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Hardy spaces associated with different
homogeneities and boundedness of composition
operators

Yongsheng Han, Chincheng Lin, Guozhen Lu, Zhuoping Ruan*and Eric.T.Sawyer

Abstract. It is well known that standard Calderén-Zygmund singular
integral operators with the isotropic and non-isotropic homogeneities are
bounded on the classical H?(R™) and non-isotropic Hy (R™), respectively.
In this paper, we develop a new Hardy space theory and prove that the
composition of two Calderén-Zygmund singular integral operators with dif-
ferent homogeneities is bounded on this new Hardy space. It is interesting
that such a Hardy space has surprisingly a multiparameter structure asso-
ciated with the underlying mixed homogeneities arising from two singular
integral operators under consideration. The Calderén-Zygmund decompo-
sition and an interpolation theorem hold on such new Hardy spaces.

1. Introduction and statement of results

The purpose of this paper is to develop a new Hardy space theory and prove that
the composition of two Calderén-Zygmund singular integrals associated with dif-
ferent homogeneities, respectively, is bounded on these new Hardy spaces. Indeed,
the composition of operators was considered by Calderén and Zygmund when intro-
ducing the first generation of Calderén-Zygmund convolution operators. Calderén
and Zygmund discovered that to compose two convolution operators, T and 75, it
is enough to employ the product of the corresponding multipliers mq (€) and ms(§).
However, the symbol mgz(£) = m1(£)m2(€) does not necessarily have zero integral
on the unit sphere, so they considered the algebra of operators cI + 7', where c is
a constant, I is the identity operator and T is the operator introduced by them.
In 1965, Calderén considered again the problem of the symbolic calculus of the
second generation of Calderén-Zygmund singular integral operators with the mini-
mal regularity with respect to x on kernels L;(x,y) and Ly (z,y), corresponding to
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operators T and 7T5. This problem reduced to the study of the commutator which
was the first non-convolution operator raised in harmonic analysis.

In the present paper, we consider the composition of two operators associated
with different homogeneities. To be more precise, let e(§) be a function on R™
homogeneous of degree 0 in the isotropic sense and smooth away from the origin.
Similarly, suppose that h(€) is a function on R™ homogeneous of degree 0 in the
non-isotropic sense related to the heat equation, and also smooth away from the

v

origin. Then it is well-known that the Fourier multipliers 7} defined by T3 (f)(§) =

~ — ~

e(€) f(€) and Ty given by To(f)(§) = h(€) f(§) are both bounded on LP for 1 < p <
oo, and satisfy various other regularity properties such as being of weak-type (1,
1). It was well known that 7} and 75 are bounded on the classical isotropic and
non-isotropic Hardy spaces, respectively. Rivieré in [24] asked the question: Is the
composition T o T still of weak-type (1,1)? Phong and Stein in [22] answered this
question and gave a necessary and sufficient condition for which 73 o T5 is of weak-
type (1,1). The operators Phong and Stein studied are in fact compositions with
different kind of homogeneities which arise naturally in the 0-Neumann problem.
This motivates the present work in this paper.

In order to describe more precisely questions and results studied in this paper,
we begin with considering all functions and operators defined on R™. We write
R™ = R™! x R with z = (2/, z,,,) where 2/ € R™! and z,, € R. We consider
two kinds of homogeneities

§: (' om) = (82',02),0 >0

and
§: (2 2m) — (02,8%2,,),6 > 0.

The first are the classical isotropic dilations occurring in the classical Calderén-
Zygmund singular integrals, while the second are non-isotropic and related to the
heat equations (also Heisenberg groups).

For & = (2/,%,) € R™ ! x R we denote |z]. = (|2'|2 + |zm|?)? and |z|, =
(|2')2 + |Zm|)2. We also use notations j A k = min{j, k} and j V k = max{j, k}.
The singular integrals considered in this paper are defined by

Definition 1.1. A locally integrable function K1 onR™/{0} is said to be a Calderdn-
Zygmund kernel associated with the isotropic homogeneity if

aOé
k(o)

(1.1) ~

< Alz|;mlel for all |a| > 0,

(1.2) / Ki(z) de =0
ri<|zle<rs

for all 0 < r; < re < 0.

We say that an operator Ty is a Calderdn-Zygmund singular integral operator
associated with the isotropic homogeneity if Th(f)(x) = p.v.(Ky * f)(z), where Ky
satisfies conditions in (1.1) and (1.2).
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Definition 1.2. Suppose Ko € L} _(R™\ {0}). Ks is said to be a Calderdn-

loc
Zygmund kernel associated with the non-isotropic homogeneity if

o or

(1.3) WW’CQ(“””’”M‘ < Blal;™ % poralt|a] 20, 820,

(1.4) / Ko(x) dr =0
ri<|z|p<ra

for all0 < ry <19 < 00.

We say that an operator Ty is a Calderon-Zygmund singular integral operator
associated with the non-isotropic homogeneity if To(f)(x) = p.v.(KCa * f)(x), where
Ko satisfies the conditions in (1.8) and (1.4).

It is well-known that any Calderén-Zygmund singular integral operator asso-
ciated with the isotropic homogeneity is bounded on LP(R™) for 1 < p < oo and
is also bounded on the classical Hardy space HP(R™) with 0 < p < 1. Here the
classical Hardy space HP(R™) is introduced by Fefferman and Stein in [FS]. This
space is associated with the isotropic homogeneity. To see this, let (1) € S (R™)
with

(15) supp §0) € {(€',6m) € R™ xR 3 < Jele <2},

and

(1L6) S (@I, 276, = 1 for all (€,6,) € R™1 x R/{(0,0)}.
JEZ

The Littlewood-Paley-Stein square function of f € S’(R™) then is defined by

1
1 2
o) = { > W r@P}
JEZ
where 1/)5»1)(33’, Tp) = 27D (292! 29 2,,). Note that the isotropic homogeneity is
involved in g(f). The classical Hardy space H?(R™) then can be characterized by

HP(R™) = {f € S'/P(R™) : g(f) € LP(R™)},

where &’ /P denotes the space of distributions modulo polynomials. If f € H?(R™),
the HP norm of f is defined by ||f||ze = [|g(f)||Le-

As we mentioned above, a Calderén-Zygmund singular integral operator as-
sociated with the non-isotropic homogeneity is bounded on LP;1 < p < oo. It
is not bounded on the classical Hardy space but bounded on the non-isotropic
Hardy space. The non-isotropic Hardy space can also be characterized by the
non-isotropic Littlewood-Paley-Stein square function. To be more precise, let
@ € S(R™) with

(1.7) supp 9@ C {(£, &) € R™ I xR : = < [¢], < 2},

1
2
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(1L8) S [0@ 27k, 27,2 = 1 for all (¢,&,) € ™ x R\ {(0,0)}.
kEZ

We then define g5, (f), the non-isotropic Littlewood-Paley-Stein square function
of f € §'(R™), by

(@ = { W« 1@k},

keZ

where z/J,(f) (2!, 2,,) = 2F(mFDgp(2ka7 22k, ). Note again that the non-isotropic
homogeneity is involved in g (f). The non-isotropic Hardy space H} (R™) then
can be characterized by

Hy(R™) ={f € S'/P(R™) : gn(f) € L"(R™)}

and if f € HP(R™), the Hy norm of f is defined by || f||zr = [Ign(f)l|rs-

If 71 and T, are Calderéon-Zygmund singular integrals with isotropic and non-
isotropic homogeneities, respectively, then the composition 73075 is always bounded
on LP,;1 < p < oo, however, in general, bounded neither on the classical Hardy
space HP?(R™) nor on the non-isotropic Hardy space Hj (R™). Our goal of this
paper is to develop a new Hardy space theory associated with different homo-
geneities such that the composition T} o T, is bounded on this new Hardy space. A
new idea to achieve this is to establish the Littlewood-Paley-Stein theory associ-
ated with different homogeneities. More precisely, suppose that (1) and ¢ are
functions satisfying conditions in (1.5) - (1.6) and (1.7) - (1.8), respectively. Let

Yie(z) = 1/;](.1) * z/Jl(f) (2). Define a new Littlewood-Paley-Stein square function by

Geon 1)) = { 3 Wy r @)}

J,kEZ

We remark that a significant feature is that the multiparameter structure is in-
volved in the above Littlewood-Paley-Stein square function. As in the classical
case, it is not difficult to check that for 1 < p < oo,

(1.9) |Geom (F)llLe = (| fllLe-

The estimates above suggest us to define the HP norm of f in terms of the
L? norm of Geom(f) when 0 < p < 1. However, this continuous version of the
Littlewood-Paley-Stein square function Geom (f) is convenient to deal with the case
for 1 < p < oo but not for the case when 0 < p < 1. See further remark about
this below. The crucial idea is to replace the continuous version G, (f) by the
discrete version gi( f) as follows.

