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Hardy spaces associated with different
homogeneities and boundedness of composition

operators

Yongsheng Han, Chincheng Lin, Guozhen Lu, Zhuoping Ruan∗and Eric.T.Sawyer

Abstract. It is well known that standard Calderón-Zygmund singular
integral operators with the isotropic and non-isotropic homogeneities are
bounded on the classical Hp(Rm) and non-isotropic Hp

h(R
m), respectively.

In this paper, we develop a new Hardy space theory and prove that the
composition of two Calderón-Zygmund singular integral operators with dif-
ferent homogeneities is bounded on this new Hardy space. It is interesting
that such a Hardy space has surprisingly a multiparameter structure asso-
ciated with the underlying mixed homogeneities arising from two singular
integral operators under consideration. The Calderón-Zygmund decompo-
sition and an interpolation theorem hold on such new Hardy spaces.

1. Introduction and statement of results

The purpose of this paper is to develop a new Hardy space theory and prove that
the composition of two Calderón-Zygmund singular integrals associated with dif-
ferent homogeneities, respectively, is bounded on these new Hardy spaces. Indeed,
the composition of operators was considered by Calderón and Zygmund when intro-
ducing the first generation of Calderón-Zygmund convolution operators. Calderón
and Zygmund discovered that to compose two convolution operators, T1 and T2, it
is enough to employ the product of the corresponding multipliers m1(ξ) and m2(ξ).
However, the symbol m3(ξ) = m1(ξ)m2(ξ) does not necessarily have zero integral
on the unit sphere, so they considered the algebra of operators cI + T, where c is
a constant, I is the identity operator and T is the operator introduced by them.
In 1965, Calderón considered again the problem of the symbolic calculus of the
second generation of Calderón-Zygmund singular integral operators with the mini-
mal regularity with respect to x on kernels L1(x, y) and L2(x, y), corresponding to
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operators T1 and T2. This problem reduced to the study of the commutator which
was the first non-convolution operator raised in harmonic analysis.

In the present paper, we consider the composition of two operators associated
with different homogeneities. To be more precise, let e(ξ) be a function on Rm

homogeneous of degree 0 in the isotropic sense and smooth away from the origin.
Similarly, suppose that h(ξ) is a function on Rm homogeneous of degree 0 in the
non-isotropic sense related to the heat equation, and also smooth away from the

origin. Then it is well-known that the Fourier multipliers T1 defined by T̂1(f)(ξ) =

e(ξ)f̂(ξ) and T2 given by T̂2(f)(ξ) = h(ξ)f̂(ξ) are both bounded on Lp for 1 < p <
∞, and satisfy various other regularity properties such as being of weak-type (1,
1). It was well known that T1 and T2 are bounded on the classical isotropic and
non-isotropic Hardy spaces, respectively. Rivieré in [24] asked the question: Is the
composition T1 ◦T2 still of weak-type (1,1)? Phong and Stein in [22] answered this
question and gave a necessary and sufficient condition for which T1 ◦T2 is of weak-
type (1,1). The operators Phong and Stein studied are in fact compositions with
different kind of homogeneities which arise naturally in the ∂̄-Neumann problem.
This motivates the present work in this paper.

In order to describe more precisely questions and results studied in this paper,
we begin with considering all functions and operators defined on Rm. We write
Rm = Rm−1 × R with x = (x′, xm) where x′ ∈ Rm−1 and xm ∈ R. We consider
two kinds of homogeneities

δ : (x′, xm) → (δx′, δxm), δ > 0

and
δ : (x′, xm) → (δx′, δ2xm), δ > 0.

The first are the classical isotropic dilations occurring in the classical Calderón-
Zygmund singular integrals, while the second are non-isotropic and related to the
heat equations (also Heisenberg groups).

For x = (x′, xm) ∈ Rm−1 × R we denote |x|e = (|x′|2 + |xm|2) 1
2 and |x|h =

(|x′|2 + |xm|) 1
2 . We also use notations j ∧ k = min{j, k} and j ∨ k = max{j, k}.

The singular integrals considered in this paper are defined by

Definition 1.1. A locally integrable function K1 on Rm/{0} is said to be a Calderón-
Zygmund kernel associated with the isotropic homogeneity if

(1.1)

∣∣∣∣
∂α

∂xα
K1(x)

∣∣∣∣ ≤ A|x|−m−|α|
e for all |α| ≥ 0,

(1.2)

∫

r1<|x|e<r2

K1(x) dx = 0

for all 0 < r1 < r2 < ∞.
We say that an operator T1 is a Calderón-Zygmund singular integral operator

associated with the isotropic homogeneity if T1(f)(x) = p.v.(K1 ∗ f)(x), where K1

satisfies conditions in (1.1) and (1.2).
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Definition 1.2. Suppose K2 ∈ L1
loc(Rm \ {0}). K2 is said to be a Calderón-

Zygmund kernel associated with the non-isotropic homogeneity if

(1.3)

∣∣∣∣
∂α

∂(x′)α
∂β

∂(xm)β
K2(x

′, xm)

∣∣∣∣ ≤ B|x|−m−1−|α|−2β
h for all |α| ≥ 0, β ≥ 0,

(1.4)

∫

r1<|x|h<r2

K2(x) dx = 0

for all 0 < r1 < r2 < ∞.
We say that an operator T2 is a Calderón-Zygmund singular integral operator

associated with the non-isotropic homogeneity if T2(f)(x) = p.v.(K2 ∗ f)(x), where
K2 satisfies the conditions in (1.3) and (1.4).

It is well-known that any Calderón-Zygmund singular integral operator asso-
ciated with the isotropic homogeneity is bounded on Lp(Rm) for 1 < p < ∞ and
is also bounded on the classical Hardy space Hp(Rm) with 0 < p ≤ 1. Here the
classical Hardy space Hp(Rm) is introduced by Fefferman and Stein in [FS]. This
space is associated with the isotropic homogeneity. To see this, let ψ(1) ∈ S(Rm)
with

(1.5) supp ψ̂(1) ⊆ {(ξ′, ξm) ∈ Rm−1 × R :
1

2
≤ |ξ|e ≤ 2},

and

(1.6)
∑

j∈Z
|ψ̂(1)(2−jξ′, 2−jξm)|2 = 1 for all (ξ′, ξm) ∈ Rm−1 × R/{(0, 0)}.

The Littlewood-Paley-Stein square function of f ∈ S ′(Rm) then is defined by

g(f)(x) =
{∑

j∈Z
|ψ(1)

j ∗ f(x)|2
} 1

2
,

where ψ(1)
j (x′, xm) = 2jmψ(1)(2jx′, 2jxm). Note that the isotropic homogeneity is

involved in g(f). The classical Hardy space Hp(Rm) then can be characterized by

Hp(Rm) = {f ∈ S ′/P(Rm) : g(f) ∈ Lp(Rm)},

where S ′/P denotes the space of distributions modulo polynomials. If f ∈ Hp(Rm),
the Hp norm of f is defined by ‖f‖Hp = ‖g(f)‖Lp .

As we mentioned above, a Calderón-Zygmund singular integral operator as-
sociated with the non-isotropic homogeneity is bounded on Lp, 1 < p < ∞. It
is not bounded on the classical Hardy space but bounded on the non-isotropic
Hardy space. The non-isotropic Hardy space can also be characterized by the
non-isotropic Littlewood-Paley-Stein square function. To be more precise, let
ψ(2) ∈ S(Rm) with

(1.7) supp ψ̂(2) ⊆ {(ξ′, ξm) ∈ Rm−1 × R :
1

2
≤ |ξ|h ≤ 2},
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(1.8)
∑

k∈Z
|ψ̂(2)(2−kξ′, 2−2kξm)|2 = 1 for all (ξ′, ξm) ∈ Rm−1 × R \ {(0, 0)}.

We then define gh(f), the non-isotropic Littlewood-Paley-Stein square function
of f ∈ S ′(Rm), by

gh(f)(x) =
{∑

k∈Z
|ψ(2)

k ∗ f(x)|2
} 1

2
,

where ψ(2)
k (x′, xm) = 2k(m+1)ψ(2kx′, 22kxm). Note again that the non-isotropic

homogeneity is involved in gh(f). The non-isotropic Hardy space Hp
h(Rm) then

can be characterized by

Hp
h(R

m) = {f ∈ S ′/P(Rm) : gh(f) ∈ Lp(Rm)}

and if f ∈ Hp
h(Rm), the Hp

h norm of f is defined by ‖f‖Hp
h
= ‖gh(f)‖Lp .

If T1 and T2 are Calderón-Zygmund singular integrals with isotropic and non-
isotropic homogeneities, respectively, then the composition T1◦T2 is always bounded
on Lp, 1 < p < ∞, however, in general, bounded neither on the classical Hardy
space Hp(Rm) nor on the non-isotropic Hardy space Hp

h(Rm). Our goal of this
paper is to develop a new Hardy space theory associated with different homo-
geneities such that the composition T1 ◦T2 is bounded on this new Hardy space. A
new idea to achieve this is to establish the Littlewood-Paley-Stein theory associ-
ated with different homogeneities. More precisely, suppose that ψ(1) and ψ(2) are
functions satisfying conditions in (1.5) - (1.6) and (1.7) - (1.8), respectively. Let

ψj,k(x) = ψ(1)
j ∗ ψ(2)

k (x). Define a new Littlewood-Paley-Stein square function by

Gcom(f)(x) =
{ ∑

j,k∈Z
|ψj,k ∗ f(x)|2

} 1
2
.

We remark that a significant feature is that the multiparameter structure is in-
volved in the above Littlewood-Paley-Stein square function. As in the classical
case, it is not difficult to check that for 1 < p < ∞,

(1.9) ‖Gcom(f)‖Lp ≈ ‖f‖Lp .

The estimates above suggest us to define the Hp norm of f in terms of the
Lp norm of Gcom(f) when 0 < p ≤ 1. However, this continuous version of the
Littlewood-Paley-Stein square function Gcom(f) is convenient to deal with the case
for 1 < p < ∞ but not for the case when 0 < p ≤ 1. See further remark about
this below. The crucial idea is to replace the continuous version Gcom(f) by the
discrete version Gd

ψ(f) as follows.

To define the discrete version Gd
ψ(f), the key tool is discrete Calderón’s iden-

tity. To be more precise, we first recall classical continuous Calderón’s identity
on L2(Rm). Let ψ(1) be a function satisfying the conditions of (1.5) and (1.6). By
taking the Fourier transform, we have the following classical continuous Calderón’s
identity:

f(x) =
∑

j∈Z
ψ(1)
j ∗ ψ(1)

j ∗ f(x),
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where the series converges in L2(Rm) and in S0(Rm) := {f ∈ S(Rm) :
∫
Rm f(x)xαdx =

0 for any|α| ≥ 0}.
Note that the Fourier transforms of both ψ(1)

j and ψ(1)
j ∗ f are compactly sup-

ported. Using a similar idea as in the Shannon sampling theorem, one can decom-

pose ψ(1)
j ∗ ψ(1)

j ∗ f(x) by
∑

$∈Zm

ψ(1)
j (x− 2−j')(ψ(1)

j ∗ f)(2−j').

