥
L2(Ω

(1)
x0,i,j,K3

)

dt

t

≤ Cμ−1|λi|r2MBi

∫ K1

0

( t

rBi

)2M−k( t

2jrBi

)n0
2 +ε( t

K3

)dt
t
‖ai‖L2(Bi)

≤ Cr2MBi
2−jεV (2jBi)

−1/2
[
μ−1|λi|K

2M−k+
n0
2 +ε+1

1 rBi

−2M+k−n0
2 −εK−1

3

]
.

The same estimate holds for the term hi,K1,K2,K3
, since

dist
(
Uj(Bi),Ω

(2)
x0,i,j,K3

)
≥ C2jrBi

,

and since

dist
(
Bi,Ω

(2)
x0,i,j,K3

)
≥ cK3

if K3 >> 2jrBi
. Hence, we obtain that∥∥∥(r2Bi
L)kfi,K1,K2,K3

∥∥∥
L2(Uj(Bi))

≤ r2MBi
2−jεV (2jBi)

−1/2,

by choosing K3 ≥ 3max0≤i≤N d(x0, xBi
) and also

(5.11) K3 ≥ Cμ−1 max
0≤k≤M

(
K

2M−k+
n0
2 +ε+1

1 max
1≤i≤N

|λi|
[

min
1≤i≤N

rBi

]−2M+k−n0
2 −ε)

.

This proves our claim.
Finally, let us consider the term f4. Since f ∈ H1

L,Sh
(X)∩H2(X), it follows that

F := t2Le−t2Lf ∈ T 1
2 (X). By Proposition 4.10, F has a T 1

2 -atomic decomposition:

F =

∞∑
i=0

μiAi,(5.12)
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where
∞∑
i=0

|μi| ≤ C‖F‖T 1
2
≤ C‖f‖H1

L,at,M (X), and Ai are T 1
2 -atoms supported in B̂i

satisfying
∫
X×(0,∞)

|Ai(x, t)|2dxdt/t ≤ V (Bi)
−1. Substituting the decomposition

(5.12) of F into f4, we have

f4(x) = CM

∫ K1

1/K2

(t2Le−t2L)M+1
( K4∑

i=0

μiAi(·, t)χB(x0,K3)

)
(x)

dt

t

+CM

∫ K1

1/K2

(t2Le−t2L)M+1
( ∞∑

i=K4+1

μiAi(·, t)χB(x0,K3)

)
(x)

dt

t

=: GK1234
(x) +HK1234

(x),(5.13)

where K4 ∈ N will be chosen in the sequel.
For the term HK1234

, we let B0 = B(x0, 1) be the ball centered at x0 and radius
1. One can write

HK1234
(x) = ‖f‖H1

L,at,M (X)L
MhK1234

(x)

where

hK1234
(x) := ‖f‖−1

H1
L,at,M (X)

×
∫ K1

1/K2

t2(M+1)Le−(M+1)t2L
( ∞∑

i=K4+1

μiAi(·, t)χB(x0,K3)

)
(x)

dt

t
.

Set FK4
=
∑∞

i=K4+1 μiAi, and let ηK4
=
∥∥FK4

∥∥
T 1
2 (X)

. By Proposition 3.1, we have

for k = 0, 1, . . . ,M that

∥∥∥LkhK1234

∥∥∥
L2(Uj(B0))

≤ C‖f‖−1
H1

L,at,M (X)

×
∫ K1

1/K2

t2M−2k
∥∥∥(t2L)k+1

e−(M+1)t2L
(
FK4

11B(x0,K3)

)
(x)
∥∥∥
L2(Uj(B0))

dt

t

≤ CK3
‖f‖−1

H1
L,at,M (X)

K
2(M−k)
1

∫ K1

1/K2

( t

2j

)n0
2 +ε∥∥FK4

χB(x0,K3)

∥∥
L2(X)

dt

t

≤ CK3
‖f‖−1

H1
L,at,M (X)

2−j(ε+
n0
2 )K

2(M−k)+
n0
2 +ε

1 K
1
2
2

×
(∫ K1

1/K2

∫
B(x0,K3)

|FK4
(y, t)|2dμ(y)dt

)1/2
≤ CK1K2K3

2−jεV (2jB0)
−1/2
[
V (B0)

1/2‖f‖−1
H1

L,at,M (X)
ηK4

]
,

where the last inequality follows by using estimate (4.11).
Note that

ηK4
=
∥∥∥ ∞∑
i=K4+1

μiAi

∥∥∥
T 1
2 (X)

−→ 0 as K4 → +∞.
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By choosing K4 such that ηK4
is sufficiently small, we have∥∥∥LkhK1234

∥∥∥
L2(Uj(B0))

≤ 2−jεV (2jB0)
−1/2.

Therefore, HK1234
is a (1, 2,M, ε)-molecule associated to the ball B0.

Finally, we consider the term GK1234
. For each i = 0, 1, 2, . . . ,K4 we let Ãi =

AiχB(x0,K3), and observe that Ãi is also a T 1
2 -atom, supported in B̂i. One can write

GK1234
(x) =

K4∑
i=0

μi

(
CM

∫ K1

1/K2

(
t2Le−t2L

)M+1
(
Ãi(·, t)

)
(x)

dt

t

)

=:

K4∑
i=0

μimi(x)

Then, by a variant of Lemma 4.11, using also the Gaffney bounds for t2Le−t2L,
we obtain that, up to normalization by a multiplicative constant, for each i =
0, 1, 2, . . . ,K4, the function mi is an (1, 2,M, ε)-molecule associated to the ball Bi.
Moreover, we have

K4∑
i=0

|μi| ≤
∞∑
i=0

|μi| ≤ C
∥∥ ∞∑

i=0

μiAi

∥∥
T 1
2 (X)

≤ C‖f‖H1
L,at,M (X)

as desired. To finish the proof of Theorem 5.4, we combine the estimates we ob-
tained for f1, f2, f3 and f4. �

Theorem 5.4 yields the following immediate corollary.

Corollary 5.5. Let T be a linear or positive sub-linear operator. Suppose
that there is some M > n0/4, and ε ≤ M − n0/4, for which T maps (1, 2,M, ε)-
molecules uniformly into L1. Then T extends by continuity to a bounded operator
from H1

L(X) into L1(X).

Analogous results in the classical setting may be found in [MSV], [HZ], [HLZ],
[RV], [CYZ] and [YZ].





CHAPTER 6

BMOL,M(X): Duality with Hardy spaces

We start with an auxiliary lemma that gives an equivalent characterization of
BMOL,M (X) using the resolvent of L in place of the heat semigroup associated
with L. In the sequel we will frequently use the characterization below in place of
the definition of BMOL,M (X).

Lemma 6.1. Let L be an operator satisfying (H1)-(H2) and fix M > n0/4. A
functional f ∈ EM belongs to BMOL,M (X) if and only if

sup
B⊂X

( 1

V (B)

∫
B

|(I − (I + r2BL)
−1)Mf(x)|2dμ(x)

)1/2
< ∞,(6.1)

where the supremum is taken over all balls B in X.

Proof. The proof is similar to that of Lemma 8.1 in [HM] corresponding to
the case X = R

n and we omit the details. �

Theorem 6.2. Let L be an operator satisfying (H1)-(H2). Then, for any
f ∈ BMOL,M (X) and M > n0/4, the linear functional given by

�(g) := 〈f, g〉,

initially defined on the dense subspace of M1,2,M,ε
0 (L) consisting of finite linear

combinations of (1, 2,M, ε)-molecules, ε > 0, and where the pairing is that between

M1,2,M,ε
0 (L) and its dual, has a unique bounded extension to H1

L,at,M (X) with

‖�‖(H1
L,at,M (X))∗ ≤ C‖f‖BMOL,M (X), for some C independent of f.

To prove Theorem 6.2, we use the following result of M. Christ ([Ch], Theorem
11)1, which shows that X possesses a dyadic grid analogous to that of the Euclidean
space. Specifically, we have the following.

Lemma 6.3. There exist a collection of open subsets {Qk
α ⊂ X : k ∈ Z, α ∈ Ik},

where Ik denotes some (possibly finite) index set depending on k, and constants
δ ∈ (0, 1), a0 ∈ (0, 1) and 0 < C1 < ∞ such that

(i) μ(X\ ∪α Qk
α) = 0 for all k ∈ Z.

(ii) If i ≥ k then either Qi
β ⊂ Qk

α or Qi
β ∩Qk

α = ∅.
(iii) For each (k, α) and each i < k, there is a unique β such that Qk

α ⊂ Qi
β.

(iv) Diameter (Qk
α) ≤ C1δ

k.
(v) Each Qk

α contains some ball B(zkα, a0δ
k).

1In fact, one could avoid invoking the full strength of Christ’s result, but we do not pursue
this point here.

41
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Proof of Theorem 6.2. Let us prove first that for every (1, 2,M, ε)-molecule
m,

|〈f,m〉| ≤ C‖f‖BMOL,M (X).(6.2)

By definition, f ∈ (M1,2,M,ε
0 (L))∗, so in particular (I − (I + r2BL)

−1)Mf ∈ L2
loc(X)

(see the discussion preceding (2.17)). Thus, with B denoting the ball associated
with m, we may write

〈f,m〉 =

∫
X

(I − (I + r2BL)
−1)Mf(x)m(x) dx

+
〈[

I − (I − (I + r2BL)
−1)M

]
f,m
〉

=: I1 + I2.

Recall (2.6). For the term I1, we have

(6.3) |I1|

≤
∞∑
j=0

(∫
Uj(B)

|(I − (I + r2BL)
−1)Mf(x)|2dx

)1/2(∫
Uj(B)

|m(x)|2dx
)1/2

≤
∞∑
j=0

2−jεV (2jB)−1/2
(∫

Uj(B)

|(I − (I + r2BL)
−1)Mf(x)|2dx

)1/2
,

by Cauchy-Schwarz’s inequality and the L2-normalization of m. With notation as
in Lemma 6.3, we can select an integer k0 such that C1δ

k0 ≤ rB < C1δ
k0−1 and, for

each j, an integer kj such that δ−kj ≤ 2j < δ−kj−1. With xB denoting the center
of B, define

Mj := {β ∈ Ik0
: Qk0

β ∩B(xB , C1δ
k0−kj−2) �= ∅}

so that

Uj(B) ⊂ B(xB, C1δ
k0−kj−2) ⊂

⋃
β∈Mj

Qk0

β ⊂ B(xB, 2C1δ
k0−kj−2).(6.4)

By Lemma 6.3, the sets Qk0

β , β ∈ Mj , are pairwise disjoint and for each β ∈ Mj

there exists zk0

β ∈ X such that

B(zk0

β , c1rB) ⊂ Qk0

β ⊂ B(zk0

β , c2rB)(6.5)

for some c1, c2 independent of j. Hence, returning with (6.4) back to (6.3) we obtain

(6.6) |I1|

≤
∞∑
j=0

2−jεV (2jB)−1/2
( ∑

β∈Mj

∫
B(z

k0
β ,c2rB)

|(I − (I + r2BL)
−1)Mf(x)|2dx

)1/2

≤
∞∑
j=0

2−jεV (2jB)−1/2‖f‖BMOL,M (X)

( ∑
β∈Mj

V (B(zk0

β , c2rB))
)1/2

,
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where for the second inequality in (6.6) we used Lemma 6.1. Moreover, because of
(2.4), (6.5), and (6.4) we can further write∑

β∈Mj

V (B(zk0

β , c2rB)) ≤ C
∑

β∈Mj

V (B(zk0

β , c1rB)) ≤ C
∑

β∈Mj

V (Qk0

β )

≤ CV (B(xB, 2C1δ
k0−kj−2)) ≤ CV (2jB).(6.7)

Combining (6.3), (6.6), and (6.7), we can conclude that

|I1| ≤ C‖f‖BMOL,M (X).(6.8)

To analyze I2, we follow (8.15) in [HM] to write

LM
[
I −
(
I −
(
1 + r2BL

)−1
)M]

=
((

r−2
B + L

)M − LM
)(

I −
(
1 + r2BL

)−1
)M

=
( M∑
k=1

M !

