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Abstract

The main purpose of this paper is to briefly review the earlier works of multiparameter
Hardy space theory and boundedness of singular integral operators on such spaces defined
on product of Euclidean spaces, and to describe some recent developments in this direc-
tion. These recent works include discrete multiparameter Calderén reproducing formulas
and Littlewood-Paley theory in the framework of product of two homogeneous spaces, prod-
uct of Carnot-Caretheodory spaces, multiparameter structures associated with flag singular
integrals and the Zygmund dilation. Using these discrete multiparameter analysis, we are
able to establish the theory of multiparameter Hardy spaces associated to the aforemen-
tioned multiparameter structures and prove the boundedness of singular integral operators
on such Hardy H? spaces and from H? to LP for all 0 < p < 1, and derive the dual spaces of
the Hardy spaces. These Hardy spaces are canonical and intrinsic to the underlying struc-
tures since they satisfy Calderén-Zygmund decomposition for functions in such spaces and
interpolation properties between them. Proving boundedness of singular integral operators
on product Hardy spaces was an extremely difficult task two decades ago. Our method
avoids the use of very difficult Journe’s geometric lemma and is a unified approach to the
multiparameter theory of Hardy spaces in all aforementioned settings.

1 Introduction

The Hardy space theory has a long history. It was first introduced by Hardy for complex
analytic functions on the complex plane. Following Hardy, an H? function is a complex analytic
function F'(z) in the upper half-plane Ri such that the LP norms

( / |F(z + z'y)|pdw)1/p

are bounded independent of y > 0. It is clear that the H? space is very similar to the classical
LP space when p > 1. One of the main results of HP spaces is that HP—functions, p > 0, have
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boundary values, i.e., when F(z) € HP(R%), then liH(l) F(x + iy) exists for a.e. € R To
y—)

extend the theory of Hardy spaces to RZH, the upper half-space in R"*!, that is, {(x,y) : = €
R",y > 0}, Stein and Weiss [SW] considered HP(R’™!) functions as systems of n+ 1 harmonic
functions, F(z,y) = {u;(z,y)},i = 0,1, ...,n, defined on R?fl, which are conjugate in the sense
that they satisfy the generalized Cauchy-Riemann equations

=0 where y = xg

Ou;  Ouj ou;
Ox;j Oz’ Z ox;

and such that

sup(/|F(x+iy)\pdx)1/p<oo.
y>0 -

Here

1 2
F(z,y)| = Z i, y)|?)
Stein and Weiss then proved the followmg theorem

Theorem 1.1. If F(z,y) € HP(R}") and p > (n — 1)/n, then lirr(l)F(x,y) exists for a.e.
y—)
r € R™

Using non-tangential maximal function, Burkholder, Gundy and Silverstein ([BGS]) proved

Theorem 1.2. If u(z) is real valued and harmonic in upper half-plane and u*(x) € L'(R)

where u*(x) = sup |u(z)],z = t + iy, then u=RF, where F(z) is an analytic function in
lz—t|<y

upper half-plane and F € H' and RF is the real part of u.

Instead of using analytic functions and system of conjugate harmonic functions, C. Fef-
ferman and Stein [FeS2] characterized the real Hardy spaces using maximal function and the
Littlewood-Paley square function. To define the maximal function on R", one starts with
Schwartz functions ¢(z) and () satisfying f ¢(z)dr =1 and [ ¢(z)z*dzx = 0 for all multi-

indexes a. Then letting ¢ (x) = t™"¢p(x/t) for t > 0, and similarly to v¢(x), the maximal
function of f, for a tempered distribution f on R™, is defined by

fT (@) = sup oy = f ()]

t>0

and

fr@)=sup ¢ * f(y)l

|z —y|<t,t>0

The Littlewood-Paley square function of f is defined by

/\w @R

C. Fefferman and Stein proved
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Theorem 1.3. All LP—norms of fT, f* and g(f) are equivalent, i.e.,

1F 5l 2 171y 2 lg ()l
for all p > 0.

Therefore, C. Fefferman and Stein introduced the real Hardy spaces H? as collection of
all tempered distributions f such that || f*||, < co. Using these characterizations of the real H?
spaces, they also showed that Calderén-Zygmund singular integrals preserve these HP spaces.
Thus, we can regard HP spaces as the appropriate substitute for LP,p > 1. In particular, the
space H! can be used as a replacement of space L' on which the singular integral operators
are only weak (1,1) bounded, but not bounded. It is also known that the Calderén-Zygmund
operators are not bounded on L. Thus, a good substitute for this function space is BMO(R"),
namely, the space, introduced by John and Nirenberg, of functions satisfying

1
ol Q/ (@) — foldz < C,

where fp denotes the mean value of f over the cube @, and C' is independent of Q.

There have been several characterizations of BMO space and we now consider a basic
result of Carleson. A positive measure p on Rﬁ“ is called a Carleson measure provided that
w(S(Q)) < C|Q| for all cubes @ in R™, where the Carleson region is defined by

S(Q) ={(z,1): 2 € Q,0 <t <L(Q)},
where £(@Q) is the side-length of @). Carleson then proved in [Carl]
Theorem 1.4. p is a Carleson measure if and only if for each f € LP,p > 1
| [ 1oswpian<c [1s@ra.
R R
where the function ¢ is the same as above.

Subsequently, C. Fefferman established that f € BMO(R") if and only if |¢; * f (:c)|2d:x%
is a Carleson measure in R, Using this characterization, C. Fefferman ([Fe]) showed

Theorem 1.5. The dual space of H*(R"™) is BMO(R").

Soon after Fefferman’s celebrated duality result, R. R. Coifman ([Co]) found an atomic
decomposition characterization of H? on R! and gave a powerful proof of this duality theorem.
Coifman’s work was extended to high dimensional case by Latter [La]. Then we have

Theorem 1.6. f € HP(R") if and only if f(z) = > Agar(x) where the a are HP—atoms,
k

i.e., ay is supported in a cube Qg, [ ar(x)z*dx = 0, |a| < [n(1/p — 1] and satisfies |jag|l2 <
|Qu| /212 ST AP < 00, and the series converges in the sense of distributions.
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We would like to point out that all aforementioned results of the Hardy spaces HP(R™)
share one common feature. Namely, they all deal with operators indexed by one parameter or
are invariant with respect to a one-parameter family of dilations on R™. On the other hand, if
we consider the group of product dilations,

6(1’1,1'27-.. ’:L'n) = (51.T1’ 76n$n), 57, >O7 Z: 1’ ’n’

then the study of these operators is quite different and becomes more complicated. Operators
which are invariant under this group, such as the strong maximal function, Marcinkiewicz
multipliers, generalizations of multiple Hilbert transform and multiparameter Hardy space
theory, have been studied extensively in the past several decades and by now a fairly satisfactory
theory has been established (see [CF1-3], [Ch], [GS], [Carl-2], [F1-4], [FS], [J1-2], [P] and in
particular the beautiful survey articles of Chang and R. Fefferman [CF3] and R. Fefferman [F3]
for developments in this area).

This multi-parameter dilation is also one of the objectives associated with problems in
the theory of differentiation of integrals. A theorem of Jensen-Marcinkiewcz-Zygmund [JMZ]
says that the strong maximal function in R™ defined by

M (£)(a) = sup e [ 17wl
zer | B
R

where R are rectangles with sides parallel to the axes, is bounded from the Orlicz space L(1 +
(log™ L)1) to weak L!. The basic idea of their proof is to dominate the operator M, by
the composition of My, M,,, - -- M,, where each M,, is the one dimensional Hardy-Littlewood
maximal operator in the direction of the ith coordinate axis. A geometric proof of this result has
been given by Cordoba-R. Fefferman using the deep understanding of the geometry of rectangles
which illustrates its intimate connection to the strong maximal function [CoF]. On the other
hand, Zygmund conjectured that if the rectangles in R™ had n side lengths which involve only
k independent variables, then the resulting maximal operator should behave like My, the k-
parameter strong maximal operator. More precisely, for 1 < k < n, and for positive functions
¢1, -+ , Pn as the side-lengths of the given collection of rectangles where the maximal function
is defined, each one depending on parameters t; > 0,t3 > 0,--- ,tx > 0, assuming arbitrarily
small values and increasing in each variable separately, then the resulting maximal function
would be bounded from L(1 + (log™ L)*~!) to weak L' according to Zygmund’s conjecture.
For k = n, this is just the result of [JMZ].

It is well-known that there is a basic obstacle to the pure product Hardy and BMO space
theory associated with multiparameter product dilations. Indeed it was conjectured that the
product atomic Hardy space on R x R could be defined by rectangle atoms. Here a rectangle
atom is a function a(x,y) supported on a rectangle R = I x J have the property that

lall2 < [RIY2, / ale, y)de = / ale,y)dy = 0

I J
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for every (z,y) € R. Then H}

rect (R X R) is the space of functions » | A\ray with each ay a rectangle

k
atom and ) |A\;y| < co. However, this conjecture was disproved by Carleson by constructing a
k

counter-example of a measure satisfying the product form of the Carleson measure, that is, the
measure p satisfies
dp < C|I x J|
S(I)xS(J)
for all intervals I, J in R and S(I) is the Carleson region associated with I. Carleson([Car2])
showed that the measure he constructed is not bounded on the product Hardy space H'(Rx R).
Let us consider a little bit more details about the product Hardy space theory. We
will follow Chang-R. Fefferman [CF3] for the description of Hardy space theory on polydisks.
More precisely, let D denote the unit disc {z : |z| < 1} and T be its boundary. For each
20 = 7€' let I, denote the arc {e? : |§ — 6y| < 1 — 7} and for each arc I C T, let S(I)
denote the region {z : I, C T}. For any f € LP(T),p > 1, let u(re’) = (P. x £)(6), be
the Poisson integral of f. Now let D? be the bi-disc, f € LP(T?) with bi-Poisson integral
u(rie®, ree?) = (P, x (P, * f))(61,02). Then we can define, similar to the situation in R,
the nontangential maximal function of u as

u* (21, 22) = sup [u(w, w2)],
(wlva)eI(zl,zz)

where I(;, .,y = I, X I.,. The original strategy of C. Fefferman and Stein of proving Theorem
1.2 is based on the following observation: For A > 0, consider the set G = {e? : u*() < A},
and the region G = Upeqly. The key fact used by C. Fefferman and Stein is that the boundary
of G consists of a sawtooth type region which can be approximated by Lipschitz region and
on which Green’s theorem can be applied. However, on the bidisc the corresponding region
G™ has a quite complicated boundary, and it is not clear how to apply Green’s Theorem in
this domain. In 1977, M.P. and P. Malliavin [MM] overcame this geometric difficulty and
developed the product Hardy space theory by use of some delicate and complicated algebraic
arguments. Essentially what they did is that instead of applying Green’s theorem in G, they
considered some function u?Yq+, where Y+ is a smooth version of the characteristic function
X+, and applied Stokes’ Theorem to u?Y g+ on the entire domain D?. These techniques were
later generalized and simplified by Gundy and Stein to establish the product Hardy spaces.
Indeed, Gundy and Stein([GS]) proved

Theorem 1.7. For all 0 < p < oo, ||u*||p, = ||S(u)||, where S(u) is the product version of area
integral.

At almost the same time, S. Y. A. Chang found that the classical Carleson region should
be replaced by any open set in R? with finite measure. Chang showed in [Ch]

Theorem 1.8. A positive measure i on D? is bounded in LP(T?),1 < p < o0, i.e.,

( / / [u(z1, 22)[Pdpa(z1, 22)) /P < O / £(e%,e%)[Pdoyddz) "
D2 T2
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for every f € LP(T?), holds if and only if
n(S(U)) < CU|
for all connected, open sets U C T, where the region S(U) is defined by {(z1,22) : I, xI,, C T}.

This leads that the role of cubes in the classical atomic decomposition of HP(R"™) was
replaced by arbitrary open sets of finite measures in the product H?(R"™ x R™) and the Hardy
space HP(R™ x R™) theory was finally developed by Chang and R. Fefferman ([Ch],[CF1-3]).
Chang and Fefferman([CF2]) proved

Theorem 1.9. f € HP(R" x R™) if and only if f(x,y) = > Apar(x,y) where > | AP < 0o
k k

and ag(x,y) are (2,p)—atoms, that is, each ai(x,y) is supported in an open set Q with finite

measure satisfying the following properties:
lag]l2 < Q271
each ay(x,y) can be further decomposed by

ar(z,y) = Y _ ar(z,y)

RCQ

where R=1xJ C Q, and I,J are dyadic rectangles in R"™ and R™, respectively, and ar(x,y)
satisfy
[atep)ads = [antey =0
I J
or 0 < |al,|B| < N,, where N, is a large integer depending on p, and
f P p 9 g g
0 9 ~n=lal| 7j-m-I3]
’@WGR(%?M < dg|1| ||
with
> IRldR < [Qr.
RCQ
Chang and R. Fefferman ([CF1]) also proved

Theorem 1.10. The dual of H'(R™ x R™) is the product BMO space where f € BMO(R™ x

R™) if |1y s * f(x, y)|2dxdy%% is a product Carleon measure defined in Theorem 1.8.

Because of the complicated nature of atoms in product space, it was an extremely difficult
task to prove boundedness of singular integral operators on multi-parameter Hardy spaces. This
was first overcame by Journé. Indeed, Journé([J1]) proved the following covering lemma.

Lemma 1.11. Let M () denote the family of all mazimal dyadic subrectangles of Q2. Then

> IRWR)T < G,
ReM(Q)

for any 6 > 0, where v(R) is a factor which reflects how much R can be stretched and still
remain inside the ezpansion of Q,Q = {Ms(xa) > 1/2}.
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Using this geometric covering lemma and the atomic decomposition provided by Chang
and R. Fefferman ([CF2]), R. Fefferman ([F4-5]) discovered the boundedness criterion of sin-
gular integral operators. To describe this result, we introduce the following definition.

Definition 1.12. A function a(z,y) supported in a rectangle R = I x J C R? is called an HP
rectangle atom provided

/a(x,y)xacm = 0,/a(x,y)y°‘dy =0,

I J

foralla=0,1,2,....[1/p — 1], and
lallr2(ry < [R[VZ7VP.

As mentioned above, according to Carleson’s counterexample, the H? rectangle atoms do
not span the product Hardy space H'(R x R) as was expected prior to his work. However, R.
Fefferman ([F4-5]) proved

Theorem 1.13. Fiz 0 < p < 1. Let T be a linear operator which is bounded in L?>(R?) and
which satisfies

/ T(a) Pdady < Cy~°
i

for all v > 2 and for some § > 0 and for each HP rectangle atom a supported in R. Then T is
bounded from HP(R x R) to LP(R?).

Here Epy denotes the y—fold concentric enlargement of R. (see [J1], [J2] and [P]). Such
a geometric lemma also played an important role in the study of the boundedness of product
singular integrals on BMO(R"™ x R™) (see [J1], [J2] and [P]). Recently, using a new version of
Journé covering lemma, Ferguson and Lacey in [FL] (see also [FSal) gave a new characterization
of the product BMO(R x R) by bicommutator. They prove

Theorem 1.14. These exist two constants C1 and Cy such that

C1lbll Barorxry < I1[[My, H1], Ha]l[ 12— 12 < Ca|lbllBrmo(rx )

where My, is the multiplication operator by b(x,y) defined on R x R, and [T, S] is commutator
and Hy and Ho are the Hilbert transform with respect to the variables x and y, respectively.

Since the original Journé covering lemma holds only for two parameters, namely, R x R,
R. Fefferman’s result only holds for the domain with only two parameters. To generalize Journé
covering lemma and Fefferman’s result to a domain with any number of factors, Pipher([P])
extended Journé’s lemma and proved
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Lemma 1.15. Let Q C R? be open and bounded. Given S =1 x J x R € M3(Q), there exists
IcIandJcCJ such that
| Usens) I x J x R|| < CQ
" 11, 1]
S|w — )W =

SeMs ()

) <Clj,

where Ms(§2) is the collection of dyadic rectangles S C Q that are mazimal in the xs— direction

and the function w(x) is increasing and satisfies S kw(27F) < oo.
k>0

While great progress has been made in the case of pure product structure of two Euclidean
spaces for both LP and HP theory, multi-parameter analysis has only been developed in recent
years for the LP theory when the underlying multi -parameter structure is not explicit, but
implicit, such as the flag multi-parameter structure studied by Muller-Ricci-Stein and Nagel-
Ricci-Stein in [MRS1,2] and [NRS]. One of the main goals of this article is to exhibit a theory
of Hardy space in this setting. Another is to develop the corresponding theory in the setting of
nonclassical Zygmund dilation. Moreover, we also carry out the multiparameter Hardy space
theory in the framework of the product of two homogeneous spaces in the sense of Coifman
and Weiss and also in the setting of product Carnot-Carathedory spaces where LP theory has
been recently established by Nagel-Stein [NS3]. One of the main ideas of our program is to
develop a discrete version of Calderén reproducing formula associated with the underlying
multiparameter structure, and thus prove a Min-Max type inequality in this setting. This
discrete scheme of Littlewood-Paley-Stein analysis is particularly useful in dealing with the
Hardy spaces HP for 0 < p < 1. Using this method of discretizing, we will be able to show
that the singular integral operators are bounded on HP for all 0 < p < 1, from HP to LP for
all 0 < p < 1. This method offers an alternate approach of R. Fefferman’s idea of restricting
singular integral operator’s action on the rectangle atoms. Thus, we bypass the use of Journe’s
covering lemma in proving the H? to LP boundedness for all 0 < p < 1.

In this survey, we will then describe some recent developments of the multiparameter
Hardy space theory. This includes (1) the product Hardy spaces on spaces of homogeneous
type, which includes the multiparameter Hardy space theory on the product of two stratified
groups such as the Heisenberg group; (2) the product Hardy spaces on spaces of Carnot-
Carathéodory spaces where the LP theory has been developed recently by Nagel and Stein [NS3]
: (3) the multiparameter Hardy spaces with Zygmund dilations on R3, where the LP theory
was studied by Ricci-Stein([RS]); and (4) theory of multiparameter Hardy spaces associated
with the implicit flag singular integrals as recently studied by Muller-Ricci-Stein [MRS1,2] and
Nagel Ricci-Stein [NRS].

The purpose of this program is to give a uniform approach to deal with all these multipa-
rameter Hardy space theory using the discrete Littlewood-Paley-Stein analysis. This approach
goes as follows:

(1) Calderén’s identity
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Let ¢ € LY(R™) be a function whose integral is zero and whose Fourier transform )(£)
satisfies Of]z/?(t@ﬁ% = 1, for each & # 0. We put ¢(z) = ¢(—x), ¢ (x) = t"p(x/t) and

similarly for ;. Then, for every function f € L?(R"), Calderén’s identity is given by
T d
~ t
f= [ 1eidoen
0

Thus the above formula provides the one-parameter Calderén’s identity. It is known
nowadays that atomic decomposition of Hardy space HP(R"™) and continuous version of wavelets
were obtained by making a discrete version of the above Calderén’s identity. Moreover, it is
also clear that one parameter dilation on R" is involved in this identity. On the other hand,
if one lets 1!, ¢? € L'(R™) be functions with the same properties as v given above, then we
have the product version of Calderén’s identity: For every function f € L?(R"™ x R"),

o
f(wvy) = /f * 7Lt,s * wt,s%a

0
where ;¢ (z,y) = ¢} (x)12(y) and similarly for ¢y .

This product version of Calderén’s identity played a crucial role in the product HP(R™ x

R™) theory. The starting point of our approach is to establish all kind of Calderdn’s identities
in all different settings. Moreover, we will discretize such formulas to adapt to the HP theory
for 0 < p < 1. To be more precise, we will construct a sequence of operators D such that

there exists a family of operators D;j so that for each f € L?,

f=>_DjxDji(f),

gk

where the series converges in the L? norms.