To define the discrete version g$< f), the key tool is discrete Calderén’s iden-
tity. To be more precise, we first recall classical continuous Calderén’s identity
on L?(R™). Let () be a function satisfying the conditions of (1.5) and (1.6). By
taking the Fourier transform, we have the following classical continuous Calderén’s
identity:

Fa) =3 ol « fa),

JEL
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where the series converges in L*(R™) and in Sy(R™) := {f € S(R™) : [z f(x)2dx =
0 for any|a| > 0}.

Note that the Fourier transforms of both 1/};,1) and wj(.l) x  are compactly sup-
ported. Using a similar idea as in the Shannon sampling theorem, one can decom-

pose )« ¢« f(x) by
S @ — 270 « £)2770),
Lezm

Then classical discrete Calderén’s identity is given by

(1.10) F@) =303 @ 2770w « HE ),

JET tez™

where the series converges in L2(R™), So(R™) and Sj(R™). See [9] and [10] for
more details.

Now by considering 1;, = %(}) * 1/1,22) and taking the Fourier transform, we
obtain the following continuous Calderén’s identity:

(1.11) F@) =" ik xtbjxx f(2),

J,kEZ

where the series converges in L2(R™), So(R™) and S)(R™). Furthermore, we will
prove the following discrete Calderén’s identity.

Theorem 1.3. Suppose that v and 3 are functions satzsfymg conditions in
(1.5) - (1.6) and (1.7) - (1.8), respectively. Let ¥, (x) = 7,[1(-1) *d’k (z). Then

x :Em Z Z 9—(m=1)(GAk) 9—(jA2k) (%’k " f)(Q—(j/\k)E/’2—(j/\2lc)£m)
jkeZ (Z fm)EZm 1x7Z

Xt (a! — 270N g 2= UKy (1.12),
where the series converges in L2(R™), So(R™) and S{(R™).

This discrete Calderdén’s identity leads to the following discrete Littlewood-
Paley-Stein square function.

Definition 1.4. For f € S§)(R™), fo) (f), the discrete Littlewood-Paley-Stein square
function of f, is defined by

GiNE ) ={ X D e f) @TUWE 27 0rbg, )2

GKEL (0 £,)EL™—1 X,
1
2
XXI(I’)XJ(Im)} ,

where I are dyadic cubes in R™~ Y and J are dyadic intervals in R with the side
length £(I) = 270N gnd £(J) = 2=U"2K) and the left lower corners of I and the
left end points of J are 2-U N and 2-0N2K)0 - respectively.
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Now we formally define the Hardy spaces associated with two different homo-
geneities by the following

Definition 1.5. Let 0 < p < 1. H?, (R™) = {f € S{(R™): G}(f) € LP(R™)}. If
[ € HE,,,(R™), the norm of f is defined by || f|| gz, &m) = Hgg(f)”LP(Rnt).

Note that, as mentioned above for the Littlewood-Paley-Stein square function,
the multiparameter structures are involved again in the discrete Calderon’s identity
and the Hardy spaces HE  (R™). To see that these Hardy spaces are well defined,
we need to show that H? (R™) is independent of the choice of the functions )
and (). This will directly follow from the following theorem
Theorem 1.6. If ¢ satisfies the same conditions as ¥, then for 0 < p <1 and
feSR™),

Hgi(f)HLP(]Rm) ~ ||g$(f)||LP(Rm).

We would like to point out that one can define the Hardy space HE  (R™) in
terms of Geom (f), the Littlewood-Paley-Stein square function. Then one has to

show the following sup-inf principle for all 0 < p < oc:

1

I{ X swp Rgex fo)Pu@xstem) | e

JkEZT JuEI,vE

1

> nf gk fluo)Pa@)xs @) )l

uel,veJ
j,ke€Z,1,J

Q

where I are dyadic cubes in R™~! and .J are dyadic intervals in R with the side
length ((I) = 27U and £(J) = 270" ;i (z) = o) % o2 (2), djul(z) =
¢§1) * qﬁ;f)(z) and P, ¢ and 3, ¢2) are functions satisfying conditions in
(1.5) - (1.6) and (1.7) - (1.8), respectively. This will actually imply the equivalence
of the L? norms of the two square functions G.om (f) and g;j (f) and allow us to use
the discrete Littlewood-Paley-Stein square function to define the Hardy space. In
the case of the multiparameter structure associated with the flag singular integrals,
it was done in [15] (see Theorem 1.9 there). However, such a proof in our case is
more complicated than using the discrete Littlewood-Paley-Stein square function
directly as we are doing here. This is why, instead of using Geom (f), we decide to
choose Qg( f) to define the Hardy space HE  (R™). Indeed, by applying a similar

com
argument as in [9], one can also show that for all 0 < p < oo,

chmn(f)”P ~ ||g1(/i)(f)||11
We omit the details of the proof and refer reader to [9] for further details.

We now state the main results of this paper.

Theorem 1.7. Let Ty and Ty be Calderén-Zygmund singular integral operators
with the isotropic and non-isotropic homogeneity, respectively. Then for0 < p <1,

the composition operator T =Ty o Ty is bounded on H?,  (R™).
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It is well known that the atomic decomposition of the classical Hardy spaces is
the main tool to study the HP — LP boundedness for classical Calderén-Zygmund
operators. See [4], [6], [12] and [13]. However, to get an atomic decomposition
for the Hardy space H?  (R™) with miltiparameter structures, as in the classical
case, one needs first to establish Journé’s covering lemma in this setting. See [1],
[2], [3], [19], [7], [8] and [21] for more details. Our approach is quite different from

this scheme. Indeed, we will prove the following theorem

Theorem 1.8. Let0 < p < 1. If f € L>(R™)NH?

P o(R™), then there is a constant
C = C(p) such that

I fllze@my < Cllfllaz,,. @m)

where the constant C' is independent of f.

We remark that the proof of the above theorem does not use atomic decompo-
sition and hence Journé’s covering lemma is not required. As a consequence, we
obtain

Theorem 1.9. Let 0 < p < 1. Suppose that T is a composition of Ty and Ty as
given in Theorem 1.7. Then T extends to a bounded operator from HE (R™) to
LP(R™).

Next we provide the Calderén-Zygmund decomposition and prove an interpo-
lation theorem on H? (R™). We note that H? (R™) = LP(R™) for 1 < p < oo.
Theorem 1.10. (Calderdn-Zygmund decomposition for HE ) Let 0 < pa <
1,p2 < p <p1 <oo andlet o« > 0 be given and f € H?

om- Then we may write
f=g+0bwhere g € HE, and b € HEZ, such that [|g|/%p, < CaP 7P| f[[}, —and

Hm

|\b||ifj[2%,m < CaP27P|f|} , where C is an absolute constant.

Theorem 1.11. (Interpolation theorem on HF ) Let 0 < py < p; < oo and T be
a linear operator which is bounded from HEP2  to LP?> and bounded from HP}. to

LPv ) then T is bounded from HEY = to LP for all po < p < p1. Similarly, if T is
bounded on H?2 —and HE) . then T is bounded on HE = for all po < p < p;.