Then classical discrete Calderón’s identity is given by

(1.10) f(x) =
∑

j∈Z

∑

$∈Zm

ψ(1)
j (x− 2−j')(ψ(1)

j ∗ f)(2−j'),

where the series converges in L2(Rm), S0(Rm) and S ′
0(Rm). See [9] and [10] for

more details.
Now by considering ψj,k = ψ(1)

j ∗ ψ(2)
k and taking the Fourier transform, we

obtain the following continuous Calderón’s identity:

(1.11) f(x) =
∑

j,k∈Z
ψj,k ∗ ψj,k ∗ f(x),

where the series converges in L2(Rm), S0(Rm) and S ′
0(Rm). Furthermore, we will

prove the following discrete Calderón’s identity.

Theorem 1.3. Suppose that ψ(1) and ψ(2) are functions satisfying conditions in

(1.5) - (1.6) and (1.7) - (1.8), respectively. Let ψj,k(x) = ψ(1)
j ∗ ψ(2)

k (x). Then

f(x′, xm) =
∑

j,k∈Z

∑

($′,$m)∈Zm−1×Z
2−(m−1)(j∧k) 2−(j∧2k)(ψj,k ∗ f)(2−(j∧k)'′, 2−(j∧2k)'m)

×ψj,k(x
′ − 2−(j∧k)'′, xm − 2−(j∧2k)'m) (1.12),

where the series converges in L2(Rm),S0(Rm) and S ′
0(Rm).

This discrete Calderón’s identity leads to the following discrete Littlewood-
Paley-Stein square function.

Definition 1.4. For f ∈ S ′
0(Rm), Gd

ψ(f), the discrete Littlewood-Paley-Stein square
function of f, is defined by

Gd
ψ(f)(x

′, xm) =
{ ∑

j,k∈Z

∑

($′,$m)∈Zm−1×Z
|(ψj,k ∗ f) (2−(j∧k)'′, 2−(j∧2k)'m)|2

×χI(x′)χJ(xm)
} 1

2
,

where I are dyadic cubes in Rm−1 and J are dyadic intervals in R with the side
length '(I) = 2−(j∧k) and '(J) = 2−(j∧2k), and the left lower corners of I and the
left end points of J are 2−(j∧k)'′ and 2−(j∧2k)'m, respectively.
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Now we formally define the Hardy spaces associated with two different homo-
geneities by the following

Definition 1.5. Let 0 < p ≤ 1. Hp
com(Rm) = {f ∈ S ′

0(Rm) : Gd
ψ(f) ∈ Lp(Rm)}. If

f ∈ Hp
com(Rm), the norm of f is defined by ‖f‖Hp

com(Rm) = ‖Gd
ψ(f)‖Lp(Rm).

Note that, as mentioned above for the Littlewood-Paley-Stein square function,
the multiparameter structures are involved again in the discrete Calderón’s identity
and the Hardy spaces Hp

com(Rm). To see that these Hardy spaces are well defined,
we need to show that Hp

com(Rm) is independent of the choice of the functions ψ(1)

and ψ(2). This will directly follow from the following theorem

Theorem 1.6. If ϕ satisfies the same conditions as ψ, then for 0 < p ≤ 1 and
f ∈ S ′

0(Rm),
‖Gd

ψ(f)‖Lp(Rm) ≈ ‖Gd
ϕ(f)‖Lp(Rm).

We would like to point out that one can define the Hardy space Hp
com(Rm) in

terms of Gcom(f), the Littlewood-Paley-Stein square function. Then one has to
show the following sup-inf principle for all 0 < p < ∞:

‖
{ ∑

j,k∈Z,I,J
sup

u∈I,v∈J
|ψj,k ∗ f(u, v)|2χI(x

′)χJ(xm)
} 1

2 ‖Lp

≈ ‖
{ ∑

j,k∈Z,I,J
inf

u∈I,v∈J
|φj,k ∗ f(u, v)|2χI(x

′)χJ (xm)
} 1

2 ||Lp

where I are dyadic cubes in Rm−1 and J are dyadic intervals in R with the side

length '(I) = 2−(j∧k) and '(J) = 2−(j∧2k), ψj,k(x) = ψ(1)
j ∗ ψ(2)

k (x), φj,k(x) =

φ(1)j ∗ φ(2)k (x) and ψ(1), φ(1) and ψ(2), φ(2) are functions satisfying conditions in
(1.5) - (1.6) and (1.7) - (1.8), respectively. This will actually imply the equivalence
of the Lp norms of the two square functions Gcom(f) and Gd

ψ(f) and allow us to use
the discrete Littlewood-Paley-Stein square function to define the Hardy space. In
the case of the multiparameter structure associated with the flag singular integrals,
it was done in [15] (see Theorem 1.9 there). However, such a proof in our case is
more complicated than using the discrete Littlewood-Paley-Stein square function
directly as we are doing here. This is why, instead of using Gcom(f), we decide to
choose Gd

ψ(f) to define the Hardy space Hp
com(Rm). Indeed, by applying a similar

argument as in [9], one can also show that for all 0 < p < ∞,

‖Gcom(f)‖p ≈ ‖Gd
ψ(f)‖p.

We omit the details of the proof and refer reader to [9] for further details.

We now state the main results of this paper.

Theorem 1.7. Let T1 and T2 be Calderón-Zygmund singular integral operators
with the isotropic and non-isotropic homogeneity, respectively. Then for 0 < p ≤ 1,
the composition operator T = T1 ◦ T2 is bounded on Hp

com(Rm).
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It is well known that the atomic decomposition of the classical Hardy spaces is
the main tool to study the Hp − Lp boundedness for classical Calderón-Zygmund
operators. See [4], [6], [12] and [13]. However, to get an atomic decomposition
for the Hardy space Hp

com(Rm) with miltiparameter structures, as in the classical
case, one needs first to establish Journé’s covering lemma in this setting. See [1],
[2], [3], [19], [7], [8] and [21] for more details. Our approach is quite different from
this scheme. Indeed, we will prove the following theorem

Theorem 1.8. Let 0 < p ≤ 1. If f ∈ L2(Rm)∩Hp
com(Rm), then there is a constant

C = C(p) such that
‖f‖Lp(Rm) ≤ C‖f‖Hp

com(Rm),

where the constant C is independent of f.

We remark that the proof of the above theorem does not use atomic decompo-
sition and hence Journé’s covering lemma is not required. As a consequence, we
obtain

Theorem 1.9. Let 0 < p ≤ 1. Suppose that T is a composition of T1 and T2 as
given in Theorem 1.7. Then T extends to a bounded operator from Hp

com(Rm) to
Lp(Rm).

Next we provide the Calderón-Zygmund decomposition and prove an interpo-
lation theorem on Hp

com(Rm). We note that Hp
com(Rm) = Lp(Rm) for 1 < p < ∞.

Theorem 1.10. (Calderón-Zygmund decomposition for Hp
com) Let 0 < p2 ≤

1, p2 < p < p1 < ∞ and let α > 0 be given and f ∈ Hp
com. Then we may write

f = g+ b where g ∈ Hp1
com and b ∈ Hp2

com such that ‖g‖p1

H
p1
com

≤ Cαp1−p‖f‖pHp
com

and

‖b‖p2

H
p2
com

≤ Cαp2−p‖f‖pHp
com

, where C is an absolute constant.

Theorem 1.11. (Interpolation theorem on Hp
com) Let 0 < p2 < p1 < ∞ and T be

a linear operator which is bounded from Hp2
com to Lp2 and bounded from Hp1

com to
Lp1 , then T is bounded from Hp

com to Lp for all p2 < p < p1. Similarly, if T is
bounded on Hp2

com and Hp1
com, then T is bounded on Hp

com for all p2 < p < p1.

Before we end this section, several remarks must be in order. First, as men-
tioned before, the continuous version of the Littlewood-Paley-Stein square function
Gcom(f) is convenient to deal with the case for 1 < p < ∞ but not for the case
when 0 < p ≤ 1. However, we can still use this continuous version Gcom(f) to
define the Hardy spaces Hp

com(Rm) for 0 < p ≤ 1. More precisely, suppose that
ψ(1) ∈ S0 satisfies

∞∫

0

|ψ̂(1)(tξ′, tξm)|2 dt
t

= 1 for all (ξ′, ξm) ∈ Rm−1 × R/{(0, 0)}

and ψ(2) ∈ S0 satisfies
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∞∫

0

|ψ̂(2)(sξ′, s2ξm)|2 ds
s

= 1 for all (ξ′, ξm) ∈ Rm−1 × R/{(0, 0)}.

Set ψt,s = ψ(1)
t ∗ ψ(2)

s , where ψ(1)
t (x′, xm) = t−mψ(1)(x

′

t ,
xm
t ) and ψ(2)

s (x′, xm) =

s−m−1ψ(2)(x
′

s ,
xm
s2 ). Then one can argue that the Hp

com(Rm) norm of f defined in
Definition 1.5 is equivalent to

‖{
∞∫

0

∞∫

0

|ψt,s ∗ f(x′, xm)|2 dt
t

ds

s
} 1

2 ‖Lp .

The same ideas in this paper can be carried out to the proof of the above equivalent
norms of such defined two Hardy spaces.

Secondly, in this paper, we restrict our attention to the above two very specific
dilations. However, all results in this paper can be carried out to the composition
with more singular integral operators associated with more general non-isotropic
homogeneities. To see this, let Ti(f)(x) = p.v.Ki ∗ f(x), 1 ≤ i ≤ n, be singular
integral operators associated with non-isotropic dilations given by

δi : (x1, x2, ·, ·, xm) → (δ
λi,1

i x1, δ
λi,2

i x2, ·, ·, δ
λi,m

i xm)

for δi > 0,λi,$ > 0, 1 ≤ i ≤ n and 1 ≤ ' ≤ m.

For x ∈ Rm we denote |x|i =

√
|x1|

2
λi,1 + |x2|

2
λi,2 + · ·+|xm|

2
λi,m . Let ψ(i) ∈

S(Rm) with

supp ψ̂(i) ⊆ {(ξ1, ξ2, · · ξm) ∈ Rm :
1

2
≤ |ξ|i ≤ 2},

and

∑

ji∈Z
|ψ̂(i)(2−jiλi,1ξ1, 2

−jiλi,2ξ2, ··, 2−jiλi,mξm)|2 = 1 for all (ξ1, ξ2, ·, ξm) ∈ Rm/{0}.