The construction of the sequence {D;;} varies from case to case in the aforementioned
multiparameter structures. Such a sequence of the operators D;; on product spaces of homo-
geneous type follows from the construction of approximations to the identity given by Coifman.
We would like to point out that the condition (2.2) played a crucial role in the construction of
Coifman. On product Carnot-Carathéodory spaces, the condition (2.2) is not satisfied. How-
ever these operators D;; were constructed by the spectrum theory from the heat kernel given
by Nagel and Stein. In the case of Zygmund dilation, we will use the Fourier transform to
construct the operators D;; which will be used for the product Hardy spaces associated with
Zygmund dilations on R3. The flag structure is used in the construction of such a sequence of
the operators D, ; which will be used to establish the flag Hardy spaces.

For our purpose to study the Hardy space theory, the above Calderén’s identity on L?
is not powerful enough because we will have to work on spaces of distributions in order to
establish the Hardy space theory. To this end, we will need such an identity to hold on some
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appropriate spaces of distributions. To achieve this, we need to introduce suitable test function
spaces. Roughly speaking, these test functions satisfy the size, smoothness and cancellation
conditions. Indeed, these conditions will follow from all conditions which are satisfied by
Dj . See part 2-4 for more details. Then we have to show that the above Calderén’s identity
converges in test function spaces. By the duality argument, we have Calderon’s identity on the
spaces of distributions.

However, to deal with the Hardy spaces theory for 0 < p < 1, the above continuous version
of Calderén’s identity is not convenient. More precisely, we need a discrete version of Calderén’s
identity. By use of the Calderén-Zygmund operator theory, discretizing the continuous version
of Calder6n’s identity provides the following discret version of Calderdn’s identity:

- Z Z Dj,k,R(-rv y)D],k(f)($R7 yR)7
ik R
where R are dyadic rectangles or (metric balls in appropriate sense) whose sides lengths (or
radii) are associated with j, k and (zg,ygr) are arbitrary points in R.
This discrete Calderén’s identity provides the following discrete Littlewood-Paley analysis.

(2) Discrete Littlewood-Paley analysis

We now define the discrete Littlewood-Paley square function by

)(@y) = 12D 1Dk @r yr)Pxrl v},
ik R
where x g are characteristic functions of R.

By the almost orthogonality argument on product spaces of homogeneous type, the spec-
trum theory on product Carnot-Carathéodory spaces and the Fourier transform on multipa-
rameter structures associated with Zygmund dilations and flag singular integrals, one can easily
obtain

lga(F)llz = [1£1]2-
Then apply the Calderén-Zygmund LP theory, we have

lga(H)llp = 11 £1l

for all 1 < p < co. This together with the characterizations of HP(R™) given by Fefferman and
Stein leads to define the multiparameter Hardy spaces by the collection of suitable distributions
f such that

19a(f)llp < o0

where 0 < p < 1.

Of course, this definition makes sense if and only if the LP norms of ||gq4(f)||, are inde-
pendent of the choice of the operators D, ;. Therefore, we prove the following so-called the
Min-Max inequalities. Roughly speaking, we have sup and inf inequalities.

> sup Dk (f)(w,v) Pxr(z,9)}> Hp~H{ZZ D B (f) (,0) Pxr(z, 1)} 2,

]kRuv ijuv
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where D;;, and Ej satisfy the same properties and xr are characteristic functions of R.
Obviously, the above Min-Max inequalities show that the definition of the multiparameter
Hardy spaces are well defined. Using discrete Littlewood-paley analysis together with the
almost orthogonality arguments, we can prove the boundedness of certain Calderén-Zygmund
operator on the multiparameter Hardy spaces. We would like to point out that using this
discrete Littlewood-Paley analysis we also prove a fairly general result. Namely, if an oprator
T is bounded on L? and on the multiparameter Hardy sapces HP, then T extends to a bounded
operator from the multiparameter Hardy spaces HP to LP,0 < p < 1. This principle is broad
enough to prove the HP to LP boundedness in most settings under consideration of this paper.

(3) Generalized Carleson measure spaces

To simplify our description here, we only discuss the case of pure product R™ x R™. For
other cases, the reader can find details in the subsequent sections. As we mentioned above, the
product BMO spaces on R"™ x R™ was defined by Carleson measure condition. This suggest
us to introduce a generalized Carleson measure spaces CMOP for 0 < p < 1 defined by

sup S X s sy

21
@ |Q\ gk & 1J:IxJCQ

where f is a suitable distribution, 2 in R™ x R™ are open sets with finite measures, I, J are
dyadic cubes, and D, are operators as mentioned in (2).

As in the case for the multiparameter Hardy spaces, the generalized Carleson measure
spaces CMOP is well defined if and only if the norm given above is independent of the choice
of operators D; . Again, this can be proved by the following Min-Max inequality.

sup S Y sw D f )P

@ |Q‘771 J k IxJCQUElveS

sup XM e | Ej % f(u,0)P]].]]

21
Q |Q| Tk IxJCQ

We will prove that CMOP is dual of multiparameter Hardy spaces HP for all 0 < p < 1.
The proof follows from a very general line. We first introduce the sequence spaces. The
sequence space sP is the collection of all sequences s = {s;x.s} such that

Isllsr = (|4 D2 D lsrxa PHITI xr (@) xa(y) < o0,

gk I,J
Lp

where the sum runs over all dyadic cubes I, J and x7, and x s are indicator functions of I and
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J respectively. The sequence space ¢ is the collection of all sequences s = {srxs} such that

2

1
[sller = Slép 2 Z Z |s1a]? < 00,

1Q» ™" % 101xJCO

where 2 are all open sets with finite measures and the sum runs over all dyadic cubes I and J.

We should mention that the sequence spaces s and c¢P on one parameter space R" were
introduced by Frazier and Jawerth([FJ]). We then prove that the dual of s? is ¢P. Finally, using
discrete Calderdn’s identity, we define lefting operator S and projection operator T', and prove
that S is bounded from HP to sP and from CMOP to ¢P, and T is bounded from s” to HP and
from ? to CMOP. Moreover, T'S is identity on H? and on CMOP. This clearly implies that
the dual of HP is CMOP.

This article is organized as follows. In section 2, we focus on the multiparameter Hardy
space theory in the product of two homogeneous spaces. We discuss the results on discrete
Littlewood-Paley theory and Calderén’s identities in this general setting of pure product. The
Hardy space theory in this setting developed includes the atomic decomposition, Journe’s cov-
ering lemma and boundedness of singular integral operators on Hardy spaces HP and from HP
to L? following R. Fefferman’s ideas by restricting the action of the operator to rectangle atoms.
Finally, we establish the duality theory of Hardy spaces H? for all 0 < p < 1. The theory de-
veloped in this part includes many examples of multiparameter Hardy space theory for product
of the Euclidean spaces R™ x R™, product of stratified groups such as the Heisenberg group,
and many others. The duality theory extends to all 0 < p < 1 that of Chang and R. Fefferman
where they proved the dual space of product H'(R™ x R™) is the product BMO(R" x R™)
space. Section 3 is devoted to the theory of product Hardy spaces on Carnot-Carathéodory
spaces. As we pointed it out earlier, condition (2.2) in section 2 for general spaces of homoge-
neous type is not satisfied for the Carnot-Caratheodory spaces. Therefore, the multiparameter
theory for product Carnot-Caratheodory spaces does not follow from our results in section 2.
The LP theory in Carnot-Caratheodory spaces for 1 < p < oo was developed by Nagel-Stein.
Thus, our results on boundedness on Hardy spaces and BMO spaces can be viewed as the end-
point results of Nagel-Stein. In section 4, we develop a satisfactory theory of multiparameter
Hardy spaces associated with the well-known Zygmund dilation on R3. This is perhaps the
simplest example beyond the pure product dilation. The singular integral operators introduced
by Ricci-Stein [RS] are invariant under this Zygmund dilation and the LP boundedness of such
operators was established by Ricci-Stein for all LP (1 < p < oo) and weighted LP boundedness
was proved by R. Fefferman and Pipher [FP]. In the last section of this article, we build up the
the multiparameter Hardy space theory associated with the flag singular integral operators on
R"™ x R™. Such LP theory was developed by Muller-Ricci-Stein [MRS1,2] and Nagel-Ricci-Stein
[NRS]. This last section also includes the Calderén-Zygmund decomposition on Hardy spaces
and interpolation theorem on such spaces. Such interpolation theorem on pure product spaces
was first established by Chang and R. Fefferman([CF2]). We finally remark that section 5
also contains some ideas and outline of proofs of various theorems. These proofs provide some
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insights to those in different settings considered in sections 2, 3, 4 as well. We have chosen to
include these outlines of proofs in the last section so that a reader who is only interested in the
results rather than their proofs do not have to go through these in the earlier sections.

Some final words on the introduction of this paper. We have purposely written this paper
in such a way that each section can be virtually read independently without relying on the rest
of the paper. If a reader is only interested in the multiparameter Hardy spaces associated to
Zygmund dilation, he/she can simply go to Section 4. If a reader is particularly interested in
the flag Hardy spaces, then Section 5 will be the only section needed. Likewise, if a reader is
only eager to know the multiparameter theory in homogeneous spaces, Sections 2 and 3 are
sufficient. Nevertheless, as we have pointed out earlier, Section 5 also provides some details
which can be extended to other sections.

2 Product H? Theory on Spaces of Homogeneous Type

The main purpose of this part is to develop a satisfactory product theory for 0 < p < 1 on
product of two spaces of homogeneous type, namely, the theory of Hardy spaces (including
atomic decomposition) and boundeness of singular operators on such Hardy spaces HP and
from H? to LP and duality of such Hardy spaces. Results in this part include the product H?
theory, developed in [HL1] and [HL2], of two stratified groups such as the Heisenberg group as
a special case. Our methods are quite different from those given in the classical product theory
of Euclidean spaces in [CF1, CF2, CF3, F1, F4, F6] because we mainly establish the Hardy
space theory using the Calderén reproducing formula and Littlewood-Paley analysis which hold
in test function spaces in the product of homogeneous spaces, which are particularly suitable
for the H? theory when 0 < p < 1.
Part of the work described here is taken from [HLY], the duality result is from [HLL1].

2.1 Hardy spaces, atomic decomposition and boundedness of singular inte-
grals

To develop the product HP theory on spaces of homogeneous type,we begin with recalling some
necessary definitions and notation on spaces of homogeneous type.
A quasi-metric p on a set X is a function p: X x X — [0, 0c0) satisfying that

(i) p(x,y) =0 if and only if x = y;
(i) p(z,y) = ply, z) for all 2, y € X;
(iii) There exists a constant A € [1,00) such that for all z, y and z € X,
(2.1) p(z,y) < Alp(x, 2) + p(z,y)]-

Any quasi-metric defines a topology, for which the balls

B(x,r)={y € X : p(y,x) <7}
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for all x € X and all r > 0 form a basis.

Definition 2.1. Let d > 0 and 6 € (0,1]. A space of homogeneous type, (X, p, )40, is a set
X together with a quasi-metric p and a nonnegative Borel reqular measure p on X, and there
exists a constant Cy > 0 such that for all 0 < r < diam X and all z, 2', y € X,

(2.2) w(B(z,7)) ~ rd
and
(2.3) lp(z,y) — p(a', y)| < Cop(z, 2")[p(x,y) + p(a’, y)]' ¢

The space of homogeneous type was first introduced by Coifman and Weiss [CW1] and
its theory has developed significantly in the past three decades. For a variant of the space of
homogeneous type as given in the above definition, we refer to ([MS]). In [MS], Macias and
Segovia have proved that one can replace the quasi-metric p of the space of homogeneous type
in the sense of Coifman and Weiss by another quasi-metric p which yields the same topology
on X as p such that (X, p, ) is the space defined by Definition 2.1 with d = 1.

We emphasize that conditions (2.2) and (2.3) are crucial for our product HP spaces on
spaces of homogeneous type. Throughout this part, we will always assume that p(X) = oco.

Let us now recall the definition of the space of test functions on spaces of homogeneous

type.

Definition 2.2. ([H1]) Let X be a space of homogeneous type as in Definition 2.1. Fiz v > 0
and 3 > 0. A function f defined on X is said to be a test function of type (xo,r,[3,7) with
xg € X and r > 0, if f satisfies the following conditions:

fr’y

() @) < Oy

3
T+ p(z, xo)) (r 4 p(x,z0))d+7

S
24

(i) 1f(x) = f(y)] < c< p(z.y) "

for p(z,y) < —[r + p(z,x0)l;

(iii) [ f(x) du(x) = 0.

If f is a test function of type (xo,r,3,7), we write f € G(xo,r,3,7), and the norm of f in
G(xo,r, B3,7) is defined by

||f||g($07,,,”g7,y) =inf{C : (i) and (ii) hold}.
Now fix g € X and let G(53,v) = G(zo, 1, 5,7). It is easy to see that

g(x17r7ﬁ?’7) = g(ﬁ>’7)
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with an equivalent norm for all z; € X and r > 0. Furthermore, it is easy to check that G(3, )
is a Banach space with respect to the norm in G(3,7). Also, let the dual space (G(53,7))" be
all linear functionals £ from G(3,7) to C with the property that there exists C' > 0 such that
for all f € G(5,7),

LN < Cllfllgsm-

We denote by (h, f) the natural pairing of elements h € (G(8,7)) and f € G(3,~). Clearly, for
all h € (G(3,7))", (h, f) is well defined for all f € G(xg,r, 3,7) with 29 € X and r > 0.
It is well-known that even when X = R", G(f1,7) is not dense in G(f32,7) if /1 > [a,
which will bring us some inconvenience. To overcome this defect, in what follows, for a given
€ (0,0], we let go(ﬁ,y) be the completion of the space G(e,€) in G(3,7) when 0 < 3, v <.

Definition 2.3. ([H1]) Let X be a space of homogeneous type as in Definition 2.1. A sequence
{Sk}rez of linear operators is said to be an approrimation to the identity of order e € (0,0] if
there exists C1 > 0 such that for all k € Z and all z, x', y and y' € X, Sk(x,y), the kernel of
Sy is a function from X x X into C satisfying

2—ke
(27F 4 p(x,y))dte’

(1) |Sk(z,y)| < C1

27k€
27F + p(x, y))*re

(w|&@un—safwﬂﬁcﬁ(rff§2yﬂ (

for pla,a’) < == (@7 + p(a1));

2A
p(y,y') > ke
27k + p(x,y) ) (27K + p(x,y))d+e

1

for py.y) < ﬂ@_k +p(z,y));

nwwmw—&mwmc(

) [5u(e0) = SuCoa/)] - [See'o) = Su ) < € (0

< p(y.y) ) 2~k

27+ pla,y) ) (275 + pla, y)) e
2y2hmmwmmm%> 5727 4 ol )
(5) Jy Skl y) duly) =

(6) [x Sk(z,y) du(z)

Moreover, A sequence { Sk }rez of linear operators is said to be an approzimation to the identity
of order e € (0, 0] having compact support if there exist constants Co, Cs > 0 such that for all
ke€Z and all x, 2’ y and y' € X, Si(x,y), the kernel of Sk is a function from X x X into C
satisfying (5), (6) and

for p(x,z") <
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(7) Sk(x,y) =0 if p(z,y) > Co27" and ||Skl|poe(x xx) < C32"%
(8) |Sk(z,y) — Sk(a',y)| < Cs2MH9) p(a, '),
(9) 1Sk(x,y) = Sk(x,y)| < C32K I p(y, 1)
(10) |[Sk(x,y) — Sk(x,y)] — [Sk(x',y) — Sk(x/,y)]| < Cs2M@H2) p(2, 2") p(y, /)"

Remark 2.4. By Coifman’s construction in [DJS], one can construct an approzimation to the
identity of order 6 having compact support satisfying the above Definition 2.3.

We now recall the continuous Calderén reproducing formulae on spaces of homogeneous
type in [HS, H1]J.

Lemma 2.5. Let X be a space of homogeneous type as in Definition 2.1, € € (0,0], {Sk}rez
be an approximation to the identity of order € and Dy = Sy — Sx_1 for k € Z. Then there are
families of linear operators {Dy}rez and {Dy}rez such that for all f € G(B,v) with 3, v €
(0,0),

(2.4) f=> DiDi(f)= Y DiDi(f),

k=—oc0 k=—o00

where the series converge in the norm of both the space G(3',7") with0 < ' < f and 0 <~ <~
and the space LP(X) withp € (1,00). Moreover, Di(x,y), the kernel of Dy, for all k € Z satisfies
the conditions (i) and (i) of Definition 2.3 with € replaced by any € € (0,¢€), and

(2.5) Jx Dz, y) du(y) = 0 = [y Di(x,y) dp(x);
Dy (z,y), the kernel of Dy, satisfies the conditions (i) and (iii) of Definition 2.3 with € replaced
by any € € (0,¢€) and (2.5).

By an argument of duality, the above continuous Calderén reproducing formulae on spaces
N /
of distributions, (g(ﬂ,ﬂ) with 3, v € (0,¢) is also established.

. /

Lemma 2.6. With all the notation as in Lemma 2.1, then for all f € (g(ﬁ,’y)) with 3, ~ €
. /

(0,€), (2.4) holds in (g(ﬁ’,y’)) with B < ' <€ andy <~ <e.

Let now (Xj, pi, fti)d;,0, for i = 1, 2 be two spaces of homogeneous type as in Definition
2.1 and p; satisfies (2.3) with A replaced by A; for i = 1, 2. We now introduce the space of
test functions on the product space X1 x Xa of spaces of homogeneous type.

Definition 2.7. Fori=1, 2, fitv; > 0 and §; > 0. A function f defined on X1 x Xo is said
to be a test function of type (B1, P2, v1,72) centered at (xo,yo) € X1 X Xo with width r1, ro >0
if f satisfies the following conditions:
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Y1 Y2
™ T2

(r1 + pr (@, 20)) MM (r2 + pa(y, yo)) =772

(1) [f(z,y)] <C

gt 2

(ii) |/ (x,y) — (@' y)| < C < als7) ] "]

51
T+ 01(96796‘0)> (r1 4 p1(x, 20)) 17 (19 4 p2(y, yo) )42 72

1
fOT pl(ﬂ?,x/) S E[Tl +p1($7x0)]7

i < p2(y,y') Ty’

B2
(11 + p1(x, z))h+m \rp + P2(3/7?/0)> (r2 + p2(y, yo)) 2272

for pa(y,y') < 2;2[7“2 + p2(y, vo)l;

(iv)
I[f(z,y) — f(2",9)] = [f(2,0) — f(2, )]
,01(%1") 51 7,’171
=¢ (7’1 + P1($»$0)> (r1 + p1(zx, zg))tm
y < p2(y,y') 5

2
)
ro + p2(y, yo)> (r2 + p2(y,yo)) %272

1 1
fO’I“ pl(x7 .Z'/> < [Tl + pl(x7 xO)] and PZ(Z/: y/) < [TQ + /02(% ZUO)L
24, 245

(v) [x, [(@,y)dui(z) =0 for all y € Xo;
(vi) [x, f(z,y)dua(y) =0 for all v € Xi.