Before we end this section, several remarks must be in order. First, as men-
tioned before, the continuous version of the Littlewood-Paley-Stein square function
Geom(f) is convenient to deal with the case for 1 < p < oo but not for the case
when 0 < p < 1. However, we can still use this continuous version Geom(f) to
define the Hardy spaces H?  (R™) for 0 < p < 1. More precisely, suppose that
P € Sy satisfies

Lt

/I@(tf',tﬁm)l — = Lforall (¢',&,) € R™1 < R/{(0,0)}
0

and () € S, satisfies



8 Y.HAN, C.LIN, G.LU, Z.RUAN AND E.SAWYER

/ O (58, 526,) P2 = 1 for all (,6) € R x R/{(0,0)}.
0

S

/

Set ¢y s = gl) * ng), where z/;ﬁ”(qum) = t~myp(D(L Zm) and ¢§2>(x',xm) =
s_m_l@b(z)(%, Zg). Then one can argue that the HZ,  (R™) norm of f defined in
Definition 1.5 is equivalent to

I dt ds . s
1] [ s 1) P SV
0 0

The same ideas in this paper can be carried out to the proof of the above equivalent
norms of such defined two Hardy spaces.

Secondly, in this paper, we restrict our attention to the above two very specific
dilations. However, all results in this paper can be carried out to the composition
with more singular integral operators associated with more general non-isotropic
homogeneities. To see this, let T;(f)(z) = p.v.K; * f(z),1 < i < n, be singular
integral operators associated with non-isotropic dilations given by

i

0 (@1, 0, T) — (5;\"'11’1,52» 2o, 5?i’m:cm)
for 6; > 0,X¢>0,1<i<nand1<{¢<m.
For x € R™ we denote |x|; = \/|a:1 ey + |22 Py + - Ham Som . Let IONS
S(R™) with
supp 500 € {(E1,63,6m) € R™ 5 5 < [€ls < 2},
and

Z ‘77[}(1‘)(2*]2)\1',1517 2*]'1')\1',262, - 27ji/\i,m§m)|2 =1 for all (&,&,-,&n) € R™/{0}.
Ji€EL

1 2 n
Set Vjy g, g (T) = wj('l) * ¢§2) *ox wj(-n)(l‘), where
wj(j) (.13) — 2j1(>\i,1+>\i,2+“+)\1,m),l/)(i) (2]’1‘)\7:‘11:17 2]’1‘)\7:‘21‘27 . 2jiAi,m,xm).
Define a Littlewood-Paley-Stein square function by
1
~ 3
Geom(N@ ={ D Wi * F@)}
J1,J2, " Jn €L

Applying the same line as in this paper, one can develop the Hardy space theory
associated with these more general non-isotropic dilations. The details of the proofs
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seem to be rather lengthy to be written out. Therefore, we shall not discuss these
in more details in this paper.

Thirdly, the regularity conditions on kernels can be weakened if one considers
only the H? (R™) boundedness for the certain range of p.

Finally, we would like to remark that the method of discrete Littlewood-Paley-
Stein analysis in the multiparameter settings used in this paper has been used in a
number of other cases earlier. This method allows us to avoid using the Journé cov-
ering lemma to prove the boundedness of multiparameter singular integrals from
the Hardy spaces. It first appeared in [15] where the theory of the multiparameter
Hardy spaces associated with the flag singular integrals was developed and in [16]
where the discrete Littlewood-Paley-Stein theory was established in the multipa-
rameter structure associated with the Zygmund dilation (see also the expository
article [17]). A recent development for the implicit multiparameter Hardy space
and the Marcinkiewicz multiplier theory on the Heisenberg group has been suc-
cessfully carried out in [18]. We also refer to [5], [20], [23], [14] for this discrete
Littlewood-Paley-Stein analysis in other settings such as weighted multiparame-
ter Hardy spaces in Euclidean spaces or multiparameter theory in homogeneous
spaces.

Section 1 deals with Theorem 1.3. The proof of Theorem 1.6 is given in section
3. The method of the proof will be applied to the proof of Theorem 1.8 and
Theorem 1.10. To show Theorem 1.7, we provide a discrete Calderén-type identity,
Theorem 4.1 which has its own interest. These will be given in Section 4. Theorem
1.8 and Theorem 1.9 are proved in Section 5. In the last section, we prove the
Calderén-Zygmund decomposition and interpolation theorems.

2. Proof of Theorem 1.3

As mentioned in the previous section, by taking the Fourier transform, we obtain
the following continuous Calderén’s identity:

(2.1) F@) =" ikt f(2),

J,kEZ

where the convergence of series in L2(R™), So(R™) and S)(R™) follows from the
results in the classical case. See [9] and [10] for more details.

To get a discrete version of Calderon’s identity, we need to decompose ;1 *
ik * fin (2.1). Similar to a method as in [10], set g = 1, * f and h = 1); ;. The
Fourier transforms of g and h are given by

GE &m) = B (277E,2776,)0 ) (274, 272, i 6m)
and R o _ _ -
h(E &m) = D (277¢, 279, )@ (27F¢ 272 ).
Note that the Fourier transforms of g and h are both compactly supported. More
precisely,

supp g, supp h C {(€,&n) € R x R : |¢/] < 277 [€,| < 2972Fn).
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Thus, we first expand ¢ in a Fourier series on the rectangle R, = {¢' € R™71 &, €
R: €] < 200 €, | < 2072k )

G &n) = Z(@',ém)ezm—lxz 2~ (m=D)(GAK) 9=(IA2K) (97)—m
X fR; k /9\(77/7 nm)ei(27(j/\k)el'n/+27(j/\2k)émnm)dn/dnm

e~ 27U gl 420N g 6 )

and then replace R;; by R™ since g is supported in R; ;. Finally, we obtain

G 6m) = S0, yemmot g 2 DGR 9=GA2K) g(9=GNR) /9 =2k, )
x e—i(27UNI g 42m U e )

Multiplying iAz(f’ ,&m) from both sides yields

/g\(g/, Em)ﬁ(fl, gm) _ Z(z’vém)eszl oz 9—(m=1)(§Ak) 9—(jA2k) 9(270‘/\]@)6/’ 27(j/\2k)€m)
CR(E ) OO )

Note that /ﬁ(f/, fm) e_i(g*(j/\k)é/‘gl_i_Q*(]‘A2k>gn15m) _ ’ﬁ( _ 2_(j/\k)€/7 L 2—(]‘/\21@)&7%)(5/7 fm)
Therefore, applying the identity g x h = (g E)V implies that

(g « h)(.%'/,l‘m) _ Z 2—(m—1)(j/\k:) 2—(j/\2k)g(2—(j/\k)€/’2—(j/\2k)£m)
(0 0o)EZ™—1 X T
xh(z' — 270N g, — 27 ARG ) (2.2)

Substituting g by v, * f and h by v, into Calderén’s identity in (2.1) gives
the discrete Calderén’s identity in (1.12) and the convergence of the series in the
L2(R™).

It remains to prove that the series in (1.12) converges in Sp(R™). To do this,
it suffices to show that

Z Z 9—(m=1)(§Ak) 9—(jA2k) (W * )2k g 9=(in2k)p

|7|>Nior|k|>Na (£ ) EZ™—1XZ
xab; gz — 27O g — 272Ky (2.3)

tend to zero in Sp(R™) as N1 and N» tend to infinity.

For the sake of convenience, we denote z; = 2-UMN)¢ and z; = 2-0UA2k)g
Let I be dyadic cubes in R™~! and J be dyadic intervals in R with side-length
¢(I) = 270N and £(J) = 270U"2k) "and the left lower corners of I and the left end
points of J are x; and x ;, respectively. Then the above limit will follow from the
following estimates: for any fixed j, k and any given integer M > 0,|a| > 0, there
exists a constant C' = C(M, «) > 0 which is independent of j and & such that

‘Z (I I] (e F)(@r, 2a) (D) (@ — 2p,@m —2p)| < C270127 (L 4 |2] 4 [ar[) M.