Set ψj1,j2,···,jn(x) = ψ(1)
j1

∗ ψ(2)
j2

∗ · · · ∗ ψ(n)
jn

(x), where

ψ(i)
ji
(x) = 2ji(λi,1+λi,2+··+λi,m)ψ(i)(2jiλi,1x1, 2

jiλi,2x2, ··, 2jiλi,mxm).

Define a Littlewood-Paley-Stein square function by

G̃com(f)(x) =
{ ∑

j1,j2,··,jn∈Z
|ψj1,j2,··,jn ∗ f(x)|2

} 1
2
.

Applying the same line as in this paper, one can develop the Hardy space theory
associated with these more general non-isotropic dilations. The details of the proofs
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seem to be rather lengthy to be written out. Therefore, we shall not discuss these
in more details in this paper.

Thirdly, the regularity conditions on kernels can be weakened if one considers
only the Hp

com(Rm) boundedness for the certain range of p.
Finally, we would like to remark that the method of discrete Littlewood-Paley-

Stein analysis in the multiparameter settings used in this paper has been used in a
number of other cases earlier. This method allows us to avoid using the Journé cov-
ering lemma to prove the boundedness of multiparameter singular integrals from
the Hardy spaces. It first appeared in [15] where the theory of the multiparameter
Hardy spaces associated with the flag singular integrals was developed and in [16]
where the discrete Littlewood-Paley-Stein theory was established in the multipa-
rameter structure associated with the Zygmund dilation (see also the expository
article [17]). A recent development for the implicit multiparameter Hardy space
and the Marcinkiewicz multiplier theory on the Heisenberg group has been suc-
cessfully carried out in [18]. We also refer to [5], [20], [23], [14] for this discrete
Littlewood-Paley-Stein analysis in other settings such as weighted multiparame-
ter Hardy spaces in Euclidean spaces or multiparameter theory in homogeneous
spaces.

Section 1 deals with Theorem 1.3. The proof of Theorem 1.6 is given in section
3. The method of the proof will be applied to the proof of Theorem 1.8 and
Theorem 1.10. To show Theorem 1.7, we provide a discrete Calderón-type identity,
Theorem 4.1 which has its own interest. These will be given in Section 4. Theorem
1.8 and Theorem 1.9 are proved in Section 5. In the last section, we prove the
Calderón-Zygmund decomposition and interpolation theorems.

2. Proof of Theorem 1.3

As mentioned in the previous section, by taking the Fourier transform, we obtain
the following continuous Calderón’s identity:

(2.1) f(x) =
∑

j,k∈Z
ψj,k ∗ ψj,k ∗ f(x),

where the convergence of series in L2(Rm), S0(Rm) and S ′
0(Rm) follows from the

results in the classical case. See [9] and [10] for more details.
To get a discrete version of Calderon’s identity, we need to decompose ψj,k ∗

ψj,k ∗ f in (2.1). Similar to a method as in [10], set g = ψj,k ∗ f and h = ψj,k. The
Fourier transforms of g and h are given by

ĝ(ξ′, ξm) = ψ̂(1)(2−jξ′, 2−jξm)ψ̂(2)(2−kξ′, 2−2kξm)f̂(ξ′, ξm)

and
ĥ(ξ′, ξm) = ψ̂(1)(2−jξ′, 2−jξm)ψ̂(2)(2−kξ′, 2−2kξm).

Note that the Fourier transforms of g and h are both compactly supported. More
precisely,

supp ĝ, supp ĥ ⊆ {(ξ′, ξm) ∈ Rm−1 × R : |ξ′| ≤ 2j∧kπ, |ξm| ≤ 2j∧2kπ}.
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Thus, we first expand ĝ in a Fourier series on the rectangle Rj,k = {ξ′ ∈ Rm−1, ξm ∈
R : |ξ′| ≤ 2j∧kπ, |ξm| ≤ 2j∧2kπ}:

ĝ(ξ′, ξm) =
∑

($′,$m)∈Zm−1×Z 2
−(m−1)(j∧k) 2−(j∧2k)(2π)−m

×
∫
Rj,k

ĝ(η′, ηm)ei(2
−(j∧k)$′·η′+2−(j∧2k)$mηm)dη′dηm

×e−i(2−(j∧k)$′·ξ′+2−(j∧2k)$mξm)

and then replace Rj,k by Rm since ĝ is supported in Rj,k. Finally, we obtain

ĝ(ξ′, ξm) =
∑

($′,$m)∈Zm−1×Z 2
−(m−1)(j∧k) 2−(j∧2k)g(2−(j∧k)'′, 2−(j∧2k)'m)

× e−i(2−(j∧k)$′·ξ′+2−(j∧2k)$mξm).

Multiplying ĥ(ξ′, ξm) from both sides yields

ĝ(ξ′, ξm)ĥ(ξ′, ξm) =
∑

($′,$m)∈Zm−1×Z 2
−(m−1)(j∧k) 2−(j∧2k) g(2−(j∧k)'′, 2−(j∧2k)'m)

×ĥ(ξ′, ξm) e−i(2−(j∧k)$′·ξ′+2−(j∧2k)$mξm).

Note that ĥ(ξ′, ξm) e−i(2−(j∧k)$′·ξ′+2−(j∧2k)$mξm) = ĥ(·− 2−(j∧k)'′, ·− 2−(j∧2k)'m)(ξ′, ξm).

Therefore, applying the identity g ∗ h = (ĝ ĥ)∨ implies that

(g ∗ h)(x′, xm) =
∑

($′,$m)∈Zm−1×Z
2−(m−1)(j∧k) 2−(j∧2k)g(2−(j∧k)'′, 2−(j∧2k)'m)

×h(x′ − 2−(j∧k)'′, xm − 2−(j∧2k)'m). (2.2)

Substituting g by ψj,k ∗ f and h by ψj,k into Calderón’s identity in (2.1) gives
the discrete Calderón’s identity in (1.12) and the convergence of the series in the
L2(Rm).

It remains to prove that the series in (1.12) converges in S0(Rm). To do this,
it suffices to show that

∑

|j|≥N1or|k|≥N2

∑

($′,$m)∈Zm−1×Z
2−(m−1)(j∧k) 2−(j∧2k)(ψj,k ∗ f)(2−(j∧k)'′, 2−(j∧2k)'m)

×ψj,k(x′ − 2−(j∧k)'′, xm − 2−(j∧2k)'m) (2.3)

tend to zero in S0(Rm) as N1 and N2 tend to infinity.
For the sake of convenience, we denote xI = 2−(j∧k)'′ and xJ = 2−(j∧2k)'m.

Let I be dyadic cubes in Rm−1 and J be dyadic intervals in R with side-length
'(I) = 2−(j∧k) and '(J) = 2−(j∧2k), and the left lower corners of I and the left end
points of J are xI and xJ , respectively. Then the above limit will follow from the
following estimates: for any fixed j, k and any given integer M > 0, |α| ≥ 0, there
exists a constant C = C(M,α) > 0 which is independent of j and k such that

∣∣∣
∑

I×J

|I| |J | (ψj,k ∗ f)(xI , xJ )(Dαψj,k)(x′ − xI , xm − xJ )
∣∣∣ ≤ C2−|j|2−|k|(1 + |x′|+ |xm|)−M . (2.4)
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To show (2.4), we apply the classical almost orthogonality argument. To be more
precise, for any given positive integers L1 and L2, there exists a constant C =
C(L1, L2) > 0 such that

(2.5) |ψ(1)
j ∗ ψ(1)

j′ (x′, xm)| ≤ C
2−|j−j′|L1 2(j∧j′)m

(1 + 2(j∧j′)|x′|+ 2(j∧j′)|xm|)L2

and

(2.6) |ψ(2)
k ∗ ψ(2)

k′ (x′, xm)| ≤ C
2−|k−k′|L1 2(k∧k′)(m+1)

(1 + 2(k∧k′)|x′|+ 22(k∧k′)|xm|)L2
.

Applying (2.6) with ψ(2)
0 = f, L1 = L+2M +m+1 and L2 = M, where L and M

are any fixed positive integers, we obtain

|(ψ(2)
k ∗ f)(x′, xm)| ≤ C 2−|k|(L+2M+m+1) 2−(k∧0)(m+1)

(1+2(k∧0)|x′|+2(2k∧0)|xm|)M

≤ C 2−|k|L 1
(1+|x′|+|xm|)M ,

where the last inequality is obvious if k ≥ 0, and when k ≤ 0,

2−k(m+1)

(1 + 2k|x′|+ 22k|xm|)M ≤ 2|k|(2M+m+1) 1

(1 + |x′|+ |xm|)M .

Note that ψ(2)
k ∗ f ∈ S0(Rm). Similarly, we have that

(2.7) |(ψ(1)
j ∗ (ψ(2)

k ∗ f))(u′, um)| ≤ C 2−|k|L2−|j|L 1

(1 + |u′|+ |um|)M .

From the size conditions of the functions ψ(1) and ψ(2), we have that for any fixed
large M,

|Dαψj,k(u
′, um)| = |Dα(ψ(1)

j ∗ ψ(2)
k )(u′, um)|

≤ C2|j||α|+2|k||α|
∫

2j(m−1)

(1 + 2j |u′ − v′|+ 2j |um − vm|)M
2k(m+1)

(1 + 2k|v′|+ 22k|vm|)M dv′dvm

≤ C2|j||α|+2|k||α| 2(j∧k)(m−1)2(j∧2k)

(1 + 2j∧k|u′|+ 2j∧2k|um|)M

≤ C2|j|(M+m+|α|)2|k|(2M+2+2|α|) 1

(1 + |u′|+ |um|)M . (2.8)

Estimates in (2.7) and (2.8) yield
∣∣∣
∑

I×J

|I| |J | (Dαψj,k)(x
′ − xI , xm − xJ)(ψj,k ∗ f)(xI , xJ)

∣∣∣

≤ C2−|k|(L−2M−2|α|−2)2−|j|(L−M−m−|α|)

×
∑

I×J

|I| |J | 1

(1 + |xI |+ |xJ |)M (1 + |x′ − xI |+ |xm − xJ |)M

= C2−|k|(L−2M−2|α|−2)2−|j|(L−M−m−|α|)

×
∑

I×J

∫

I×J

dy′dym
(1 + |xI |+ |xJ |)M (1 + |x′ − xI |+ |xm − xJ |)M

. (2.9)
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Note that if y′ ∈ I and ym ∈ J , then '(I)+ |x′−xI | ∼ '(I)+ |x′− y′|, '(I)+ |xI | ∼
'(I) + |y′|, '(J) + |xm − xJ | ∼ '(J) + |xm − ym|, and '(J) + |xJ | ∼ '(J) + |ym|.
The simple calculation gives

1

(1 + |x′ − xI |+ |xm − xJ |)M
≤ 2|j|2M2|k|3M

('(I) + '(J) + |x′ − xI |+ |xm − xJ |)M

≤ 2|j|4M2|k|6M

(1 + |x′ − y′|+ |xm − ym|)M .