If f is a test function of type (51, B2, V1, Y2) centered at (xg,yo) € X1 X Xo with width ry, re > 0,
we write f € G(xo,yo;7r1,72; b1, B2;71,72) and we define the norm of f by

1 £lG(zo0y0ir1,m0:81,80im ) = IE{C = (4), (i), (#4i) and (iv) hold}.
Remark 2.8. In the sequel, if 51 = B2 = 0 and v1 = 2 = 7y, we will then simply write
f €G(zo,y0571,72; B57)-

We now denote by G(51, 82; 71, 72) the class of G(xo, yo; 71,723 B1, B2 71, 72) With ri =19 =
1 for fixed (zo,y0) € X1 x Xa. It is easy to see that

g(l’l,yl;’l“l, 23 617/82;71172) = g(/@hﬁ% ’71772)

with an equivalent norm for all (z1,y1) € X; x X2. We can easily check that the space
G(6B1, B2;71,72) is a Banach space. Also, we denote by (G(51, 32;71,72))" its dual space which
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is the set of all linear functionals £ from G(31, B2;7v1,72) to C with the property that there
exists C' > 0 such that for all f € G(81, B2;71,72),

’E(fﬂ < CHng(Blyﬂ%'YL’YQ)'

We denote by (h, f) the natural pairing of elements h € (G(81, B2;71,72)) and f € G(B1, B2;71,72)-
Clearly, for all h € (G(B1, B2;71,72)), (h, f) is well defined for all f € G(xo, yo; 71, 72; 51, B2; 71, V2)
with (zo,y0) € X1 x X9, r1 > 0 and r9 > 0. By the same reason as the case of non product
spaces, we denote by go(ﬁl,ﬁQ; v1,72) the completion of the space G(e1,€2) in G(51, B2;71,72)
when 0 < 31, 71 < €1 and 0 < B2, 72 < €9.

We then have the following

Lemma 2.9. Let (z1,22) € X1 X Xo, r; > 0, ¢ € (0,0;] and 0 < B;, vi < ¢ fori =
1, 2. If the linear operators Ty and Ty are respectively bounded on the spaces G(x1,7r1,01,71)
and G(xa,72, B2,v2) with operator norms Cy and Cy, then the operator TiTy is bounded on
G(x1,z2;71,72; B1, B2;71,72) with an operator norm C1Cs.

To establish the continuous Calderén reproducing formulae on the product spaces X1 x Xo,
we first need to recall some details of the proof of the same formulae for the one-parameter
case in [H1], namely Lemma 2.5. One of the keys for establishing these formulae is Coifman’s
idea in [DJS]. Let X be a space of homogeneous type as in Definition 2.1, {Sk}rez be an
approximation to the identity of order € € (0,6] on X as in Definition 2.3 and Dy = S — Sk—1
for k € Z. Then, it is easy to see that

(2.6) I= i Dy in L*X)
k=—0oc0

Let N € N. Coifman’s idea is to rewrite (2.6) into

(2.7) I= ( i Dk) i D;

k=—o00 j=—00
o0 o0
SO SRR S P!
|j|>N k=—o00 k=—o00 |j|<N
— RN + TN,
where
[o@)
(2.8) Ry = > Y Diy;Di
|7]>N k=—o0
and
o
(2.9) Tn = Y DDy

k=—o00
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with

DY = )" Dyyj.
l71<N

It was proved in [H1] that there are constants C' > 0 and 6 > 0 independent of N € N such
that for all f € G(x1,7,8,7) with 21 € X, r >0and 0 < 3, v <,

(2.10) IRN fllg(er ) < C27NN FllG -

Thus, if we choose N € N such that
(2.11) 027N <1,

then T in (2.9) is invertible in the space G(x1,7,[3,7), namely, TZQI exists in the space
G(x1,r,B,7) and there is a constant C' > 0 such that for all f € G(x1,7,3,7),

TN Fllgerrs) < CllF g rs.)-

For such chosen N € N, letting
(2.12) Dy =Ty'DY,

we then obtain the first formula in (2.4). The proof of the second formula in (2.4) is similar.
Using this idea, we can obtain the following continuous Calderén reproducing formula of
separable variable type on product spaces of homogeneous-type spaces, which is also the main
theorem of this part 1.
By a procedure similar to the proof of Lemma 2.5, we can establish another continuous

Calderén reproducing formulae. We leave the details to the reader.

Theorem 2.10. Let i = 1, 2 and {Dy,}k,cz be the same as in Lemma 2.5. Then there
are families of linear operators {Dy, }r.cz on X; such that for all f € G(B1,B2;71,72) with
/B’iv Yi S (0767;) fOT”i = ]-7 27

[e.9]

f: Z Z Dk1Dkzbk1Ek2(f)7

k1=—00 ko=—00

where the series converge in the norm of both the space G(B1, BV, vs) with B € (0,05;) and
vh € (0,7;) fori=1, 2, and LP(Xy x Xo) with p € (1,00). Moreover, Dy, (x;,y;), the kernel of
Dy, for m;, y; € X; and all k; € Z satisfies the conditions (1) and (3) of Definition 2.3 with ¢;
replaced by any €, € (0,¢€;), and

/ Dy, (s, yi) dpi(yi) = 0 :/ Dy, (zi,yi) dui(xi),

where 1 =1, 2.
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To establish the following continuous Calderén reproducing formulae in spaces of distri-
butions, we need to use the theory of Calderén-Zygmund operators on these spaces developed
in [H1]. We first recall some definitions.

Let X be a space of homogeneous type as in Definition 2.1. For n € (0,6], we define
C{(X) to be the set of all functions having compact support such that

|f(z) = f(y)]
Ifllegx) = iig p(z,y)" < 00

Endow CJ(X) with the natural topology and let (C{J(X))" be its dual space.

Definition 2.11. Let € € (0,0] and X be a space of homogeneous type as in Definition 2.1. A
continuous complex-valued function K(x,y) on

Q={(z,y) e X x X 2 #y}

is called a Calderon-Zygmund kernel of type € if there exist a constant C > 0 such that

(i) 1K (x,y)] < Cp(z,y)~,

~—

p(z,y

(ii) |K(z,y) — K(2',y)| < Cp(a, ) p(a,y)~ ¢ for p(z, ') < 5A

)

. Cdee T,y

(iii) |K(z,y) — K(z,y")| < Cply.y') pla,y) =" for p(y.y') < (2A ),

A continuous linear operator T : CJ(X) — (CI(X))" for all € (0,6] is a Calderén-Zygmund
singular integral operator of type € if there is a Calderdn-Zygmund kernel K(x,y) of the type €

as above such that

Ts.9) = [ | K@) i@ du(o) duty
for all f, g € CJ(X) with disjoint supports. In this case, we write T € CZO(e).
We also need the following notion of the strong weak boundedness property in [HS].

Definition 2.12. Let X be a space of homogeneous type as in Definition 2.1. A Calderdn-
Zygmund singular integral operator T of the kernel K is said to have the strong weak bounded-

ness property, if there exist n € (0,0] and constant C > 0 such that
(K, f)] < Crf

for all v > 0 and all continuous f on X x X with supp f C B(x1,r) X B(y1,r), where x1 and

y1 € X, [fllzexxxy S L G )llepxy < 777 forally € X and || f(,-)l[cnxy < v for all
x € X. We denote this by T € SW BP.

The following theorem is the variant on space of homogeneous type of Theorem 1.19 in
[H1].
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Lemma 2.13. Let € € (0,0] and X be a space of homogeneous type as in Definition 2.1. Let
T € CZO(e), T(1) =T*(1) =0, and T € SWBP. Furthermore, K(z,y), the kernel of T,
satisfies the following smoothness condition

(2.13) (K (z,y) — K(«, )] = [K(z,y") = K(',¢/)]]

< Cp(z, @) p(y, ¥ )p(z,y)~4~%

forall z, ©'; y, v € X such that p(z,2'), p(y,y) < ”éﬁl’g). Then for any xo € X, r > 0 and

0< B, v<e T maps G(xg,r,3,7) into itself. Moreover, if we let | T|| be the norm of T on
L?, then there exists a constant C > 0 such that

”Tng(mo,r,,B,w) < CHT”Hng(xo,r,,B,'y)'

We also need the following construction given by Christ in [Chr], which provides an
analogue of the grid of Euclidean dyadic cubes on spaces of homogeneous type. A similar
construction was independently given by Sawyer and Wheeden [SaW].

Lemma 2.14. Let X be a space of homogeneous type as in Definition 2.1. Then there exist a
collection

{Q"cX: keZ acly)
of open subsets, where I}, is some index set, and constants § € (0,1) and C > 0 such that
(i) (X \ UaQF) = 0 for each fized k and QF N QE =0 if a # 5;
(ii) for any o, B, k, | with | >k, either Qlﬂ cQk or Qlﬁ NQk =0;
(i4i) for each (k,q) and each | < k there is a unique (3 such that Q% C Qlﬁ,
(iv) diam (QF) < Co*;
(v) each QF contains some ball B(zE, C6*), where 2k € X.

In fact, we can think of Q¥ as being a dyadic cube with diameter roughly §* and centered
at 2. In what follows, we always suppose § = 1/2. See [HS] for how to remove this restriction.
Also, in the following, for k € Z, and 7 € I}, we will denote by Qlﬁ’y, v=1,2, - N(k,71),
the set of all cubes Qi,ﬂ' C QF, where j is a fixed large positive integer. Denote by ylﬁ’y a point
in Qli’”. For any dyadic cube @ and any f € L} (X), we set

loc
1
molf) = o /Q £(z) d(z).

Using Theorem 2.10, we can establish the following continuous Calderén reproducing
formulae in spaces of distributions.
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Theorem 2.15. Let all the notation be the same as in Theorem 2.10. Then for all f €
< ([31,@,71,72)),

oo o
f= 2 2. DiDi,DiDi,(f)
k1=—00 ko=—00
. /
holds in (g(ﬁ{,ﬂé;%,%)) with B € (Bi,€) and 7, € (vi,€) fori =1, 2, where D,’;i(x,y) =
Dy, (y ) and Dj, (z,y) = Dy, (y. ).
Similarly, from Theorem 2.15, we can deduce the following continuous Calderén repro-

ducing formulae in spaces of distributions.
Theorem 2.16. Let all the notation be the same as in Theorem 2.15. Then for all f €

o /
<g(ﬁ1,ﬁ2;71,72)) ;

(0.) o
f= > > DyDyDiD(f)
k1i=—00 ko=—00
R /
holds in (g(ﬁi,ﬁé;vi,vé)) with B € (Bi,€) and 7, € (vi,€) fori =1, 2, where D;;Z,(:U,y) =
Dy, (y,x) and 5}; (z,y) = Dy, (y, x).
Let ¢ = 1, 2. Note that D,’;i, E};L and E}; respectively have the same properties as Dy,

Dy, and Dy,. From this, it is easy to see that we can re-state Theorem 2.10 as the following
theorem, which will simplify the notation in the following applications of these formulae.
Theorem 2.17. Let all the notation be the same as in Theorem 2.10. Then for all f €

o /
(g(ﬂlaﬂ%%,’m)) ;

o0 [e.9] [e.9]

oo
f= Y > DiDiDuDp(f)= >, > DiDy,Di Diy(f)
k1=—00 ko=—00 ki=—00 ko=—00
R /
holds in (g(ﬂi,ﬂé;%,%)) with 3, € (B, €) and ~, € (i, €) fori=1, 2.
We now recall the discrete Calderén reproducing formulae on spaces of homogeneous type
in [H3].

Lemma 2.18. With all the notation as in Lemma 2.1/, then for all f € G(B,v) with 3, v €
(0,€) and any Yo e Qb

(2.14) Z 3 Z (QF") Di(, 4 ) Di(f) (wE")

k—foorelk v= 1
> Z (Q) Dl 5 D) (),
k=—coT€l}) v=1

where the series converge in the norm of both the space G(3',7') with0 < ' < B and 0 <~ <~
and the space LP(X) with p € (1,00).
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By an argument of duality, the following discrete Calderén reproducing formulae on spaces
R /
of distributions, (g(ﬁ,ﬂ) with 3, v € (0,€) is also established in [H3].

. /

Lemma 2.19. With all the notation as in Lemma 2.6, then for all f € (g(ﬁ,v)) with B, v €
° /

(0,€), (2.14) holds in (g(ﬁ’,’y’)> with B < B <eand v <~ <e.

By a procedure similar to the proofs of Lemma 2.18, we can also establish the following
discrete Calderén reproducing formulae on product spaces of homogeneous-type spaces. We
only state the results and leave the details to the reader.

Theorem 2.20. Let all the notation as in Theorems 2.17 and Lemma 2.18, and
{Q%v”l ke, nely, n=1--- 7N(k,1,7_1)}

and {ka"’z t ko €Z, 70 € Iy, va =1,---,N(ka,T2)} respectively be the dyadic cubes of X
and Xo defined above with ji, jo € N large enough. Then for all f € G(51, B2;71,72) with
Bi, vi € (0,¢) fori=1, 2 and any y="" € QM and yF22 € QF22,

N(ki,71) oo N(ka,m2)

(2.15) F(x1,22) Z 0% 3 Y D> m@m(@k)

k:l—foonelkl vi=1 kz-*OOTQG[kQ vo=1

= k1,v1\ 1 k k1,v ko, v
XDk1($1ayTll 1)Dk2(x2,yT§ Q)DlﬂDkz(f)(ynl LYy 2)
N(ki,m1) N (k2,m2)

Z YIRS Z Do > m(@ ()

kl——oonefkl v1=1 k‘Q——OOTQGIk2 vo=1

k1, k2, vy k1, k,
XDkl(l‘byTll Vl)Dk2($2ayT22 VQ)D/ﬁDkQ(f)(yTll V17y7'22 V2)7

where the series converge in the norm of both the space G(03, B4; 1, v5) with B, € (0,5;) and
v € (0,v;) fori=1, 2, and LP(X; x X3) with p € (1,00).

Theorem 2.21. Let all the notation be the same as in Theorem 2.20. Then for all f €

o / o /
(681, B257.72)) . (2.15) holds in (G(51. Byi1.8)) with B} € (Bi,) and ] € (yi,€) for
i=1, 2.

Using the Calderén reproducing formulas, we now establish the Littlewood-Paley theorem
on product spaces of spaces of homogeneous type. To this end, we recall the Littlewood-Paley
theorem on spaces of homogeneous type in [DJS].

Lemma 2.22. Let X be a space of homogeneous type as in Definition 2.1, € € (0,0), {Sk}rez
be an approximation to the identity of order € as in Definition 2.8 and Dy = Sy — Sk_1 for
keZ. If 1 <p < oo, then there is a constant Cp, > 0 such that for all f € LP(X),

- 1/2
(2.16) Cy I f I pex) < { Z ’Dk(f)’Q} < Cpllfllzr(x)

b= Lr(x)
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The Littlewood-Paley theorem on product spaces of homogeneous-type spaces can be
stated as follows, whose proof can be deduced from the well-known discrete vector-valued

Littlewood-Paley theorem on spaces of homogenous type, see also the proof of Theorem 2 in
[FS].

Theorem 2.23. Let i = 1, 2, X; be a space of homogeneous type as in Definition 2.1, €; €
(0,05, {Sk, tr;ez be an approximation to the identity of order €; on space of homogeneous type,
Xi, and Dy, = Sk, — Sk,—1 for all k; € Z. If 1 < p < oo, then there is a constant Cp, > 0 such
that for all f € LP(X1 x Xa),

(2.17) Co Il (i xxa) < 192 Lo x x x2) < Opllf e (x1xx2)

where gq(f) for ¢ € (0,00) is called the discrete Littlewood-Paley g-function defined by

1/q

gq(N(@w2) =S D> D" Dk, Diy () (1, 72) |

k1=—00 kg=—00
for 1 € X1 and x2 € Xo.

We now define the Littlewood-Paley S-function S, on the product space X; x X3 by

(2.18) Sq(f) (21, 22)

x 3y

ki=—o00 kg=—o00 ” P1

/ 2k1d1+k2d2
(1,91)<C11,127%1 J pa(22,y2)<Ch1,227F2

1/q
X | Dy Dy () (15 y2) | dpaa (y1) dm(m)}

for 1 € X1 and 29 € Xo.

Using the Calderén reproducing formula we have the following

Lemma 2.24. Let 1 < p, q < oo. Then there exists a constant Cp4 > 0 such that for all
fe Lp(X1 X XQ),

”Sq(f)||Lp(X1><X2) < Cpyq ’gq(f)HLp(Xlx)(Q) .

and

Lemma 2.25. Let 1 < p, ¢ < 0o. Then there exists a constant C, > 0 such that for all
fe Lp(X1 X XQ),

1 e exay < Co 20 o -

Lemma 2.24, Lemma 2.25 and Theorem 2.23 imply the following equivalence of the
Littlewood-Paley S-function and g-function in LP(X; x X2)-norm.
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Theorem 2.26. Let all the notation be the same as in Theorem 3.1, go and Sy be defined
respectively as in Theorem 2.23 and (2.18). If 1 < p < oo, then there is a constant C, > 0
such that for all f € LP(X; x X3),

We are now ready to introduce the product H? spaces on spaces of homogeneous type. We
first apply the discrete Calderén reproducing formulae to establish the equivalence between the
Littlewood-Paley S-function and g-function in LP(X; x X3)-norm with p < 1. Such a result
for one-parameter spaces was already obtained in [H3| via a Min-Max inequality. We use the
same ideas as in [H3] here. Thus, we first establish a product-type Min-Max inequality. To
this end, we need the following lemma which can be found in [FJ, pp. 147-148] for R” and [HS,
p. 93] for spaces of homogeneous type.

Lemma 2.27.. Let X be a space of homogeneous type as in Definition 2.1, 0 < r < 1, k,
n € Z4+ withn < k and for any dyadic cube Qﬁ’",

[fgpor @) < (14 27p(, yb")) "7,

where r € X, ylﬁ’” 8 any point in Q’ﬁ’” and vy > d(1/r —1). Then

N(k,T) N(k,T) 1r
YD Pgrellfgre(@)] < C25 UM LN TN T Mg Tx e | (@)]
Tel, v=1 7€l v=1

where C is independent of x, k and n, and M is the Hardy-Littlewood maximal operator on X.
The product-type Min-Max inequalities are the following
Theorem 2.28. Let the notation be the same as in Theorem 2.20. Moreover, let
{Qf;l’yi : ki €Z, T € I, vi=1,---  N(K,m)}

and {Qié’yé t ky € Z, 75 € Iy, vy =1, N(ky,73)} respectively be another set of dyadic
cubes of X1 and Xy defined above with ji, j5 € N large enough, let {Py,}r,ez be another
approximation to the identity of order ¢; on homogeneous-type space X; and Ey, = Py, — Py, 1
forki e Z and i =1, 2. If max{ d do } < p, q < 00, then there is a constant C' > 0

di+€1 da+te2
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o !
such that for all f € (Q(ﬂl,ﬁg;fyl,’m)> with B;, vi € (0,¢;) fori=1, 2,

N(k1,m1) N(k2,m2)

(2.19) SYOY OYLOYOY swp D Dy () (21, 22)|°

k
ki=—com€ly, 1=l ky=—ocom€ly, v2=1 Z1€Q-,—11 1ZGQ2V2

1/q
XXQITC%a”l ()XQ&%”’Q ()}
Lp(Xl ><X2)

N(ki,m1) N(kb,75)

ety Y Y Y Yy

kj=—o00 TIEIk/ vi=1 kb=—co TQEIk/ vh=1

X inf
ZIEQ / EQ

ku2

1/q
q
Ek’lEké(f)(ZhZQ)’ X wy ()X kg,ug(‘)}

LP(X1%x X3)

The basic tool to prove the above theorem is the discrete Calderén reproducing formula.
We now can use the Min-Max inequalities to generalize Theorem 2.26 to the case p, ¢ < 1.

Theorem 2.29. Let all the notation be the same as in Theorem 2.8. If

max , , q < 00,
di+ €1 da+ € b

R /

then there is a constant Cp 4 > 0 such that for all f € (g(ﬁl,ﬂ2;71,72)> with B;, vi € (0,¢€)
fori=1, 2,

2200 Gl ISP i < 190Dy < Coa 15 mixens)

Now we are in the position to introduce the Hardy spaces HP(X; x X3) for some p <1
and establish their atomic decomposition characterization.