(M − k)!k!
r−2k
B LM−k

)(
I −
(
1 + r2BL

)−1
)M

.

This, together with the condition m = LM b and the fact that L is self adjoint, gives

|I2| ≤ Cr−2M
B

M∑
k=1

∣∣∣ ∫
X

(I − (I + r2BL)
−1)Mf(x)(r2BL)

M−kb(x) dx
∣∣∣

≤ Cr−2M
B

M∑
k=1

∞∑
j=0

(∫
Uj(B)

|(I − (I + r2BL)
−1)Mf(x)|2dx

)1/2
×
(∫

Uj(B)

|(r2BL)M−kb(x)|2dx
)1/2

.

From this point on we proceed as in the case of I1 using (ii) of Definition 2.3. This
yields the same bound as for I1. Given all these, (6.2) follows.

Our next goal is to show that for every number N ∈ N and for every g =∑N
j=0 λjaj ∈ H1

L,at,M (X), where {aj}Nj=0 are (1, 2, 2M)-atoms, we have∣∣∣ ∫
X

f(x)g(x)dμ(x)
∣∣∣ ≤ C‖g‖H1

L,at,M (X)‖f‖BMOL,M (X).(6.9)

Since the space of finite linear combinations of (1, 2, 2M)-atoms is dense in
H1

L,at,M (X), the linear functional � will then have a unique bounded extension

to H1
L,at,M (X) defined in a standard fashion by continuity.

Let us prove claim (6.9). By Theorem 5.4, there is a representation of

g =
N∑
j=0

λjaj =
K∑
i=0

μimi,

where the {mi}Ki=0 are (1, 2,M, ε)-molecules and

K∑
i=0

|μi| ≤ C‖g‖H1
L,at,M (X).(6.10)
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Therefore, ∣∣∣ ∫
X

f(x)g(x)dμ(x)
∣∣∣ ≤

K∑
i=0

|μi|
∣∣∣ ∫

X

f(x)mi(x)dμ(x)
∣∣∣

≤ C
K∑
i=0

|μi|‖f‖BMOL,M (X)

≤ C‖g‖H1
L,at,M (X)‖f‖BMOL,M (X).

This proves claim (6.9), which in turn finishes the proof of Theorem 6.2. �
Our next result is essentially the converse of Theorem 6.2.

Theorem 6.4. Let M > n0/4 and ε > 0. Suppose that L satisfies (H1)-
(H2) and that � is a bounded linear functional on H1

L,at,M (X). Then in fact,

� ∈ BMOL,M (X) and for all g ∈ H1
L,at,M (X) which can be represented as finite

linear combinations of (1, 2,M, ε)-molecules, there holds

�(g) = 〈f, g〉
where the pairing is that between M1,2,M,ε

0 (L) and its dual. Moreover,

‖�‖BMOL,M (X) ≤ C‖�‖(H1
L,at,M (X))∗ .

Proof. By Theorem 5.2, we have that for any (1, 2,M, ε)-molecule m,

‖m‖H1
L,at,M (X) ≤ C.

Thus,
|�(m)| ≤ C‖�‖(H1

L,at,M (X))∗

for every (1, 2,M, ε)-molecule m. In particular, � ∈ EM for every M > n0/4. Thus,
(I − (I + r2BL)

−1)M� is well defined and belongs to L2
loc(X) (see the discussion

preceding (2.17)). Fix a ball B, and let ϕ ∈ L2(B), with ‖ϕ‖L2(B) ≤ 1. As we
observed before,

m̃ := V (B)−1/2(I − (I + r2BL)
−1)Mϕ

is (up to a multiplicative constant) a (1, 2,M, ε)-molecule. Thus,

V (B)−1/2|〈(I − (I + r2BL)
−1)M�, ϕ〉|

= V (B)−1/2|〈�, (I − (I + r2BL)
−1)Mϕ〉|

= |〈�, m̃〉| ≤ C‖�‖(H1
L,at,M (X))∗ .

Taking the supremum over all such ϕ supported in B, we obtain

1

V (B)

∫
B

|(I − (I + r2BL)
−1)M�(x)|2dx ≤ C

(
‖�‖(H1

L,at,M (X))∗

)2
.

Finally, taking the supremum over all balls B in X, the conclusion of the theorem
follows. �

In concert, Theorem 6.2, Theorem 6.4, and Corollary 5.3, justify Theorem 2.7
stated in Section 2.



CHAPTER 7

Hardy spaces and Gaussian estimates

In this section, we give further results about Hardy spaces H1
L,at,M (X) assum-

ing some “Gaussian” upper bounds for the heat kernel of the operator L. More
precisely, we assume that:
(H1) L is a non-negative self-adjoint operator on L2(X);
(H3) The kernel of e−tL, denoted by pt(x, y), is a measurable function on X ×X
and there exist two positive constants C and c such that, for almost every x, y ∈ X,

|pt(x, y)| ≤
C

V (x,
√
t)

exp
(
− d2(x, y)

ct

)
, ∀ t > 0.(7.1)

We note that obviously (H3) implies (H2). It is also useful to note that
Gaussian upper bounds for pt(x, y) are further inherited by the time derivatives of
pt(x, y). That is, for each k ∈ N, there exist two positive constants ck and Ck such
that ∣∣∣ ∂k

∂tk
pt(x, y)

∣∣∣ ≤ Ck

tkV (x,
√
t)

exp
(
− d2(x, y)

ckt

)
, ∀ t > 0,(7.2)

for almost every x, y ∈ X. For the proof of (7.2), see [CD2], [Da3], [Gr] and [Ou],
Theorem 6.17.

7.1. Hardy spaces H1
L,at,M (X), H1

L,Sh
(X) and H1

L,SP
(X) and Gaussian

estimates. In this subsection we establish certain improved versions of Proposi-
tions 4.4 and 4.13, under the stronger assumption that Gaussian upper bounds
hold.

Theorem 7.1. If an operator L satisfies conditions (H1) and (H3), then for
every number M ≥ 1, the spaces H1

L,at,M (X) and H1
L,Sh

(X) coincide. In particular,

‖f‖H1
L,at,M (X) ≈ ‖f‖H1

L,Sh
(X).

Remark: In the context of Hodge Laplacians, it has already been observed in
[AMR] that it suffices to takeM ≥ 1 in the presence of pointwise Gaussian bounds.

Proof. As in Chapter 4, it is enough to work with the dense spacesH1
L,at,M (X)

andH1
L,Sh

(X)∩H2(X). The inclusionH1
L,Sh

(X)∩H2(X) ⊆ H1
L,at,M (X) was proved

in Proposition 4.13, for every M ≥ 1, and does not require Gaussian estimates. As
for the converse inclusion, by Lemma 4.3 it suffices to verify that for any (1, 2, 1)-
atom a associated to a ball B = B(xB, rB), there holds

‖Sha‖L1(X) ≤ C.(7.3)

Since Sh is bounded on L2(X), by Hölder’s inequality we have that

‖Sha‖L1(4B) ≤ C.

45
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Going further, we use the fact that a = Lb for some b ∈ D(L) satisfying (ii) and
(iii) in Definition 2.1. For x �∈ 4B, this allows us to write

(Sha(x))
2 =

∫ ∞

0

∫
d(x,y)<t

∣∣t2Le−t2La(y)
∣∣2 dμ(y)

V (x, t)

dt

t

=

∫ rB

0

∫
d(x,y)<t

∣∣t2Le−t2La(y)
∣∣∣2 dμ(y)

V (x, t)

dt

t

+
(∫ d(x,xB)/4

rB

+

∫ ∞

d(x,xB)/4

)∫
d(x,y)<t

∣∣(t2L)2e−t2Lb(y)
∣∣∣2 dμ(y)

V (x, t)

dt

t5

=: E1(x) + E2(x) + E3(x).

It follows from (2.4) and (2.5) that for x �∈ 4B, z ∈ B, and 0 < t < d(x, xB)/4, we
have

V (z, t)−1 ≤ CV (xB, d(x, xB))
−1
(d(x, xB)

t

)n0

.(7.4)

On the other hand, if x �∈ 4B and d(x, y) < t, we also have d(x, y) ≤ t < d(x, xB)/4
and d(y, z) ≥ d(x, xB)/2 for every z ∈ B. These, together with (4.2), the fact that
− d

dt [e
−tL] = Le−tL, and (7.2) for k = 1, show that

(7.5) E1(x)

≤ C

∫ rB

0

∫
d(x,y)<t

∣∣∣ ∫
B

1

V (z, t)
exp
(
− d2(y, z)

ct2

)
|a(z)|dμ(z)

∣∣∣2 dμ(y)

V (x, t)

dt

t

≤ Cd(x, xB)
2n0V (xB, d(x, xB))

−2‖a‖2L1(B)

∫ rB

0

t−2n0

( t

d(x, xB)

)2(n0+1) dt

t

≤ C

V (xB, d(x, xB))2
r2B

d(x, xB)2
.

The second inequality in (7.5) makes use of (7.4) and the fact that d(y, z) ≥
d(x, xB)/2. A similar argument shows that

E2(x)

≤ Cd(x, xB)
2n0V (xB, d(x, xB))

−2‖b‖2L1(B)

∫ ∞

rB

t−2n0

( t

d(x, xB)

)2n0+2 dt

t5

≤ C

V (xB, d(x, xB))2
r2B

d(x, xB)2
.

Consider the term E3(x). For z ∈ B and t ≥ d(x, xB)/4, we have that V (z, t)−1 ≤
CV (xB, d(x, xB))

−1 for x �∈ 4B. This, together with estimate (7.2) for k = 1, gives

E3(x) ≤ CV (xB, d(x, xB))
−2‖b‖2L1(B)

∫ ∞

d(x,xB)/4

dt

t5

≤ C

V (xB, d(x, xB))2
r2B

d(x, xB)2
.
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The estimates obtained for E1(x), E2(x) and E3(x) combine to show that
‖Sha‖L1((4B)c) ≤ C. This justifies (7.3), and the proof of Theorem 7.1 is com-
pleted. �

Turning to the equivalence between H1
L,at,M (X) and H1

L,SP
(X), we start with

the following auxiliary result.

Lemma 7.2. For every K = 0, 1, . . . , there exists a constant CK such that the

kernel pt,K of the operator (t
√
L)2Ke−t

√
L satisfies

|pt,K(x, y)| ≤ CK
1

V (x, t)

(
1 +

d(x, y)

t

)−(2K+1)

∀ t > 0,

for almost every x, y ∈ X.

Proof. The subordination formula (4.22) allows us to estimate

|pt,K(x, y)| ≤ C

∫ ∞

0

e−u

√
u

· 1

V (x, t
2
√
u
)
exp
(
− ud2(x, y)

cKt2

)
uKdu.