Similarly,
1

(1 + |xI |+ |xJ |)M
≤ 2|j|4M2|k|6M

(1 + |y′|+ |ym|)M .

This implies that the last term in (2.9) is dominated by

C2−|k|(L−20M−2|α|−2)2−|j|(L−20M−m−|α|) 1

(1 + |x′|+ |xm|)M .

Choosing L = 20M + 2|α|+m+ 3, we derive the estimates in (2.4) and hence the
series in (2.3) converges to zero as N1 and N2 tend to infinity. Therefore, the series
in (1.12) converges in S0(Rm). By the duality argument, we obtain the series in
(1.12) converges in S ′

0(Rm). The proof of Theorem 1.3 is concluded.

3. Proof of Theorem 1.6

In this section, we first derive almost orthogonality estimates in Lemma 3.1 and
discrete version of maximal estimate in Lemma 3.2. Lemmas 3.1 and 3.2 together
with Theorem 1.3 yield Theorem 1.6.

Lemma 3.1. (Almost orthogonality estimates)
Suppose that ψj,k and ϕj′,k′ satisfy the same conditions in (1.5)-(1.8). Then

for any given integers L and M , there exists a constant C = C(L,M) > 0 such
that

|ψj,k ∗ ϕj′,k′(x′, xm)| ≤ C2−|j−j′|L2−|k−k′|L 2(j∧j′∧k∧k′)(m−1)

(1 + 2j∧j′∧k∧k′ |x′|)(M+m−1)

× 2j∧j′∧2(k∧k′)

(1 + 2j∧j′∧2(k∧k′)|xm|)(M+1)
.

Proof: We first write

(ψj,k∗ϕj′,k′)(x′, xm) =

∫

Rm−1×R
(ψ(1)

j ∗ϕ(1)
j′ )(x′−y′, xm−ym)(ψ(2)

k ∗ϕ(2)
k′ )(y′, ym)dy′dym.

By the almost orthogonal estimates as in (2.4) and (2.5), we have

(3.1) |ψ(1)
j ∗ ϕ(1)

j′ (u′, um)| ≤ C
2(j∧j′)m 2−|j−j′|L

(1 + 2(j∧j′)|u′|)(M+m−1) (1 + 2(j∧j′)|um|)(M+1)
.
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and

(3.2) |ψ(2)
k ∗ ϕ(2)

k′ (y′, ym)| ≤ C
2(k∧k′)(m+1) 2−|k−k′|L

(1 + 2(k∧k′)|y′|)(M+m−1) (1 + 22(k∧k′)|ym|)(M+1)
.

The estimates in (3.1) and (3.2) imply that

(3.3) |(ψj,k ∗ ϕj′,k′)(x′, xm)| ≤ C2−|j−j′|L 2−|k−k′|L AB,

where

A =

∫

R

2(j∧j′)

(1 + 2(j∧j′)|ym|)(M+1)

22(k∧k′)

(1 + 22(k∧k′)|xm − ym|)(M+1)
dym

≤ C
2(j∧j′∧k∧k′)(m−1)

(1 + 2j∧j′∧k∧k′ |x′|)(M+m−1)

and

B =

∫

Rm−1

2(j∧j′)(m−1)

(1 + 2(j∧j′)|y′|)(M+m−1)

2(k∧k′)(m−1)

(1 + 2(k∧k′)|x′ − y′|)(M+m−1)
dy′

≤ C
2j∧j′∧2(k∧k′)

(1 + 2j∧j′∧2(k∧k′)|xm|)(M+1)
.

This implies the conclusion of Lemma 3.1. !

Now we prove the following estimate of the discrete version of the maximal
function.

Lemma 3.2. Let I, I ′ be dyadic cubes in Rm−1 and J, J ′ be dyadic intervals in
R with the side lengths '(I) = 2−(j∧k), '(I ′) = 2−(j′∧k′) and '(J) = 2−(j∧2k),
'(J ′) = 2−(j′∧2k′), and the left lower corners of I, I ′ and the left end points of J, J ′

are 2−(j∧k)'′, 2−(j′∧k′)'′′, 2−(j∧2k)'m and 2−(j′∧2k′)'′m, respectively. Then for any
u′, v′ ∈ I, um, vm ∈ J , and any m−1

M+m−1 < δ ≤ 1,

∑

($′′,$′m)∈Zm−1×Z

2(m−1)(j∧j′∧k∧k′) 2j∧j′∧2k∧2k′
2−(m−1)(j′∧k′) 2−(j′∧2k′)

(1 + 2j∧j′∧k∧k′ |u′ − 2−(j′∧k′)'′′|)(M+m−1)

× |(ϕj′,k′ ∗ f)(2−(j′∧k′)'′′, 2−(j′∧2k′)'′m)|
(1 + 2j∧j′∧2k∧2k′ |um − 2−(j′∧2k′)'′m|)(M+1)

≤ C1

{
Ms

[( ∑

($′′,$′m)∈Zm−1×Z
|(ϕj′,k′ ∗ f)(2−(j′∧k′)'′′, 2−(j′∧2k′)'′m)|2χI′χJ ′

)δ/2]}1/δ

(v′, vm)

where C1 = C2(m−1)( 1
δ−1)(j′∧k′−j∧k)+ 2(

1
δ−1)(j′∧2k′−j∧2k)+ , here (a−b)+ = max{a−

b, 0}, and Ms is the strong maximal function.

Before proving Lemma 3.2, we would like to point out that this lemma is
the key tool to show Theorem 1.6 and 1.7. The discrete version plays a crucial
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role for this maximal function estimate. And this is why we choose the discrete
Littlewood-Paley-Stein square function and use it to define the Hardy space.

Proof of Lemma 3.2: For the sake of convenience, we denote by xI =
2−(j∧k)'′, xI′ = 2−(j′∧k′)'′′ the left lower corners of I, I ′ and by xJ = 2−(j∧2k)'m, xJ′ =
2−(j′∧2k′)'′m the left end of points of J, J ′, respectively. Set

A0 =
{
I ′ :

|u′ − xI′ |
2−(j∧j′∧k∧k′)

≤ 1
}
, B0 =

{
J ′ :

|um − xJ′ |
2−(j∧j′∧2k∧2k′)

≤ 1
}
,

and for r ≥ 1 and s ≥ 1,

Ar =
{
I ′ : 2r−1 <

|u′ − xI′ |
2−(j∧j′∧k∧k′)

≤ 2r
}
, Bs =

{
J ′ : 2s−1 <

|um − xJ ′ |
2−(j∧j′∧2k∧2k′)

≤ 2s
}
.

For any fixed r, s ≥ 0, denote

E = {(w′, wm) ∈ Rm−1 × R : |w′ − u′| ≤ 2r−(j∧j′∧k∧k′) + 2−(j∧k),

|wm − um| ≤ 2r−(j∧j′∧2k∧2k′) + 2−(j∧2k)}.

Then Ar ×Bs ⊂ E and for any (v′, vm) ∈ I × J, (v′, vm) ∈ E. Obviously,

|E| ≤ C2(m−1)[r−(j∧j′∧k∧k′)] 2[s−(j∧j′∧2k∧2k′)]
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Thus for m−1
M+m−1 < δ ≤ 1,

∑

($′′,$′m)∈Zm−1×Z

2(m−1)(j∧j′∧k∧k′) 2j∧j′∧2k∧2k′
2−(m−1)(j′∧k′) 2−(j′∧2k′)

(1 + 2j∧j′∧k∧k′ |u′ − 2−(j′∧k′)'′′|)(M+m−1)

× |(ϕj′,k′ ∗ f)(2−(j′∧k′)'′′, 2−(j′∧2k′)'′m)|
(1 + 2j∧j′∧2k∧2k′ |um − 2−(j′∧2k′)'′m|)(M+1)

≤ C
∑

r,s≥0

2−r(M+m−1)2−s(M+1)2(m−1)(j∧j′∧k∧k′) 2j∧j′∧2k∧2k′
2−(m−1)(j′∧k′) 2−(j′∧2k′)

×
(

∑

I′×J′∈Ar×Bs

|(ϕj′,k′ ∗ f)(xI′ , xJ ′)|δ
)1/δ

= C
∑

r,s≥0

2−r(M+m−1)2−s(M+1)2(m−1)(j∧j′∧k∧k′) 2j∧j′∧2k∧2k′
|I ′| |J ′| |E|1/δ

×
{

1

|E|

∫

E

∑

I′×J ′∈Ar×Bs

|I ′|−1 |J ′|−1 |(ϕj′,k′ ∗ f)(xI′ , xJ′)|δχI′χJ ′dx

}1/δ

≤ C
∑

r,s≥0

2−r(M+m−1)2−s(M+1)2(m−1)(j∧j′∧k∧k′) 2j∧j′∧2k∧2k′
|I ′|1− 1

δ |J ′|1− 1
δ |E|1/δ

×
{
Ms

( ∑

I′×J ′∈Ar×Bs

|(ϕj′,k′ ∗ f)(xI′ , xJ′)|δχI′χJ ′

)
(v′, vm)

}1/δ

≤ C1

{
Ms

( ∑

I′×J ′

|(ϕj′,k′ ∗ f)(xI′ , xJ ′)|δχI′χJ′

)
(v′, vm)

}1/δ

= C1

{
Ms

[( ∑

I′×J′

|(ϕj′,k′ ∗ f)(xI′ , xJ ′)|2χI′χJ′

)δ/2]
(v′, vm)

}1/δ

= C1

{
Ms

[( ∑

($′′ ,$′m)∈Zm−1×Z
|(ϕj′,k′ ∗ f)(2−(j′∧k′)'′′, 2−(j′∧2k′)'′m)|2χI′χJ′

)δ/2]
(v′, vm)

}1/δ

.