IxJ

(2.4)
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To show (2.4), we apply the classical almost orthogonality argument. To be more
precise, for any given positive integers L; and Lo, there exists a constant C' =
C (L1, L) > 0 such that

9—1i—i'|L1 9(ini"ym

(1) L),
(2.5) ;7 * (@ om)| < 0(1 + 2072/ | 4 2673 |z, | ) L2
and
2—|k—k’\L1 2(kAk/)(m+1)
(2.6) [« i (& )| < C

(1 + 2(1@/\k’)|x/| + 22(k/\k’)|xm|)L2 :

Applying (2.6) with 9{® = f, Ly = L+2M +m+1 and Ly = M, where L and M
are any fixed positive integers, we obtain

(W« 1)@ o) < € 27 M2

ML 1
< C 2 e R e

9= (kA0)(m+1)
(1+2RAD) 3/ [+2@RA0) 5, )M

where the last inequality is obvious if £ > 0, and when k£ < 0,

9—k(m+1) < olHIM+mt1) 1
(14 2F|2'| + 22F|2,,, )M — (14 |2/| + |zm|)M”

Note that w,(f) x f € Sp(R™). Similarly, we have that

1
(1 [u/] + um )M

@7) 1@ s @2 5 ) )| < C 27 HEgbIE

From the size conditions of the functions (1) and 1(?), we have that for any fixed
large M,
a a 1 2
D um)l = (D5 ) (0 )|
< colillal2iklel / ey 2ty
- (L+ 29w = 0| + 2 um — vy )M (L4 28 |v/| + 22K vy, [)
9(iAk)(m—1)9(jA2k)
(1 + 2R [/ + 272k, )M
1

7 dv'dv,,

< (Colillal+2lk]lal

< 2lil(M+m+|al)g|k|(2M+2+2|al) ) 2.8
< T wlr ™ Y
Estimates in (2.7) and (2.8) yield
|1 ) (D450 = 1,5 — ) Par )
IxJ
< O~ IH(L=2M=3lal~2) 9 3|(L—M~m~a)
1
X I||J
2 MV G e e 0 Gt 7 — ol & e 20
_ 09 IE(L-2M~2]a|~2)g|j|(L~M-m~—|al)
dy'dym,
X . 2.9
Z/ NP L G e ey e S e

IxJ
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Note that if y' € I and y,,, € J, then £(I) + |2’ — x| ~ £(I) + 2" — /|, €(I) + |z | ~
UI) + |y, €(T) + |wm — 2] ~ (J) + [2m — yml|, and £(J) + [25] ~ £(T) + |ym]-
The simple calculation gives

1 2|j‘2M2‘k|3M

<
(L2 =zl + |wm —2g )M 7 () + () + |2 — 2] + |2m — 25
9lil4M g|k|6 M

< .
T+ =Y+ = ym)M

Similarly,
1 2\j\4M2|k|6M

(A || + e DM ™ (L4 [y + lym )M
This implies that the last term in (2.9) is dominated by

. 1
CQ*Ikl(L*20M*2IQ‘*2)27‘]'(L720M77ﬂ7‘0¢|) )
(1 [2'] + zm[)M

Choosing L = 20M + 2|«| + m + 3, we derive the estimates in (2.4) and hence the
series in (2.3) converges to zero as N7 and Nj tend to infinity. Therefore, the series
in (1.12) converges in Sp(R™). By the duality argument, we obtain the series in
(1.12) converges in S)(R™). The proof of Theorem 1.3 is concluded.

3. Proof of Theorem 1.6

In this section, we first derive almost orthogonality estimates in Lemma 3.1 and
discrete version of maximal estimate in Lemma 3.2. Lemmas 3.1 and 3.2 together
with Theorem 1.3 yield Theorem 1.6.

Lemma 3.1. (Almost orthogonality estimates)

Suppose that ;1 and ;1 satisfy the same conditions in (1.5)-(1.8). Then
for any given integers L and M, there exists a constant C = C(L,M) > 0 such
that

o, , 2(jAj’AkAk’)(m—1)
WjJC * Q5 k! (Ilvxmﬂ < C27 7 L= k=kIL

(1+ QINJ' NENE! |x/|)(M+m—1)
2j/\j’/\2(k/\k’)

x (1 + 207 N2RAK [, [Y(MHT)

Proof: We first write

(W04 1) (@, ) = / W+ @~ =) (O 50V (Y Y )y i
Rm—1xR

By the almost orthogonal estimates as in (2.4) and (2.5), we have

9GNS Im o—li—i'|L

(1), 0 1y
BL) ey (s um)l < C G =D (1 5 2077 a, D
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and

Q(k/\k:')(erl) 27|k7k'\L

<C

(2) (2) 1
(3:2) i * o (V' ym)| < (1 3 20/ [y [ Fm=D) (1 1 220AF) [y Y OTHD)

The estimates in (3.1) and (3.2) imply that

(3.3) (s * pjrae) (@ )| < C2707 1 97 =W 4B,
where
4 2(ing") 92(kAK') .
B /]R (14 207 [y ) (14 2288 [, — gy, YD
2(j/\j’/\k/\k’)(m—1)
< (1 + 207 NRAK |/ ) (M+m—1)
and
9(iAs") (m=1) 9(kAK")(m—1)
B = /Rmf1 (1 + 2GA [y [Y(MFm=1) (1 4 20AR) [/ — 7] )(M+m— Y
93NG' N2(kAK')
< (1 + 2j/\j’A2(k/\k/)|xm|)(M+1) :
This implies the conclusion of Lemma 3.1. a

Now we prove the following estimate of the discrete version of the maximal
function.

Lemma 3.2. Let I,I' be dyadic cubes in R™~1 and J,J' be dyadic intervals in
R with the side lengths ((I) = 2-UMN) (') = 2-G'N) and 0(J) = 2-@A2k)
(J) =2"0 "N2K) and the left lower corners ofI I’ and the left end points of J, J'
are 27 JN“ 0 2= AR gt 2*(jA2k)€m and 2-G'NK) g respectively. Then for any
uw, v el, um7vm€J andany <0<,

D

(Z//lin)ezm—l N/

M+

2(m71)(j/\j’/\k/\k') 2jAj’A2k/\2k/ 27(m71)(j'/\k') 27(3"/\21@’)

(1 + 2ING' NN ‘ul _ 2—(j’/\k')g//|)(M+m—1)

|(pjr e % f) (270K 2= G120 g )
(1 + 23NJ’ /\2k/\2/c"um — 2—(3" N2k’ )glm|)(M+1)

5/2 1/6
< afm|( X e nE e @ gy ) b )

(€01, Y eLm—1 X7,

where Cy = C2m=DG =D A —jrk)+ 9(G=1('AZK' =iA2K)+  pere (a—b), = max{a—
b,0}, and My is the strong mazimal function.

Before proving Lemma 3.2, we would like to point out that this lemma is
the key tool to show Theorem 1.6 and 1.7. The discrete version plays a crucial
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role for this maximal function estimate. And this is why we choose the discrete
Littlewood-Paley-Stein square function and use it to define the Hardy space.

Proof of Lemma 3.2: For the sake of convenience, we denote by z; =
2= g = 27 ARD 07 the left lower corners of I, I’ and by z; = 2= 02K g 2 p =
2-W'"2K) g1 the left end of points of .J, J', respectively. Set

/
_(p. W —zr [ lum =z
Ao = {1 miamy <1 Bo={7': sgimniamy < 1)

and for r > 1 and s > 1,

|um _x:],‘ 28}

|ul_xl'| r /. os—1

_ !/ . or—1
AT—{I.2 <Wi

For any fixed r,s > 0, denote

E= {(w',wm) c Rm—l xR : |U}, _ ’LLI| < 27“—(]'/\]‘//\/9/\1@') + 2—(j/\k)’
|wm _ Um| < 2r7(jAj’A2k/\2k’) + 27(j/\2k)}'

Then A, x By C E and for any (v, v,,) € I x J, (v',vy,) € E. Obviously,

|E| < Cz(m—l)[r—(]‘/\j’/\k/\k/)] 2[5—(jAj’/\2k/\2k’)]
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Thus for <6<,

m—1
M+m—1

2(m71)(j/\j’/\k/\k') 2j/\j’/\2k/\2k' 27(m71)(j'/\k') 27(j’/\2k’)

1 4 29N NRAK |t — 2= (G AK) pr1]) (M +m—1)
(1+ | )

D

(Z//,Zin)ezm—l X7

(s # Y@M, 27020, )|
1 4 29N A2kN2K g, 9—(J'N2K") pr |\ (M+1)
(1+ [tm, ml)

C Z 92— r(M+m—1) s(M+1)2(m71)(j/\j’/\kAk’) 2j/\j'/\2k/\2k' 27(m71)(j'/\k') 27(]"/\219’)

r,s>0

1/8
( > |<sojf,kf*f><wp,m|5>

I'xJ' €A, xBg
- O Z 2—T(M+m—1)2—3(M+1)Q(m—l)(j/\j’/\k/\k/) 2j/\j’/\2k/\2k/ |I/| |J/| ‘E|1/6

r,s>0

{ |E| ‘/EI/XJ’EA X By

C Z 2—7‘(M+m—1)2—s(1VI+1)Q(m—l)(j/\j'/\k:/\k') 2j/\j'/\2k:/\2k/ |I/‘1—% |J/|l—% |E‘1/6