Note that there exists C > 0 such that

e−
u
2 V
(
x,

t

2
√
u

)−1

≤ CV (x, t)−1 ∀u > 0, x ∈ X, t > 0.(7.6)

Indeed, if 0 < u < 1/4, this is true for trivial reasons (with C = 1), whereas if
u ≥ 1/4, from the doubling property (2.4) we have

e−
u
2

1

V (x, t
2
√
u
)
≤ Ce−

u
2

(√
u
)n0 1

V (x, t)
≤ C

V (x, t)
.

Therefore, using (7.6),

|pt,K(x, y)| ≤ C

V (x, t)

∫ ∞

0

e−
u
2 exp

(
− ud2(x, y)

cKt2

)
uK−1/2du

≤ C

V (x, t)

(
1 +

d(x, y)

t

)−(2K+1)

for every t > 0 and almost every x, y ∈ X. �

With Lemma 7.2 in hand, by reasoning as in the proof of Theorem 7.1, one
then obtains the following result.

Theorem 7.3. If an operator L satisfies conditions (H1) and (H3), then for
every number M ≥ 1, the spaces H1

L,at,M (X) and H1
L,SP

(X) coincide. In particular,

‖f‖H1
L,at,M (X) ≈ ‖f‖H1

L,SP
(X).

7.2. Hardy spaces via maximal functions. We continue the discussion
from subsection 4.4 regarding the study of Hardy spaces in terms of maximal and
non-tangential maximal functions, under the additional assumption that Gaussian
upper bounds hold.

Given an operator L satisfying (H1) and (H3) (stated in the first part of Section
7) and a function f ∈ L2(X), consider the following maximal and non-tangential
maximal operators associated to the heat semigroup generated by the operator L,

f+
h (x) := sup

t>0
|e−t2Lf(x)|,(7.7)
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and

Nhf(x) := sup
d(x,y)<t

|e−t2Lf(y)|.(7.8)

In addition, let us also consider the Poisson semigroup generated by the oper-
ator L and the operators

f+
P (x) := sup

t>0
|e−t

√
Lf(x)|(7.9)

and

NP f(x) := sup
d(x,y)<t

|e−t
√
Lf(y)|(7.10)

with x ∈ X, f ∈ L2(X).
Define the spaces H1

L,max,h(X), H1
L,Nh

(X), H1
L,max,P (X) and H1

L,NP
(X) as the

completion of H2(X) in the norms given by the L1(X) norm of the corresponding
maximal function. For example,

‖f‖H1
L,max,h(X) = ‖f+

h ‖L1(X),

etc. Then the following theorem holds.

Theorem 7.4. If an operator L satisfies conditions (H1) and (H3), then for
every number M ≥ 1, the following continuous inclusions hold:

(i) H1
L,at,M (X) ⊆ H1

L,Nh
(X) ⊆ H1

L,max,h(X) ⊆ H1
L,max,P (X);

(ii) H1
L,at,M (X) ⊆ H1

L,NP
(X).

Remark: It is trivial that the “averaged” non-tangential maximal functions NP

and Nh are dominated by their pointwise analogues NP and Nh, respectively, so
that H1

L,NP
(X) ⊆ H1

L,NP
(X) and H1

L,Nh
(X) ⊆ H1

L,Nh
(X), but it is not clear how to

reverse these inclusions, nor to compareH1
L,NP

(X) andH1
L,Nh

(X) to their pointwise

“vertical” analogues, H1
L,max,P (X) and H1

L,max,h(X), in the absence of some sort

of “Moser-type” local boundedness (cf. Lemma 8.4 below).

Proof. We first prove the inclusion H1
L,at,M (X) ⊆ H1

L,Nh
(X). By Lemma 4.3,

it suffices to show that there exists C > 0 such that for every atom a associated to
a ball B = B(xB , rB) in X, we have

‖Nha‖L1(X) ≤ C.(7.11)

The condition (7.1) implies that Nha(x) ≤ CMa(x) for almost everywhere x ∈ X,
where M denotes the Hardy-Littlewood maximal operator on X. By Hölder’s
inequality, we then have

‖Nha‖L1(4B) ≤ V (4B)1/2‖Ma‖L2(X) ≤ CV (B)1/2‖a‖L2(B) ≤ C.

For x �∈ 4B, the same type of argument as in Theorem 7.1 shows that if d(x, y) ≤
t < d(x, xB)/4 and z ∈ B, then d(y, z) ≥ d(x, xB)/2, and

V (z, t)−1 ≤ CV (xB, d(x, xB))
−1
(d(x, xB)

t

)n
.
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We now estimate Nha(x) with x �∈ 4B by examining several cases. To facilitate the
subsequent presentations, introduce for f ∈ L2(X),

N
(1)
h f(x) = sup

d(x,y)<t
0<t≤rB

|e−t2Lf(y)|,(7.12)

N
(2)
h f(x) = sup

d(x,y)<t
rB<t<d(x,xB)/4

|e−t2Lf(y)|,(7.13)

N
(3)
h f(x) = sup

d(x,y)<t
t≥d(x,xB)/4

|e−t2Lf(y)|.(7.14)

Case 1. 0 < t ≤ rB. In this scenario we have

N
(1)
h a(x) ≤ C sup

d(x,y)<t
0<t≤rB

∫
B

V (z, t)−1 exp
(
− d(y, z)2

ct2

)
|a(z)|dμ(z)

≤ sup
0<t≤rB

C

V (xB, d(x, xB))

(d(x, xB)

t

)n0

exp
(
− d(x, xB)

2

ct2

)
‖a‖L1(B)

≤ C

V (xB, d(x, xB))

rB
d(x, xB)

.

Case 2. rB < t < d(x, xB)/4. Since a is a (1, 2, 1)-atom, we can write a = Lb
for some b ∈ D(L) satisfying (ii) and (iii) in Definition 2.1. Then, one has

N
(2)
h a(x) = sup

d(x,y)<t
rB<t<d(x,xB)/4

t−2|t2Le−t2Lb(y)|

≤ C sup
d(x,y)<t

rB<t<d(x,xB)/4

t−2

∫
B

V (z, t)−1 exp
(
− d(y, z)2

ct2

)
|b(z)|dμ(z)

≤ C

V (xB, d(x, xB))
‖b‖L1(B)

× sup
rB<t<d(x,xB)/4

t−2
(d(x, xB)

t

)n0

exp
(
− d(x, xB)

2

ct2

)
≤ C

V (xB, d(x, xB))

rB
d(x, xB)

.

Case 3. t ≥ d(x, xB)/4. In this case, V (z, t)−1 ≤ CV (xB, d(x, xB))
−1 for every

z ∈ B, and then
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N
(3)
h a(x) = sup

d(x,y)<t
t≥d(x,xB)/4

|Le−t2Lb(y)|

≤ C sup
t≥d(x,xB)/4

t−2V (xB, d(x, xB))
−1‖b‖L1(B)

≤ C

V (xB, d(x, xB))

rB
d(x, xB)

.

Combining the estimates obtained in Case 1, Case 2 and Case 3, we may conclude
that

Nha(x) ≤
C

V (xB, d(x, xB))

rB
d(x, xB)

.(7.15)

Integrating both sides of (7.15) over X \ 4B yields (7.11). Thus, the proof of the
continuous inclusion H1

L,at,M (X) ⊆ H1
L,Nh

(X) is justified.

The proof of H1
L,Nh

(X) ⊆ H1
L,max,h(X) follows from the definitions of the

maximal operators Nh and of the f+
h . Moreover, we have

‖f+
h ‖L1(X) ≤ ‖Nhf‖L1(X).(7.16)

Next, we prove the inclusion H1
L,max,h(X) ⊆ H1

max,P (X). To do so, fix f ∈
H1

L,max,h(X). The subordination formula (4.22) can be used to estimate

|e−t
√
Lf(x)| ≤ C

∫ ∞

0

e−u

√
u

∣∣e− t2

4uLf(x)
∣∣du

≤ Cf+
h (x)

∫ ∞

0

e−u

√
u
du

≤ Cf+
h (x).

This proves that f+
P (x) ≤ Cf+

h (x) for any x ∈ X. Thus, H1
L,max,h(X) ⊆

H1
L,max,P (X).

The proof of the inclusion H1
L,at,1(X) ⊆ H1

L,NP
(X) is similar to that of

H1
L,at,1(X) ⊆ H1

L,Nh
(X) and we omit the details. This completes the proof of

Theorem 7.4. �

Parenthetically we remark that it seems likely that under additional assump-
tions, such as Nash type local Hölder continuity of the heat kernel, one may obtain
equality of the various spaces in Theorem 7.4. We do not attempt to address this
point here, but see [AR].

7.3. The spaces BMOL(X) under Gaussian bounds. Call a function f ∈
L2
loc(X) of type (x0, β), where x0 ∈ X and β > 0, if it satisfies

(7.17) ‖f‖M(x0,β)
:=
(∫

X

|f(x)|2
(1 + d(x0, x))βV (x0, 1 + d(x0, x))

dμ(x)
)1/2

< ∞.

We denote by M(x0,β) the collection of all functions of type (x0, β). For a fixed
x0 ∈ X, it is easy to see that M(x0,β) is a Banach space under the norm (7.17).
Also, for any x1 ∈ X, we have M(x1,β) = M(x0,β) with equivalent norms. Set

M :=
⋃

x0∈X

⋃
β: 0<β<∞

M(x0,β)
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We will say that f ∈ M is in BMOL(X), the space of functions of bounded mean
oscillation associated with {e−tL}t>0, if

‖f‖BMOL(X) := sup
B

1

V (B)

∫
B

|f(x)− e−r2BLf(x)|dμ(x) < ∞,(7.18)

where the supremum is taken over all balls B in X. Note that this formally corre-
sponds to Definition 2.6 with M = 1 and with an L1 norm in place of the L2 norm
(see [DY1], [DY2]). The current presence of stronger (point-wise) bounds allows
us to take M = 1.

Next, define

KL :=
{
f ∈ M : e−tLf(x) = f(x) for almost all x ∈ X and all t > 0

}
.

We have that KL = {f ∈ BMOL(X) : ‖f‖BMOL(X) = 0} and BMOL(X)/KL is a
Banach space with the norm

‖f‖BMOL(X)/KL
= ‖f‖BMOL(X).

We remark that the convention made after Definition 2.6 applies here with M = 1
and that the two versions of the BMO are compatible whenever they can simulta-
neously be considered.

The following result holds.

Theorem 7.5. Assume that the operator L satisfies conditions (H1) and (H3).
Then, we have

(H1
L,at,1(X))∗ = BMOL(X).

Proof. This result can be proved in a similar, but slightly simpler, fashion to
the duality results in Section 6. We omit the proof. �





CHAPTER 8

Hardy spaces associated to Schrödinger operators

In this section we treat Hardy spaces adapted to a Schrödinger operator in R
n,

assuming merely local integrability and non-negativity of the potential. Our work
extends some of the previous theory developed in [DZ1, DZ2, DGMTZ] under
stronger hypotheses on the potential. In particular, [DZ1] and [DGMTZ] deal
with a Schrödinger operator whose potential belongs to the reverse Hölder class
RHq, with q ≥ n/2, while [DZ2] generalizes the results of [DZ1].