Now we return to

Proof of Theorem 1.6: Let f ∈ S ′
0(Rm). We denote xI = 2−(j∧k)'′, xJ =

2−(j∧2k)'m, xI′ = 2−(j′∧k′)'′′ and xJ′ = 2−(j′∧2k′)'′m. Discrete Calderón’s identity
on S ′/P(Rm) and the almost orthogonality estimates yield that for m−1

M+m−1 < δ <
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p ≤ 1 and any v′ ∈ I, vm ∈ J,

|(ψj,k ∗ f)(xI , xJ)|

= |
∑

j′,k′

∑

($′′,$′m)

2−(m−1)(j′∧k′)2−(j′∧2k′)(ψj,k ∗ ϕj′,k′)(xI − xI′ , xJ − xJ′)(ϕj′,k′ ∗ f)(xI′ , xJ′)|

≤ C
∑

j′,k′

2−|j−j′|L2−|k−k′|L
∑

($′′,$′m)

2(m−1)(j∧j′∧k∧k′) 2j∧j′∧2k∧2k′
2−(m−1)(j′∧k′) 2−(j′∧2k′)

(1 + 2j∧j′∧k∧k′ |xI − xI′ |)(M+m−1)

× |(ϕj′,k′ ∗ f)(xI′ , xJ ′)|
(1 + 2j∧j′∧2k∧2k′ |xJ − xJ′ |)(M+1)

≤ C
∑

j′,k′

2−|j−j′|L2−|k−k′|LC1

{
Ms

[( ∑

($′′,$′m)

|(ϕj′,k′ ∗ f)(xI′ , xJ′)|2χI′χJ ′

)δ/2]
(v′, vm)

}1/δ

where the last inequality follows from Lemma 3.2. Squaring both sides, then
multiplying χI ,χJ , summing over all j, k ∈ Z and ('′, 'm) ∈ Zm−1 × Z, and fi-
nally applying Hölder’s inequality we obtain that for any x′ ∈ I, xm ∈ J, and
max{ m+1

L+m+1 ,
m−1

M+m−1} < δ < p ≤ 1,

|Gd
ψ(f)(x

′, xm)|2

≤ C
∑

j,k

{∑

j′,k′

2−|j−j′|L2−|k−k′|L2(m−1)( 1
δ−1)(j′∧k′−j∧k)+2(

1
δ−1)(j′∧2k′−j∧2k)+

}

×
{∑

j′,k′

2−|j−j′|L2−|k−k′|L2(m−1)( 1
δ−1)(j′∧k′−j∧k)+2(

1
δ−1)(j′∧2k′−j∧2k)+

×
{
Ms

[( ∑

($′′,$′m)∈Zm−1×Z
|(ϕj′,k′ ∗ f)(2−(j′∧k′)'′′, 2−(j′∧2k′)'′m)|2χI′χJ′

) δ
2
]
(x′, xm)

}2/δ
}

≤ C

{∑

j′,k′

{
Ms

[( ∑

($′′,$′m)∈Zm−1×Z
|(ϕj′,k′ ∗ f)(2−(j′∧k′)'′′, 2−(j′∧2k′)'′m)|2χI′χJ ′

) δ
2
]
(x′, xm)

}2/δ
}
,

where in the last inequality we use the facts that (j′ ∧ k′ − j ∧ k)+ ≤ |j− j′|+ |k−
k′|, (j′ ∧ 2k′ − j ∧ 2k)+ ≤ |j − j′|+2|k− k′| and if choose L > (m+1)( 1δ − 1) then

∑

j′,k′

2−|j−j′|L2−|k−k′|L2(m−1)( 1
δ−1)(j′∧k′−j∧k)+2(

1
δ−1)(j′∧2k′−j∧2k)+ ≤ C

and
∑

j,k

2−|j−j′|L2−|k−k′|L2(m−1)( 1
δ−1)(j′∧k′−j∧k)+2(

1
δ−1)(j′∧2k′−j∧2k)+ ≤ C.

Applying Fefferman-Stein’s vector-valued strong maximal inequality on Lp/δ('2/δ)
yields

‖Gd
ψ(f)‖Lp(Rm) ≤ C‖Gd

ϕ(f)‖Lp(Rm).
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The conclusion of Theorem 1.6 follows. !

As a consequence of Theorem 1.6, L2(Rm)∩Hp
com(Rm) is dense in Hp

com(Rm).
Indeed we have the following result

Corollary 3.3. S0(Rm) is dense in Hp
com(Rm).

Proof: Let f ∈ Hp
com(Rm). For any fixed N > 0, denote

E = {(j, k, '′, 'm) : |j| ≤ N, |k| ≤ N, |'′| ≤ N, |'m| ≤ N},

and

fN (x′, xm) :=
∑

(j,k,$′,$m)∈E

2−(m−1)(j∧k) 2−(j∧2k)(ψj,k ∗ f)(2−(j∧k)'′, 2−(j∧2k)'m)

×ψj,k(x
′ − 2−(j∧k)'′, xm − 2−(j∧2k)'m)

where ψj,k is the same as in Theorem 1.3.
Since ψj,k ∈ S0(Rm), we obviously have fN ∈ S0(Rm). Repeating the proof of

Theorem 1.6, we can conclude that ‖fN‖Hp
com(Rm) ≤ C‖f‖Hp

com(Rm). To see that
fN tends to f in Hp

com, by the discrete Calderón’s identity in S ′
0(Rm) in Theorem

1.3,

(f − fN )(x′, xm) =
∑

(j,k,$′,$m)∈Ec

2−(m−1)(j∧k) 2−(j∧2k)(ψj,k ∗ f)(2−(j∧k)'′, 2−(j∧2k)'m)

×ψj,k(x′ − 2−(j∧k)'′, xm − 2−(j∧2k)'m),

where the series converges in S ′
0(Rm).

Therefore,

Gψ(f − fN ) : =

{∑

j′,k′

∑

($′′,$m)

|ψj′,k′ ∗ (f − fN )(2−(j′∧k′)'′′, 2−(j′∧2k′)'′m)|2 χI′χJ′

}1/2

=

{∑

j′,k′

∑

($′′,$m)

|ψj′,k′ ∗
∑

(j,k,$′,$m)∈Ec

2−(m−1)(j∧k) 2−(j∧2k)

×(ψj,k ∗ f)(2−(j∧k)'′, 2−(j∧2k)'m)

×ψj′,k′ ∗ ψj,k(2
−(j′∧k′)'′′ − 2−(j∧k)'′, 2−(j′∧2k′)'′m − 2−(j∧2k)'m)|2 χI′χJ′

}1/2

Repeating the proof of Theorem 1.6,

‖Gϕ(f−fN )‖Lp(Rm) ≤ C‖
∑

(j,k,$′,$m)∈Ec

|ψj,k∗f(2−(j∧k)'′, 2−(j∧2k)'m)|2χIχJ}
1
2 ‖Lp(Rm),

where the last term tends to 0 as N tends to infinity. This implies that fN tends
to f in the Hp

com(Rm) norm as N tend to infinity. !
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4. Proof of Theorem 1.7

To show Theorem 1.7, we need a discrete Calderón-type identity on L2(Rm) ∩
Hp

com(Rm), which has its own interests. To do this, let φ(1) ∈ S(Rm) with supp
φ(1) ⊆ B(0, 1),

(4.1)
∑

j∈Z
|φ̂(1)(2−jξ)|2 = 1 for all ξ ∈ Rm \ {0},

and

(4.2)

∫

Rm

φ(1)(x)xαdx = 0 for all |α| ≤ 10M,

where M is a fixed large positive integer depending on p. We also let φ(2) ∈ S(Rm)
with supp φ(2) ⊆ B(0, 1),

(4.3)
∑

k∈Z
|φ̂(2)(2−kξ′, 2−2kξm)|2 = 1 for all (ξ′, ξm) ∈ Rm−1 × R \ {(0, 0)},

and

(4.4)

∫

Rm

φ(2)(x)xβdx = 0 for all |β| ≤ 10M.

Set φj,k = φ(1)j ∗φ(2)k , where φ(1)j (x) = 2jmφ(1)(2jx) and φ(2)k (x′, xm) = 2k(m+1)φ(2)(2kx′, 22kxm).
The discrete Calderón-type identity is given by the following

Theorem 4.1 Let φ(1) and φ(2) satisfy conditions from (4.1) to (4.4). Then for
any f ∈ L2(Rm) ∩Hp

com(Rm), there exists h ∈ L2(Rm) ∩Hp
com(Rm) such that for

a sufficiently large N ∈ N,

f(x′, xm) =
∑

j,k∈Z

∑
($′,$m)∈Zm−1×Z

|I| |J | φj,k(x′ − 2−(j∧k)−N '′, xm − 2−(j∧2k)−N 'm)

×(φj,k ∗ h)(2−(j∧k)−N '′, 2−(j∧2k)−N 'm), (4.5)

where the series converges in L2, I are dyadic cubes in Rm−1 and J are dyadic in-
tervals in R with side-length '(I) = 2−(j∧k)−N and '(J) = 2−(j∧2k)−N , and the left
lower corners of I and the left end points of J are 2−(j∧k)−N '′ and 2−(j∧2k)−N 'm,
respectively. Moreover,

(4.6) ‖f‖L2(Rm) ≈ ‖h‖L2(Rm),

and

(4.7) ‖f‖Hp
com(Rm) ≈ ‖h‖Hp

com(Rm).

We point out that the main difference between the discrete Calderón-type iden-
tity above and the discrete Calderón’s identity given in Theorem 1.3 is that for
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any fixed j, k ∈ Z, φj,k(x′, xm) in (4.5) have compact supports but ψj,k(x′, xm) in
(1.17) don’t. Being of compact support allows to use the orthogonality argument
in the proof of Theorem 1.7.

Proof of Theorem 4.1: By taking the Fourier transform, we have that for any
f ∈ L2(Rm),

f(x′, xm) =
∑

j,k

φj,k ∗ φj,k ∗ f(x′, xm).

Applying Coifman’s decomposition of the identity operator, we obtain

f(x′, xm) =
∑

j,k

∑

($′,$m)

|I| |J | φj,k(x′ − 2−(j∧k)−N '′, xm − 2−(j∧2k)−N 'm)

×(φj,k ∗ f)(2−(j∧k)−N '′, 2−(j∧2k)−N 'm) +RN (f)(x′, xm)

:= TN (f)(x′, xm) +RN (f)(x′, xm),

where

RN (f)(x′, xm)

=
∑

j,k

∑

($′,$m)

∫

I×J
[φj,k(x

′ − y′, xm − ym)(φj,k ∗ f)(y′, ym)

−φj,k(x′ − 2−(j∧k)−N '′, xm − 2−(j∧2k)−N 'm)(φj,k ∗ f)(2−(j∧k)−N '′, 2−(j∧2k)−N 'm)]dy′dym

=
∑

j,k

∑

($′,$m)

∫

I×J
[φj,k(x

′ − y′, xm − ym)− φj,k(x
′ − 2−(j∧k)−N '′, xm − 2−(j∧2k)−N 'm)]

×(φj,k ∗ f)(y′, ym)dy′dym

+
∑

j,k

∑

($′,$m)

∫

I×J
φj,k(x

′ − 2−(j∧k)−N '′, xm − 2−(j∧2k)−N 'm)

×[φj,k ∗ f(y′, ym)− φj,k ∗ f(2−(j∧k)−N '′, 2−(j∧2k)−N 'm)]dy′dym

:= R1
N (f)(x′, xm) +R2

N (x′, xm),

here I are dyadic cubes in Rm−1 and J are dyadic intervals in R with side-length
'(I) = 2−(j∧k)−N and '(J) = 2−(j∧2k)−N and the left lower corners of I and the
left end points of J are 2−(j∧k)−N '′ and 2−(j∧2k)−N 'm, respectively. We claim
that for i = 1, 2,

(4.8) ‖Ri
N (f)‖L2(Rm) ≤ C2−N‖f‖L2(Rm),

and

(4.9) ‖Ri
N (f)‖Hp

com(Rm) ≤ C2−N‖f‖Hp
com(Rm),

where C is the constant independent of f and N.
Assume the claim for the moment, then, by choosing sufficiently large N, T−1

N =
∞∑

n=0
(RN )n is bounded in both L2 and Hp

com, which implies that

‖T−1
N (f)‖L2(Rm) ≈ ‖f‖L2(Rm)
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and

‖T−1
N (f)‖Hp

com(Rm) ≈ ‖f‖Hp
com(Rm).