7,520

1/6
AT lera D ) o)

I'xJ'€A, xBg

X

IN

1/6
11T (g f)(xl/va’)PXI’XJ’dx}

IA

IN
Q

1/6
Ms( > s *f)(l'l’ax.f’)PXI/XJ’)(U/7'Um)}
I’'xJ’
1/6

{
= (X orw e Do anPxrxs) 0|
o

M S e HETTOE 2R )00 |

(¢ )EZm =1 X7

m

Now we return to

Proof of Theorem 1.6: Let f € SO(Rm). We denote z; = 2-UARY o) =
2=(N2R) gy = 2= U'ARD P11 and 50 = 2 (A2 )¢’ . Discrete Calderén s identity
on S’/ P(Rm) and the almost orthogonality estimates yield that for ;<0<

M+
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pS 1 and any v’ €I7U7n € Ja

|(Yj % )@, 2.0)|
= 1> Z 2~ (M= NG AR Q= AR (4, s 0o o) (r — wr g — 200) (g0 e % F) (@, 200))|

37k (e
< CZ 9—1i—3'|Lo—Ik—k'|L Z (m—1)(JAJ'ARAK') 9iAG' N2kA2K o—(m—1)(j'AK') 9—(i'A2K')
> (1 + 2j/\j//\k/\k/|xl _ m[[')(M—i—m—l)
/ k/ EII ZI
" (@) o * f)@r, )|
(1 29AIA2RA [ — g, [)(M+1)
o / 5/2 1/6
< 0 obrsikgrlek LCl{Ms [( > gy f)(xf/,w>|2mw> ](v',vm}

i e,

where the last inequality follows from Lemma 3.2. Squaring both sides, then
multiplying x7,xs, summing over all j,k € Z and (¢,4,,) € Z™ ! x Z, and fi-
nally applying Holder’s inequality we obtain that for any 2’ € I,z,, € J, and
max{L+nti1,M+m p<o<p<l,

1G5 (F)(' )

< CZ{ZQ li—i'|Lg—|k—k'|Lo(m— 1)(1)(j,/\k/jAk)+2(é1)(j'/\2k’j/\2k)+}
/k/
X{ Z 9~ 1i=3"ILg=Ik=k'|Lo(m=1)(5=1) (5" AK'=jiAK)+ 9 (5 =1) (5 A2k —j A2Kk)+
j/,k/
— (' NK) g1 (3" A2K') 1 \|2 51, 2/6
A8 e e DI g e, ) )
(0,01, ) EZM =X
K’ k) $ 2/5
: C{Z{MS{( Z (e £)(27 007 27020 )| XI/XJ/) }(x',xm)} },

j’,k)’ (Z”,Z;n)eZ”‘*le
where in the last inequality we use the facts that (j' AE —jAk); <|j—j'|+k—
K'|, (5" AN2K' —j A2k); < |j—j'| + 2|k — k| and if choose L > (m+1)(3 — 1) then
ZQ li=3"1Lg=lk=K|Lo(m=1)(5 =1)(I'AK' —jAk) + 9 (5 —1) (' A2k —jA2K)+ <
/ k/
and
9131 1 g k—K L gm—U(F-1('AK ~iA)+ o (3= A ~iN2R)1 < ¢,
3k

Applying Fefferman-Stein’s vector-valued strong maximal inequality on LP/%(¢2/9)
yields
1G4 ()| (rmy < CIGE() | Lo (rm).-
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The conclusion of Theorem 1.6 follows. O
As a consequence of Theorem 1.6, L>(R™) N HZ,, (R™) is dense in HE,  (R™).
Indeed we have the following result
Corollary 3.3. So(R™) is dense in HE  (R™).
Proof: Let f € H?  (R™). For any fixed N > 0, denote
E={(j,k, 0 0y):|j]| <N, |k| <N, |l'| <N, |, <N},
and
fN($/7Im) — Z —(m—1)(jAk) 92— (3N2k) (w & *f)( j/\k‘)f/ 92— (]/\Qk:)g )

4,k Ll )EE
X’(/}] k(x/ _ 2_(j/\k)€/,$m _ 2—(j/\2k)zm)

where 1) ;. is the same as in Theorem 1.3.

Since ¢, € So(R™), we obviously have fy € So(R™). Repeating the proof of
Theorem 1.6, we can conclude that || fx| gz, &m) < Clflluz,, ®n). To see that
fn tends to f in H? . by the discrete Calderén’s identity in S{(R™) in Theorem
1.3,

(f — fn) (@ 2) = Z 9—(m=1)(jAk) 9—(jA2k) (V) * F)(2- R g g=(n2k) g
(Gokeol! ) EEE

Xtpy (' — 27N,y — 270N ),

where the series converges in Sj(R™).
Therefore,

1/2
Golf — f): = {Z S Woae (7 = fa) @000 20N s |

! k/ (Z/, é?n)
- { Z Z |97 ks * Z 9—(m=1)(GAk) 9—(iA2k)
37k (0 ) (k0 Lo ) EEE

X (% )70, 270N, )

1/2
X'l/)j’,lc’ " ’lpj,k(Z_(] Nk )E// _ 2—(j/\k})£/7 2—(] N2k )K;n _ 2_(]A2k)£m)‘2 XI’XJ’}
Repeating the proof of Theorem 1.6,

G (f=fn)llLr@my < C| Z (s x f (27 0AR ¢ 2= GA2RY gy 25 1y V2 | o gmy,

4,k 2 ) EE®

where the last term tends to 0 as IV tends to infinity. This implies that fy tends
to f in the H? _(R™) norm as N tend to infinity. O

com (
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4. Proof of Theorem 1.7

To show Theorem 1.7, we need a discrete Calderén-type identity on L2(R™) N

HP (R™), which has its own interests. To do this, let ¢(') € S(R™) with supp
¢tV € B(0,1),
(4.1) STleMETIP =1 forall £eR™\ {0},
JEL
and
(4.2) / ¢V (2)a%dr =0  for all |a| < 10M,

where M is a fixed large positive integer depending on p. We also let ¢(2 € S(R™)
with supp ¢ C B(0,1),

(4.3) S [e@@7F 27, )P =1 forall (€,6m) R xR\ {(0,0)},
kEZ

and

(4.4) ¢ (z)zPdz =0  for all |B] < 10M.
RW‘L

Set ;1 = ¢ x6(”, where ¢! (z) = 2761 (272) and 7 (2/, w) = 2D G (242!, 223, ).
The discrete Calderén-type identity is given by the following

Theorem 4.1 Let ¢ and ¢(? satisfy conditions from (4.1) to (4.4). Then for
any f € L>(R™) N HP  (R™), there exists h € L2(R™) N HE,(R™) such that for

com com

a sufficiently large N € N,

f@ am) = _;W ) )ZZ 1 Z|I| || djpla’ =27 UNI=NE g, — 27 GNK =N g, )
j’ e /’ m 6 m— X

X (). * h) (2~ GAR) =Ny 9=(iA2K)=Ny . (4.5)

where the series converges in L2, I are dyadic cubes in R™~! and J are dyadic in-
tervals in R with side-length £(I) = 2~UMN)=N and ¢(.J) = 2= UAZF)=N “and the left
lower corners of I and the left end points of J are 2-U/NK) =Ny’ and 2-GA2k)-Ny
respectively. Moreover,

(4.6) 1 fllz2®my = || L2 @m),
and
(4.7) Il ez, @my = 1Pl g2, (-

We point out that the main difference between the discrete Calderén-type iden-
tity above and the discrete Calderén’s identity given in Theorem 1.3 is that for
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any fixed j,k € Z, ¢; x(2', ) in (4.5) have compact supports but ¢; x(z, z,,,) in
(1.17) don’t. Being of compact support allows to use the orthogonality argument
in the proof of Theorem 1.7.