Let n ≥ 1 and V be a locally integrable non-negative function on Rn, not
identically zero. We define the form Q by

Q(u, v) :=

∫
Rn

∇u∇v dx+

∫
Rn

V uv dx(8.1)

with domain

D(Q) :=
{
u ∈ W 1,2(Rn) :

∫
Rn

V |u|2dx < ∞
}
.(8.2)

It is well known that this symmetric form is closed. Note also that it was shown by
Simon [Sim] that this form coincides with the minimal closure of the form given
by the same expression but defined on C∞

0 (Rn) (the space of C∞ functions with
compact supports). In other words, C∞

0 (Rn) is a core of the form Q.
Let us denote by L the self-adjoint operator associated with Q. The domain of

L is given by

(8.3) D(L) :={
u ∈ D(Q) : ∃v ∈ L2 such that Q(u, ϕ) =

∫
Rn

vϕ̄ dx, ∀ϕ ∈ D(Q)
}
.

Formally, we write L = −Δ+ V as a Schrödinger operator with potential V . Since
V is a locally integrable non-negative function on Rn, the Feynman-Kac formula
implies that the semigroup kernels pt(x, y), associated to e−tL, satisfy the estimates

(8.4) 0 ≤ pt(x, y) ≤ (4πt)−
n
2 exp

(
− |x− y|2

4t

)
for all t > 0, x, y ∈ R

n.

See page 195 of [Ou]. In particular, as we have noted above (see the discussion
immediately before and after (2.15)), this fact implies that H2

L(X) = L2(X).

8.1. Equivalences among H1
L,at,M (Rn), H1

L,Sh
(Rn) and H1

L,SP
(Rn). The

following theorem is a special case of Theorems 7.1 and 7.3.

Theorem 8.1. Assume that L = −Δ + V , where V ∈ L1
loc(R

n) is a non-
negative function on R

n. Then for all M ≥ 1, the spaces H1
L,at,M (Rn), H1

L,Sh
(Rn)

53
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and H1
L,SP

(Rn) coincide. In particular,

‖f‖H1
L,at,M (Rn) ≈ ‖f‖H1

L,Sh
(Rn) ≈ ‖f‖H1

L,SP
(Rn).

8.2. Maximal characterization of H1
L,at,M (Rn). In this section, we con-

tinue with the assumption that V ∈ L1
loc(R

n) is a non-negative function on R
n. In

the sequel, we may sometimes use capital letters to denote points in R
n+1
+ , e.g.,

Y = (y, t), and set

∇Y u(Y ) = (∇yu, ∂tu) and |∇Y u|2 = |∇yu|2 + |∂tu|2.
For every function f ∈ L2(Rn), consider the quadratic operators associated to

the heat semigroup and the Poisson semigroup generated by the operator L,

S̃hf(x) =
(∫∫

Γ(x)

|t∇Y e
−t2Lf(y)|2 dydt

tn+1

)1/2
,

and

S̃P f(x) =
(∫∫

Γ(x)

|t∇Y e
−t

√
Lf(y)|2 dydt

tn+1

)1/2
,

where x ∈ Rn, f ∈ L2(Rn).
Define the spaces H1

L,˜Sh
(Rn) and H1

L,˜SP
(Rn) as the completion of H2(Rn) in

the norms given by the L1 norm of the square function, e.g.,

‖f‖H1

L, ˜Sh
(Rn) = ‖S̃hf‖L1(Rn).

Then the following result holds.

Theorem 8.2. Assume that L = −Δ+V , where V ∈ L1
loc(R

n) is a non-negative
function on Rn. Then all of the Hardy spaces H1

L,at,M (Rn), M ≥ 1, H1
L,˜Sh

(Rn),

H1
L,˜SP

(Rn), H1
L,max,h(R

n), H1
L,Nh

(Rn), H1
L,max,P (R

n) and H1
L,NP

(Rn) coincide. In

other words, ∀M ≥ 1,

‖f‖H1
L,at,M (Rn) ≈ ‖f‖H1

L, ˜Sh
(Rn) ≈ ‖f‖H1

L, ˜SP
(Rn) ≈ ‖f‖H1

L,max,h(R
n)

≈ ‖f‖H1
L,Nh

(Rn) ≈ ‖f‖H1
L,max,P (Rn) ≈ ‖f‖H1

L,NP
(Rn).

Remark: We note that similar equivalences hold for the spaces H1
L,NP

(X) and

H1
L,Nh

(X), by virtue of the local boundedness estimates in Lemma 8.4 below (in the

case of the Poisson extension), or the analogous parabolic estimates in [CarMSp]
(in the case of the heat extension); we leave the routine details to the interested
reader.

The proof of Theorem 8.2 will be given below; we first prove some preliminary
estimates.

8.2.1. Estimates for weak solutions. In order to prove Theorem 8.2, we need

some estimates for the Poisson semigroup {e−t
√
L}t>0, and for weak solutions of

the equation

L̃u := −Δx,tu+ V u = −utt + Lu = 0

in domains Ω ⊂ R
n+1. To define the latter notion, we suppose that Ω is an open

subset of Rn+1. Define

W 1,2
V (Ω) =

{
u ∈ W 1,2(Ω) :

∫
Ω

V |u|2 dydt < ∞
}
,
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and let W 1,2
V,0(Ω) denote the subspace of W 1,2

V (Ω) with trace 0 on ∂Ω. The function

u ∈ W 1,2
V (Ω) is called a weak solution of L̃u = 0 in Ω if it satisfies∫

Ω

∇u · ∇ϕdY +

∫
Ω

V uϕ dY = 0 for every ϕ ∈ W 1,2
V,0(Ω).(8.5)

We note that here, and in the sequel when working in an (n + 1)-dimensional
context, ∇ denotes the full gradient ∇Y in R

n+1. Moreover, the local estimates
that we are about to prove (Lemmas 8.3 and 8.4) are valid for potentials V which
may depend on all the variables Y = (y, t). However, our results for semigroups
will of course require t-independence of V .

We begin by stating a Caccioppoli inequality which appears previously in [Sh].
We include the proof here for the sake of self-containment.

Lemma 8.3. Let u be a weak solution of L̃u = 0 in the ball B(Y0, 2r) ⊂ Rn+1.
Then there exists an absolute constant C > 0 such that∫

B(Y0,r)

|∇u(Y )|2dY ≤ C

r2

∫
B(Y0,2r)

|u(Y )|2dY.

Proof. Let η ∈ C1
0 (B(Y0, 2r)) with η = 1 on B(Y0, r) and |∇η| ≤ r−1. Set

ϕ = η2u. Then we have∫
|∇u|2η2 dY +

∫
2ηu∇u · ∇η dY = −

∫
V η2u2 dY ≤ 0.

This gives∫
|∇u|2η2dY ≤ 2

∫
η|u||∇η||∇u|dY ≤ ε

∫
|∇u|2η2dY +

1

ε

∫
|u|2|∇η|2dY,

where in the last step we have used a variant of Cauchy’s inequality. Choosing
ε = 1/2, hiding the small term on the left hand side, and using the bound for |∇η|,
we obtain Caccioppoli’s inequality in the usual way. �

Next, we recall a Moser type local boundedness estimate, which has appeared
previously in [AB]. We include the proof here for the sake of self-containment.

Lemma 8.4. Let u,B(Y0, 2r) be as in Lemma 8.3. Then for any p > 0, there
exits a constant C = C(n, p) > 0 such that

sup
B(Y0,r)

|u(Y )| ≤ C
( 1

rn+1

∫
B(Y0,2r)

|u(Y )|pdY
)1/p

.

Proof. It is enough to show that u2 is a subharmonic. To this end, observe
that for any ϕ ∈ C1

0 (B(Y0, 2r)) with ϕ ≥ 0, we have∫
∇u2 · ∇ϕdY

= 2

∫
∇u · ∇(uϕ) dy dY − 2

∫
ϕ|∇u|2 dY

= −2

∫
V ϕu2 dY − 2

∫
ϕ|∇u|2 dY

≤ 0.

The desired result follows readily. �
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Next, we observe that the heat semigroup associated to L satisfies a Davies-
Gaffney estimate.

Lemma 8.5. There exist two constants c, C > 0 such that for any two closed
sets E and F of Rn, we have:

‖t∇e−t2Lf‖L2(F ) ≤ Ce−
dist(E,F )2

ct2 ‖f‖L2(E)

for every f ∈ L2(Rn) supported in E.

Proof. The proof is similar to that of the case when L is a divergence form
operator, and is omitted. See, for example, Lemma 2.1 of [AHLMT]. �

8.2.2. Proof of Theorem 8.2. Step I: Proof of the inclusion H1
L,max,P (R

n) ⊆
H1

L,NP
(Rn).

We apply Lemma 8.4 with 0 < p < 1 and u(x, t) = e−t
√
Lf(x) to obtain that for

every x ∈ Rn and every (y, t) ∈ Γ(x),

|e−t
√
Lf(y)|p ≤ C

tn+1

∫ 2t

t/2

∫
|x−z|<2t

|e−s
√
Lf(z)|pdz ds

≤ C

tn

∫
|x−z|<2t

|f+
P |p(z) dz ≤ CM

(
|f+

P |p
)
(x),

where M is the Hardy-Littlewood maximal function in R
n. We then have

Nhf(x) ≤ C
[
M
(
|f+

P |p
)
(x)
]1/p

for x ∈ R
n.

Therefore, since p < 1,

‖Nhf‖L1(Rn) ≤ C
∥∥∥[M(|f+

P |p
)]1/p∥∥∥

L1(Rn)
≤ C‖f+

P ‖L1(Rn).

This proves that H1
L,max,P (R

n) ⊆ H1
L,NP

(Rn).

Step II. Proof of H1
L,NP

(Rn) ⊆ H1
L,SP

(Rn). The proof follows the analogous

argument for the case V = 0 of Fefferman and Stein [FS], with some modifications
owing to the lack of pointwise bounds for the gradient, as in, e.g., [AR, HM,

AMR]. First, we define an area functional using all partial derivatives of e−t
√
Lf(x)

by setting

(8.6) S̃β
P f(x) :=

(∫∫
Γβ(x)

|t∇Y e
−t

√
Lf(y)|2 dy dt

tn+1

)1/2
, for x ∈ R

n,

where Y = (y, t). For simplicity we will write S̃P f in place of S̃1
P f . It is clear that

SP f ≤ S̃1
P f pointwise in R

n. We also define the family of truncated cones

Γε,R,α(x) :=
{
(y, t) ∈ R

n × (ε, R) : |x− y| < αt
}
, x ∈ R

n,

and, associated to these new truncated cones, the area functions

S̃ε,R,β
P f(x) :=

(∫∫
Γε,R,β(x)

|t∇Y e
−t

√
Lf(y)|2 dydt

tn+1

)1/2
, x ∈ R

n.

In what follows we will work with S̃ε,R,β
P rather than S̃β

P and then pass to the
limit as ε → 0, R → ∞. In the sequel, unless explicitly stated, the constants
appearing in estimates will not depend on ε and R.
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We also define the following non-tangential maximal function

Nβ
P f(x) := sup

(y,t)∈Γβ(x)

|e−t
√
Lf(y)|.

For every closed set E ⊆ Rn, define

(8.7) E∗ :={
x ∈ R

n :
|E ∩B(x)|
|B(x)| ≥ 1

2
for every B(x), ball in R

n centered at x
}
,

the set of points having global density bigger than or equal to 1/2 with respect to
E. For β > 0 to be selected later, we introduce

Rε,R,β(E∗) :=
⋃

x∈E∗

Γε,R,β(x)

(which is a Lipschitz domain given that it has the uniform cone property) and

u(y, t) := e−t
√
Lf(y), t ∈ (0,∞), y ∈ R

n.