Definition 2.30. Let X; be a homogeneous-type space as in Definition 2.1, ¢; € (0,0;] and
{Dy, }k,ez be the same as in Theorem 3.1 fori =1, 2. Let

dy do <<
max , 00
di+ €1 do+ € P

and fori=1, 2,
(221) dl(l/p — 1)+ < Bi, v < €.

o !
The Hardy space HP(X1 x X3) is defined to be the set of all f € (g(ﬁl,@mm)) such that
||92(f)HLP(X1Xx2) < 00, and we define

1l 0y = 1920 ooy

where go(f) is defined as in Theorem 2.26.
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We first consider the reasonability of the definition of the Hardy space HP(X; x X3).

Proposition 2.31. Let all the notation be the same as in Definition 2.30. Then the definition
of the Hardy space HP(X; x X2) is independent of the choice of the approzimations to the
identity and the spaces of distributions with 3; and ~; satisfying (2.21), where i =1, 2.

Thus, Definition 2.30 is reasonable by Proposition 2.31. We remark that in the proof of
Proposition 2.31, we actually only require that 0 < v; < ¢; for i = 1, 2. However, if v; and j3; for
i =1, 2 are as in (2.21), we then can verify that the space of test functions, G(81, B2;71,72), is
contained in the Hardy space HP(X; x X3). To be precise, we have the following propositions.

Proposition 2.32. Let p and the space HP(X; x X3) be the same as in Definition 2.50. If
0<pBi<e and di(1/p—1)4 < <€ fori=1, 2, then

G(B1, B2;71,72) C HP (X1 x Xa).

Proposition 2.33. If1 < p < oo, then the space HP (X1 x X2) is the same space as the space
LP (X x Xo) with an equivalent norm.

and

Proposition 2.34. Let p and the space HP (X1 x Xo) be the same as in Definition 2.50, and
Sy be defined as in (2.18) with ¢ = 2. If B; and ~; with i = 1, 2 are as in (2.21), then

fe HP(X, x Xa) if and only if f € (gc(ﬂl,ﬂg;’yl,’yg))/ and Sa(f) € LP(X1 x X»). Moreover,

||f”Hp(X1><X2) ~ HSQ(f)HLP(Xl xX2)

We now use Proposition 2.34 to obtain the atomic decomposition of the Hardy space
HP(X, x X3). Before we do so, we establish Journé’s covering lemma in the setting of homogeneous-
type spaces.

We recall some notation. Let {Q’;@ CXi: ki€Z, a; € It} for i = 1, 2 be the same as
in Lemma 2.14. Then the open set Qﬁll X Q’o‘g for ki, ko € Z, o1 € Iy, and g € I}, is called
a dyadic rectangle of X7 x Xs. Let Q C X3 x X3 be an open set of finite measure and M;(2)
denote the family of dyadic rectangles R C €2 which are maximal in the x; “direction”, where
i =1, 2. In what follows, we denote by R = B; x By any dyadic rectangle of X; x Xs. Given
R = By x By € M;1(Q), let By = §2(Bl) be the “longest” dyadic cube containing Bs such that

_ 1 _
(2:22) (u1 % p2) (Br x B2 N Q) > 5 (1 x pz) (Br x Ba);

and given R = B; X By € M3(Q), let El = §1(Bg) be the “longest” dyadic cube containing
Bj such that

~ 1 ~
(223) (/,Ll X Mg) (B1 X By N Q) > 5 (,u,l X /,LQ) (Bl X BQ)

If B; = QZ"Z, C X; for some k; € Z and some «; € Ii,, (B;), for k € N is used to denote any
dyadic cube Q’O“j;k containing Q’g;l and (B;)g = B;, where i = 1, 2. Also, let w(z) be any
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increasing function such that Zj’;o jw(C277) < oo, where C' > 0 is any given constant. In
particular, we may take w(z) = z% for any ¢ > 0.

Then we have the following variant of Journé’s covering lemma in the setting of homoge-
neous type whose idea of proof comes from the work of Pipher [P].

Lemma 2.35. Assume that Q C Xy x Xo is an open set with finite measure. Let all the
notation be the same as above and p = 1 X pa. Then

(2.24) 3 (R)w (“2(52)) < Cp(Q)

R=B1x B2 M1 (Q) p2(B2)

and

(2.25) 3 W(R)w (”1@)) < Cu(9).

R=B) x B2€M3(Q) p1(B1)

To give an atomic characterization of the product HP spaces of homogeneous type, we
first introduce the HP(X; x Xj3)-atom. In what follows, for any open set 2, we denote by
M(Q) the set of all maximal dyadic rectangles contained in €.

Definition 2.36. Let all the notation be the same as in Definition 2.30 and p = p1 X po. A
function a(z1,x2) on X1 X Xo is called a (p,2)-atom of HP (X1 x X3), if it satisfies

(1) suppa C Q, where ) is an open set of X1 x Xo with finite measure;

(2) a can be further decomposed into

where
(i) supposing R = Q1 x Qo with diam Q1 ~ 27" and diam Qy ~ 27%2, then
suppag C Bi(z1, A;C27F) x By(z, AyC27%),
where z; is the center of Q; fori =1, 2, C is the constant in Lemma 2.5, for X
and Xs.
(ii) for all z1 € X7,
/ ag(r1,2) dus(x2) =0
X

2
and for all o € Xo,
/ ar(w1,x2) dpr(v1) = 0;
X

1
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(i11) llall2(x, xxz) < u()V2=1r and

1/2

> llerlizx xxs) < p(Q)Fr,
REM(9)

Moreover, ag is called an HP (X1 x X3) (p,2)-rectangle atom, if ar satisfies (i), (ii) and

(iv) larllr2(x, xxm) < p(R)V271P.

The atomic decomposition of the Hardy space HP(X; x X3) is stated in the following
theorem.

Theorem 2.37. Let i =1, 2, X; be a homogeneous-type space as in Definition 2.1, ¢; € (0, 6;]

ma d da <p<l1
X , S L
di+ €1 dy + €9 p

and

o /
Then f € HP(X; x X3) if and only if f € <Q(ﬂ1,ﬂg;’yl,’yg)> for some [B;, i satisfying (2.21),

where i = 1, 2, and there is a sequence of numbers, {\,}rez, and a sequence of (p,2)-atoms of
HP (X1 x X2), {ak}trez, such that Y 72 | AglP < oo and

f= Z Ak

k=—o00

o !
m (g(ﬁl,ﬁ%’}/l,’)@)) . Moreover, in this case,

') 1/1’
1 £l 7o (x1 x x5) ~ inf [Z >‘k|p] ,

k=—00
where the infimum is taken over all the decompositions as above.

The proof of this theorem is similar to classical case on R".

As the main application, we consider the boundedness of singular integrals on the product
HP spaces of homogeneous type.We first recall some notation. Let §2 be an open set in X1 x X5.
We define

Q= {(l’l,fL’Q) € X1 xXo: MSXQ(SL'l,l’Q) > 1/2}

and

Q= {(xl,xg) € X1 xXo: MsXQ(l'lny) > 1/2} .

For any R = Q1 X Q2 € M(Q), we define R= @1 X Q€ My (ﬁ) such that

(2.26) i (E N Q) > %u (%)
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and R = @1 X ég € Mo (ﬁ) such that
_ 1
(2.27) n(RNQ) > H (R) .
Let C > 1 and we set
—_ ~ ~
(2.28) CR=CQ:1 x CQ-,

where CQVZ- means the “cube” with the same center as sz but with diameter C' times the
diameter of @Z We also denote by z; the center of @Z fori=1, 2.

We first have the following general theorem on the boundedness of linear operators from
HP(X; x X3) to LP(X; x X3) with p € (po, 1], when the linear operators are assumed to be
bounded on L?(X; x X3). This is a generalization of R. Fefferman’s theorem in pure product
setting in Euclidean spaces, see Theorem 1 in [F4]. Here pg is some positive number less than
1.

Theorem 2.38. Suppose that T is a bounded linear operator on L?(X1 x X). Let ¢; € (0,0;]

and J J
1 2
, <p<l.
max{dl-i-q d2+62} p=

Suppose further that if ag is an HP(X1 x X3) (p,2)-rectangle atom as in Definition 2.36 and

R=Q1%xQy. Let Q1 and Qs be the same as in (2.26) and (2.27). If there exist fived constant
0 > 0 and some fized large enough constant C > 1 such that for all R = Q1 X Qo,

5
p z z MI(Q )
(2:29) /Xz /(0@1)3 T (ar) (21, 22)[" dpa(z1) dps(ze) < C (m(@l))

and

0
p x 2 p2(Q2)
(2:30) S o @)z dpnen) dpa 2)§C<u2(@2)) ,

then T is a bounded operator from HP(X; x X3) to LP(X; x Xs), where

(C@,»)U = X;\CQ;, i=1, 2.

We now consider the boundedness on H? space for a certain range of p € (pp, 1] for a class
of singular integrals similar to [NS3].

Let n; € (0,6;], i = 1, 2. We define C/""™ (X1 x X3) = CJ'(X1) ® C*(X2). Also, for
i =1, 2, we say ¢ is a bump function on X; associated to a ball B(x;,d;), if it is supported
in that ball, and satisfies [|¢|[z~(x,) < 1 and ||90||C§(Xi) < €6 for all n € (0,6;], where C > 0
is independent of ¢; and z;. In what follows, for its convenience, if f € L*°(X;), we write
f € C°X;) and define

I fllcoxy = I llzee(xy)s
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and for n; € (0, 6;],

||f||C"i(Xi): sup M

1=1, 2.
l‘i,yiEXi p’L(:L"M yl)nl ’ ’

Definition 2.39. Let n; € (0,6;], i = 1, 2. A linear operator T initially defined from
CIV™ (X1 x Xa) = CN(X1) @ C*(X2) to its dual is called a singular integral if T has an
associated distribution kernel K (x1,z2;y1,y2) which is locally integrable away from the “cross”

{(z1,22591,92) : 21 =y1, or X2 = Yo}
satisfying the following additional properties
(1)
(T(p1 @ p2),11 @ o)

/ K(x1, 22591, y2) 1 (1) 02(y2)
X1 XxXoxX1xXo

X1 (w1)2(z2) dpa (y1) dpz(y2) dpn (1) dus(z2)

whenever p1, Y1 € CJ'(X1) and have disjoint supports, and 2, 2 € CJ?(X2) and have

disjoint supports;

(ii) For each bump function pa on Xo and each xo € Xa, there exists a singular integral
T%2%2 (of the one-factor type) on X1, so that xo — T¥27"2 s smooth in the sense make

precise below, and so that

(T(p1 ® p2),91 @1p2) = / (T?>*2 1, 91)a(w2) duz(z2).

Xa

Moreover, we require that T¥2"2 uniformly satisfies the following conditions that T¥2:*2

has a distribution kernel K¥2%2(x1,1y1) having the following properties:

(i) If o1, Y1 € CJ'(X1) have disjoint supports, then

(T92%2p1,1)1) = / K222 (z1, y1)e1(z1)Y1(y1) dua(z1) dpa (y1);
X1 ><X1

(i) If p1 is a bump function associated to the ball B(Z1,71), then
”TW’HSOlHCal(Xl) < C’rl—al

for all ay € [0,01], where C > 0 is independent of pa2, x2, and ri. Precisely, this
means that for each aqx > 0, there is a by > 0 and a constant Cq, ,, independent of

pa, T and r1, so that whenever ¢ € Cgl (X1) supported in a ball B(z1,71), then

T2 1] car (x,) < Cay by sup i T2 201 e (x,);
C1501
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(ii)s There is a constant C' > 0 independent of 2, x2, and r1 such that

(ii)31 |K#>7 (21, 1) < Cpi(w1,91) ™",
(ii)s2 |K#272(21,51) — K#272 (2, 51)| < Cpu(ar, a1)™pr (w1, 1)~ 0™ for

1 < p1(z1,y1)
,01(1'1,-%'1) = 2A1 )
(ii)s3 |K#2%2 (21, 91) — K922 (21, 44)| < Cp1(y1, y) M p1(z1,31) "9~ for

p1(1, y1).

/
<
p1(y1,y1) < YT

(ii)y If w2 is a bump function associated to B(ZT2,T2), then for as € (0,02],
732 0y (T, ug) "2 [T922 — T922]

also uniformly satisfies properties (i) through (ii)s;

(ii)s Properties (ii)y through (ii)y also hold with x1 and yy interchanged. That is, there
properties also hold for the adjoint operator (T¥2*2)t defined by

(TP272) p,00) = (T, );

(iii) The property (ii) hold when the index 1 and 2 are interchanged, namely, if the roles of
X1 and X4 are interchanged;

(iv) There is a constant C' > 0 such that for all bump functions p1 and a2, respectively,
associated to B(Z1,7m1) and B(Z2,12),

[T (1 © @2) (21, 22) = T(p1 @ @2)(u1, 22)]
—[T(p1 ® p2)(w1,u2) — T(p1 @ p2)(u1, up)]|
< Cry™ry 2 pi(z1, u1)™ po(z2, ug)®
for all ay € (0,61] and all az € (0, 62);
(v) The kernel K(x1,x2;y1,y2) satisfies the following conditions:

(W |K(z1,22;91,92)| < Cpr(z1,y1) "M pa(wa, y2) %,
1 p2($2,x’2)772

v)o |K(x1,22;91,92) — K(x1, 2591, 42)| < C
(v)2 [K( ) ( 2 ) pr(x1, Y1) pa(ze, yo)d2tm

for

P2($2,y2)

p2(xa, x5) < oA,
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1 PZ(?J%?/&)W
p1(z1,y1)h pa(,y2)d2tm2

(v)3 | K (21, 22;y1,92) — K(x1, 225 y1,95)| < C

p2(x2,y2)

/
<
p2(y2, ys) < oA,

(v)4
[[K (w1, 225 y1,92) — K (27, 22591, y2)]

—[K (21, 2%; y1,y2) — K (o, v5; y1, y2)]|

<C pr(xy, x))™  po(wo, 5)™
T pr(r, ) Btm py (g, yo)dzte

for e, at) < PRI i gy, ) < 2020),

(v)s
[[K (21, 223 y1,y2) — K (2], 22591, Y2)]

—[K(x1, 2591, y5) — K(2, 2,91, ¥5)]]

<C pr(x, )™ palyo, yy)™
= pi(@r, yn) B po(we, yo )2tz

p1(x1,y1) p2(22,2)
Jor Pl(flal“/l) < T and P2(yzay§) < 27/12;

(v)e
|[K(l‘1,9€2; ybyz) - K(l‘l, T2; Z/p yz)]

—[K(z1, 22591, 95) — K (1, 22; ¥, ¥5)]|

<c p1(y1,y)™  p2(ye, o)™
= pr(r, yn)Btm po(wg, yo)dzte

p1(z1,y1) p2(x2,%2)
for p1(y1,y’1) < 27141 and P2(y27yé) < Ty

(v)7 The properties (iii)2 to (iii)s hold when the index 1 and 2 are interchanged, that is,
if the roles of X1 and Xa are interchanged.

(vi) The same properties are assumed to hold for the 3 “transposes” of T, i.e. those opera-
tors which arise by interchanging x1 and vy, or interchanging xo and ys, or doing both
interchanges.

We can now establish the HP-boundedness of these singular operators as defined in Defi-
nition 2.39 as follows.



34 Yongsheng Han and Guozhen Lu

Theorem 2.40. Let 0 < ¢;, 1n; <0;,i=1, 2, and

{ d1 d2 d1 d2 }
max , , , < p < oo.
di+e€" dote” di+mn da+m

Each product singular integral as in Definition 5.1 extends to a bounded operator on HP (X1 x X3)
to itself.

2.2 Duality of product Hardy spaces in homogeneous spaces

We now study the duality of the product H' spaces of homogeneous type(see [HLL1]). To
characterize the dual space of HP(X x X), we introduce the Carleson measure space C'MOP
on X x X, which is motivated by ideas of Chang and R. Fefferman ([CF1]).

Definition 2.41. Let i =1,2,0 < §;, vi <, {Sk, }r,ez be an approzimation to the identity of
order 0. Set Dy, = Sk, — Sk,—1 for all k; € Z. The Carleson measure space CMOP(X x X) is

defined to be the set of all f € (éﬁ(ﬂl,ﬂz,’}/l,’}/g))/ such that

N(k1,m1) N(k2,m2)
Mevoan=sp (s [ 32 3 & $ 3 %
Q Qk;lf—ook‘gf—OOTlelkl T2€Ik2 v1=1 va=1

2
XX{Qﬁll,leQﬁg,v2CQ}(kl7k277—1,7—2,vl,1)2 ‘quDkQ(f)(l'l’iUQ)‘

1/2
XX g1 (T1)X koo (T2)dp(@1)dp(z2) | < o0,
Q7 Q75
where the sup is taken over all open sets ) in X x X with finite measures.

In order to verify that the definition of CMOP(X x X)) is independent of the choice of the
approximations to identity, we establish Plancherel-Polya type inequality involving the C M OP
norm. To this end and for the sake of s1mp1101ty, we ﬁrst give some notation as follows.

k‘ k
We write R — leyvl kavz R Q 17”1 x Q 27“2’

T2

N(k1,m1) N(k2,12)

Z Z Z Z Z Z Z X{le ”IXQT2 UQCQ}(klvk277—177—271}17'02);

RCQ k1*—ook2*—oonelk1 TQGIkQ v1=1 vo=1

N( kl,Tl) N( k2,72)

/ / / ! / /
E E E E E E E K v (Kys ko, Ty, To,y vy, V)5
R'CQ Q"2 cay
k =—00 k:2—foo Tlel ’ 7'261 ’ vl—l v2—1 Tz
1 2

I
1’7'1)N 2’7'2

ZZZZZZZ

1:—00 k27—oo 7’1€I ’ TQGI ’ vlfl vzfl
k1 ko

H(R) = u(Q5 " u(QE"); u(R) = p(@Q ) u(@F™);
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), 1 Gy 1o
T(R R’) _ < (Qlﬁ,vl) A H(QT{ ))1+€ ( (ka,vz) N ,U/(QT; ) 1+e '
| p(@y @I Nyl m@E) )

1 T2

/

V(R R) = (@) v (@) (@) v (@5 ));

1 T2

/ 1 1
P(R,R) - 77 77 a
dist(QE17, Q1) | 14 dist (QF2%2, Q"2%2) | 14«
(1 + L <1 + -
p(QE) V(@) u(QE") v Q")
1 2
/ 1 12
Sg = sup | Dy, D, (f)(wl,l'z)IQ; T = 1nf (f)(y17y2) :
CElEQﬁll’Ul,mEQ%’UQ yleQ Kol IEQ 22

T2

Now we have the Min-Max inequality for the norm of CMOP(X x X).

Theorem 2.42. Let all the notation be the same as above. For 2L+0 <p<1ldlf e
CMOP(X x X),

1 1/2 1 1/2
sup ((92_1 Z M(R)SR> N Slép <2_1 Z N(R/)TR’) )
W

T )?" " RCa w()r " rco
where ) ranges over the open sets in X x X with finite measures.

The proof of this theorem uses a simple geometrical argument, which is a generalization
of Chang and R. Fefferman’s idea, see more details in ([CF1]).

Before proving the duality theorem of the product HP spaces of homogeneous type, we
introduce the product sequence spaces sP and cP as follows.

Definition 2.43. Let xg(z) = u(Q)*l/QXQ(x). The product sequence space sP, 0 < p <1, is
defined as the collection of all complex-value sequences

{ Qﬁll’leQﬁ%’UQ}khszZ; T1€l ;T2€ gy v1=1,..N(k1,m1), v2=1,..N(k2,m2)

such that ||A||se

H{ N(k1,7'1 N(kg,Tg

1/2
SED D DD SHD T D (FININE IS SEY

kl —Ookg —OOT1€I]€ TQGIk v1=1 vo=1

< oQ.