Moreover, for any f ∈ L2(Rm) ∩Hp
com(Rm), set h = T−1

N (f), then

f(x′, xm) = TN (T−1
N (f))(x′, xm)

=
∑

j,k∈Z

∑

($′,$m)∈Zm−1×Z
|I||J |φj,k(x′ − 2−(j∧k)−N '′, xm − 2−(j∧2k)−N 'm)

×(φj,k ∗ h)(2−(j∧k)−N '′, 2−(j∧2k)−N 'm),

where the series converges in L2.

Now we show the claim. Since the proofs for R1
N and R2

N are similar, we only give
the proof for R1

N . Roughly speaking, the proof is similar to Theorem 1.6. To see
this, let f ∈ L2(Rm)∩Hp

com(Rm). Applying discrete Calderón’s identity in L2(Rm)
in Theorem 1.3 yields

ψj′,k′ ∗R1
N (f)(x′, xm)

=
∑

j,k∈Z

∑

($′,$m)∈Zm−1×Z

∫

I×J
ψj′,k′ ∗ [φj,k(·− y′, ·− ym)

−φj,k(·− 2−(j∧k)−N '′, ·− 2−(j∧2k)−N 'm)](x′, xm)(φj,k ∗ f)(y′, ym)dy′dym

=
∑

j,k∈Z

∑

($′,$m)∈Zm−1×Z

∫

I×J
ψj′,k′ ∗ [φj,k(·− y′, ·− ym)

−φj,k(·− 2−(j∧k)−N '′, ·− 2−(j∧2k)−N 'm)](x′, xm)

×φj,k ∗
{ ∑

j′′,k′′∈Z

∑

($′′′,$′′m)∈Zm−1×Z
|I ′′||J ′′|ψj′′,k′′(·− 2−(j′′∧k′′)'′′′, ·− 2−(j′′∧2k′′)'′′m)

(ψj′′,k′′ ∗ f)(2−(j′′∧k′′)'′′′, 2−(j′′∧2k′′)'′′m)

}
(y′, ym)dy′dym, (4.10)

where I ′′ are dyadic cubes in Rm−1 and J ′′ are dyadic intervals in R with the side
length '(I ′′) = 2−(j′′∧k′′) and J ′′ are dyadic intervals in R with the side length
'(J ′′) = 2−(j′′∧2k′′), and the left lower corners of I ′′ and the left end points of J ′′

are 2−(j′′∧k′′)'′′′ and 2−(j′′∧2k′′)'′′m, respectively.

Set φ̃j,k = φj,k(z′ − y′, zm − ym)− φj,k(z′ − 2−(j∧k)−N '′, zm − 2−(j∧2k)−N 'm).
Then by the almost orthogonality arguments in Lemma 3.1, we obtain

|ψj′,k′ ∗ φ̃j,k(x′, xm)| ! 2−N2−10M |j−j′|2−10M |k−k′| 2(j
′∧k′)(m−1)

(1 + 2j′∧k′ |x′ − y′|)(M+m−1)

× 2j
′∧2k′

(1 + 2j′∧2k′ |xm − ym|)(M+1)
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and similarly, for y′ ∈ I, ym ∈ J ,

|φj,k ∗ ψj′′,k′′(y′ − 2−(j′′∧k′′)'′′, ym − 2−(j′′∧2k′′)'′m)|

! 2−10M |j−j′′|2−10M |k−k′′| 2(j
′′∧k′′)(m−1)

(1 + 2j′′∧k′′ |y′ − 2−(j′′∧k′′)'′′|)(M+m−1)

× 2j
′′∧2k′′

(1 + 2j′′∧2k′′ |ym − 2−(j′′∧2k′′)'′m)|)(M+1)
.

Substituting these estimates into the last term in (4.10) yields

|ψj′,k′ ∗ R1
N (f)(x′, xm)|

!
∑

j′′,k′′∈Z

∑

($′′′,$′′m)∈Zm−1×Z
|I ′′||J ′′||(ψj′′,k′′ ∗ f)(2−(j′′∧k′′)'′′′, 2−(j′′∧2k′′)'′′m)|

×
∑

j,k∈Z

∑

($′,$m)∈Zm−1×Z

∫

I×J
2−N2−|j−j′|3M2−|k−k′|3M

× 2(j
′∧k′)(m−1)

(1 + 2j′∧k′ |x′ − y′|)(M+m−1)

2j
′∧2k′

(1 + 2j′∧2k′ |xm − ym|)(M+1)
2−|j−j′′|3M2−|k−k′′|3M

× 2(j
′′∧k′′)(m−1)

(1 + 2j′′∧k′′ |y′ − 2−(j′′∧k′′)'′′|)(M+m−1)

2j
′′∧2k′′

(1 + 2j′′∧2k′′ |ym − 2−(j′′∧2k′′)'′m)|)(M+1)
dy′dym

! 2−N
∑

j′′,k′′

∑

($′′′,$′′m)

2−|j′−j′′|3M2−|k′−k′′|3M |I ′′||J ′′| 2(j
′∧j′′∧k′∧k′′)(m−1)

(1 + 2j′∧j′′∧k′∧k′′ |x′ − 2−(j′′∧k′′)'′′′|)(M+m−1)

× 2(j
′∧j′′)∧2(k∧k′)

(1 + 2(j′∧j′′)∧2(k∧k′)|xm − 2−(j′′∧2k′′)'′′m|)(M+1)
|(ψj′′,k′′ ∗ f)(2−(j′′∧k′′)'′′′, 2−(j′′∧2k′′)'′′m)|.

By the L2 boundedness of the discrete Littlewood-Paley-Stein square function
Gd
ψ(f), we have

‖R1
N (f)‖L2 ! ‖Gd

ψ(R1
Nf)(x′, xm)‖L2

! 2−N‖{
∑

j′′,k′′∈Z

∑

($′′′,$′′m)∈Zm−1×Z
|(ψj′′,k′′ ∗ f)(2−(j′′∧k′′)'′′′, 2−(j′′∧2k′′)'′′m)|2χ′′

Iχ
′′
J}

1
2 ‖L2

! 2−N‖f‖L2 .

Repeating the same proof as in Theorem 1.6 implies

‖R1
N (f)‖Hp

com
! ‖Gd

ψ(R1
Nf)(x′, xm)‖Lp

! 2−N‖{
∑

j′′,k′′∈Z

∑

($′′′,$′′m)∈Zm−1×Z
|(ψj′′,k′′ ∗ f)(2−(j′′∧k′′)'′′′, 2−(j′′∧2k′′)'′′m)|2χ′′

Iχ
′′
J}

1
2 ‖Lp

! 2−N‖f‖Hp
com

.

The claim is concluded and hence Theorem 4.1 follows. !

Repeating the same proof of Theorem 1.6, we have
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Corollary 4.1. Let 0 < p ≤ 1. Suppose φj,k satisfies the same conditions as in
Theorem 4.1 with a large M depending on p. Then for a large N as in Theorem
4.1 and f ∈ L2 ∩Hp

com,

‖f‖Hp
com

≈ ‖
( ∑

j,k∈Z

∑

($′,$m)∈Zm−1×Z
|(φj,k∗f)(2−(j∧k)−N '′, 2−(j∧2k)−N 'm)|2χIχJ

)1/2

‖Lp

We now prove Theorem 1.7.

Proof of Theorem 1.7: We may assume that Ki is the kernel of the convolution
operator Ti, i = 1, 2, and K is the kernel of the composition operator T = T1 ◦ T2.
Then T (f) = K ∗ f and K = K1 ∗ K2. For f ∈ L2 ∩ Hp

com, 0 < p ≤ 1, by the L2

boundedness of T and applying discrete Calderon’s identity of f on L2 ∩Hp
com in

Theorem 4.1, we conclude

‖T (f)‖Hp
com

≤ C‖{
∑

j,k

∑

($′,$m)

|(φj,k ∗K ∗ f)(2−(j∧k)−N '′, 2−(j∧2k)−N 'm)|2χIχJ}
1
2 ‖Lp

= C‖{
∑

j,k

∑

($′,$m)

|
∑

j′,k′

∑

($′′,$′m)

2−(m−1)(j′∧k′) 2−(j′∧2k′)(φj′,k′ ∗ h)(2−(j′∧k′)−N '′′, 2−(j′∧2k′)−N '′m)

×(K ∗ φj,k ∗ φj′,k′)(2−(j∧k)−N '′ − 2−(j′∧k′)−N '′′, 2−(j∧2k)−N 'm − 2−(j′∧2k′)−N '′m)|2χIχJ}
1
2 ‖Lp ,

where φj,k,φj′,k′ , h and N are the same as in Theorem 4.1.

We claim that for any given M > 0,

(4.11) |K1 ∗ φ(1)k (x′, xm)| ≤ C
2km

(1 + 2k|x′|)M+m−1(1 + 2k|xm|)M+1
,

and

(4.12) |K2 ∗ φ(2)k (x′, xm)| ≤ C
2k(m+1)

(1 + 2k|x′|)M+m+1 (1 + 22k|xm|)M+1
.

We only show (4.12) here since the proof of (4.11) is similar. We consider the
following two cases:

Case 1. |x|h ≤ 2 2−k:

In this case, 2k|x′| ≤ 2 and 22k|xm| ≤ 4, which imply that

1 + 2k|x′| ∼ 1 and 1 + 22k|xm| ∼ 1.

By the fact supp φ(2)k ⊂ {x : |x|h ≤ 2−k} and the cancellation condition in (4.4),
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K2 ∗ φ(2)k (x) is bounded by

|K2 ∗ φ(2)k (x)| = | lim
ε→0

∫

ε≤|x−y|h≤10 2−k

K2(x− y)φ(2)k (y)dy|

= | lim
ε→0

∫

ε≤|x−y|h≤3 2−k

K2(x− y) [φ(2)k (y)− φ(2)k (x)] dy|

≤ C2k(m+1)

∫

|x′−y′|≤3
(|x′ − y′|)−(m−1)+1dy′

∫

|xm−ym|≤9
|xm − ym|−2+2dym

≤ C2k(m+1) ≤ C
2k(m+1)

(1 + 2k|x′|)M+m−1(1 + 22k|xm|)M+1
.