Making use of Lemma 2.1 in [CMS], it is not hard to see that∫
E∗

(
S̃
2ε,R,1/2
P f(x)

)2
dx ≤

∫
E∗

(
S̃
αε,αR,1/α
P f(x)

)2
dx

≤
∫∫

Rαε,αR,1/α(E∗)

t|∇Y u(y, t)|2dydt,(8.8)

for all α ∈ (1, 2). Going further, integration by parts shows that

∫∫
Rαε,αR,1/α(E∗)

t|∇Y u(y, t)|2dy dt

=

∫∫
Rαε,αR,1/α(E∗)

t∇Y u(y, t) · ∇Y u(y, t) dy dt

=

∫
∂Rαε,αR,1/α(E∗)

t∇Y u(y, t) ·NE(y, t)u(y, t) dσE(y, t)

−
∫∫

Rαε,αR,1/α(E∗)

t
(
∂2
t u(y, t) +�yu(y, t)

)
u(y, t) dy dt

−
∫∫

Rαε,αR,1/α(E∗)

∂tu(y, t)u(y, t) dy dt,

where NE(y, t) is the outward unit normal vector to Rαε,αR,1/α(E∗) and dσE is the
surface measure over ∂Rαε,αR,1/α(E∗). Observe that ∂2

t u+�yu = V u in the weak
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sense on R
n+1
+ . Since 0 ≤ V ∈ L1

loc(R
n), we then have

(8.9)

∫∫
Rαε,αR,1/α(E∗)

t|∇Y u(y, t)|2dy dt

≤ Re

∫
∂Rαε,αR,1/α(E∗)

t∇Y u(y, t) ·NE(y, t)u(y, t) dσE(y, t)

− Re

∫∫
Rαε,αR,1/α(E∗)

∂tu(y, t)u(y, t) dy dt,

where Re z denotes the real part of a complex number z. Using integration by parts
again, we have

2Re

∫∫
Rαε,αR,1/α(E∗)

∂tu(y, t)u(y, t)dydt

=

∫
∂Rαε,αR,1/α(E∗)

|u(y, t)|2NE(y, t) · (0, · · · , 0, 1) dσE(y, t).

Using this back in (8.9) and, after taking absolute values, integrating both sides of
the resulting inequality with respect to α we obtain∫ 2

1

∫∫
Rαε,αR,1/α(E∗)

t|∇Y u(y, t)|2 dy dt dα

≤
∫ 2

1

∫
∂Rαε,αR,1/α(E∗)

t|u(y, t)||∇Y u(y, t)|dσE(y, t) dα

+

∫ 2

1

∫
∂Rαε,αR,1/α(E∗)

|u(y, t)|2dσE(y, t) dα

≤
∫∫

Bε,R(E∗)

|u(y, t)||∇Y u(y, t)|dy dt+
∫∫

Bε,R(E∗)

|u(y, t)|2 dy dt
t

≤
(∫∫

Bε,R(E∗)

t|∇Y u(y, t)|2dy dt
)1/2(∫∫

Bε,R(E∗)

|u(y, t)|2 dy dt
t

)1/2
+

∫∫
Bε,R(E∗)

|u(y, t)|2 dy dt

t
,(8.10)

where

Bε,R(E∗) :=
{
(x, t) ∈ R

n+1
+ : (x, t) ∈ ∂Rαε,αR,1/α(E∗) for some 1 < α < 2

}
.

Consider the following three regions:

Bε(E∗) :=
{
(x, t) ∈ R

n × (ε, 2ε) : dist(x,E∗) < t
}
,(8.11)

BR(E∗) :=
{
(x, t) ∈ R

n × (R, 2R) : dist(x,E∗) < t
}
,(8.12)

Bε,R(E
∗) :=

{
(x, t) ∈ R

n × (ε, 2R) : dist(x,E∗) < t < 2 dist(x,E∗)
}
,(8.13)

and observe that

Bε,R(E∗) ⊆ Bε(E∗) ∪ BR(E∗) ∪ Bε,R(E
∗).

Below we will analyze separately the parts of integrals in (8.10) corresponding to
the regions (8.11)–(8.13).
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Let us start with

I1 :=

∫∫
Bε(E∗)

|u(y, t)|2 dy dt
t

.

For every (y, t) ∈ Bε(E∗), there exists y∗ ∈ E∗ such that y∗ ∈ B(y, t). By definition
of E∗ this implies that |E ∩ B(y∗, t)| > |B(y∗, t)|/2 and therefore |E ∩ B(y, 2t)| ≥
Ctn. Then

I1 ≤ C

∫∫
Bε(E∗)

∫
E∩B(y,2t)

|u(y, t)|2dz dy dt
tn+1

≤ C

∫ 2ε

ε

∫
E

(
t−n

∫
B(z,2t)

|u(y, t)|2dy
)
dz

dt

t

≤ C

∫ 2ε

ε

∫
E

|Nβ
P f(z)|2

dz dt

t
≤ C

∫
E

|Nβ
P f(z)|2dz

provided β ≥ 2. Next, using similar ideas, we may estimate

I2 =

∫∫
Bε(E∗)

t|∇Y u(y, t)|2dy dt

≤ C

∫ 2ε

ε

∫
E

( 1

tn−2

∫
B(z,2t)

|∇Y u(y, t)|2dy
)dz dt

t

≤ Cε1−n

∫
E

(∫
Gz

|∇Y u(y, t)|2dy dt
)
dz,(8.14)

where Gz is the set of points (y, t) with |y − z| < 2t, ε < t < 2ε and z ∈ E.
Pick a covering of Gz with bounded overlap by a finite number K of balls Bj =
B((xj , tj), ε/4), where (xj , tj) ∈ Gz. That is, Gz ⊆ ∪K

j=0Bj , and every point (y, t) ∈
Gz belongs to at most a finite number of balls Bj . By geometric considerations, it
follows that ∪K

j=0B((xj , tj), ε/2) ⊆ {(y, t) : |y − z| < 16t, ε/2 < t < 3ε}. We then
apply Lemma 8.3 to obtain the bound

I2 ≤ C

K∑
j=0

ε1−n

∫
E

(∫
B((xj , tj), ε/4)

|∇Y u(y, t)|2dy dt
)
dz

≤ C

K∑
j=0

ε1−n

∫
E

(
ε−2

∫
B((xj , tj), ε/2)

|u(y, t)|2dy dt
)
dz

≤ Cε−(n+1)

∫
E

(∫ 3ε

ε/2

∫
B(z,16t)

|u(y, t)|2dy dt
)
dz ≤ C

∫
E

|Nβ
P f(z)|2dz,

where it was assumed that β ≥ 16. Observe that the same argument applies to
further estimate ∫∫

BR(E∗)

|u(y, t)|2 dy dt
t

≤ C

∫
E

|Nβ
P f(z)|2dz,∫∫

BR(E∗)

t|∇Y u(y, t)|2dy dt ≤ C

∫
E

|Nβ
P f(z)|2dz,

granted that β ≥ 16.
To control the integral over Bε,R(E

∗), we first decompose (Ec)∗ into a family of

Whitney balls, {B(xk, rk)}∞k=0, such that
∞⋃
k=0

B(xk, rk) = (Ec)∗, c1 dist(xk, E
∗) ≤

rk ≤ c2 dist(xk, E
∗), and every point x ∈ (Ec)∗ belongs to at most c3 balls. Here,
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0 < c1 < c2 < 1 and c3 ∈ N are some fixed constants, independent of (Ec)∗ (see
[CW2] and [St1]). Then

I3 :=

∫∫
Bε,R(E∗)

|u(y, t)|2 dy dt
t

≤
∞∑
k=0

∫ 2rk(1/c1+1)

rk(1/c2−1)

∫
B(xk,rk)

|u(y, t)|2 dy dt
t

≤ C
∞∑
k=0

rnk

∫ 2rk(1/c1+1)

rk(1/c2−1)

[ 1
tn

∫
B(xk,

c2
1−c2

t)

|u(y, t)|2dy
]dt
t
.(8.15)

From the fact that E∗ ⊆ E it follows that dist(xk, E) ≤ dist(xk, E
∗) ≤ c2

(1−c2)c1
t

which, in turn, can be used to majorize the term under right-most inner integral

in (8.15) by Nβ
P f(z) for some z ∈ E provided β ≥ c2

(1−c2)c1
. Hence, assuming that

this is the case,

I3 ≤ C

∞∑
k=0

rnk

(
sup
z∈E

Nβ
P f(z)

)2
≤ C|(Ec)∗|

(
sup
z∈E

Nβ
P f(z)

)2
.(8.16)

A reasoning similar to the one used to prove (8.15) and (8.16) also yields that
there exists a finite constant C0 = C0(c1, c2) > 0 such that

I4 :=

∫∫
Bε,R(E∗)

t|∇Y u(y, t)|2dy dt ≤ C|(Ec)∗|
(
sup
z∈E

Nβ
P f(z)

)2
,

provided β > C0. Let us now choose

β := max
{
16,

c2
(1− c2)c1

, C0

}
(8.17)

in (8.18). Combining all the estimates above allows us to write∫
E∗

(
S̃
2ε,R,1/2
P f(x)

)2
dx ≤ C|(Ec)∗|

(
sup
z∈E

Nβ
P f(z)

)2
+ C

∫
E

|Nβ
P f(z)|2dz

and, therefore, passing to the limit as ε → 0 and R → ∞,∫
E∗

(
S̃
1/2
P f(x)

)2
dx ≤ C|(Ec)∗|

(
sup
z∈E

Nβ
P f(z)

)2
+ C

∫
E

|Nβ
P f(z)|2dz.

At this stage choose

E := {x ∈ R
n : Nβ

P f(x) ≤ σ},(8.18)

for some arbitrary, fixed σ > 0. Also, generically, denote by λF the distribution

function of F . Then, since Nβ
P f ≤ σ on E and |(Ec)∗| ≤ C|Ec| ≤ CλNβ

P f (σ), we

have ∫
E∗

(
S̃
1/2
P f(x)

)2
dx ≤ Cσ2λNβ

P f (σ) + C

∫ σ

0

tλNβ
P f (t) dt.

Next,

λ
˜S
1/2
P f

(σ) ≤
∣∣∣{x ∈ E∗ : S̃

1/2
P f(x) > σ}

∣∣∣+ |(E∗)c|

≤ C
1

σ2

∫
E∗

(
S̃
1/2
P f(x)

)2
dx+ CλNβ

P f (σ)

≤ C
1

σ2

∫ σ

0

tλNβ
P f (t)dt+ CλNβ

P f (σ).
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Therefore, for β as in (8.17), by applying Lemma 4.6 we obtain

‖SP f‖L1(Rn) ≤ ‖S̃P f‖L1(Rn) ≤ C‖S̃1/2
P f‖L1(Rn) =

∫ ∞

0

λ
˜S
1/2
P f

(σ) dσ

≤ C

∫ ∞

0

λNβ
P f (σ) dσ ≤ C‖Nβ

P f‖L1(Rn)

≤ Cβn‖NP f‖L1(Rn),

where for the last inequality we have used the fact that ‖Nβ
P f‖L1(Rn) ≤

Cβn‖NP f‖L1(Rn) (see Theorem 2.3 of [CT]). Hence, the inclusion

H1
L,NP

(Rn) ⊆ H1
L,SP

(Rn)

is proved, and then the proof of Theorem 8.2 is complete. �

8.3. H1
L,at,M → H1 bounds for Riesz transforms of Schrödinger oper-

ators. Let L be as in Section 8.1, that is L = −Δ + V , with 0 ≤ V ∈ L1
loc(R

n).