Proof of Theorem 4.1: By taking the Fourier transform, we have that for any
feL*®R™),
F@ om) = @ik x djk * f(2',Tm).
3.k
Applying Coifman’s decomposition of the identity operator, we obtain
@ om) = Y > ] ¢jula — 270N g — 9= GAZR=N
k(0 0m)
X (g x f)(27UNITN 27 UNR=NG ) L Ry (f) (@, )
= INn(f)(@,2m) + Ry (f)( 2m),

where
'RN(f ' xm)
= (bjk - I Tm _ym)((bj,k*f)(yI?ym)
J,k (Z’ ) 71
7¢j & _ 9= (j/\k) Ngl 27(']/\2]6)7N£m)(¢] &k f)(27(j/\k)fN£l7 27(j/\2k)7N£m)}dy/dym
= ¢j k - /7 Tm — ym) - ¢j,k(x, - 27(]'/\]6)71\[6/7 LTm — 27(jA2k)7N£m)]
]k @, m) IxJ
X(@g. % L)Y ym)dy' dym
I Z Z bin(z' — 9=UAR)=Npg oo _ 27(j/\2k)7N£m)
Gk (€, 6m) IxJ
X[ * P ym) = S f(27 UMV 27 URZO=N G, ]dy dy,,
= Ry xn) + Ry (2 2n),
here I are dyadic cubes in R™~! and J are dyadic intervals in R with side-length
((I) = 2=UMNI=N and ¢(J) = 2-UN2R)=N and the left lower corners of I and the

left end points of J are 2= R=Ny/ and 2-0UA2K)=Ny - respectively. We claim
that for i =1, 2,

(4.8) RN (OllL2@my < C27 V|| Fllp2®m),
and
(4.9) RN (A lere,,, @my < C27 N[ fll gz, gy

where C' is the constant independent of f and N.
Assume the claim for the moment, then, by choosing sufficiently large IV, Tjgl =

o)
3> (Ry)" is bounded in both L? and H?

com?
n=0

which implies that

TN (D)l z2@m) 2 [1F ]| 22 gy
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and

TN (D, ey = W f L2z, rm)-

Moreover, for any f € L?(R™) N HE,

com

(R™), set h = Ty (f), then

f@ zm) = Tn(Tx (), zm)
2. > I||J|psp(a) — 27 GARI=N g g 9=(A2R)=Ny

JRE€L (8 L) EL™ L XZ
X (g1 h) (27NN p=GAZR) =Ny,

where the series converges in L2.

Now we show the claim. Since the proofs for R}, and R3; are similar, we only give
the proof for RY,. Roughly speaking, the proof is similar to Theorem 1.6. To see
this, let f € L2(R™)NHP, (R™). Applying discrete Calderén’s identity in L?(R™)

com

in Theorem 1.3 yields

bjr * R (F) (@ 2m)
= > > i * Gk =y — Ym)
GREL (00 4 )€Tm—1 577 I3
_¢j,k(' _ 2_(jAk)—N€/’ R 2_(j/\2k)_N€m)](x/7mm)(¢j,k * f)(y/yym)dy/dym
- Z Z '@[Jj’,k’ * [qu’k(' - y/,- - ym>
j7kez(€/7€7n)ezm'_l><z IxJ
—¢jx(- — 2—(j/\k)—N£/’ L 2—(]‘/\2k)—N€m>](l_/7xm)

XPik * { ) S NI g (- — 27N =GR g

j”,k”EZ (211/7[// )ezm—l X7

(wj”,k)” k f) (2_(j,l/\kll)£/”, 2_(j”/\2k//)€,/,:71) } (y/7 ym)dy/dym7 (410)

where I are dyadic cubes in R™~! and J” are dyadic intervals in R with the side
length ¢(I") = 2=G""") and J” are dyadic intervals in R with the side length
0(J") = 27U"72") “and the left lower corners of I” and the left end points of J”
are 2= M) 1 gand 2= G"A2K) g1 respectively.

Set $j7k = in(2 = 2 — Ym) — Pjr(2 — 27 UNRI=Np 9= (GAZR) =Ny )
Then by the almost orthogonality arguments in Lemma 3.1, we obtain

(' K'Y (m—1)
T+ 2 ar =y D)

W’j/,k' *5j,k(1'/;$m)| 5 27N2710M\j7j'\2710]V[|k7k’\
2j’/\2k'

1+ 20772K |, — gy |y (MHD)

1
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and similarly, for y' € I, y,, € J,
6.1 5 o o (i — 270 KDLy — 270N )|
9" AR (m—1)
(1 + 2j”/\k” |y/ _ 2—(j//Ak//)€//‘)(M+m—1)
2j///\2k//

1 + 2j///\2k//|ym o 27(j///\2k//)£,/’n)|)(M+l) .

5 2710M|j7j”|2710M\k7k"\

X
(
Substituting these estimates into the last term in (4.10) yields

[0k * Ry () (@ 2m)]
S/ Z Z |I/,||J//‘|(1/)j”,k” * f)(Q*(jw/\k”)g///’ 27(j”/\2k”)€fr/n)|

j”,k‘”GZ (ZNI7ZH )ezm—l X7

—No—|j—5'13M o—|k—k'|3M
DD SR

G REL (8 L) EZM—1 X

" 9@ AK") (m—1) 93’ N2k 2—|j—j”I3M2—|k—k”\3M
(L5 27 W — gD (1 27 [,y J O30
2(‘]-///\]6//)(”7171) 2j//A2k1/ d ,d
. (1 + 207 AR [y — 2=G7 AR i (MAm=1) (1 4 25" A2 [y " 9= G" A2k g1 Y[Y(M+D) Y Ym

(' NG NE A ) (m—1)

(1 + 2j’/\j”/\k’/\k”|m/ _ 2—(j”/\k”)£///|)(M+m71)

< 9-N Z Z 2—|j’—j”|3M2—|k’—k”\3M|Iu||J//|
~

j”,k?” ([///7@;@)
9(' A" IN2(kAK)

”’)g///, 2—(j”/\2k”)£// )‘

) — (3" Nk
L+ 2GRN RAR) [, — 2= G A2k iy [) (M) | (e * f)(27Y

By the L? boundedness of the discrete Littlewood-Paley-Stein square function
fo,(f), we have

IRN (P2 S IG5 (RN )@, )| 2

< 2—N||{ Z Z |("/)j”,k” * f)(2_(j///\k)//)€/ll’ 2_(j///\2k//)€;;1)‘2xl[/x} %HLQ
JUKEL (0 0 ) ELM X

S 27VIf e

~

Repeating the same proof as in Theorem 1.6 implies

IRN (N)laz,,,. S 1G5RNF) (@', 2m)lLr

_ (i " _(al " 1
SEVHY Y W s HETOIE 2n D
j”,k“EZ(é”',é;;)eZ"‘*lxz

5 2_N||fHH};)om'

The claim is concluded and hence Theorem 4.1 follows. O
Repeating the same proof of Theorem 1.6, we have
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Corollary 4.1. Let 0 < p < 1. Suppose ¢; ;. satisfies the same conditions as in
Theorem 4.1 with a large M depending on p. Then for a large N as in Theorem
4.1 and f € L> N H?

com?’

/]

1/2
(B f) (@ U =N g7 9= GA2 =Ny xm) e

(Y%

JKEL (L' Ly )EL™ L XTL

We now prove Theorem 1.7.

Proof of Theorem 1.7: We may assume that K; is the kernel of the convolution
operator T;, i = 1,2, and K is the kernel of the composition operator T'= T} o T5.
Then T(f) = Kx f and K = Ky % Ko. For f € LN HE,,0 < p < 1, by the L?

boundedness of 1" and applying discrete Calderon’s identity of f on L2 NHE, in
Theorem 4.1, we conclude

17Nz,

CH{Z D 1@y Ko (270N 27 ORIV ) Py x 3 o
(Z zm)
CH{Z Z ‘Z Z 9—(m— 1)’ /\Ic) (j//\Qk/)(Qsj’,k/ *h)( —(§'AE")— Ngl/ —(j'n2Kk") Ng;n)

dok (£,0m) 5k (€0)
(K*¢]k *¢j/ k’)(2 (GAK)— Ny _ N Nel/ (j/\2k)7N€m _ 2,(j//\2}g’)7N€/m)|2XIXJ}%”Lp7

IN

where ¢; 1, ¢j/ 1/, h and N are the same as in Theorem 4.1.
We claim that for any given M > 0,

ka
4.11 K1 % oM (@ 2m)| < C
( ) | 1% &y, (@', )] < (14 2k|2/[)M+m=1(1 4 2k|z,,[)M+1"
and
2k(m+l)
(4.12) o 02 (2, )| < C

(1 + 2k |2/ )MFm+T (1 + 22Kz, [)MF1°
We only show (4.12) here since the proof of (4.11) is similar. We consider the
following two cases:

Case 1. ||, <2 27F:
In this case, 2¥|z'| < 2 and 22¥|z,,| < 4, which imply that

14282 ~1 and 1+ 2%%|z,,| ~ 1.