Lr

Stmilarly, P, 0 < p <1, is defined as the collection of all complex-value sequences

t= {tQ’ill’vl XQ%’UQ}IQJQEZ; T1€l ;T2€ kg ; v1=1,..N(k1,m1), v2=1,..N(k2,m2)
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such that ||t||»

N(k1,m1) N(k2,m2)

= sup — g E E g g g X ok101 5 k2002 (k1, ko, 11, T2, v1,02)
1 {7 xQ cQ}
p Q T2

ki=—00 ko=—00 nelkl ’TQGIk vi=1 vo=1
) 1/2
X (\thjll,leQ%,vzj -)ZQ;%,UI (:pl))ZQ%,UQ(xQ)) du(:):l)du(xg)> < 0.
For simplicity, Vs € sP, we rewrite s = {sg}r, and
- 1/2
Isllr = {3 (srnlar 22) P}

R
similarly, V¢ € P, rewrite t = {tr} R, and

1 1 2

It = sup (——5— 3 Itwf’)"

n()? " rco

where R run over all the dyadic rectangles in X x X. The main result in this section is the

following duality theorem.
Theorem 2.44. For pyg <p <1, (sp)’ — P,

The proof of this theorem uses the stopping time argument which was used in [CF2], for
the sequence spaces sP.
Now we have the following duality theorem.

Theorem 2.45. For pg < p < 1, (HP(X X X))/ = CMOP(X x X). Namely, the dual space
for HP(X x X) is CMOP(X x X).

To prove the above duality theorem, we first define the lifting and projection operators

as follows.

Definition 2.46. Let {Sk, }r,cz be an approximation to the identity of order 0, Dy, = Sy, —

Ski—1 for i = 1,2. For any f € (éﬁ(ﬂl,ﬁ%’yl,’}q))/ with 0 < Bi,v: < €, define the lifting
operator Sp by

Sp(/) = { (@) (@’ﬁ;“)lﬂDlekQ<f><y’:;’”l,y’:a%)}
QTl 1 Qk2 vz

ki,v;

where yz""" is the center of Qk“vZ ki€Z, 7i€ly,,v=1--- ,N(m,k;) fori=1,2.

Definition 2.47. Let all the notation be the same as above. For any sequence s, define the

projection operator T by

N(ki,m1) N(k2,72)

TD( .’El,:EQ Z Z Z Z Z Z S k1v1 Qk2v2

kl——ookg——oo’rlélkl ’TQG]],CQ v1=1 vo=1
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X Q) 2 (@) 2 Dy D (@1, @2,y ™),

where yf}vl is the center of Qlﬁf’vi and Dki s the same operator as in the Calderdn reproducing
formula (2.15) associated with Dy, fori=1,2.

To work at the level of product sequences spaces, we still need the following two proposi-

tions.

Proposition 2.48. Let all the notation be the same as above. Then for any f € HP(X x X),
s <p<1,

ISD(Nllse S M1f e xx)-

Conversely, for any s € sP,

IT5 ()| zeexxy S llsllse-
Moreover, T o Sp equals the identity on HP(X x X).

Proposition 2.49. Let all the notation be the same as above. Then for any f € CMOP(XxX),

2
52 <p< 1,

1Sp(F)ller S N Fllenror sy

Conversely, for any t € cP,

1T (B)lcrorxxaxy S lltller-
Moreover, T o Sp is the identity on CMOP(X x X).

The above two propositions give the proof of Theorem 2.45 with py = %9.

2.3 Dual spaces of product Hardy spaces H?(R" x R™)

In this subsection we give some remarks on how our general results of duality theory of Hardy
spaces HP(x x x) imply in the simplest case of product spaces of two Euclidean spaces. We
first remark that our results hold on X x ) with two different homogeneous spaces X and
Y. Second, all the theorems proved in this paper can be made very precise on R"™ x R™ by
using Calderén reproducing formulas with explicitly constructed approximation of identity via
Fourier transform. In particular, the definitions of Hardy spaces HP(X x X') and their dual
spaces CMOP(X x )) can be made for all 0 < p <1 when X = R" and Y = R™. Thus our
results in this paper include the duality theory of Hardy spaces HP(R™ x R™) for all 0 < p <1
and thus extend the earlier work of Chang and R. Fefferman [CF1] on H'(R? x R%) and
BMO(R%Z x R%).

To state the realization of our main results on R™ x R™, we need to start with some
preliminaries. Let S(R™) denote Schwartz functions in R™. Then the test function defined on
R™ x R™ can be given by

U@, y) = W (@)@ (y)
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where (1) € S(R™), $@ € S(R™), and satisfy 3 [¢(D(279¢)|2 = 1 for all & € R™\{(0)},
JEL
and Y [0 (27F&)|? = 1 for all & € R™\{0}, and the moment conditions
keZ

/waw(l)(w)dx = /d)(?)(y)yﬁdy =0
R R™
for all nonnegative integers a and (.

Let f € LP;1 < p < oo. Thus g(f), the Littlewood-Paley-Stein square function of f, is
defined by

g(A)@,y) = 9D s fla,y)
ik
where functions

(2.31) by, y) = 20" TRmyp () (272) (@) (2K )

By taking the Fourier transform, it is easy to see the following continuous version of
Calderén’s identity holds on L?(R™ x R™),

F@,y) =D tipxip = f(2,y).
i k

Using the orthogonal estimates and together with Calderén’s identity on L? allows us to
obtain the LP estimates of g for 1 < p < co. Namely, there exist constants C; and Cy such
that for 1 < p < oo,

Cillfllp < Ng(Nllp < Call fllp-

In order to use the Littlewood-Paley-Stein square function g to define the Hardy space,
one needs to extend the Littlewood-Paley-Stein square function to be defined on a suitable
distribution space. For this purpose, we introduce the product test function space on R™ x R™.

Definition 2.50. A Schwartz test function f(x,y) defined on R™ x R™ is said to be a product
test function on R™ x R™ if f € S(R™ x R™) and

flz,y)zde = / flz,y)y’dy =0
Rn R7n

for all indices o, B of nonnegative integers.
If f is a product test function on R™ x R™ we denote f € S(R™ x R™) and the norm of
f is defined by the norm of Schwartz test function.

We denote by (S(R™ x R™))’ the dual of S(R™ x R™).
We also denote (Sps(R™ xR™)) by the collection of Schwartz test functions f(z,y) defined
on R" x R™ with

o0 9b
flsw = s (el D" Y 1 O ey < o,
zeR™ yeR™ la| <M, |B|1<M y
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and

flz,y)a®de = | f(z,y)y’dy =0
Rn Rm™

for all indices «, 8 < M.

Similarly, we denote (Sas(R™ x R™))" the dual of Sy;(R™ x R™). Since the functions ;
constructed above belong to S(R™ x R™), so the Littlewood-Paley-Stein square function g can
be defined for all distributions in (S(R™ x R™))". Formally, we can define the multi-parameter
Hardy space as follows.

Definition 2.51. Let 0 < p < oco. The multi-parameter Hardy space is defined as HP(R™ x
R™) = {fe(S) :9(f) € LP(R" x R™)}. If f € HP(R™ x R™), the norm of [ is defined by
1f e = Nlg(f)lp-

To establish the Hardy space theory on R” x R™, we need the following discrete Calderén’s
identity.

Theorem 2.52. Suppose that 1, are the same as in (2.31). Then

vy) =YY NI,y w0,00) ik ) (1,00)

gk I,J

where {ﬂvj,k(x,y,a:[,yj) € Sy(R" x R™), I C R™,J C R™ are dyadic intervals with interval-
length €(I) = 237N ¢(J) = 27%=N for a fized large integer N,x1,y; are any fized points in
I, J respectively, and the series above converges in the norm of Syr(R™ x R™) and in the dual
space (Sp(R™ x R™))’.

The dual space CMOP(R™ x R™) can be defined using the Carleson measure characteri-

zation.

Definition 2.53. Let 0 < p < 1 and ;. be the same as in Theorem 2.52. We say that
f € CMOP(R™ x R™) if f € (S(R™ x R™))" with finite norm || f||caor defined by

Z/ Z V5 * f(z y)| x1(x)xs(y)dzdy

|Q\T ik o IxJCQ

Q

for all open sets Q0 in R™ x R™ with finite measures, and I C R™, J C R™ are dyadic intervals
with interval-length ((I) = 277=N 0(J) = 275N for a large fized positive integer.

We note that /() and 1@ are smooth and have moment condition of infinite order. As a
consequence, the value of p in Definition 2.28 can be any number greater than 0. Therefore, we
have the following duality result: (HP(R™ x R™))" = CMOP(R™ x R™) for all 0 < p < 1. The
space CMOP(R™ x R™) when p = 1 coincides with the BMO(R"™ x R™) introduced by Chang
and R. Fefferman in [CF1], and therefore our duality theorem of Hardy spaces on R™ x R™
extends the result of Chang and R. Fefferman to all 0 < p < 1.
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2.4 Hardy spaces on product homogenous groups

To explain how our results include the product H? theory on two stratified groups such as the
Heisenberg group, we give some preliminary introduction here.

We begin with some preliminaries concerning stratified Lie groups (or so-called Carnot
groups). We refer the reader to the books [FoS| and [VSCC] for analysis on stratified groups.
Let G be a finite-dimensional, stratified, nilpotent Lie algebra. Assume that

g == @le‘/; ’

with [V;, Vj] C Viyj for i+ j < s and [V;, V] = 0 for i + j > s. Let Xy,---,X; be a basis
for V1 and suppose that Xi,---,X; generate G as a Lie algebra. Then for 2 < j < s, we
can choose a basis {Xj;}, 1 < i < kj, for V; consisting of commutators of length j. We set
Xin=X;, i=1,---,l and k; =, and we call X;; a commutator of length 1.

If G is the simply connected Lie group associated with G, then the exponential mapping
is a global diffeomorphism from G to G. Thus, for each g € G, there is z = (z;;) € RY for
1<i<kj1 SjgsandN:Z;zlkj such that

g = exp(z xinij) .

A homogeneous norm function | - | on G is defined by

lgl = O | PH9)1/2

and Q = Z;Zl Jjk;j is said to be the homogeneous dimension of G. The dilation ¢, on G is
defined by

or(g) = exp(z rjxinij) if g= exp(z xi; Xij).
We call a curve 7 : [a,b] — G ”a horizontal curve” connecting two points z,y € G if

v(a) = =, v(b) = y and ' (t) € V; for all . Then the Carnot-Caratheodory distance between
x,y is defined as

b
el = int [ <7/ (7' (0) >+ at,
7 Ja

where the infimum is taken over all horizontal curves v connecting x and y. It is known that
any two points x, ¥y on G can be joined by a horizontal curve of finite length and then d.. is
a left invariant metric on G. We can define the metric ball centered at x and with radius r
associated with this metric by

Bee(z, 1) ={y : dee(x,y) <1}

We must notice that this metric d.. is equivalent to the pseudo-metric p(z,y) = |z~ 1y| defined
by the homogeneous norm | - | in the following sense (see [FS])

Cp(z,y) < dee(z,y) < Cp(x,y).
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We denote the metric ball associated with p as D(x,r) = {y € G : p(z,y) < r}. An important
feature of both of these distance functions is that these distances and thus the associated metric
balls are left invariant, namely,

dCC(zxa Zy) = d(ZL‘, y)a Bcc(l'a ’I") = chc(Oa T)

and
p(zz, zy) = p(z,y), D(z,r) = 2D(0, 7).

For simplicity, we will use the left invariant metric d.. to study the product theory of two
stratified groups. An important property of the metric ball is that

((Bee(z,7)) = CQTQ
for all x € G and r > 0, where u is the Lebesgue measure on G and @ is the homogeneous
dimension. Therefore, the space (G, d.., i) is a space of homogenous type.

If we consider two stratified groups (Gi,d.., u) and (Gg,d?,, i), the product HP theory
developed in this section includes the case of product theory on G; x G as a special case.
Of particular interests are the case HP(G1 x G2) when G or G is the renowned Heisenberg
group. Such product HP theory was developed earlier by the first two authors in ([HL1],
[HL2]). It is this work which motivated the generalization to the H? product theory of two
homogeneous spaces in the current section. In this special case, the duality theory of Theorem
2.45 works well for all 0 < p < 1, namely pg can be taken 0 in the product of two stratified
groups. The construction of the dual spaces is similar to the Euclidean case by considering
group convolutions. Further generalizations to the product of two Carnot-Carathedory spaces

are given in next section.
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3 Product H? spaces on Carnot-Carathéodory spaces

In [NS1], Nagel and Stein studied the initial value problem and the regularity properties of the
heat operator H = 0; + [, for the Kohn-Laplacian [0, on M, where M is the boundary of a
weakly pseudoconvex domain (2 of finite type in C2. And in [NS4], they obtained the optimal
estimates for solution of the Kohn-Laplacian on ¢-forms, [, = Déq), which is defined on the
boundary M = 9 of a decoupled domain 2 C C". The method they used is to deduce the
results about regularity of [0, on M from corresponding results on M C C? via projection,
where M = M x - -- x M, is the Cartesian product of boundaries of domains in C? mentioned
above. Namely, M is the Shilov boundary of the product domain 7 X - -+ X .

In [NS3], they developed an LP (1 < p < oo) theory of product singular integral operators
on product space M= My X --- X M, in sufficient generality, which can be used in a number
of different situations, particularly for estimates of fundamental solutions of [J, mentioned
above. They carried this out by first considering the initial value problem of the heat operator
H = 05 + L for each M;, where L is the sub-Laplacian on M; in self-adjoint form, then using
the heat kernel to introduce a Littlewood-Paley theory for each M; and finally passing to the
corresponding product theory.

In this part, we will follow the lines of Nagel and Stein([NS3]) to consider the the product
space M=M 1 X+ -xX M, and establish the Hardy spaces H p(]Tj ) for p less than 1 and near 1 and

prove that the product singular integral operators are bounded on HP(M) and bounded from
H p(ﬁ ) to Lp(]\7 ). Next, by imposing some natural conditions on each M;, we can also establish
the Carleson measure spaces C'MOP (]Tj ) for p less than 1 and near 1. Then, we show that the
duality of HP(M) is CMOP(M). In particular, when p = 1 we have (HI(JTJ/))/ = BMO(M).
As a consequence, we can obtain that the product singular integral operators are bounded on
CMOP(M) and bounded from L (M) to BMO(M). Results described here are joint work of
Han, Li and Lu [HLL2].

To be more precise, let M is a connected smooth manifold and {Xy, -, Xy} are k given
smooth real vector fields on M satisfying Hormander condition of order m, i.e., these vector
fields together with their commutators of order < m span the tangent space to M at each
point.

In [NS3], for the sake of simplicity and because of the applications described in [NS4],
Nagel and Stein focused their attention on two specific settings:

(A) Here M is a compact connected C'°°-manifold. We suppose that we are given k
smooth real vector fields on M which are of finite type m in the sense that these vector fields
together with their commutators of order < m span the tangent space to M at each point.

(B) Here M arises as the boundary of an unbounded model polynomial domain in C2. Let
Q= {(z,w) € C?: Im(w) > P(z)}, where P is a real, subharmonic, non-harmonic polynomial
of degree m. Then M = 9 can be identified with C x R = {(2,t) : z € C,¢t € R}. The basic
(0,1) Levi vector field is then Z = % - i%—};%, and we write Z = X; + iXy. The real vector
fields {X1, X;} and their commutators of order < m span the tangent space to M at each point.
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Thus this M is a non-compact variant, with k& = 2, of the manifolds consider in (A).
One variant of the control distance is defined as follows:
For each x,y € M, let AC(z,y,d) denote the collection of absolutely continuous mapping

k
¢ : [0,1] = M with ¢(0) = z, ¢(1) =y, and for almost every ¢ € [0,1], ¢'(t) = > a;X;(¢(t))
j=1

with |a;| < d. The control distance p(z,y) from z to y is the infimum of the set of § > 0 such
that AC(z,y,0) # (). For details, see [NS3] and [NSW]. The result they needed is that there is
a pseudo-metric d ~ p ! equivalent to this control metric which has the optimal smoothness ;
i.e. d(z,y) is C* on {M x M — diagonal}, and for z # y

0% Oyd(z,y)| S d(z,y) "

Here 0 is a product of K of the vector fields {Xi,--- Xj} acting as derivatives on the z
variable, and 6%, are a corresponding L vector fields acting on the y variable.

It is clear that (M,d,u) is a space of homogeneous type in the sense of Coifman and
Weiss. However, the measure p does not satisfy the basic assumption in (2.2). Therefore,
the methods used in section 2 for product of two homogeneous spaces can not be applied to
(M,d, p). To construct Calderén’s identity, they considered a volume measure on M as follows.
In the situation (A), they took any fixed smooth measure on M with strictly positive density.
In the situation (B), they took Lebesgue measure on C x R. Denote by u(E) the measure of
E. Define ball B(z,d) ={y € M : d(xz,y) < d} with 0 <6 <1 in case (4) and 0 < § < o0 in
case (B). Then the following formulae hold for the volume p(B(z,d)):

w(B(z,90)) ~ Z A7 (z)|o! in case (A);
[<r
m
w(B(z,90)) ~ (]Ak(x)5k|)(52 in case (B).
k=2
Here A; and Ay are the appropriate Levi-invariants, and are continuous, non-negative functions
of M (see Theorem 2.2.4 and section 4.1 in [NS2]). The balls have the required doubling property

u(B(x,26)) < Cp(B(z,9)) forall §>0.

The volume functions are introduced as follows:

S
&
I
=

(B(x,9));
(B(z,d(z,y))).

=
8
NS
I
=

More precisely, follow the steps in [NS3], we first focus on the case on M = My x M.
By discretizing the time scale ¢ of the heat kernel, we restate the reproducing identity and

'Here, and subsequently, A ~ B means that the ratio A/B is bounded and bounded away from zero by
constants that do not depend on the relevant variables in A and B. A < B means that the ratio A/B is
bounded by a constant independent of the relevant variables
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Littlewood-Paley theory obtained in [NS3]. Next, introduce the test function space and pro-
vide the continuous and discrete reproducing identity on the test function space and its dual
space, and finally define the Hardy spaces HP(M). Then we show that the singular integral
operator is bounded on HP(M) and from HP(M) to LP(M). Moreover, for the manifold M
with some restrictions, we can establish the Carleson measure space C M OP(M) and prove that
(HP(M))' = CMOP(M).

Finally, following the ideas and skills in ([HLL2]), we pass all the results of duality to the
general product space M= My X -+ xX M,.

3.1 The Heat Equation

In this subsection, we focus on the manifold M;,i = 1,2, with |M;| = cc.

We will use again the construction given by Christ in [Chr|, which provides an analogue
of the grid of Euclidean dyadic cubes on Carnot-Caratheodory spaces.

To construct the Littlewood-Paley square function, Negal and Stein in [NS3], see also
[NS1], considered the sub-Laplacian £ on M (here M = M, and dropping the index i) in
self-adjoint form, given by

k
L=) XX,
j=1

Here (Xip, 1) = (¢, Xj), where (p,9) = [ @(2)i(x)dp(z), and ¢, € C°(M), the space of
M

C® functions on M with compact support. In general, X7 = —Xj + a5, where q; € C>®(M).
The solution of the following initial value problem for the heat equation,

ou
g(m, s)+ Lyu(x,s) =0

with u(z,0) = f(z), is given by u(z,s) = Hs(f)(z), where Hy is the operator given via the
spectral theorem by Hy = e *£, and an appropriate self-adjoint extension of the non-negative

operator £ initially defined on C§°(M). And they proved that for f € L%(X),

H,(f) () = /M H(s, 2, ) f(4)dn(y).