Consider the Riesz transform T := ∇L−1/2 associated to the operator L. An alter-
native definition is

Tf =
1

2
√
π

∫ ∞

0

∇e−tLf
dt√
t
.(8.19)

Then the operator T is bounded on L2(Rn). Indeed, for every f ∈ L2(Rn), we have

(8.20) ‖Tf‖2L2(Rn =

∫
Rn

|∇L−1/2f(x)|2dx

≤
∫
Rn

|∇L−1/2f(x)|2dx+

∫
Rn

V (x)|L−1/2f(x)|2dx

= Q(L−1/2f, L−1/2f) = ‖f‖2L2(Rn),

where Q is as in (8.1). The latter equality follows from the fact that Q is symmetric
hence D(Q) = D(L1/2) and Q(u, v) = (L1/2u, L1/2v) (see, for examples, Chapter
VI of [K] or p. 254, Theorem 8.1 of [Ou]).

Moreover, by the molecular decomposition of functions in H1
L,Sh

(Rn), it was

proved in [DOY] that T is bounded from the Hardy space H1
L,Sh

(Rn) into L1(Rn)

and, by interpolation, T is bounded on Lp(Rn) for all 1 < p ≤ 2. See also [Si2].
We note that for p > 2, the counter-example studied in [Sh] with the potential
V (x) = |x|ε−2 shows that the operator T = ∇(−� + V )−1/2 is not necessarily
bounded on Lp. However, Lp-boundedness of Riesz transforms for large values of
p can be obtained if one imposes certain additional regularity conditions on the
potential V (see [Sh], [AB]). Below we observe that the target space L1(Rn) can
be replaced by the smaller space H1(Rn).

Theorem 8.6. Assume that L = −�+V , where V ∈ L1
loc(R

n) is a non-negative

function on R
n. Then the Riesz transform ∇L−1/2 is bounded from H1

L,at,M (Rn)

with M ≥ 1 (and, hence, from any of the equivalent spaces from Theorem 8.2) into
H1(Rn), i.e., there exists a constant C > 0 such that

‖∇L−1/2f‖H1(Rn) ≤ C‖f‖H1
L,at,M (Rn).(8.21)
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Proof. Recall that m is a molecule for H1(Rn) centered at x0 if{∫
Rn

|m(x)|2dx
}{∫

Rn

|m(x)|2|x− x0|2ndx
}
≤ 1(8.22)

and ∫
Rn

m(x) dx = 0.(8.23)

As is well-known (cf. Theorem C in [CW2]) if m is a molecule for H1(Rn) centered
at x0, then m ∈ H1(Rn) and ‖m‖H1(Rn) depends only on n.

Fix M > n (by Theorem 8.2, the choice of M ≥ 1 does not affect the nature
of the atomic space). In order to prove (8.21), it suffices to prove that for every
(1, 2,M)-atom a associated to a ball B of Rn, m = ∇L−1/2a is a molecule. Clearly
(8.23) holds. Since ∇L−1/2 is bounded on L2(Rn), we have

‖m‖L2(Rn) = ‖∇L−1/2a‖L2(Rn) ≤ C‖a‖L2(B) ≤ C|B|−1/2.(8.24)

We now estimate ‖|x − xB|nm‖L2(Rn). Since a is a (1, 2,M)-atom, there exists a

function b ∈ D(LM ) such that a = LM b, which satisfies conditions (ii) and (iii) in
Definition 2.1. We can write∥∥∥|x− xB|nm

∥∥∥
L2(Rn)

≤
∞∑
j=0

∥∥∥|x− xB|nm
∥∥∥
L2(Uj(B)

≤
∞∑
j=0

(2jrB)
n‖m‖L2(Uj(B)).

The formula

L−1/2a =
1√
π

∫ ∞

0

e−t2La dt,

allows us to write for j = 2, 3, . . . ,

‖m‖L2(Uj(B)) =
1√
π

∥∥∥∫ ∞

0

∇e−t2La dt
∥∥∥
L2(Uj(B))

≤ C

∫ rB

0

‖t∇e−t2La‖L2(Uj(B))
dt

t

+C

∫ ∞

rB

t−2M‖t∇(t2L)Me−t2Lb‖L2(Uj(B))
dt

t

= : I + II.

To estimate I, we use Lemma 8.5 to obtain

I ≤ C

∫ rB

0

exp
(
− 22jrB

ct2

)dt
t
‖a‖L2(B)(8.25)

≤ C

∫ rB

0

( t

2jr2B

)n+1 dt

t
|B|−1/2 ≤ C2−j(n+1)|B|−1/2.

Consider the term II. Again we use Lemma 8.5 and Lemma 2.3 of [HMa] (which
essentially says that the composition of two operators satisfying Davies-Gaffney
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estimates also satisfies Davies-Gaffney estimates) to write

II ≤
∫ ∞

rB

t−2M−1‖t∇e−
t2

2 L(t2L)Me−
t2

2 Lb‖L2(Uj(B))dt(8.26)

≤ C‖b‖L2(B)

∫ ∞

rB

t−2M−1 exp
(
− 22jr2B

ct2

)
dt

≤ Cr2MB |B|−1/2

∫ ∞

rB

t−2M−1
( t

2jrB

)n+1

dt

≤ C2−j(n+1)|B|−1/2,

where the last step makes use of the condition M > n. Combining estimates
(8.25)-(8.26) we have that ‖m‖L2(Uj(B)) ≤ C2−j(n+1)|B|−1/2. Therefore,∥∥∥|x− xB|nm

∥∥∥
L2(Rn)

≤ C

∞∑
j=0

(2jrB)
n2−j(n+1)|B|−1/2 ≤ C|B|1/2,

which, combined with (8.24), shows that ∇L−1/2a satisfies condition (8.22). Conse-
quently,∇L−1/2a is a molecule. The proof of Theorem 8.6 is therefore complete. �
Remarks. Let L = −Δ+ V be a Schrödinger operator, where 0 ≤ V ∈ L1

loc(R
n).

(i) The fact that the Riesz transforms ∇L−1/2 associated with L are of weak
type (1, 1) can be seen as in [CD1]. See also [Si2].

(ii) From Theorem 8.6, we have

H1
L,at,M (Rn) ⊆ H1

L,Riesz(R
n) :=

{
f ∈ L1(Rn) : ∇L−1/2f ∈ L1(Rn)

}
.

In general, it remains an open problem to determine whether the reverse inclusion
H1

L,Riesz(R
n) ⊆ H1

L,at,M (Rn) holds. However, under the stronger assumption of

(local) Ln/2+ε integrability of the potential, this question has been resolved in the
affirmative in [DZ1] and [DP].





CHAPTER 9

Further properties of Hardy spaces
associated to operators

9.1. The semigroup with the conservation property. Let (X, d, μ) be
as in (2.1), and let L be an operator satisfying (H1) and (H2). We claim that
e−tL maps L2 functions with compact supports into L1. Indeed, fix t > 0 and
φ ∈ L2(X) supported in a ball B. Let Uj(B) be the annuli defined in (2.6). Using
the hypothesis (H2), we have that for every j ≥ 0,

(9.1)

∫
Uj(B)

|e−tLφ(x)|dμ(x) ≤ V (Uj(B))1/2 exp
(
− dist(Uj(B), B)2

ct

)
‖φ‖L2(B),

so that summing in j gives the claim. Hence, the action of the semigroup on L∞(X)
can be defined in the L2

loc(X) sense via duality. In this section, we assume that for
all t > 0,

(H4) e−tL1 = 1, in L2
loc(X).

That is, for every φ ∈ L2(X) with compact support,∫
X

(
e−tL1

)
(x)φ(x)dμ(x) : =

∫
X

e−tLφ(x)dμ(x)

=

∫
X

φ(x)dμ(x)(9.2)

for all t > 0. We have the following:

Lemma 9.1. Suppose M ≥ 1. For an operator L satisfying (H1), (H2) and
(H4), then for every (1, 2,M)-atom a,∫

X

a(x)dμ(x) = 0.

Proof. It follows from the hypothesis (H1) that L is a non-negative self-
adjoint operator in L2(X). Let φ in L2(X) with compact support (so that, by our
previous observation, e−tLφ ∈ L1(X)). By L2 functional calculus, we may write
(I + L)−1φ =

∫∞
0

e−te−tLφdt. This and (9.2) yield∫
X

(I + L)−1φ(x)dμ(x) =

∫ ∞

0

e−t
[ ∫

X

e−tLφ(x)dμ(x)
]
dt

=

∫
X

φ(x)dμ(x),(9.3)

where our use of Fubini’s theorem in the first equality may be justified by the fact
that e−tLφ ∈ L1(X).

Suppose now that a is a (1, 2,M)-atom associated to a ball B. By definition,
there exists a function b ∈ D(LM ), such that a = LMb, which satisfies (ii) and (iii)

65
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in Definition 2.1. Set b1 = LM−1b, and thus a = Lb1. Note that b1 ∈ L2(X) is
supported in B. We apply (9.3) twice to obtain∫

X

a(x)dμ(x) =

∫
X

(I + L)−1Lb1(x)dμ(x)

=

∫
X

(I + L)−1(I + L)b1(x)dμ(x)−
∫
X

(I + L)−1b1(x)dμ(x)

=

∫
X

b1(x)dμ(x)−
∫
X

b1(x)dμ(x) = 0.

This proves Lemma 9.1. �
9.2. Hardy spaces Hp

L(X) for 1 ≤ p < ∞.
9.2.1. Definition. In previous sections, we have treated the Hardy spaceH1

L(X)
(cf. Definition 4.2) associated to a given operator L. The goal of this section is to
study the Hardy spaces Hp

L(X) associated to L for all 1 < p < ∞, by means of
quadratic operators and tent spaces. These spaces were previously introduced in
[ADM] and [AMR] under somewhat more specialized circumstances.

Given an operator L satisfying (H1)-(H2) and M̃ ≥ 1, consider the following
quadratic operators associated to L

(9.4) S
h,˜M

f(x) :=
(∫∫

Γ(x)

|(t2L)˜Me−t2Lf(y)|2 dμ(y)

V (x, t)

dt

t

)1/2
, x ∈ X

where f ∈ L2(X). Also, abbreviate Sh,1f = Shf .

For each M̃ ≥ 1 and 1 ≤ p < ∞, now define

D
˜M,p

:=
{
f ∈ H2(X) : S

h,˜M
f ∈ Lp(X)

}
, 1 ≤ p < ∞.(9.5)

Definition 9.2. Suppose M̃ ≥ 1. For 1 ≤ p < ∞, the Hardy space Hp

L,˜M
(X)

associated to L (assumed to satisfy (H1)-(H2)) is the completion of the space D
˜M,p

in the norm
‖f‖Hp

L,˜M
(X) := ‖S

h,˜M
f‖Lp(X).