Case 2. |x|h > 2 2−k:
In this case, 2k|x′| > 2 or 22k|xm| > 4, which imply that

1 + 2k|x′| ∼ 2k|x′| or 1 + 22k|xm| ∼ 22k|xm|.
By the cancellation condition of φ(2) with order 4M in (4.4) and the size condition
of K2 in (1.3),

|K2 ∗ φ(2)k (x)| = |
∫

|y|h≤2−k

[K2(x− y)−
∑

|α|=|α1|+|2α2|≤4M

1

α!
Dα1

x′ Dα2
xm

K2(x
′, xm)yα] φ(2)k (y)dy|

≤ C

∫

|y|h≤2−k

(|y|h)4M+1

(|x|h)m+1+4M+1
|φ(2)k (y)| dy

≤ C
2k(m+1)

(1 + 2k|x′|)M+m−1(1 + 22k|xm|)M+1
.

Thus the claim follows. By the classical orthogonality argument, for any fixed L
amd M,

(4.13) |φ(1)j ∗ φ(1)j′ (x′, xm)| ≤ C
2−|j−j′|L 2m(j∧j′)

(1 + 2(j∧j′)|x′|)(M+m−1) (1 + 2(j∧j′)|xm|)(M+1)
,

and

(4.14) |φ(2)k ∗ φ(2)k′ (x′, xm)| ≤ C
2−|k−k′|L 2(k∧k′)(m+1)

(1 + 2(k∧k′)|x′|)(M+m−1) (1 + 22(k∧k′)|xm|)(M+1)
.

Estimates from (4.11) to (4.14) yield that

|K ∗ φj,k ∗ φj′,k′(x′, xm)| = |[K1 ∗ φ(1)j ∗ φ(1)j′ ] ∗ [K2 ∗ ψ(2)
k ∗ ψ(2)

k′ ](x′, xm)|

≤ C
2−|j−j′|L2−|k−k′|L2(j∧j′∧k∧k′)(m−1) 2j∧j′∧2k∧2k′

(1 + 2j∧j′∧k∧k′ |x′|)(M+m−1) (1 + 2j∧j′∧2k∧2k′ |xm|)(M+1)
. (4.15)

Using the estimates in (4.15) and applying the same proof as in Theorem 1.6 yield
that for f ∈ L2 ∩Hp

com and 0 < δ < p ≤ 1,

‖T (f)‖Hp
com

≤ C

∥∥∥∥

{∑

j′,k′

{Ms[(
∑

($′′,$′m)

|(φj′,k′ ∗ h)(2−(j′∧k′)−N '′′, 2−(j′∧2k′)−N '′m)|χI′χJ′)δ]} 2
δ

} 1
2
∥∥∥∥
Lp

≤ C‖h‖Hp
com

≤ C‖f‖Hp
com

.
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Since L2 ∩Hp
com is dense in Hp

com, we conclude the proof of Theorem 1.7. !

5. Proofs of Theorems 1.8 and 1.9

In this section using Theorem 4.1, we prove Theorem 1.8. Theorem 1.9 then follows
directly from Theorem 1.8.

Proof of Theorem 1.8:
For any f ∈ L2(Rm) ∩Hp

com(Rm), set

Ωi = {(x′, xm) ∈ Rm−1 × R : G̃d
φ(f)(x

′, xm) > 2i},

where

G̃d
φ(f) = {

∑
j,k∈Z

∑
($′,$m)∈Zm−1×Z

|(φj,k ∗ h)(2−(j∧k)−N '′, 2−(j∧2k)−N 'm)|2χIχJ}
1
2 ,

here φj,k and h are given by Theorem 4.1. Denote

Bi = {(j, k, I, J) : |(I × J) ∩ Ωi| >
1

2
|I × J |, |(I × J) ∩ Ωi+1| ≤

1

2
|I × J |},

where I are dyadic cubes in Rm−1 and J are dyadic intervals in R with the side
lengths '(I) = 2−(j∧k)−N and '(J) = 2−(j∧2k)−N , and the left lower corners of I
and the left end points of J are 2−(j∧k)−N '′ and 2−(j∧2k)−N 'm, respectively.

By Theorem 4.1, we write

f(x′, xm) =
∑
i

∑
(j,k,I,J)∈Bi

|I| |J | φj,k(x′ − 2−(j∧k)−N '′, xm − 2−(j∧2k)−N 'm)

×(φj,k ∗ h)(2−(j∧k)−N '′, 2−(j∧2k)−N 'm),

where the series converges in the L2 norm. We claim that
∥∥∥∥

∑

(j,k,I,J)∈Bi

|I||J |φj,k(·− 2−(j∧k)−N '′, ·− 2−(j∧2k)−N 'm)

×(φj,k ∗ h)(2−(j∧k)−N '′, 2−(j∧2k)−N 'm)

∥∥∥∥
p

Lp

≤ C2ip|Ωi|,

which together with the fact 0 < p ≤ 1 yields

‖f‖pLp ≤ C
∑

i

2ip|Ωi| ≤ C‖G̃d
φ(f)‖

p
Lp ≤ C‖h‖pHp

com
≤ C‖f‖pHp

com
.

Now we show the claim. Note that functions φ(1) and φ(2) are supported in unit
balls. Hence if (j, k, I, J) ∈ Bi, then φj,k are supported in

Ω̃i = {(x′, xm) : Ms(χΩi)(x
′, xm) >

1

100m
}.



Hardy spaces associated with different homogeneities 25

For the sake of convenience, we denote xI = 2−(j∧k)−N '′ and xJ = 2−(j∧2k)−N 'm.
Since |Ω̃i| ≤ C|Ωi|, by Hölder’s inequality we obtain

‖
∑

(j,k,I,J)∈Bi

|I| |J | φj,k(·− xI , ·− xJ)(φj,k ∗ h)(xI , xJ)‖pLp

≤ |Ωi|1−
p
2 ‖

∑

(j,k,I,J)∈Bi

|I| |J | φj,k(·− xI , ·− xJ)(φj,k ∗ h)(xI , xJ)‖p2.

By the duality argument, we estimate the L2 norm of

∑

(j,k,I,J)∈Bi

|I| |J | φj,k(·− xI , ·− xJ)(φj,k ∗ h)(xI , xJ)

as follows: For all g ∈ L2 with ‖g‖2 ≤ 1,

| <
∑

(j,k,I,J)∈Bi

|I| |J | φj,k(·− xI , ·− xJ )(φj,k ∗ h)(xI , xJ ), g > |

≤ C




∑

(j,k,I,J)∈Bi

|I| |J | |(φj,k ∗ h)(xI , xJ)|2




1
2



∑

(j,k,I,J)∈Bi

|I| |J | |(φj,k ∗ g)(xI , xJ )|2




1
2

.

While,

∑

(j,k,I,J)∈Bi

|I| |J | |(φj,k ∗ g)(xI , xJ)|2

=

∫

Rm−1×R





∑

(j,k,I,J)∈Bi

|(φj,k ∗ g)(xI , xJ ))|2χI(x
′)χJ(xm)






1
2 ·2

dx′dxm

≤
∫

Rm−1×R
G̃d
φ(g)(x

′, xm)2 dx′dxm

≤ ‖g‖2L2 .

In addition,

C22i|Ωi| ≥
∫

Ω̃i\Ωi+1

[G̃d
φ(f)(x, y)]

2 dx′dxm

≥
∑

(j,k,I,J)∈Bi

|(φj,k ∗ h)(xI , xJ )|2 |(I × J) ∩ Ω̃i\Ωi+1|

≥ 1

2

∑

(j,k,I,J)∈Bi

|I| |J | |(φj,k ∗ h)(xI , xJ )|2,

where in the last inequality we use the fact that |(I × J) ∩ Ω̃i\Ωi+1| > 1
2 |I × J |

when (j, k, I, J) ∈ Bi. This completes the proof of Theorem 1.8. !
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Proof of Theorem 1.9: Suppose f ∈ Hp
com ∩L2. By Theorem 1.7, T is bounded

on Hp
com, which together with the fact that T is also bounded on L2 yields that

T (f) ∈ Hp
com ∩L2, so applying first Theorem 1.8 and then Theorem 1.7 we obtain

‖T (f)‖Lp ≤ C‖T (f)‖Hp
com

≤ C‖f‖Hp
com

for any f ∈ L2 ∩Hp
com.

SinceHp
com∩L2 is dense inHp

com, the composition operator T extends to a bounded
operator from Hp

com to Lp. !

6. Proofs of Theorems 1.10 and 1.11

We now prove the Calderón-Zygmund decomposition and the interpolation theo-
rem on Hp

com(Rm).

Proof of Theorem 1.10: We first assume f ∈ L2 ∩ Hp
com. Let α > 0 and

Ω$ = {x ∈ Rm : G̃d
φ(f)(x) > α2$}, where G̃d

φ(f) is defined in the the proof of
Theorem 1.8.

Let

R0 =

{
I × J : |(I × J) ∩ Ω0| <

1

2
|I × J |

}

and for ' ≥ 1

R$ =

{
I × J : |(I × J) ∩ Ω$−1| ≥

1

2
|I × J |, |(I × J) ∩ Ω$| <

1

2
|I × J |

}
,

where I are dyadic cubes in Rm−1 and J are dyadic intervals in R with the side
lengths '(I) = 2−(j∧k)−N and '(J) = 2−(j∧2k)−N , and the left lower corners of I
and the left end points of J are 2−(j∧k)−N '′ and 2−(j∧2k)−N 'm, respectively.

By the discrete Calderón-type identity in Theorem 4.1,

f(x′, xm) =
∑

j,k

∑

I,J

|I||J |φj,k(x′ − xI , xm − yJ )φj,k ∗ h(xI , yJ)

=
∑

j,k

∑

$≥1

∑

I×J∈R#

|I||J |φj,k(x′ − xI , xm − yJ )φj,k ∗ h(xI , yJ)

+
∑

j,k

∑

I×J∈R0

|I||J |φj,k(x′ − xI , xm − yJ)φj,k ∗ h(xI , yJ )

= b(x′, xm) + g(x′, xm),

where xI = 2−(j∧k)−N '′ and yJ = 2−(j∧2k)−N 'm.
When p1 > 1, using duality argument as in the proof of Theorem 1.8, it is easy

to show

‖g‖p1 ≤ C‖





∑

j,k

∑

I×J∈R0

|φj,k ∗ h(xI , yJ)|2χIχJ






1
2

‖p1 .
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Next, we estimate ‖g‖Hp1
com

when 0 < p1 ≤ 1. Clearly, the duality argument will
not work here. Nevertheless, we can estimate the Hp1

com norm directly by using
discrete Calderón’s identity in Theorem 1.3. To this end, we note that

‖g‖Hp1
com

≤ ‖





∑

j′,k′

∑

I′,J′

| (ψj′k′ ∗ g) (xI′ , yJ′)|2χI′(x)χJ ′(y)






1
2

‖Lp1 ,

where I ′ are dyadic cubes in Rm−1 and J ′ are dyadic intervals in R with the side
lengths '(I ′) = 2−(j′∧k′) and '(J ′) = 2−(j′∧2k′), and the left lower corners of I ′ and
the left end points of J ′ are 2−(j′∧k′)'′′ and 2−(j′∧2k′)'′m, respectively.