Moreover H (s, x,y) has some nice properties (see Proposition 2.3.1 in [NS3] and Theorem 2.3.1
in [NS1]). We restate them as follows:

(1) H(s,z,y) € C*°([0,00) x M x M\{s =0 and = = y}).

(2) For very integer N > 0,

010508 H (s, 2, y)|

I\D‘Z

- 1 1 < Vs )
~(d(x,y) + V) FTEFEV (2,y) + Vs(x) + Vi) \d(z,y) + /s
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(3) For each integer L > 0 there exists an integer Ny and a constant Cp, so that if
¢ € C§°(B(x0,0)), then for all s € (0,00)

0% Hy[g](w0)| < CLo~Fsup > 6M|0%ep(x)).
xr
[J|<NL

(4) For all (s,z,y) € (0,00) x M x M,

H(s,z,y)=H(s,y,2);
H(s,z,y)>0.

(5) For all (s,z) € (0,00) x M, [ H(s,z,y)dy = 1.

(6) For 1 < p < oo, [Hs[f]llzeary < [/l o an)-

(7) For every ¢ € Cg°(M) and every ¢t > 0, lin% |Hsl¢] — ¢llt = 0, where || - ||; denotes the
Sobolev norm.

In [NS3], Nagel and Stein defined a bounded operator Q4 = 238}?, s> 0on L?(M), and
denote by ¢s(x,y) the kernel of @), which has the following properties:

(a) gs(z,y) € C®(M x M\{z = y}).

(b) For every integer N > 0,

S

O )] S - : (o)
(d(z,y) + V3) KV (2,y) + V(@) + Vs(y) \d(z,y) + Vs
(©) [ as(z,y)dy = [ ¢s(x,y)dz = 0.
Then they obtained the Littlewood-Paley theory on M by using the operator Q).
From the spectral theorem, we can see that Hy — Id on L?>(M) as s — 0 and Hs, — 0 on
L*(M) as s — oo. Hence for any f € L?(M),

0s 0s

€ €

[fan® = [ nS =2 [ SR (nas = 2tin)| — -2

as € — 0. Thus one obtains the following Calderdén’s identity:

Let

then we have

> Qj=1Id on L*(M).
J

Denote by g;j(z,y) the kernel of ;. From the estimates of ¢s(z,y), for each j, gj(x,y) satisfies
that

(a) gj(z,y) € C°(M x M\{z = y}).



46 Yongsheng Han and Guozhen Lu

(b') For every integer N > 0,

wlz

1 1 277
oL oK qi(x,y)| < : ( )
| X YQJ(x y)‘ ~ (d(.’L’, y) + 2—])K+L V(-’E,y) —+ ‘/27]‘ (ZC) + VYQ*J' (Z/) d(l’,y) + 277

() [aj(z,y)dy = [ q;(z,y)dz = 0.
Then we have that for any f € L2(M), f =Y. Q;(f). Now we can restate the Littlewood-
J

Paley theory as follows.
For f € L?(M) we define the square function S(f) by

S[f)(z) = (Z !Qj[f](w)!2>

1
2

Proposition 3.1.
1. For f € L*(M),

IST N z2ary = 1f 12 any-
2. For 1 <p<oo,if fe LP(M) then

ISU e any = 11f 1o (ary-

3.2 Singular integral operators on M

We first recall that a bump function ¢ associated to a ball B(xg, ) if it is supported in that
ball and satisfies the differential inequalities |0% | < 67 for all monomials dx in Xy,---, Xj
of degree a and all a > 0.

A class of singular integral operators T" are initially given as mappings from C§°(M) to
C*°(M) with a distribution kernel K (x,y) which is C*° away from the diagonal of M x M,
and we suppose the following four properties hold:

(I-1) If p, ¢ € C§°(M) have disjoint supports, then

< T >= /M | K@ y)ely)(a)dyds.

(I-2) If ¢ is a normalized bump function associated to a ball of radius r, then [0%Tp| S r~¢

for each integer a > 0.
(I-3) If = # y, then for every a > 0,

0% v K (,y)| < d(@,y) ™"V (z,y)~".

(I-4) Properties (I-1) through (I-3) also hold with = and y interchanged. That is, these
properties also hold for the adjoint operator 7% defined by

< Tlp, i) >=<Tip, 0 > .
The main result about this singular integral operator is as follows:

Theorem 3.2. [NS3] Each singular integral T satisfying (I-1) through (I-4) extends to a
bounded operator on LP(M) whenever 1 < p < oo.
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3.3 The product case of two factors

We assume that M = M; x M. Consider linear mappings 7', initially defined from C§° (M )
to C° (]\7 ) which have an associated distribution kernel K (x,y), which are C*° away from the
"cross”= {(x,y) : x1 = y1 or x3 = y2; x = (x1,22),y = (Y1, y2)} and which satisfy the following
additional properties:

(1) (T(p1 @ pa), 91 @ 2) = [ K(21,y1,22,52)01 (Y1) p2(y2) 1 (21)¢2(22)dyda

©1,Y1 € C§°(M;) and have disjoint support,
whenever

2,1 € C§°(M>) and have disjoint support.

(I1-2) For each bump function 9 on My and each zo € Ma, there exists a singular integral
T#2%2 (of the one factor type) on M, so that

(T(1 ® p2),1h1 @ 1hg) = / (T?>%201, 11 )iho(w2)das.
M>
Moreover, z2 +— T%2%2 is smooth and uniform in the sense that 7922 as well as p& 8)L(2 (T#2"2)
for each L > 0, satisfy the conditions (I-1) to (I-4) uniformly.
(I1-3) If ; is a bump function on a ball B’(r;) in M;, then

](‘)g‘glagéT(sﬁl ® 902)| Sy ey 2.

In (II-2) and (II-3) both inequalities are taken in the sense of (I-2) whenever 9 is a bump

function for B(2 in Mos.

r2)

—ai —a2
(II-4) ‘8%1,Y18§<?27Y2K(x1’y1;x2’y2)} S dl(f/ll’(ill? y1)§l/?2((§:z7,g?ﬁ)) '
(II-5) The same conditions hold when the index 1 and 2 are interchanged, that is if the
roles of M; and My are interchanged.
(I1-6) The same properties are assumed to hold for the 3 ”transposes” of T', i.e. those
operators which arise by interchanging x; and y;, or interchanging x5 and ys, or doing both

interchanges.

Remark 3.3. ([NS3]) If T; are singular integral operators on M; (for the one-factor case),
7 =1,2, then T = T1 ® Ty satisfies the above assumptions. Here T%¥>%2 = T1 multiplied by the
factor To(p2)(x2).

The main result of Nagel-Stein concerning this singular integral operator is as follows.

Theorem 3.4. ([NS3]) For 1 < p < oo, each product singular integral satisfying conditions

(II-1) to (II-6) extends to a bounded operator on LP(M) to itself.

Theorem 3.4 can be obtained from the reproducing identity, the square function and the
almost orthogonality estimate of the product case. We recall these results as follows.
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Since M = My x M. For each i, we have a heat operator H;_, and a corresponding Qéi,
together with the projection Eé. If f is a function on M we define Q;l : 32 = Q;l ® Qi, with
Q! acting on the M, variable and Q? acting on the M, variable. We now also recall the almost

orthogonality estimate:

Proposition 3.5. [NS3] Suppose T is a product singular integral satisfying (II-1) to (1I-6).
Then
t S1 % tQ S9 %
1 2 1 2 1
‘Qtl 'th TQsl : Sg(f)‘ S <31/\t1> (SQ/\tQ> MlMZ(f)7
where M1 and My are the mazimal function on My and Mo, respectively.

Before considering the product Hardy space, we first introduce the Carleson measure
space, the dual spaces of the Hardy spaces, in next subsection. We point out that this dual
space is new even for the one-parameter Hardy spaces associated to the Carnot-Caratheodory

spaces.

3.4 Carleson measure space and duality on one-parameter Carnot-Caratheodory
spaces

To introduce the Carleson measure space, we need to impose a condition on M. We first recall
the Definition 3.3.1 in [NS1] which introduced the uniformity of finite type of the vector fields
on manifold M.

Definition 3.6. [NS1] Vector fields X1,Xs, T are uniformly of finite type m on an open set
U C R? if the derivatives of all coefficients of the vector fields are uniformly bounded on U
and if the quantity ZT:Q Aj(q) is uniformly bounded and uniformly bounded away from zero on
U. The vector fields Y,X1,Xo, T are uniformly of finite type m on an open set V.C R* if the
derivatives of all coefficients of the vector fields are uniformly bounded on U and if the quantity

> itaAj(q) is uniformly bounded and uniformly bounded away from zero on V.

Now we assume that Z, X; and Xy are uniformly of finite type m on M. Thus we have

u(B(,8)) ~ u(B(y, 9)) for all 7,y € M,
and w(B(z,0)) = 6™ for § > 1; w(B(z,0)) = 6* for s < 1.
With this restriction on M, we then give the definition of BMO space on M via the sequence

of operators {Q;} ez as follows.

2(m+2)
T 2(m+2) 40

Carleson measure space CMOP(M) to be the set of all f € (éﬂ(ﬁ,’)/))/ such that

Definition 3.7. For 0 < ¢ < 1 <p<1land0 < B,v <, we define the

= Su # xT 2 X xT % 0
\|f||CM0p<M)—spp{mi_ljpz > GA@P ) de} <.

k I: ICP

where P ranges over all dyadic cubes with finite measures and for each k, I ranges over all the
dyadic cubes with length ¢(I) = 27+ No,



Multiparameter Hardy spaces and discrete Littlewood-Paley theory 49

First we can see that the definition of CMOP(M) is independent of the choice of distri-
bution space (éqg(ﬂ,’y))’ with 0 < 8,7 < 9.

Now we introduce the Min-Max inequality for CMOP(M) as follows.

2(m+2)

Theorem 3.8. Let all the notation be the same as above. For m

f e CMOP(M),

<p<1and all

1
2

sup{’P|1 [X % swladw XI(x)dw}

L I. Icp V&l
can{ [y
P>

Py rIce

. 2 :
uég‘Qk[f](uﬂ x1(z) da:} )

To show the duality of HP (M), where HP(M ) was introduced in [HMY], with CMOP(M)

2(m+2) . . .
M+ +0 < p < 1, we follow the idea and skills used in [HLL2]. Now we define the

sequence spaces sP and cP as follows.

for

Definition 3.9. Let x;(x) = ‘I’_%X](l') for any dyadic cube I. The sequence space sP, 0 <

p <1, is defined as the collection of all complez-value sequences s = {s;}r such that
Isllse = 11 Z 5% @) Y oo

Similarly, P, 0 < p < 1, is defined as the collection of all complez-value sequences t = {tr}s
such that

1

Htl\cpzsup 7 1thzl )?

L (@ 5

where P ranges over all dyadic cubes in M.
The basic result of these sequence spaces is as follows.
Theorem 3.10. (sp)l =cP for0<p<1.

For the detail of the proof, we refer it to Theorem 2.44 in part 2.

We also need to introduce the lifting and projection operators.

Definition 3.11. For any f € (Colg(ﬂ,'y))’ with 0 < B,y < 1, define the lifting operator Sq by

)

So(f) = {I1EQuIf1(n) |

keZ, I: L(I)~2—F

where k € Z, I range over all dyadic cubes with length 0(I) = 27*=No for each k and xy is the
center of I.
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Definition 3.12. For any complez-value sequence X\, define the projection operator T@ by
1
To(M)(z) = ZZ 2 qk(z,2r) - A1
E oI
where k, I are the same as in the above definition and the function qi is similar to qp given in

(a”).

Moreover,

To(So(N)) (@) =D Gk(x, 21)Qklf)(z1)
ko1
and (So(£),Sq(9)) = D> IQkLf(x1)Qxlg) ().
ko1

For the above lifting and projection operators, we have the following basic results.

Theorem 3.13. Let 0 < ¥ < 1. For any f € HP(M) with #_2‘_42—19 < p <1, we have

1SQ(Nlse S Mf e (ar)-

Conversely, for any s € sP,
1T ()l meary < Ilslse-

Theorem 3.14. Let 0 < ¥ < 1. For any f € CMOP(M) with 5 2(m +2)

m<p§1, we have

1SQ(Nller S M fllerroray-

Conversely, for any t € P,

ITo(®)llemorary < ltler-

The first estimate in Theorem 3.13 and 3.14 follows directly from the definitions of sP
and ¢, HP(M) and CMOP(M) and the Min-Max inequalities for HP(M) and CMOP(M),
respectively. The second estimate in Theorem 3.13 and 3.14 follow from the proofs of the Min-
Max inequalities with only minor changes, respectively. For the detail, we omit it here and refer
the reader to [HLL2]. Moreover, from the Min-Max inequalities, we can obtain that the above
two theorems also hold when operator @ is replaced by @ And from the discrete reproducing
identity, we can see that T@ o Sg equals the identity operator on space of distributions.

Using Theorems 3.10, 3.13 and 3.14, we prove the duality of HP(M) with CMOP(M).
2(m+2)

Theorem 3.15. For 0 < v <1, 2m+2) +0

<p<l,

(HP(M)) = CMOP(M).



Multiparameter Hardy spaces and discrete Littlewood-Paley theory 51

3.5 The H? theory on product space M= My x - x M,

In this subsection, we would like to introduce the H? theory on product space M = My x

- X M,y,. Without lost of generality, we first show all our results on the product space of two
factors, namely M = My x Ms. And for the sake of simplicity, we assume that M; = Ms.
Hence M = M x M , dropping the subscript. For all the results on product space M , we
will only give detailed description of the Carleson measure space C'MOP (]\7 ) since there are
fundamental differences between the proof of CMOP (]TI ) and CMOP(M). Roughly speaking,
the other results can be obtained from the single factor case by ”iteration”.

3.5.1 Test function spaces on M

Now we introduce the test function space on M

Definition 3.16. Let (z9,0) € M, Y1,7Y2,71,72 >0, 0 < (1,82 < 1. A function on M is said
to be a test function of type (xo,yo;71,72; 1, B2;71,72) if there exists a constant C > 0 such
that

| X - . 72
(2) |f(xa y)| < C‘/;“l (:Z:O) + V(q;'(), :L’) <7‘1 —+ 672(1:17, x0)> V7"2 (yo) + V(yo, y) (TQ + 2%:% yO))
for all (z,y) € M;

@) )~ s <ol Y Gt )
’ P = r1 + d(x, xo) Viy (o) + V(xo,2) \ 71 + d(z, 0)
y 1 ( T )’72
Vea (o) +V (yo,y) \ 2 + d(y, vo)
for all .2 € M satisfying that d(z,z') < (r1 + d(z,20))/2;
(#i7) Property (i1) also holds with x and y interchanged;

/ B
(iv) If(x,y)—f(x’,w—f(x,y’)+f(w’,y’)\§C<Tli(fl’(;)xo)) Vet on,)

" d B2
y ry (v,y) 1
ritd(@,2)) \r2+dy,p)) V(o) +Vye,y) \r2+ d (¥, o)
for all x, 2, y,y' € M satisfying that d(z,2") < (r1 + d(x,x0))/2 and
d(y, y) (r2 + d(y, 0))/2;
) S fl ydx—OforallyeM
fM T ydy—Oforall:EGM

If f is a test function of type (xo, yo; 71, 72; 51, B2; 71, V2), we write f € G(zo, yo; 71, 72; B1, P2;
v1,72) and we define the norm of f by

HfHG(mo,yo;rl,T2§/317/32;’YL’Y2) =inf{C : (i), (4), (i77) and (iv) hold}.

We denote by G(f1, 82; 71, 72) the class of G(xg, yo; 1, 1; 81, B2; 71, 72) for any fixed (g, yo) € M.
We can check that G(zg,yo;r1,72; 81, B2;71,72) = G(B1, B2;71,72) with an equivalent norms
for all (zg,yo) € M and r1,72 > 0. Furthermore, it is easy to check that G(f1, 52;71,72) is a
Banach space with respect to the norm in G(81, B2;71,72)-
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Now for 91,99 € (0,1), let (0}1917192 (081, B2; 71, 72) be the completion of the space G (1, ¥2; 91, V2)

in G(B1,B2:71,72) when 0 < 8,7 < ; with i = 1,2. Moreover, f € Gy, 9,(B1,B2:71,72) if
and only if f € G(B1, B2;71,72) and there exists {f,}nen C G(91,02;91,92) such that || f —

. 0 as JIff e , 32571, 72), we then define o =
fn”G(ﬁlﬁz,’hﬁz) - n =00 J € Gor92(Brs By 1, 72), W H . ”f”Gﬁl,ﬂz(51»52%71772)

I fllc(s:,82571,72)- Then obviously éﬁ1’192 (61, P2;71,72) is a Banach space and we also have

||f||5191,192(51,/32;7mz) - nh—{go Hf"HG(Blﬂ?m’”) for the above chosen {fn }nen-

We define the dual space (&1917192 (51,52;71,72))l to be the set of all linear functionals

L from 8*1917192 (61, B2;71,72) to C with the property that there exists C' > 0 such that for all
f € Go(Br, B2 1, 72),

LA < CIfl e

Goy 95 (B1,B2i71,72)

3.5.2 Continuous and discrete reproducing identity

We will establish the continuous and discrete reproducing identities on the product test function
space and its dual space.
To establish the continuous Calderén reproducing formula on M, from the result in sub-

section 3.1, we have

I= Y Q¢ in L*(M)

k=—o00

Let N € N, Coifman’s idea (see [?]) is to rewrite (3.1) into

I:< i Qk>< i Qj)ZTN+RN>

k=—o00 j=—00
where
o0
Ryv=Y > QriQx
k=—oco|j|>N
and

Tn= > > QrQr= ), QVQ

k=—o00 |j|<N k=—o00

with fo = E\j\g}\/ QkJrj'
Then we have that Ry is bounded on spaces of test functions with a small operator norm,
namely

IRN(Pllas < C27N fllas.q)
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forall f € G(B,v) with 0 < 8,7 < ¥, where C and § are constants independent of N. Moreover,
by choosing N so large that C2-V% < 1, we can see that T&l exists and maps any space of test
functions to itself. More precisely, there exists a constant C' > 0 such that for all f € G(3,~)
with 0 < 8,7 < 9,

||Tj§1(f)”G(/677) < 02_N6Hf“G(ﬁ7’7)'

For such chosen NV, letting
Qk = TleQ{cV7
we then obtain the following

Theorem 3.17. Let 0 < 91,95 < 1. There exists a family of operators {@j}jez such that for
all f € G'ﬂl,ﬁg(ﬂlng;’yla’}Q) with 0 < ﬂlaf}/l < 191; 0< /62772 < 192; we have

DD Ok Q@i Quolf)() = f(2),

k1 ko

where the series converges in the norm of (0}191,192 (61, B2;71,72) and the norm of LP(M) for 1 <
p < 0. Moreover, for f € (Goy,0,(B1,B2:71,72)) s (3.1) also holds in (G, 9,1, B2i 71, 72)) -

Using a similar idea, namely discretizing the continuous version of Calderén’s identity
given in Theorem 3.17, we have

Theorem 3.18. Let 0 < 91,95 < 1. There exists a family of operators {@j}jez such that for
all f € Gﬂl,'&z(ﬂlu/ﬁQ;’yla’}Q) with 0< 51771 < 191; 0< /62772 < 192} we have

Far,w2) =Y AT |Gk G (21, 2, 21, 50) Qs Qi [f] (1, 1),

ki,ko 1,0

where qy, € f;ﬁ(ﬁi,%) for i = 1,2, I,J C M are dyadic cubes with length 2~*1=No gnd
2=k2=No for o fized integer Ny, and x1, x; are any fized points in I and J, respectively.
The series in (3.1) converges in the norm of Gy, 9,(51,B2;71,72) and the norm of LP(M) for

1 < p < oco. Moreover, for f € (601‘191,192 (61, B2;11,72))'s (3.1) holds in the distribution space
(01917192(51,52;71,72))/.