For every M̃ ≥ 1, it follows from (3.14) for an appropriate choice of ψ that

H2
L,˜M

(X) = H2(X). Moreover, we have that H1
L,˜M

(X) = H1
L(X) for all M̃ ≥

1. Indeed, by definition, H1
L,1(X) = H1

L,Sh
(X) and a similar argument to that

in Propositions 4.4 and 4.13 shows that for each M̃ ≥ 1 and M > n0/4, the
spacesH1

L,˜M
(X) andH1

L,at,M (X) coincide. Under an assumption of Gaussian upper

bounds for the heat kernel of the operator L, it was proved in [ADM] that for every

M̃ ≥ 1, Hp

L,˜M
(X) = Lp(X) for all 1 < p < ∞. Note that, in the framework of the

present paper, we only assume the Davies-Gaffney estimates on the heat kernel of
L, and hence for 1 < p < ∞, p �= 2, Hp

L,˜M
(X) may or may not coincide with the

space Lp(X).
For every f ∈ Hp

L,˜M
(X), 1 < p < ∞, we now consider

Q
t,L,˜M

f(x, t) :=
(
t2L
)˜M

e−t2Lf(x), t > 0, x ∈ X.(9.6)

Then the operator Q
t,L,˜M

embeds the Hardy space Hp

L,˜M
(X) isometrically into

the tent space T p
2 (X) for 1 < p < ∞. Of importance shall also be another



9. FURTHER PROPERTIES OF HARDY SPACES ASSOCIATED TO OPERATORS 67

operator acting to the opposite direction. Let M ≥ 1. Consider the operator
πL,M : T 2

2 (X) → H2(X), given by

πL,M (F )(x) :=

∫ ∞

0

(t2L)Me−t2L
(
F (·, t)

)
(x)

dt

t
,(9.7)

where the improper integral converges in L2. Then the bound

(9.8) ‖πL,MF‖L2(X) ≤ CM‖F‖T 2
2 (X), M ≥ 1,

follows readily by duality and the L2 quadratic estimate (3.14). By L2-functional
calculus, for every f ∈ H2(X) there exists a constant c

M,˜M
such that we have the

“Calderón reproducing formula”

f(x) = c
M,˜M

πL,M

(
Q

t,L,˜M
f
)
(x), M, M̃ ≥ 1,(9.9)

in L2(X).
Let T p

2,c(X) be the set of all f ∈ T p
2 (X) with compact support in X × (0,∞).

It follows from (4.11) that πL,M is well defined, and πL,MF ∈ H2(X) for all F ∈
T p
2,c(X).

Proposition 9.3. Assume the operator L satisfies (H1)-(H2). Let M ≥ 1.
The operator πL,M , initially defined on T p

2,c, extends to a bounded linear operator
from

(a) T 1
2 (X) into H1

L(X), if M > n0/4;

(b) T p
2 (X) into Hp

L,˜M
(X) if 1 < p < 2, M̃ ≥ 1, and M > n0/4;

(c) T p
2 (X) into Hp

L,˜M
(X) if 2 < p < ∞, M̃ > n0/4, and M ≥ 1.

Proof. Let us first prove (a). For F ∈ T 1
2,c(X), we have that, for some δ > 0

depending on the support of F ,

πL,M (F )(x) :=

∫ 1/δ

δ

(t2L)Me−t2L
(
F (·, t)

)
(x)

dt

t

=
∑

λi

∫ 1/δ

δ

(t2L)Me−t2L
(
Ai(·, t)

)
(x)

dt

t
,

where we have used Proposition 4.10 to write F =
∑

λiAi, where the Ai are T
1
2 (X)

atoms, with
∑

|λi| ≈ ‖F‖T 1
2
, and where we have used compactness of the interval

of integration in (0,∞) to justify the interchange of the order of the sum and the
integral. It is therefore enough to show that for every T 1

2 (X)-atom A associated

to B̂ and satisfying
∫
X×(0,∞)

|A(x, t)|2dμ(x)dt/t ≤ V (B)−1, we have that, up to a

fixed multiplicative constant, πL,M (F ) is a (1, 2,M, 1)-molecule associated to the
ball B. To this end, we may write

πL,M (A) = LM b,

where

b =

∫ ∞

0

t2Me−t2L
(
A(·, t)

)dt
t
.
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Let {Uj(B)}j≥0 be the annuli defined in (2.6). Consider some g ∈ L2(Uj(B)) such
that ‖g‖L2(Uj(B)) = 1. Then for every k = 0, 1, . . . ,M there holds

(9.10)
∣∣∣ ∫

X

(r2BL)
kb(x)g(x)dμ(x)

∣∣∣ ≤∣∣∣ ∫
X×(0,∞)

t2M+2kLke−t2L
(
A(·, t)

)
(x)g(x)

dμ(x)dt

t

∣∣∣
≤
∣∣∣ ∫

̂B

A(x, t)t2M+2kLke−t2Lg(x)
dμ(x)dt

t

∣∣∣
≤ r2MB ‖A‖T 2

2 (X)

(∫
̂B

∣∣(t2L)ke−t2Lg(x)
∣∣2 dμ(x)dt

t

)1/2
≤ Cr2MB V (B)−1/2‖g‖L2(Uj(B)).

Note that the third inequality is obtained by using the fact that A is a T 1
2 -atom

supported in B̂, hence, 0 < t < rB , and that the last inequality follows from (3.14).
This gives for every j = 0, 1, 2,

‖(r2BL)kb‖L2(Uj(B)) ≤ Cr2MB V (B)−1/2.

Fix j ≥ 3, with the goal of estimating the L2-norm of (r2BL)
kb on Uj(B). Arguing

as in (9.10) and invoking condition (H2) gives∣∣∣ ∫
X

(r2BL)
kb(x)g(x)dμ(x)

∣∣∣
≤ r2MB ‖A‖T 2

2 (X)

(∫
̂B

∣∣(t2L)ke−t2Lg(x)
∣∣2 dμ(x)dt

t

)1/2
≤ Cr2MB V (B)−1/2

(∫ rB

0

∥∥(t2L)ke−t2Lg
∥∥2
L2(B)

dt

t

)1/2
≤ Cr2MB V (B)−1/2

(∫ rB

0

e−
dist(Uj (B),B)2

ct2 ‖g‖2L2(Uj(B))

dt

t

)1/2
≤ Cr2MB V (B)−1/2

(∫ rB

0

( t

2jrB

)2(n0+1) dt

t

)1/2
≤ Cr2MB V (B)−1/22−j(n0+1)

≤ C2−jr2MB V (2jB)−1/2.

Hence, πL,M (F ) is a constant multiple of a (1, 2,M, 1)-molecule associated to the
ball B. This proves (a).

We note that (a) (resp. (b) and (c)) is equivalent to the statement that the
mapping Q

t,L,˜M
◦ πL,M is bounded on T 1

2 (X) (resp. T p
2 (X)). Of course, a similar

statement applies to T 2
2 (X), given (9.8) and (3.14). The case 1 < p < 2 (i.e., con-

clusion (b)) now follows by the interpolation result for tent spaces (Proposition 4.8).
The statement in (c) is a consequence of the tent space duality (Proposition 4.7),
along with the observation that, viewed as a bounded mapping on T p

2 , the adjoint
of Q

t,L,˜M
◦πL,M is Qt,L,M ◦π

L,˜M
, as the reader may readily verify. This completes

the proof of Proposition 9.3. �
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As a consequence of the previous Proposition, we have the following duality
result.

Proposition 9.4. Suppose that 1 < p < ∞, and that M̃(p) ≥ 1, 1 < p ≤ 2,

and M̃(p) ≥ n0/4, 2 < p < ∞. Then the dual of Hp

L,˜M(p)
(X) is Hp′

L,˜M(p′)
(X), with

1/p + 1/p′ = 1. More precisely, the pairing 〈f, g〉 �→
∫
X
f(x)g(x)dμ(x), realizes

Hp′

L,˜M(p′)
(X) as equivalent to the dual of Hp

L,˜M(p)
(X).

Sketch of Proof. We follow [CMS]. To show that Hp′

L,˜M(p′)
⊆ (Hp

L,˜M(p)
)∗,

we take g in the dense class Hp′

L,˜M(p′)
∩ H2, and f ∈ Hp

L,˜M(p)
∩ H2, and use the

Calderón reproducing formula (9.9), then Cauchy-Schwarz’s inequality in t and

Hölder’s inequality in x to bound |〈f, g〉| by the product of the Lp and Lp′
norms

of the square functions of f and g. We omit the routine details.

Consider now the other direction, i.e. (Hp

L,˜M(p)
)∗ ⊆ Hp′

L,˜M(p′)
. Suppose that

Λ ∈ (Hp

L,˜M(p)
)∗. We identify Hp

L,˜M(p)
with a subspace of T p

2 (X) via the mapping

f → (t2L)
˜M(p)e−t2Lf . Then by the Hahn-Banach Theorem, we may extend Λ to

Λ̃ ∈ (T p
2 (X))∗ = T p′

2 (X) so that

Λ̃
(
(t2L)

˜M(p)e−t2Lf
)
= Λ(f).

Thus, there exists G ∈ T p′

2 such that for F ∈ T p
2 ,

Λ̃(F ) =

∫ ∞

0

∫
X

G(x, t)F (x, t)dμ(x)
dt

t
.

In particular, for F (x, t) := (t2L)
˜M(p)e−t2Lf, we have

Λ(f) =

∫ ∞

0

∫
X

G(x, t) (t2L)
˜M(p)e−t2Lf dμ(x)

dt

t

=

∫
X

π
L,˜M(p)

(G)(x)f(x)dμ(x) =

∫
X

g(x)f(x)dμ(x).

But g ∈ Hp′

L,˜M(p′)
, as desired, by Proposition 9.3. �

Turning to the theory of complex interpolation of Hardy spaces, recall that
[·, ·]θ stands for the complex interpolation bracket.

Proposition 9.5. Let L be an operator satisfying (H1)-(H2). Suppose M̃ ≥ 1,
1 ≤ p0 < p1 < ∞, 0 < θ < 1, and 1/p = (1− θ)/p0 + θ/p1. Then

[Hp0

L,˜M
(X), Hp1

L,˜M
(X)]θ = Hp

L,˜M
(X)

(provided in addition that M̃ > n0/4 if p1 > 2).

Proof. This follows from the following general principle (see Theorem I.2.4,
[Tr]): Let X0, X1 and Y0, Y1 be two interpolation couples such that there exist
operators S ∈ L(Yi, Xi) and Q ∈ L(Xi, Yi) with SQx = x for all x ∈ Xi and
i = 0, 1. Then [X0, X1]θ = S[Y0, Y1]θ. Here we take S = c

M,˜M
πL,M , M > n0/4

and Q = Q
t,L,˜M

, in combination with (9.9) and Proposition 9.3. �
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Remark: Since for every M̃ ≥ 1, we have that H1
L,˜M

(X) = H1
L,1(X) and H2

L,˜M
(X)

= H2(X), it follows from Proposition 9.5 that for every M̃ ≥ 1, Hp

L,˜M
(X) =

Hp
L,1(X) for all 1 ≤ p ≤ 2, and, by Proposition 9.4, that Hp

L,˜M
(X) = Hp

L,M0
(X) for

all 2 < p < ∞ and M0 = [n0

4 ] + 1. We are now able to give the following definition
of the Hp

L(X) for all 1 ≤ p < ∞ (see also Section 5, [AMR]).

Definition 9.6. Let L be an operator satisfying (H1)-(H2).
(i) For each 1 ≤ p ≤ 2, the Hardy space Hp

L(X) associated with L is the
completion of the space D1,p in the norm

‖f‖Hp
L(X) := ‖Shf‖Lp(X).

(ii) For each 2 < p < ∞, the Hardy space Hp
L(X) associated with L is the

completion of the space DM0,p in the norm

‖f‖Hp
L(X) := ‖Sh,M0

f‖Lp(X), M0 =
[n0

4

]
+ 1.

Remark: Recall that H2
L(X) = H2(X) ⊂ L2(X). On the other hand, it remains an

open problem, in this general context, to determine whether Hp
L(X) ⊆ Lp(X) for

1 ≤ p < 2. Of course, H2
L(X) embeds continuously into L2(X), and moreover, we

know that H2
L(X) ∩H1

L(X) embeds continuously into L1. Indeed, by Theorem 4.1
and its proof (and the definition of H1

L,at,M (X)), we have

‖f‖L1(X) ≤ C‖f‖H1
L(X), f ∈ H2

L(X) ∩H1
L(X).