By the fact supp ¢§€2) C {z : |z|, < 27%} and the cancellation condition in (4.4),
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Ko * ¢),(€2) (z) is bounded by

Ko % &2 ()] = | lim Ka(z — )6 (y)dy|
€20 Je<)z—y|n<10 2-F
= |lim Ka(x —y) [0 (v) — ¢ (@)] dy|
e Je<|z—yln<3 27k
< C2k(m+1)/ (Ix’—y'l)_(m_”“dy’/ T — Ym| 22 dyi,
|2/ —y’|<3 [ —Ym [ <9
2k(m+1)

< 2kmth) < & )
- T (1 2k [)MAMEL (T 22k, )M AL

Case 2. ||, >2 27"
In this case, 2¥|2/| > 2 or 22¥|z,,| > 4, which imply that
14282 ~ 2F2| or 14 2%|2p,| ~ 22|z,

By the cancellation condition of ¢(2) with order 4M in (4.4) and the size condition
of g in (1.3),

1 o
K2 %07 (@)] = | Kefw—y)— > D@D K wn)y”] 67 (v)dy]
lyln<2-F la|=|ai|+|2az|<4M

(lyl)*M* )
W\% (W) dy

IN

C

lyln<2-F
2k(m+1)

< C .

> (1_|_2k:|x/|)M+m—l(1+22k|x7n|)M+1

Thus the claim follows. By the classical orthogonality argument, for any fixed L
amd M,

W, (D) < 2—li=3'IL gm(ing")
(413) |¢j *¢j/ (1' ,$m)| — (]_+2(]'/\j/)|x/|)(M+m71) (1+2(j/\j/)|zm‘)(M+1)a

and
2—\k—k/|L 2(kAk')(m+1)

1+ 2(EAK) |t |} (M+m—1) 1+ 22(kAK") | (M+1) "

( |2']) ( |Zm])
Estimates from (4.11) to (4.14) yield that

K% @ik by (@ sm)| = |[Kxx 657 5 650] 5 (K2 # 0 5 0 (@, )|
27|j7j’\L27|kfk’|L2(j/\j’/\k/\k’)(m71) 2j/\j’/\2k/\2k’

< (1 + 2j/\j’/\k/\k/|x/|)(M+m—1) (1 + Qj/\j'/\%/\Qk'|xm|)(M+l) .

(4.14) o7« ¢\ (2, 2)| < C

(4.15)

Using the estimates in (4.15) and applying the same proof as in Theorem 1.6 yield
that for f € L2NHP, and 0 <6 <p <1,

com

SN
eI

IT(A)gz,, < CH{Z{MSK D7 (g # h) (27U MI=N g 9= GAZD=N gy gy )]}

j',k:' (2//7[;”)
< Clhillge,, <Clfllaz,,-

Lp

A
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Since L? N HP._ is dense in HP

om b m» we conclude the proof of Theorem 1.7. O

5. Proofs of Theorems 1.8 and 1.9

In this section using Theorem 4.1, we prove Theorem 1.8. Theorem 1.9 then follows
directly from Theorem 1.8.

Proof of Theorem 1.8:
For any f € L2(R™) N HE,, (R™), set

Qi ={(z',zm) eR™ ' xR: §$(f)(x’,a:m) > 21},
where

HOEI®Y S (g ) (27GARN g 2= GA) =Ny 2y Y
JyREL (L' Ly )EL™ L X

here ¢; 5 and h are given by Theorem 4.1. Denote
1 1
Bi={G kL) s (I x )Nl > ST x Tl (% J) 0 9] < 51T ]},

where I are dyadic cubes in R™~! and J are dyadic intervals in R with the side
lengths £(I) = 2=UM=N and ¢(J) = 2=UA2K)=N and the left lower corners of I
and the left end points of J are 2= RNy and 2-0A2K) =Ny - respectively.

By Theorem 4.1, we write

faa) = 55 ] gl =2 0, 2 0N
v (4,k,1,J)EB;

(.1 % h)(2-UARI=N g/ 9=(in2k)=Ny

where the series converges in the L? norm. We claim that

ST bl — 20NN Ny,
(4K, I,J)EB;

P
% (6.4 % h)(2-GNO=N g o=(A2)=Ny

p
< C2°71Q),

which together with the fact 0 < p <1 yields

1712, < ¢S 27 < CIGHAIL, < ClhlE, < ClIfIE,

Now we show the claim. Note that functions ¢(!) and ¢ are supported in unit
balls. Hence if (j,k,I,J) € B;, then ¢;, are supported in

Q; = {(@",2m) : My(xa,) (@', 2m) > ﬁ}
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j/\k)fNél jAQk)ngm.

For the sake of convenience, we denote x; = 2~( and z; = 2 (

Since [Q;| < C|€], by Hélder’s inequality we obtain

I M Gk =2, = 20) (S50 % D) (wr, 20) |5

(4:k,1,J)EB;

< AUTEL DS ML G = r s = 25)(a + B (wr, ).
4,k 1,J)EB;

By the duality argument, we estimate the L? norm of

S M @ikl —wr,e = 20) (B + ) (21, 25)

(4,k,1,J)€EB;

as follows: For all g € L? with ||g|2 <1,

< D I b =z — @) Gk % D) (s, 20), 9 > |

(4,k,I,J)EB;
3 3
< C Z 1| [J] [($5.6 * h)(xr, @ 5)]? Z 1] 1T [(d5k * 9)(@r, m5)]?
(j,k,I,J)GBi (j,k,I,J)GBi
While,
Z | || (b1 * 9) (1, 25)]?
(4,k,I,J)EB;
12
- / S Gk x9)@nw) Pxa@)xs@m) b de'dan,
R™=IXR A (5 k1, 0)€B;
< / Qg(g)(x’,xm)Q dz'dx,,
Rm—1xR
< |gll7-.

In addition,

el = [ G di'd,
Qi\Qit1
= Z (g % B)(r,20) P (1 J) N Q\Qiy1
(j,k,I,J)EBi,
1
> 5 > M@k D)),
(3,k,1,J)EB;

where in the last inequality we use the fact that |(I x .J) N Q\Qi1| > I % J|
when (j,k,I,J) € B;. This completes the proof of Theorem 1.8. O
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Proof of Theorem 1.9: Suppose f € H?, N L2 By Theorem 1.7, T' is bounded
on HP . which together with the fact that T is also bounded on L? yields that
T(f) € HE,,, N L% so applying first Theorem 1.8 and then Theorem 1.7 we obtain

IT(Hllee < CITH) 1z, < ClSfllaz

com — com

for any f e L*NHP

com*

Since HP, NL? is dense in H?,,, the composition operator T extends to a bounded

operator from H? = to LP. O

6. Proofs of Theorems 1.10 and 1.11

We now prove the Calderén-Zygmund decomposition and the interpolation theo-

rem on H? (R™).

Proof of Theorem 1.10: We first assume f € L? N HP, . Let a > 0 and
Oy = {x e R : gg(f)(:c) > a2'}, where gg(f) is defined in the the proof of
Theorem 1.8.

Let
1
RO:{IXJ: |(IxJ)ﬁQo|<2|I><J}

and for £ > 1
1 1
Rg:{IxJ: |(IxJ)ﬂQg_1|2§\IxJ|, |(I><J)ﬁQg|<2|I><J}7

where I are dyadic cubes in R™~! and .J are dyadic intervals in R with the side
lengths ¢(I) = 20NN and ¢(J) = 27020 =N "and the left lower corners of T
and the left end points of J are 2= U N)=Ng/ and 2-GA2K) =Ny respectively.