3.5.3 Hardy space HP(M)

For f € LQ(M ) we define the square function S(f) by

S[fl(z) = (ZZ|Qij[f](x)\2>2.
ik
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ers m + 2 m+ 2
Definition 3.19. Let 0 < 91,799 < 1, max <m+2+§1’m+2+192> <p<1and

1
(m + 2)(; — 1)y < B,y <Y

fori=1,2. We define the Hardy space HP(M) to be the set of all f € (éﬂl,gz(ﬂl,ﬁg;’yl,*yg))/
such that ||§[f]||p < 00. And define

[ £l = 1811l

where S [f] is the product Littlewood-Paley square function.

Just like the step in section 3.3, we can first see that the Hardy space HP(M) is inde-

pendent of the choice of the spaces of distributions (Collgng (81, B2;71,72))" with 3;,~; satisfying
the conditions in Definition 3.19 for ¢ = 1,2. We can also obtain the Min-Max inequalities for
HP(M).

m+2+91"m+24+7
(m+ 2)(% - 1)+ < ﬂM’YZ < 191 fOT’ 1= 172 For all f € (G’ﬂl,’ﬁQ(ﬂla/ﬁQ;vla’}?))/}

Theorem 3.20. Let()<191,192<1,max< m + 2 m + 2 ><p§1and

H{ Z Z sup  |Qr, Qs [f] (w, v)[? Xl(x)XJ(y)}é

kiko 1,J uelveJ Lr(M)
1
2
~ H > > dnf [QkQu, [f}(u,v)\Qxf(x)xJ(y)} .
ki 17 "0 Le(M)

where I,J are the same as in Theorem 3.18.

3.5.4 Product Carleson measure space and duality

To introduce the product Carleson measure space on M=MxM , we need to add the same
condition on M as in section 3.4. Then we have

2(m +2) 2(m 4+ 2)
2(m +2) + 917 2(m + 2) + U
0 < B,y <94 fori=1,2, we define the Carleson measure space CMOP(M) to be the set of
all f € (éﬁl,ﬁz(ﬂhﬂ%’h,’h))l such that

Definition 3.21. For 0 < 1,92 < 1, max( ) <p<1and

-

1 lonroniry = Sup {1/9 Z Z ‘leng[f](w,y)‘QXI(w)XJ(y)dxdy}2 < 00,

2
Q L|Qr kex ko IXJCP

where 2 ranges over all open sets in M with finite measures and for each ki and ko, 1, J range
over all the dyadic cubes with length £(I) = 27%F1=No and ¢(J) = 27F2=No respectively.
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Now we will introduce the Min-Max inequalities for CMOP (1\7 ), whose proof is different
from Min-Max inequalities in single factor case.

Theorem 3.22. Let all the notation be the same as above. Then for all f € CMOP(M),

SHP{ 7 / sup \leka[f](u,v)\Qx.r(:v)XJ(y)dafdy}
Q> 2k, IXJCPUEI veJ
1
2
ssw{ o [F it 10 Qa7 o) oo ey |
\Q| Qg ko IxJCPue e

To show the duality of HP(M) with CMOP(M) for max (2(%7:5391, 2(727511;;?%) <p<l1,

we use the same skills as in the single factor case with only minor changes. Similarly we define

the product sequence spaces sP and P as follows

Definition 3.23. Let x;7(z) = u(1)~?x1(x). For 0 < p < 1, the product sequence space s is
defined as the collection of all complex-value sequences s = {sg}r such that

Isllse = [1{ 3" (srxn(wr,22)2 2|
R

similarly, for 0 < p < 1, the product sequence space cP is defined as the collection of all
complex-value sequences t = {tr}r such that

12
||t||cp=sup 21Z| /

P RCQ

where the sup is taken over all open sets Q) € M with finite measure and R ranges over all the
dyadic rectangles in M.

Then we have the following duality theorem.
Theorem 3.24. (sp), = cP.
We also need to introduce the lifting and projection operators as follows.
Definition 3.25. Suppose ¥; € (0,1) and 0 < B,y < O; for i = 1,2. For any f €

(G,.9,(B1, B2;71,72)), define the lifting operator Sg by

Solf) = {|I|%|J|%@k1c2k2[f]<m,yj>} ,

k1,ko, I,J

where ki,ko € Z, I,J are the same as in Theorem 8.18 and R = I x J, x1 and yj are the
centers of I and J, respectively.
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Definition 3.26. For any complez-value sequence X = { g, ko 1,7}k ko,1,7, define the projection
operator T@ by

1 1. -
To(M)(z,y) = SN 212Gk Gy (21,9, 50) - g1,
ik 1.7

where Gs, Gs, (T, x1,Y,Yys) are the same as in Theorem 3.18, and k1, ko; I,J; x1,y5 are the same
as in the above definition. Moreover,

T (So(H)) @ v)= "> > 111Gy G (2 21,4, 4.) Qb Qo[£ (1, 1)

ki,ko I,J

For the above lifting and projection operators, we have the following basic results.

Theorem 3.27. Let 0 < ¥1,v2 < 1. For any f € HP(M) with max (2(7271(11;;_2&91, 2(72_,5;”;)392) <

p <1, we have

1S0(H)ler S 1 iy
Conversely, for any s € sP,

1o ity < lsller

Theorem 3.28. Let0 < ¥1,v3 < 1. Forany f € C’MO”(M) with max (2(72751:‘;;291, 2(7271(:1;3_2&92) <

p <1, we have

150(H)ller S 115 llearom ity

Conversely, for any t € P,

1T caror(ary < tller-

The above results follow from the same routine as in the single factor case, see also [HLL2].
Then we introduce the main theorem in this section.

Theorem 3.29. For 0 < ¥1,72 < 1, max (2(51@5_2&91, 2(%_?;;_22192) <p<l1,

(HP(M))" = CMOP(M).

3.5.5 Endpoint estimates of singular integral operators on product space

We can formulate the results as follows.

Theorem 3.30. For 0 < 91,92 < 1, max(Q(%T;;?ﬁl,Q(féT;g?%) < p < 1, each product

singular integral satisfying conditions (1I-1) to (1I-6) extends to a bounded operator on HP (M)
to itself.
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Next we will show that T is bounded from HP(M) to LP(M). To do this, we need the
following result.

Theorem 3.31. Let 0 < ¥ < 1 and F2 < p < 1. If f € LA(M)(\H(M), then
f € LP(M) and there exists a constant Cp, > 0 which is independent of the L*> norm of f such

that
[ flleary < Cpll fll e (any-

From Theorem 3.30 and 3.31, we can easily obtain the boundedness of T' from HP(M) to
LP(M) since L?(M) () HP(M) is dense in HP(M). More precisely, we have
Theorem 3.32. Let 0 < 9 < 1 and #m < p < 1. Suppose T is a singular integral
operator as defined in Section 2.4, then T is bounded from HP(M) to LP(M). Namely, there

exists a constant C), such that

1T eary < Cpll fllmvany-

Now, for the manifold M satisfying the conditions mentioned at the beginning of this

: 2(m+2) . .

section, for 0 < ¥ < 1 and m+2)+0 < p <1, Theorem 3.30, together with the duality of
HP(M) with CMOP(M), yields that T is bounded on CMOP(M). Particularly, when p = 1,
we obtain that T is bounded on BMO(M). Moreover, Theorem 3.32 yields that 7" is bounded
from H'(M) to L'(M) and hence from L>®(M) to BMO(M). These provide the endpoint

estimates for the P boundedness of singular integral operators of Nagel-Stein.

4  Multiparameter Hardy spaces H%(R?®) associated with the
Zygmund dilation

This section discusses some recent results on multiparameter Hardy space theory developed by
the authors in [HL4]. We first recall Zygmund’s conjecture that if the rectangles in R™ had
n side lengths which involve only k independent variables, then the resulting strong maximal
operator should behave like My, the k-parameter strong maximal operator. The first (and
probably the only) non-trivial case of this conjecture was demonstrated by A. Cordoba [Cod]
who showed that for @ the unit cube in R3,

C
’{($7y7 Z) €Q: MStf(a:?y? Z) > )‘}’ < XHfHLlogL(Q)

where M (f) is the strong maximal function on R? defined by

1
Mstf(xayv Z) = sup / |f(l‘)y7 Z)|dﬂ§‘dyd2’
(z,y,2)ER |R‘ R

where the supremum is taken over rectangles whose sides are parallel to the axes and have side
lengths of the form s, ¢, and ¢(s,t).
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Cordoba’s result was generalized to the case of ¢1(s,t), d2(s,t), P3(s,t) by Soria in [So]
when some assumptions are given on ¢1, ¢2, ¢3. Moreover, F. Soria showed that the Zygmund’s
conjecture is not true even when ¢1(s,t) = s, ¢a(s,t) = s¢(t) and ¢3(s,t) = s(t), and ¢ and
Y are some positive and increasing functions.

It has been widely considered that the next simplest multi-parameter group of dilations
after the product multi-parameter dilations is the so-called Zygmund dilation, e.g., in R3,
defined by psi(z,y,2) = (sz,ty,stz) for s,t > 0. Indeed, R. Fefferman in his 1996 survey
article pointed out the future direction of research on multi-parameter analysis:

"The eventual goal of the program is to extend harmonic analysis past the realm of
product spaces consisting other dilation groups, and the operators associated to them. This
theory is just at its start, and it seems very difficult indeed at this point. ..., the setting will
be the next simplest after product space dilations, and those are as follows: In R? consider the
family of dilations {ps, s, }5,>0.5,>0 given by ps, s, (2, y, 2) = (012, da2y, §1022). ...,

There are two operators intimately associated to this dilation. There is a maximal oper-

7

ator Mz (first considered by Zygmund, a special case of Mg when ¢(s,t) = st) and singular
integral operator Tz which commutes with this dilation (introduced by Ricci and Stein [RS]).

A class of singular integrals associated to the dilation ps; was introduced in [RS] by Ricci
and Stein. In [RS], Ricci and Stein considered the mappings

TA(ZL'l, ey Tp) = (6;‘“ '--52‘1’“1‘1, e ,55‘"1 . '5];\”kl'n),

where 7 = (§1,---,0) € RE A = {Ai;}, and convolution type operators of the form T'f = fx* K,
where K is given by

K@) =Y (),

IezF
where () are appropriate distributions and uy) (z) = det(2= M) (2-Mz) with 28 = 74
when 7 = (2, ... 2%) and I = (i1, ...,ix). Then Ricci-Stein proved that T is bounded on L?

for 1 < p < co under some assumptions.

A special class of singular integral operators Tz considered by Ricci and Stein is of the
form defined by Tz f = f x« K where

_ 2kt phi( L Y _Z
K((E,y,Z)— Z 2 ¢ (2k’2j’2k+j)’
k,jEeZ

where the functions ¢*7 are supported in the unit cube of R? and have a certain amount of
uniform smoothness and each satisfies the cancellation conditions

(4.1) [ iy 2oty = [ 49wy, 2)dyds = [ 649wy, ez =0,
R2 R2 R2

It was shown in [RS] that Tzf = K * f is bounded on LP(R?) for all 1 < p < co. Moreover,
they have shown that for 7z to be L*(R?®) bounded (if, say, ¢r; = ¢ for all k and j), (4.1)
must hold. It is easy to see that if the dyadic Zygmund dilation is given by

(523',2’C f) (.1‘, Y, Z) = 22(j+k)f(2jxa 2ky7 2(j+k)z))
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then
(621,2’“T3(f))(x7 Y, Z) = TZ(521,2kf)(x)y’ Z)‘

This means that the operators studied by Ricci and Stein commute with the Zygmund dilation
of dyadic form.

R. Fefferman and Pipher in [FP] further showed that Tz is bounded in weighted L%, spaces
for 1 < p < co when the weights w satisfy an analogous condition of Muckenhoupt associated
to the Zygmund dilation. Such a weighted result can not be obtained or reduced to the pure
product case through iteration argument. In fact, they proved that if Kz is the kernel of the
Ricci-Stein operator T’z satisfying (1.1), then Kz can be decomposed into Kz = K(Zl) + K(;)
such that

/ Kg)(ac,y, z)dx = 0,/ Kg)(a:, y,z)dydz =0
R R2

/ Kg) (z,y,2)dy = 0,/ Kg)(a?,y, z)dzxdz = 0.
R R2

Subsequently, they proved that each of the operators with the kernels Kg) and Kg) are
bounded on L%, for 1 < p < oco. Weighted boundedness for Cordoba’s maximal functions were
derived earlier by R. Fefferman, see [F3].

Related to the theory of operators like Mz and Tz, several authors have considered the
issue of singular integrals along surfaces in R™ and this has introduced operators like Tz (for
example, Nagel-Wainger [NW]). As far as Mz is concerned, E. M. Stein was the first to link the
properties of this type of maximal operator to boundary value problems for Poisson integrals
on symmetric spaces, such as the Siegel generalized upper half space.

In [NW], Nagel and Wainger first considered the L? boundedness of certain singular
integral operators on R"™ whose kernel has the appropriate homogeneity with respect to a
multi-parameter group of dilations, generated by a finite number of diagonal matrices. In
particular, they considered the two-parameter dilation group

8(s,t)(z,y, 2) = (s, ty, s“t°2)

acting on R3 for s,t¢,«, 3 > 0. They defined a singular kernel K by
>y
oy 27 4 22

}

Ki(x,y,2) = sgn(zy){

and proved that convolution with K7 is bounded in L?(IR?).
They also considered multiple Hilbert transforms along surfaces given by

T ds dt
f—>Tf(ac,y,z):/ /f(.’L'—S,y—t,Z—{St})St
and showed that T is not bounded on L?(R?®) when {st} = st and is bounded on LP for all
1 < p < oo when {st} = |st|. Moreover, T is also bounded on L? when {st} = |s|%|t|® for

a>0,8>0.
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We now state and describe our main results on multiparameter Hardy spaces HY(R?)
associated with the Zygmund dilation. Results described here can be found in the works of the
authors [HL4]. We start with some preliminaries. Let S(R™) denote Schwartz functions in R™.

We first construct a test function defined on R3, given by

Y@,y 2) = v (@)@ (y, 2)
where (1) € S(R),¥?) € S(R?), and satisfy

ST = 1 for alléy € R\{(0)},

JEZ.

Z 0@ (27F, 27Re3)[2 = 1 for all (&,&) € R?\{(0,0)},

kEZ

and the moment conditions
/ 2y (2)dz = / PPy, 2)dydz = 0
R R2

for all nonnegative integers «, G, and ~.
Let f € LP,1 < p < co. Thus gz(f), the Littlewood-Paley-Stein square function of f
associated to the Zygmund dilation, is defined by

gZ(f)(xayaz) = ZZ|¢J,1€*JC($,%Z)|2
j ok
where functions
Vik(,y, 2) = 220 (2T 2) ) (2Fy, 27FE2),

By taking the Fourier transform, it is easy to see the following continuous version of
Calderén’s identity holds on L%(R3),

f(:z"a Y, Z) = Z ij,k * ¢j,k * f(xa Y, Z)
J k

Using the LP boundedness of Ricci-Stein operator for 1 < p < oo in [RS] together with
Calderén’s identity on L? allows us to obtain the LP estimates of gz for 1 < p < co. Namely,
there exist constants C and Cs such that for 1 < p < o0,

Cillfllp < llgz(Hllp < Call Fp-

We now introduce the product test function space on R? = R x R2.

Definition 4.1. A Schwartz test function f(x,vy,z) defined on R3 is said to be a product test
function on R x R? if f € S(R?) and

/f(ﬂfvyvz)wadx =/ flz,y,2)yP2"dydz = 0
R R2
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for all indices a, B,y of nonnegative integers.
If f is a product test function on R x R? we denote f € Sz(R3) and the norm of f is
defined by the norm of Schwartz test function.

We denote by (Sz(R?))’ the dual of Sz(R3).
We also denote (Sz(R3) by the collection of Schwartz test functions f(z,y,z) defined
on R3 with

y g 9 o
[fllszae = sup (1 +[z|+ |yl +|z]) Z |%87%f($’y’z)| < oo,
reRyeR, 2k ol <M,IBI<M, 4| <M Y

and

/f(ﬂ:7y72)wadfv =/ fla,y, 2)y? 2 dydz = 0
R R2

for all indices «, 8,7 < M.

Similarly, we denote (Szar(R?)" the dual of Sz pr(R3).

Since the functions v;; constructed above belong to Sz(R3), so the Littlewood-Paley-
Stein square function gz can be defined for all distributions in (Sz(R3))’. Formally, we can
define the multi-parameter Hardy space associated to the Zygmund dilation as follows.

Definition 4.2. Let 0 < p < co. The multi-parameter Hardy space associated with the Zyg-
mund dilation is defined as H(R3) = {f € (Sz)" : gz(f) € LP(R®)} . If f € HL(R?), the norm
of [ is defined by || fll gz, = llgz(F)lp-

Clearly, it follows that HY(R3) = LP(R3) for 1 < p < oo.

We will show the Min-Max comparison principle of first kind (Theorem 4.11) from which
it follows that the definition of H%(R?) is independent of the choice of functions ;. The
main tool to derive such a Min-Max comparison principle is the discrete Calderén’s identity.

The main theorems concerning the Hardy space HY(R3) are the following.

Theorem 4.3. Let Tz = K * f be the Ricci-Stein singular integral operator on R® where K is
defined

2(k+3)y, x Yy _z
K(z,y,2 Z 2- J ok’ 957 2k+])
k.jez

where the functions 1y ; are test functions in Sz(R3). Then T is bounded on HY(R3) for all
0<p<l.

Moreover, we can show the H,(R3) — LP(R?) boundedness of the singular integrals.

Theorem 4.4. Let 0 < p < 1. If T is a linear operator which is bounded on L*(R3) and
HY(R3), then T can be extended to a bounded operator from HY(R3) to LP(R3). As a conse-
quence of Theorem 4.3, the Ricci-Stein operator Tz is bounded from HY(R?) — LP(R?).

To study the duality of H5(R3), we introduce the function space CMO%(R?), namely,
the Carleson measure spaces.
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Definition 4.5. Let ¢y, be the same as in Definition 4.1. We say that f € CMOL(R3) if
f € (Sz(R?))" with finite norm Ifllcaror, defined by

supd ——3" [ 3T g x £ 2) Prr (@)X (9) xR (=) dadydz

29
e e gk o IxJxRCQ

for all open sets Q in R3 with finite measures, and I C R,J C R, R C R are dyadic intervals
with interval-length £(I) = 277N ¢(J) = 27%=N and ¢(R) = 2777%=2N for a fized large positive

integer N respectively.

Theorem 4.6. Let 0 < p < 1. Then (H5(R?))* = CMOY(R?), namely the dual space of
HY(R3) is CMOY(R3). More precisely, if g € CMOY(R?), the map {y given by Ly(f) =<
frg >, defined initially for f € Sz(R?), extends to a continuous linear functional on HY(R3)
with [|€g|| = |gllcaron (ms)- Conversely, for every € € (HL)* there exists some g € CMOY(R?)
so that £ = {,. In particular, (HL(R3))* = BMOz(R3).

As a consequence of the duality of H}(R3) with BMOz(R?) and the H}(R?)-boundedness
of the singular integral operator Tz, we obtain the BMOz(R3)-boundedness of Tz. Further-
more, we will prove that L>°(R3) C BMOz(R?) and, hence, the L®°(R3) — BMOz(R3)
boundedness of Ricci-Stein singular integrals follows. These provide the endpoint results of
those in [RS] and can be stated as

Theorem 4.7. The operator Tz as defined in Theorem 4.3 is bounded on BMOz(R?).