Thus, extending by continuity, we may deduce the existence of a continuous map
J : H1

L(X) → L1(X), which equals the identity on H2
L(X)∩H1

L(X), but in general
it remains an open problem to determine whether this map J is 1-1. At present,
one can at least say that this embedding is 1-1 in the special case of the Laplace-
Beltrami operator on a Riemannian manifold with a doubling measure [AMc], and
also in general under the stronger pointwise Gaussian heat kernel bound condition
(H3) (cf. (7.1)). We sketch now an argument to establish this fact in the latter case.
Interpolating the inclusion map will then yield more generally thatHp

L(X) ⊆ Lp(X)
for 1 ≤ p < 2, in the presence of a pointwise Gaussian heat kernel bound.

Let f ∈ H1
L(X). Then there is an atomic decomposition f =

∑
λiai con-

verging to f in H1
L(X), with

∑
|λi| ≈ ‖f‖H1

L(X). Moreover, the partial sums

fN :=
∑N

i=1 λiai belong to H2(X) ∩H1
L(X), and by Theorem 5.4 we have

‖fN‖L1(X) ≤ C‖fN‖H1
L(X).

Since fN → f in H1
L(X), we may make an extension by continuity to obtain

J f ∈ L1 such that ‖J f‖L1(X) ≤ ‖f‖H1
L(X), with fN → J f in L1(X). On the

other hand, the atomic sum clearly converges in L1(X), so that J f =
∑∞

i=1 λiai in
L1(X). But by a vector -valued version of the weak-type (1,1) estimates of Duong
[DM], the square function Sh is of weak-type (1,1) (here we are using the pointwise
heat kernel bounds), so that Sh(J f − fN ) → 0 in the weak-L1 space L1,∞(X). On
the other hand, Sh(fN − f) → 0 in L1(X), as this is equivalent to the fact that
fN → f in H1

L(X). Thus, if J f = 0 in L1(X), then f = 0 in H1
L(X), i.e., the

embedding map J is 1-1.
The obstacle to extending this argument to the general case in which pointwise

kernel bounds may be lacking is the absence of weak-type (1,1) estimates for the
square function.



9. FURTHER PROPERTIES OF HARDY SPACES ASSOCIATED TO OPERATORS 71

9.2.2. An interpolation theorem. Let L be an operator satisfying (H1)-(H2).
We shall now discuss a Marcinkiewicz-type interpolation theorem. Other interpola-
tion theorems for generalized Hardy spaces have been obtained in [BeZ] and [Be].
In order to state the next result, we first need to recall the concept of weak-type
operators. If T is defined on Hp

L(X), for some p ≥ 1, we say that it is of weak-type
(Hp

L, p) provided

μ{x ∈ X : |Tf(x)| > λ} ≤ Cλ−p‖f‖p
Hp

L(X)

for all f ∈ Hp
L(X). The best constant C will be referred to as being the weak-type

norm of T . We can now state the following

Theorem 9.7. Let L be an operator satisfying (H1)-(H2). Suppose 1 ≤ p1 ≤
p2 < ∞, p1 < p2, and let T be a sublinear operator from Hp1

L (X) + Hp2

L (X) into
measurable functions on X, which is of weak-type (Hp1

L , p1) and (Hp2

L , p2) with
weak-type norms C1 and C2, respectively. If p1 < p < p2, then T is bounded from
Hp

L(X) into Lp(X) and

(9.11) ‖Tf‖Lp(X) ≤ C‖f‖Hp
L(X),

where C depends only on C1, C2, p1, p2, and p.

Proof. Fix p ∈ (p1, p2). It is enough to establish (9.11) for f in the dense
class H2(X) ∩ Hp

L(X). By the remark preceding Definition 9.6, Sh,M0
f ∈ Lp(X)

so that

F (x, t) := (t2L)M0e−t2Lf ∈ T p
2 (X), where M0 =

[n0

4

]
+ 1.

Following the proof of Theorem 4′ of [CMS], for every λ > 0 we let Oλ = {x ∈ X :
A3F (x) > λ} (here, the superscript “3” refers to the aperture of the cone defining
the square function; see (4.10)), and write F = Fλ + Fλ, where

Fλ = χ
̂Oλ
F and Fλ = χX×(0,∞)\ ̂Oλ

F(9.12)

(recall the tent spaces defined in (4.9)). Observe that AFλ(x) ≤ AF (x) ≤ A3F (x)
for all x ∈ X and AFλ is supported only in Oλ, i.e., where A3F (x) > λ. We also
have AFλ(x) ≤ AF (x) ≤ A3F (x), x ∈ X, so that AFλ(x) ≤ λ for x ∈ (Oλ)

c. We
now claim that the same bound holds for AFλ in Oλ, hence that

(9.13) AFλ(x) ≤ λ, x ∈ X.

Indeed, a simple geometric argument shows that if x ∈ Oλ, and x̄ is a point in

(Oλ)
c of minimum distance from x, then Γ(x) ∩ (Ôλ)

c ⊂ Γ3(x̄). Thus AFλ(x) ≤
A3F (x̄) ≤ λ. Let πL,M be as in (4.16) and cM,M0

is the constant in (9.9). Fix
M > n0/4. For every λ > 0 define

fλ := cM,M0
πL,M (Fλ) and fλ := cM,M0

πL,M (Fλ).

It follows from (9.9) and the definition of F that f = fλ+fλ. Let us look separately
at the two terms of this decomposition.
(a) fλ ∈ Hp1

L (X). Indeed, it follows from the properties of AFλ and Lemma 4.6
that

‖AFλ‖p1

Lp1 (X) ≤ λp1−p‖A3F‖pLp(X) ≤ Cλp1−p‖AF‖pLp(X) ≤ Cλp1−p‖f‖p
Hp

L(X)

which gives Fλ ∈ T p1

2 (X). This, together with Proposition 9.3, implies that

‖fλ‖Hp1
L (X) ≤ Cλp1−p‖f‖p

Hp
L(X)

.
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(b) fλ ∈ Hp2

L (X). This is seen by first using (9.13) to deduce that

‖AFλ‖p2

Lp2 (X) ≤ λp2−p‖AF‖pLp(X) = Cλp2−p‖f‖p
Hp

L(X)
,

whence by Proposition 9.3 it follows that

‖fλ‖Hp1
L (X) ≤ Cλp2−p‖f‖p

Hp
L(X)

.

Since T is sublinear, we have that |Tf | ≤ |Tfλ|+ |Tfλ| for every λ > 0. Then
the weak-type hypothesis implies

(9.14) p−1‖Tf‖pLp(X) =

∫ ∞

0

λp−1μ
{
x ∈ X : Tf(x) > λ

}
dλ

≤
∫ ∞

0

λp−1μ
{
x ∈ X : Tfλ(x) > λ/2

}
dλ

+

∫ ∞

0

λp−1μ
{
x ∈ X : Tfλ(x) > λ/2

}
dλ

≤ C

∫ ∞

0

λp−1
(2C1

∥∥fλ
∥∥
H

p1
L (X)

λ

)p1

dλ

+ C

∫ ∞

0

λp−1
(2C2

∥∥fλ∥∥Hp2
L (X)

λ

)p2

dλ

≤ CCp1

1

∫ ∞

0

λp−1−p1
∥∥fλ
∥∥p1

H
p1
L (X)

dλ+ CCp2

2

∫ ∞

0

λp−1−p2
∥∥fλ∥∥p2

H
p2
L (X)

dλ.

To estimate the first integral in the last line of (9.14), we make use of Propo-
sition 9.3 and the fact that fλ = cM,M0

πL,M (Fλ) in order to majorize it by

(9.15)

∫ ∞

0

λp−1−p1
∥∥πL,M (Fλ)

∥∥p1

H
p1
L (X)

dλ ≤ C

∫ ∞

0

λp−1−p1‖Fλ‖p1

T
p1
2 (X)

dλ

= C

∫ ∞

0

λp−1−p1

{∫
{x:A3F (x)>λ}

∣∣AFλ(x)
∣∣p1 dμ(x)

}
dλ,

since AFλ is supported in Oλ = {x ∈ X : A3F (x) > λ}. Using the fact that
AFλ(x) ≤ A3F (x) and Fubini’s theorem, the last integral above is further bounded
by ∫

X

∣∣A3F (x)
∣∣p1
{∫ A3F (x)

0

λp−1−p1dλ
}
dμ(x)

≤ 1

p− p1
‖A3F‖pLp(X) ≤

C

p− p1
‖AF‖pLp(X) =

C

p− p1
‖f‖p

Hp
L(X)

,(9.16)

where the second inequality uses Lemma 4.6.
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In order to estimate the second integral in the last line of (9.14), we make use
of Proposition 9.3 and the fact that fλ = cM,M0

πL,M (Fλ) to write∫ ∞

0

λp−1−p2
∥∥fλ∥∥p2

H
p2
L (X)

dλ ≤ C

∫ ∞

0

λp−1−p2
∥∥πL,M (Fλ)

∥∥p2

H
p2
L (X)

dλ

≤ C

∫ ∞

0

λp−1−p2‖AFλ‖p2

Lp2 (X)dλ.

As observed before, we have that AFλ(x) ≤ λ for all x ∈ X. Also, trivially from
(9.12), AFλ(x) ≤ A3F (x) for x ∈ X. Using these observations, (9.16) and Fubini’s
theorem once again, we can dominate the last integral above by∫ ∞

0

λp−1−p1

{∫
{x:A3F (x)>λ}

|A3F (x)|p1dμ(x)
}
dλ

+

∫ ∞

0

λp−1−p2

{∫
{x:A3F (x)≤λ}

|A3F (x)|p2dμ(x)
}
dλ

≤ C

p− p1
‖f‖p

Hp
L(X)

+

∫
X

|A3F (x)|p2

{∫ ∞

A3F (x)

λp−1−p2dλ
}
dμ(x)

≤ C

p− p1
‖f‖p

Hp
L(X)

+
C

p2 − p
‖A3F‖pLp(X)

≤
( C

p− p1
+

C

p2 − p

)
‖f‖p

Hp
L(X)

.

Collecting all these estimates we obtain the desired inequality ‖Tf‖pLp(X) ≤
C‖f‖p

Hp
L(X)

, where the constant C depends only on C1, C2, p1, p2 and p. �

Remarks. Assume that L is an operator satisfying (H1) and (H2). As consequences
of Theorem 9.7, we have the following results of intrinsic importance.

(i) Based on the computations from § 4.5, one can see that the operatorNh from
(2.11) maps Lp(X) into Lp(X) for p > 2 and L2(X) into weak-L2(X). Furthermore,
by (4.26), it maps H1

L(X) into L1(X). Thus, by Theorem 9.7, Nh also maps Hp
L(X)

into Lp(X) for p ∈ (1, 2).
(ii) Given a function f ∈ L2(X), consider the following vertical version of the

square function associated with the heat semigroup generated by L:

ghf(x) :=
(∫ ∞

0

|t2Le−t2Lf(x)|2 dt
t

)1/2
, x ∈ X.(9.17)

It follows from (3.14) that the operator gh is bounded on L2(X). Arguing as in
Proposition 4.4 one can prove that the operator gh is bounded from H1

L(X) into
L1(X) and, hence, maps Hp

L(X) into Lp(X) whenever 1 ≤ p ≤ 2.
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