By the discrete Calderén-type identity in Theorem 4.1,

f@' ) SN UINbsk(2" = w1, T — ys) bk * (1, y5)

Gk I,J

= ZZ Z |I||J|¢j,k($/_x1axm_yJ)¢j7k*h(xI7yJ)

Gk 51 IxXJER,
+Z Z |I||J|¢j,k(x/_mbxm _yJ)QSj»k *h(mbyJ)
J.k IXJER,

where z; = 27 UM =Nyl and y; = 2-0A2k) =Ny
When p; > 1, using duality argument as in the proof of Theorem 1.8, it is easy
to show

2

Hngl < Z Z ‘Qsj»k * h(xlayJ)FXIXJ ||P1'

jk IxJER,
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Next, we estimate [|g||z»; ~when 0 < p; < 1. Clearly, the duality argument will

not work here. Nevertheless, we can estimate the HP! = norm directly by using

discrete Calderdn’s identity in Theorem 1.3. To this end, we note that

gl zzzs, < 119D D 1@y % 9) (@ ys ) Pxr (@)xa (y) ¢ e,

j/,k)/ I,J

where I’ are dyadic cubes in R™~! and J’ are dyadic intervals in R with the side
lengths £(I') = 2-U'AK) and ¢(J") = 27G'72k) " and the left lower corners of I’ and
the left end points of .J" are 2= U AF) " and 2= A2 respectively.

Since

Wy % 9) (@ryys) =D Y I Wy * byn) (wr—ar,y5—ys)djaxh(zr, ys)

jk IXJER

Repeating the same proof of Theorem 1.6, we have

Nl

18> > 1 Wyrw  9) (s ya) Px (@)X () ¢ lps

3k I, J!

<C| Z Z 05,6 % h(zr, ) Pxixs ¢ o

jk IXJER,

This shows that for all 0 < p; < c©

lgllgzs, <CUSD . Y ik *hary)Pxixs ¢ lps-

7,k IXJER

Claim 1:
1
2

/~ (G )P (2, 2 )da' dzy, > C Z Z lbjn * h(xr,yn) Pxaxs ¢ 11D

gd(f)(w/’wm)ga j,k IxJER,
This claim implies
gl < C (G )P (2, ) da' d,

Ga(f) (@' wm)<a
car | (G o),
G4 (" wm)<a

Ca? || fls,

IN

IN
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To show Claim 1, we choose 0 < g < p; and note that

/Gd(f)(f )< (gd(f))pl(x',xm)dx'dxm

Pl
2

/@dm(, A s b P o) e

Gk I,J
pr1
2
z ¢ Z Z |¢j,k*h($1ayJ)|2X1XJ dx'dx,,
2% Jk R=IxXJERy
P1
2
= ¢ Z Z (5. % Bz 1, y7) P X Ras (2, Tm) dz' Az,
Rm—lxR j,k RGRO
1\ T
2
z C DD (Mo (165 hlar,yn) Xrang) (@, 2m)) do’ dz,,
R ixR j,k RERg
pr1
2
> C 303" 1w+ hlan yn) P wm) ¢ da'day,
Rm—1xR _]k RGRO

where in the last inequality we have used the fact that [Q§ N R| > |R| for R =
I x J € Ry, and thus

XI(CE/)XJ(xm) S 2%MS(XRQQ8)% (x/a (Em)

and in the second to the last inequality we have used the vector-valued Fefferman-
Stein inequality for strong maximal functions

I <Z(Ms(fk))r> lp < Cl (Z |fk|’”> [
k=1

k=1

with the exponents r = 2/¢ > 1 and p = p1/q > 1. Thus the claim follows.
We now recall Q; = {(z/, z,,) € R™ ! x R : M,(xq,) > i}
Claim 2: For any 0 < p; <1 and ¢ > 1,

Nj,k T =X, T — YJ) Pk * M (X1, y5)|pe < )]
H 111135 (0" o+ hlar,yn)[P < C(2fa) 00|
Jk IXJER,
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Claim 2 implies

oIz, < > (2%a)P2 (0|
>1
< CY ()|l <C (G2 (f) (@ ) dar'
= G4 (@) >

< camr | (G (1) ), < CaP> 7
gif)(zy)>a o
To show Claim 2, again we have

| Z Z ][] ¢j,k(ﬂf/ — X1, Tm — yJ)¢j,k * h(l’hyJ)HHfgm

Gk IXJER,

SCUSI DD D TN Wy = djk) (@ — 21,900 — ya) gk * hlar, y) | Lr2

'k I | Gk IXJER,

<CUSD. D bk s hlanyn)Pxixs ¢ e

jk IXJER,

where we can use a similar argument in the proof of Theorem 1.8 to prove the last
inequality.

However, as in the proof of the claim 1, choosing 0 < g < 2 and ¢ < p2 implies
that

(2%a)P (03|
> / GO(f)P2 (2!, 2 )da datn
Qo1\ Qe
P2
2

= /~ Z Z s % h(@r, yr)[Pxa (@) X (2m) dz'dz,,

Qe \Q | Gk 1,7

P2
2
= / NS85k han ) PX 1 nndiy o (& Em) o dady,
Rm=IxR |\ 5k 10
P2
2 % !
= C/]R 1yR ZZ <Ms <|¢j,k * h(xbyJ)|qX(IXJ)m§£71\QZ)(m’,xm))> ¢ dz'dz,,
m=ix

3.k 1,0
P2

c / { 3 |¢j,k*h(xl,ynﬁxf(z/)m(xm)} 4/ .
Rm—1xR

IXJER,

v
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In the above string of inequalities, we have used the fact that for I x J € R, we
have

1 1
(I x J)NQe_q| > §|I>< J| and |(I x J)N Q| < §‘IX J|

and consequently I x J C €,_;. Therefore |(I x J) N (Q—1\Q)| > LI x J| for
I xJeRy Thus

1 1
Xl(xl)XJ(xm) < 24 M (X(IXJ)ﬂﬁz—l\Qz)) ! (1'/, Tm)-
This gives the proof of the claim 2. Since L2(R™) N HE,  is dense in HE . O

We are now ready to prove the interpolation theorem on Hardy spaces HZ .
for all 0 < p < 0.
Proof of Theorem 1.11: Suppose that T is bounded from HZ2  to LP? and

com

from HP!  to LP'. For any given A > 0 and f € H? . by the Calderén-Zygmund
decomposition,

f(@) = g(2) + b(z)
with

lglEzey,, < ON PN Wy, and 6], < ON7FIfIG,,

P2
Hegm

Moreover, we have proved the estimates

gl <C [ G )P (2!, 2 ) dzyy,
com Ga(f)(z"zm)<a
and
0] I;{chgm <C GLUIP2 (), my ) dy,

gNd(f)(z/vr7n)>0‘
which implies that

1751 = » [ @U@ ) s [T m)] > A lda
0
Sp/ P {(z’,xm) Ty, xm)| > ;\} |da
0
> —1 / 2 )\
+p/ o |{(x ) | TO(2 2 )| > 2} |de
0

Sp/ 047”71/~ gd(f)pl(x’,xm)dx’dxmda
0 Ga(f) (@ zm)<a

oo
+p/ ap_l/ GLU P2 (2, 2 )da dpmdar
0 G wm) >

< CIfII;

P
Hconl

Thus,
ITfllp < Cllfll e,

for any ps < p < p1. Hence, T is bounded from H?  to LP.

com
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To prove the second assertion that T is bounded on H? _ for ps < p < p1, for

com

any given A > 0 and f € H? . by the Calderén-Zygmund decomposition again

which, as above, shows that | Tf|| g»

{2 (T ) (@' )] > 0} |
< (@ 2m)  0(T) @ )] > $} 1+ @) < [g(TO) (@ 2)| > §}
< Ca|Tg|By, +Ca|TH|7

Hdm HPZ,
< Caigll%y, + Ca|[p]2,

< Ca™h fgd(f)(z/,mm)<a gd(f)pl ('rlv xm)dxldxm

+COé_p2 ngd(f)(r’,Im)>o¢ gd(f>p2 (x/7 xm)d.’lf’d.’l?m

< Clg(THlly < Cllflzz,, for any 0 <

com —

P2 < p<p <O00.
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