Since

(ψj′,k′ ∗ g) (xI′ , yJ ′) =
∑

j,k

∑

I×J∈R0

|I||J | (ψj′k′ ∗ φj,k) (xI′−xI , yJ ′−yJ )φj,k∗h(xI , yJ)

Repeating the same proof of Theorem 1.6, we have

‖





∑

j′,k′

∑

I′,J′

| (ψj′k′ ∗ g) (xI′ , yJ ′)|2χI′(x)χJ′(y)






1
2

‖p1

≤ C‖





∑

j,k

∑

I×J∈R0

|φj,k ∗ h(xI , yJ )|2χIχJ






1
2

‖p1 .

This shows that for all 0 < p1 < ∞

‖g‖Hp1
com

≤ C‖





∑

j,k

∑

I×J∈R0

|φj,k ∗ h(xI , yJ)|2χIχJ






1
2

‖p1 .

Claim 1:

∫

G̃d(f)(x′,xm)≤α
(G̃d(f))p1(x′, xm)dx′dxm ≥ C‖





∑

j,k

∑

I×J∈R0

|φj,k ∗ h(xI , yJ )|2χIχJ






1
2

‖p1
p1
.

This claim implies

‖g‖p1

H
p1
com

≤ C

∫

G̃d(f)(x′,xm)≤α
(G̃d(f))p1(x′, xm)dx′dxm

≤ Cαp1−p

∫

G̃d(f)(x′,xm)≤α
(G̃d(f))p(x′, xm)dx′dxm

≤ Cαp1−p‖f‖pHp
com

.
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To show Claim 1, we choose 0 < q < p1 and note that

∫

G̃d(f)(x′,xm)≤α
(G̃d(f))p1(x′, xm)dx′dxm

=

∫

G̃d(f)(x′,xm)≤α





∑

j,k

∑

I,J

|φj,k ∗ h(xI , yJ )|2χI(x
′)χJ(xm)






p1
2

dx′dxm

≥ C

∫

Ωc
0





∑

j,k

∑

R=I×J∈R0

|φj,k ∗ h(xI , yJ )|2χIχJ






p1
2

dx′dxm

= C

∫

Rm−1×R





∑

j,k

∑

R∈R0

|φj,k ∗ h(xI , yJ)|2χR∩Ωc
0
(x′, xm)






p1
2

dx′dxm

≥ C

∫

Rm−1×R










∑

j,k

∑

R∈R0

(
Ms

(
|φj,k ∗ h(xI , yJ )|qχR∩Ωc

0

)
(x′, xm)

) 2
q






q
2






p1
q

dx′dxm

≥ C

∫

Rm−1×R





∑

j,k

∑

R∈R0

|φj,k ∗ h(xI , yJ)|2χR(x
′, xm)






p1
2

dx′dxm

where in the last inequality we have used the fact that |Ωc
0 ∩ R| ≥ 1

2 |R| for R =
I × J ∈ R0, and thus

χI(x
′)χJ(xm) ≤ 2

1
q Ms(χR∩Ωc

0
)

1
q (x′, xm)

and in the second to the last inequality we have used the vector-valued Fefferman-
Stein inequality for strong maximal functions

‖
( ∞∑

k=1

(Ms(fk))
r

) 1
r

‖p ≤ C‖
( ∞∑

k=1

|fk|r
) 1

r

‖p

with the exponents r = 2/q > 1 and p = p1/q > 1. Thus the claim follows.

We now recall Ω̃$ = {(x′, xm) ∈ Rm−1 × R : Ms(χΩ#) >
1
2}.

Claim 2: For any 0 < p2 ≤ 1 and ' ≥ 1,

‖
∑

j,k

∑

I×J∈R#

|I||J |φ̃j,k(x′ − xI , xm − yJ)φj,k ∗ h(xI , yJ)‖p2

H
p2
com

≤ C(2$α)p2 |Ω̃$−1|.



Hardy spaces associated with different homogeneities 29

Claim 2 implies

‖b‖p2

H
p2
com

≤
∑

$≥1

(2$α)p2 |Ω̃$−1|

≤ C
∑

$≥1

(2$α)p2 |Ω$−1| ≤ C

∫

G̃d(f)(x,y)>α
(G̃d)p2(f)(x′, xm)dx′dxm

≤ Cαp2−p

∫

G̃d(f)(x,y)>α
(G̃d)p(f)(x′, xm)dx′dxm ≤ Cαp2−p‖f‖pHp

com
.

To show Claim 2, again we have

‖
∑

j,k

∑

I×J∈R#

|I| |J | φj,k(x′ − xI , xm − yJ )φj,k ∗ h(xI , yJ)‖Hp2
com

≤ C‖






∑

j′k′

∑

I′,J ′

∣∣∣∣∣∣

∑

j,k

∑

I×J∈R#

|I||J | (ψj′k′ ∗ φj,k) (xI′ − xI , yJ′ − yJ)φj,k ∗ h(xI , yJ)

∣∣∣∣∣∣

2





1
2

‖Lp2

≤ C‖





∑

j,k

∑

I×J∈R#

|φj,k ∗ h(xI , yJ)|2χIχJ






1
2

‖Lp2

where we can use a similar argument in the proof of Theorem 1.8 to prove the last
inequality.

However, as in the proof of the claim 1, choosing 0 < q < 2 and q < p2 implies
that

(2$α)p2 |Ω̃$−1|

≥
∫

Ω̃#−1\Ω#

G̃d(f)p2(x′, xm)dx′dxm

=

∫

Ω̃#−1\Ω#





∑

j,k

∑

I,J

|φj,k ∗ h(xI , yJ )|2χI(x
′)χJ(xm)






p2
2

dx′dxm

=

∫

Rm−1×R





∑

j,k

∑

I,J

|φj,k ∗ h(xI , yJ)|2χ(I×J)∩Ω̃#−1\Ω#)
(x′, xm)






p2
2

dx′dxm

≥ C

∫

Rm−1×R










∑

j,k

∑

I,J

(
Ms

(
|φj,k ∗ h(xI , yJ )|qχ(I×J)∩Ω̃#−1\Ω#)

(x′, xm)
)) 2

q






q
2






p2
q

dx′dxm

≥ C

∫

Rm−1×R

{
∑

I×J∈R#

|φj,k ∗ h(xI , yJ)|2χI(x
′)χJ (xm)

} p2
2

dx′dxm.
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In the above string of inequalities, we have used the fact that for I × J ∈ R$ we
have

|(I × J) ∩ Ω$−1| >
1

2
|I × J | and |(I × J) ∩ Ω$| ≤

1

2
|I × J |

and consequently I × J ⊂ Ω̃$−1. Therefore |(I × J) ∩ (Ω̃$−1\Ω$)| > 1
2 |I × J | for

I × J ∈ R$. Thus

χI(x
′)χJ (xm) ≤ 2

1
q Ms(χ(I×J)∩Ω̃#−1\Ω#)

)
1
q (x′, xm).

This gives the proof of the claim 2. Since L2(Rm) ∩Hp
com is dense in Hp

com. !

We are now ready to prove the interpolation theorem on Hardy spaces Hp
com

for all 0 < p < ∞.
Proof of Theorem 1.11: Suppose that T is bounded from Hp2

com to Lp2 and
from Hp1

com to Lp1 . For any given λ > 0 and f ∈ Hp
com, by the Calderón-Zygmund

decomposition,
f(x) = g(x) + b(x)

with
‖g‖p1

H
p1
com

≤ Cλp1−p‖f‖pHp
com

and ‖b‖p2

H
p2
com

≤ Cλp2−p‖f‖pHp
com

.

Moreover, we have proved the estimates

‖g‖p1

H
p1
com

≤ C

∫

G̃d(f)(x′,xm)≤α
G̃d(f)p1(x′, xm)dx′dxm

and

‖b‖p2

H
p2
com

≤ C

∫

G̃d(f)(x′,xm)>α
G̃d(f)p2(x′, xm)dx′dxm

which implies that

‖Tf‖pp = p

∫ ∞

0
αp−1| {(x′, xm) : |Tf(x′, xm)| > λ} |dα

≤ p

∫ ∞

0
αp−1|

{
(x′, xm) : |Tg(x′, xm)| > λ

2

}
|dα

+p

∫ ∞

0
αp−1|

{
(x′, xm) : |Tb(x′, xm)| > λ

2

}
|dα

≤ p

∫ ∞

0
αp−1

∫

G̃d(f)(x′,xm)≤α
G̃d(f)p1(x′, xm)dx′dxmdα

+p

∫ ∞

0
αp−1

∫

G̃d(f)(x′,xm)>α
G̃d(f)p2(x′, xm)dx′dxmdα

≤ C‖f‖pHp
com

Thus,
‖Tf‖p ≤ C‖f‖Hp

com

for any p2 < p < p1. Hence, T is bounded from Hp
com to Lp.
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To prove the second assertion that T is bounded on Hp
com for p2 < p < p1, for

any given λ > 0 and f ∈ Hp
com, by the Calderón-Zygmund decomposition again

| {(x′, xm) : |g(Tf)(x′, xm)| > α} |
≤ |
{
(x′, xm) : |g(Tg)(x′, xm)| > α

2

}
|+ |

{
(x′, xm) : |g(Tb)(x′, xm)| > α

2

}
|

≤ Cα−p1‖Tg‖p1

H
p1
com

+ Cα−p2‖Tb‖p2

H
p2
com

≤ Cα−p1‖g‖p1

H
p1
com

+ Cα−p2‖b‖p2

H
p2
com

≤ Cα−p1
∫
G̃d(f)(x′,xm)≤α G̃

d(f)p1(x′, xm)dx′dxm

+Cα−p2
∫
G̃d(f)(x′,xm)>α G̃

d(f)p2(x′, xm)dx′dxm

which, as above, shows that ‖Tf‖Hp
com

≤ C‖g(Tf)‖p ≤ C‖f‖Hp
com

for any 0 <
p2 < p < p1 < ∞.
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