The above theorems can be extended in several directions. First of all, we can extend
the Ricci-Stein operator to the nonconvolution type. To state these extensions, we need to
introduce some more preliminaries.

For a fixed large positive integer N, we define Sy (R3 xR?) to be the collection of functions
V(z,y, z,u,v,w) € CN(R? x R3) with finite norm ||¢)||s, defined by

N
sup 1+ |(x —u,y —v,2 —w)|) Z |ag7y7285w¢(x, Y, 2, U, v, w)|
(z,y,2)ER3, (u,v,w) ER3 |lal,|8|<N

where 89, = 82105202% and Oy = 0205 and |o| = a1 + ag + as, 8] = B1 + o + Bs.

x7y7Z
We further assume that the following cancellation conditions on ):

/¢($,y,z,u,v,w)xa1dx:/w(az,yjz,u,u,w)ualdu:()
R R

and
/ V(2. y, 2, u,0,w) Yy 2 dydz :/ O(x,y, 2, u, v, w) 2w dvdw = 0
R2 R2

for all 0 < a1, B1,71, a2, B2, 72 < N. We also use the notation Sy (R*xR3) = Ny~1Sny(R3xR3).
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Thus, we can extend the operator considered by Ricci-Stein to nonconvolution type as
follows:

Tvef(a,y,2) = / K (2,9, 2, 0, w) f (u, 0, w)dudvduw
R3

where
T Yy z u v w

_ —2(j+k) .
Ko,y zwvw) = D 200550 o5 ot 900 37 58

and 1, € Sn(R? x R3).
We then have

Theorem 4.8. The nonconvolution type Ricci-Stein operator Tie defined for 1 € Sy(R3 x R3)
is bounded on HY(R3) and BMOz(R3) and from HL(R?) to LP(R®) for po(N) < p < 1, where
po(N) — 0 as N — oco. In particular, Ty is bounded on HY(R3) and from HY(R3) to LP(R3)
for all 0 < p <1 when 1 € Soo(R? x R3).

We should point out that all the above boundedness results are for Ricci-Stein type oper-
ators T’z when 1);, in the kernels satisfy the condition in Theorem 4.3 and for nonconvolution
type operators Tarc. A more refined result with minimal (but most likely not optimal) assump-
tion is the following

Theorem 4.9. Ty is bounded on HY(R?) and BMOz(R3?) and from HY(R3) to LP(R3) when
po<p<1forsomepy<l,0<a; <2and0 <G+ <1.

By formulating and proving a Journe’s type covering lemma associated with the Zygmund
dilation, Pipher and the authors are working on the HY, to L? boundedness when the Ricci-Stein
kenel satisfies the optimal cancellation condition as that used in [RS] for LP boundedness.

We remark here that if we define the test function on R3, given by

W(z,y,2) = pH ()P (z, 2)

where () € S(R), ) € S(R?). Thus gz(f), the Littlewood-Paley-Stein square function of
f, is defined by

G20 @,y,2) = { SO S oy x g, )2
ik

where functions
i@,y 2) = 200 (27y)p ) 2k, 274E2),

Thus, it is easy to see that the LP boundedness holds with gz(f) replaced by gz(f) for
p> 1. -

We can also use gz(f) to define Hardy spaces H(R?) for 0 < p < 1. Thus we have proved
that the o’ri\g/inal Ricci-Stein operator plus some extra cancellation conditions is bounded on
HY(R3)NHY(R3) for 0 < p < 1 by using the kernel decompositions of R. Fefferman and Pipher
[FP].
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We point out that our result in this paper can be extended to the high dimension dilations
given by
(xla Z2, ..y ':UTL) - (51$1, 521;27 seeey 5n71xn71a 5162 o (Sn,lll,‘n).

To carry out the theory of multi-parameter Hardy spaces associated with the Zygmund
dilation, we begin with establishing the discrete Calderén’s identity associated with this dila-
tion.

Theorem 4.10. Suppose that 1; ;. are the same as in Definition 4.1. Then
f@y,2) =YY MR, y, 221,95, 28) (Wi * ) (1,7, 2R)

jk LJR
where Jj7k(:v,y,z,x1,yj,z}g) € Szu®R3),I c R,J C R,R C R are dyadic intervals with
interval-length (1) = 297N 4(J) = 27N and ¢(R) = 2777F=2N for a fived large integer
N,xr,y7,zr are any fized points in I, J, R, respectively, and the above series converges in the
norm of Sz.m(R?) and in the dual space (Szn(R?)'.

The above discrete Calderdn’s identity enables us to derive the following Min-Max com-

parison principle of first kind.

Theorem 4.11. Suppose vV, () € S(R), %), ¢ € S(R?) and Yk, bk satisfy the condi-
tions as in Definition 4.1. Then for f € (Sz, 1 (R3) where M depends on p and 0 < p < oo,

1

2

13D sup Juypx fluv,w)Pxa(OxsCOxr() ¢l

ik IJRUGIUEJwER

2

SIS i s (v )P O OxeC)

ik IJR

where j (x,y) is defined using 1) and @ and bjk(x,y) is defined using &M and ¢
as in Definition 4.1, I C R,J C R,R C R are dyadic intervals with interval-length ¢(I) =
273N 0(J) = 27N and £(R) = 2777F2N for a fized large positive integer N, x1, X7 and Xr
are indicator functions of I,J and R, respectively.

The Min-Max comparison principle in Theorem 4.11 leads us to define the discrete
Littlewood-Paley-Stein square function

95 (D@, 2) = S Wik * P @n, v, 20)Pxr(@)x0 (V)xR(2)
gk IJ,R
where I, J, R, xz;,y; and zg are the same as in Theorem 4.11.
It is easy to see from Theorem 4.11 that the Hardy space Hg given in Definition 4.2 is
well defined and the H7, norm of f is equivalent to the LP norm of g%.
To derive the discrete Calderén identity, we have the following almost orthogonal argu-

ments.
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Corollary 4.12. If we allow N1, No, M1, Ms to be any positive numbers less than oo, that is,
¥, ¢ € Sz(R3) with moment condition of any order, then for any positive integers L, M there
exists C = C(L, M) such that

/3 sz)ts (:L‘a Yy,z,u,, w)¢t/8’ (U, v, W, To, Yo, ZO)dUdvdw
R

<C(t’/\t)L(s’/\s)L (tvi)M (svs)M
Tt v s T (VY r -z (s v s+ |y — yo| + |Z;Zo|)2+M

where t* =t if s > s and t* =t if s <.

Corollary 4.13. If f and g € Sz(R3) and fis(x,y,2) = t_2s_2f(%,%, =) and gs is defined
similarly. Then for any positive integers L and M there exists a constant C = C(L, M) such
that

't 8 s)L (tv M (svsM

X gyt ot , Y, <C*/\*Lf/\f
’fts gts(SU Yy Z)‘ — (t t/) (S S/ (t\/t/+|x|)1+Mt*(Svs/+|y‘+|ti*|)2+M

where t* =t if s > s and t* =t if s < .

Next, we will show that the operator T is actually bounded from H%(R3) to LP(R3) for
all 0 < p < 1, and Ti¢ for ¥ € Sy(R? x R3) is bounded for po(N) < p < 1 with pg(N) — 0 as
N — oo. To this end, we need to give several properties of HY(R3).

Proposition 4.14. Sz (R?) is dense in HY(R3).
Since Sz(R3) C LI(R3), as a consequence of Proposition 4.14, it is immediate that
Proposition 4.15. Li(R3),1 < ¢ < oo, is dense in HZ(R?’) for0<p<1.

Proposition 4.16. L*(R%) N HL(R?) C LP(R?) for 0 < p < 1, and moreover, if f € L*(R%) N
HY(R3)), then
1fllp < Cllfll g

where the constant C is independent of the L? norm of f.
As a consequence, we obtain the following result:

Theorem 4.17. If T is bounded on L*(R3) and HY(R3), then T extends to a bounded operator
from HY(R3) to LP(R?). Moreover,

ITfllp < Cllf e

where the constant C is independent of the L? norm of f.

Proof: If f € L*(R%) N HL(R?), then T'f € L*(R®) N HY(R?). Thus, by proposition,

1711y < CIT s < Clf s
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Since L*(R?) N HY(R?) is dense in HY(R3), the theorem follows.
Q.E.D

The boundedness of Ricci-Stein type operators from H%(R3) to LP(R3) follows immedi-
ately from Theorem 4.17. This completes the proof of Theorem 4.8.

We now establish the duality theory of HY(R?), namely, the dual of H(R?) is CMOY(R?).
This is exactly Theorem 4.6. To see spaces CM O%(R3) are well defined, we need to prove the
Min-Max comparison principle of second kind with respect to the norm of CMOY(R?). This is
the following theorem.

Theorem 4.18. Suppose 1, ¢ satisfy the same conditions as in Theorem 4.10. Then for
f e (Szm(R3,

NI

%

1
sup 72 Z sup ’wj,k*f(u7v7w)‘2’IH‘]HR’

2
2
QL [Qr 7 Gk rxIxrcouelvelweR

=

1

inf : 2|1

W o D> 2 nf e fu v w) PHITIIR]
j.k IxJxRCQ

where I C R,J C R,R C R are dyadic intervals with interval-length ¢(I) = 277=N ¢(J) =

27N and ((R) = 2777%=2N for a fized large integer N respectively, and Q are all open sets

in R® with finite measures.

We end this section by remarking that Calderén-Zygmund decomposition and interpo-
lation theorems on the Hardy space H g(RS) hold. Nevertheless, we have decided to skip the
description here and refer the reader to next section since the proofs are similar to those inter-
polation theorems established in the flag multiparameter Hardy spaces in next section. This
concurs that the definition of Hardy spaces associated to the Zygmund dilation is canonical
and intrinsic to the underlying multiparameter structures.

5 Multiparameter flag Hardy spaces Hp(R" x R™)

We begin this section by recalling two instances of implicit multiparameter structures which are
of interest to us. We begin with reviewing one of these cases first. In the work of Muller-Ricci-
Stein [MRS1,2], by considering an implicit multi-parameter structure on Heisenberg(-type)
groups, the Marcinkiewicz multipliers on the Heisenberg groups yield a new class of flag singular
integrals. To be more precise, let m(L,iT") be the Marcinkiewicz multiplier operator, where
L is the sub-Laplacian, T is the central element of the Lie algebra on the Heisenberg group
H", and m satisfies the Marcinkiewicz conditions. It was proved in [MRS1,2] that the kernel
of m(L,iT) satisfies the standard one-parameter Calderén-Zygmund type estimates associated
with automorphic dilations in the region where |t| < |2|?, and the multi-parameter product
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kernel in the region where [t| > |2|? on the space C" x R. The proof of the LP,1 < p < oo,
boundedness of m(L, ¢T") given in [MRS1] requires lifting the operator to a larger group, H" x R.
This lifts K, the kernel of m(L,iT") on H", to a product kernel K on H" x R. The lifted kernel
K is constructed so that it projects to K by

K(z,t) = /IN((z,t—u,u)du

taken in the sense of distributions.

The operator T corresponding to product kernel K can be dealt with in terms of tensor
products of operators, and one can obtain their LP,1 < p < 0o, boundedness by the known pure
product theory. Finally, the LP,1 < p < oo, boundedness of operator with kernel K follows
from transference method of Coifman and Weiss ([CW2]), using the projection 7 : H" x R — H"
by 7((z,t),u) = (z,t + u).

Another example of implicit multi-parameter structure is the flag singular integrals on
R™ x R™ studied by Nagel-Ricci-Stein [NRS]. The simplest form of flag singular integral kernel
K(z,y) on R™ x R™ is defined through a projection of a product kernel K (z,y, z) defined on
R™™ x R™ given by

K(a:,y):/f((x,y—z,z)dz.
Rm

A more general definition of flag singular kernel was introduced in [NRS], see more details of
definitions and applications of flag singular integrals there. We will also briefly recall them
later in the introduction. Note that convolution with a flag singular kernel is a special case of
product singular kernel. As a consequence, the L, 1 < p < oo, boundedness of flag singular
integral follows directly from the product theory on R"™ x R™. We note the regularity satisfied
by flag singular kernels is better than that of the product singular kernels. More precisely,
the singularity of the standard pure product kernel on R"™ x R™, is sets {(z,0)} U {(0,y)}
while the singularity of K(z,y), the flag singular kernel on R™ x R™ defined above, is a flag
set given by {(0,0)} C {(0,y)}. For example, Ki(x,y) = ngy is a product kernel on R? and
Ky(z,y) = m is a flag kernel on R2.

Though the LP theory has been established for the aforementioned two cases, the mul-
tiparameter Hardy space theory in the second case above has been still absent till recently
developed by the authors in [HL3]. In this part, we describe some recent works of multi-
parameter Hardy space theory associated with the implicit flag structure on R™ x R™. In
a forthcoming article, in joint work with Eric Sawyer, we have established the Hardy space
theory associated to the implicit flag structure on the Heisenberg group H" and proved the
HP-boundedness of the Marcinkiewcz multipliers on H". We will, however, not describe these
results here. We would also like to mention that as an extension of results in [HL3] to the
non-isotropic dilation on R"*™ x R™ given by §(z,y,2) = (dz,dy,°z), the multiparameter
Hardy space theory associated to this non-isotropic flag singular integrals has been carried out
in [R]. Multiparameter Treibel-Lizorkin and Besov space theory has been done in [DLM].
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We also remark here that we shall provide some ideas and outlines of proofs of some main
theorems here since this is the multiparameter setting in Euclidean spaces. These methods
employed here also apply to the cases considered in the past three sections 2, 3 and 4.

5.1 Hardy space theory associated with the implicit flag singular integral
operators: Preliminaries and main results

The works of [NRS], [MRS1-2], [CF1], [CF2] suggest that a satisfactory Hardy space theory
associated with implicit flag structure should be developed and boundedness of flag singular
integrals on such spaces should be established. Thus some natural questions arise. From now
on, we will use the subscript ” F” to express function spaces or functions associated with the
multi-parameter flag structure without further explanation.

We will consider in this section the following questions:

Question 1: What is the analogous estimate when p = 17 Namely, do we have a
satisfactory flag Hardy space H}(R" X R™) theory associated with the flag singular integral
operators? More generally, can we develop the flag Hardy space H l’;(R” x R™) theory for all
0 < p <1 such that the flag singular integral operators are bounded on such spaces?

Question 2: Do we have a boundedness result on a certain type of BMOp space for
flag singular integral operators considered in [NRS]? Namely, does an endpoint estimate of the
result by Nagel-Ricci-Stein hold when p = co0?

Question 3: What is the duality theory of so defined flag Hardy space? More precisely,
do we have an analogue of BMO and Carleson measure type function spaces which are dual
spaces of the flag Hardy spaces as Chang and R. Fefferman did in pure product setting?

Question 4: Is there a Calderén-Zygmund decomposition in terms of functions in flag
Hardy spaces Hi(R™ x R™)? Furthermore, is there a satisfactory theory of interpolation on
such spaces as Chang and R. Fefferman established in pure product setting?

Question 5: What is the difference and relationship between the Hardy space HP(R™ X
R™) in the pure product setting and Hp(R™ x R™) in flag multiparameter setting?

The original goal of our work [HL1] is to address these questions. As in the LP theory
for p > 1 considered in [MRS], one is naturally tempted to establish the Hardy space theory
under the implicit multi-parameter structure associated with the flag singular kernel by lifting
method to the pure product setting together with the transference method in [CW]. However,
this direct lifting method is not adaptable directly to the case of p < 1 because the transference
method is not known to be valid when p < 1. This suggests that a different approach in dealing
with the Hardy HP(R™ x R™) space associated with this implicit multi-parameter structure is
necessary. This motivated our work in this paper. In fact, we will develop a unified approach
to study multi-parameter Hardy space theory. Our approach will be carried out in the order
of the following steps as we have seen in the previous sections.

(1) We first establish the theory of Littlewood-Paley-Stein square function gp associated
with the implicit multi-parameter structure and the LP estimates of gr (1 < p < o0). We
then develop a discrete Calderén reproducing formula and a Min-Max type inequality in a test



Multiparameter Hardy spaces and discrete Littlewood-Paley theory 69

function space associated to this structure. As in the classical case of pure product setting,
these LP estimates can be used to provide a new proof of Nagel-Ricci-Stein’s LP(1 < p < o0)
boundedenss of flag singular integral operators.

(2) We next develop the theory of Hardy spaces H%. associated to the multi-parameter
flag structures and the boundedness of flag singular integrals on these spaces; We then establish
the boundedness of flag singular integrals from H%. to LP. We refer to the reader the work
of product multi-parameter Hardy space theory by Chang-R. Fefferman [CF1-3], R. Fefferman
[F1-3], Journe [J1-2] and Pipher [P].

(3) We then establish the duality theory of the flag Hardy space H f} and introduce the
dual space CMOY,, in particular, the duality of H}; and the space BMOp. We then establish
the boundedness of flag singular integrals on BM Op. It is worthwhile to point out that in the
classical one-parameter or pure product case, BMO(R"™) or BMO(R™ x R™) is related to the
Carleson measure. The space CMOY. for all 0 < p < 1, as the dual space of H}. introduced in
this paper, is then defined by a generalized Carleson measure.

(4) We further establish a Calderén-Zygmund decomposition lemma for any Hf.(R™ x R™
function (0 < p < o) in terms of functions in HR' (R" x R™) and Hy (R" x R™) with
0 < p1 < p < p2 < oo. Then an interpolation theorem is established between H%' (R™ x R™)
and HP?(R™ x R™) for any 0 < pp < p1 < oo (it is noted that H7.(R™ x R™) = LP(R™"™) for
1<p<o0).

In the present section, we will use the above approach to study the Hardy space theory
associated with the implicit multi-parameter structures induced by the flag singular integrals.
We now describe our approach and results in more details.

We first introduce the continuous version of the Littlewood-Paley-Stein square function
gr. Inspired by the idea of lifting method of proving the LP(R™ x R™) boundedness given in
[MRS1], we will use a lifting method to construct a test function defined on R"™ x R™, given

by the non-standard convolution %o on the second variable only:

vlay) =6V 52 0wy = [0y - 02z,
Rm
where (1) € S(R"™), 42 € S(R™), and satisfy
S e (@27g, 2776) 2 = 1
J
for all (£1,6) € R x R™{(0,0)}, and
Yo [P =1

k

for all n € R™\{0}, and the moment conditions

/ 2y W (2, y)dwdy = /ZWJ(Q)(Z)dZ =0

Rnt+m Rm
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for all multi-indices «, 3, and . We remark here that it is this subtle convolution %o which
provides a rich theory for the implicit multi-parameter analysis.

For f € LP,1 < p < 00, gr(f), the Littlewood-Paley-Stein square function of f, is defined
by

gF(f)(xvy) = ZZ|¢],k*f(xay)|2
i k

where functions

1/’j,k(377 y) = 1/)](1) *9 1/},15;2) (.’E, y)7 (51)
PV (2, y) = 20T (22, 27y) and o7 (2) = 27 (282).

We remark here that the terminology ”implicit multi-parameter structure” is clear from
the fact that the dilation v ;(z, y) is not induced from v (x,y) explicitly.

By taking the Fourier transform, it is easy to see the following continuous version of the
Calderén reproducing formula holds on L?(R"™™),

J

k

Note that if one considers the above summation on the right hand side as an operator then,
by the construction of function v, it is a flag singular integral and has the implicit multi-
parameter structure as mentioned before. Using iteration and the vector-valued Littlewood-
Paley-Stein estimate together with the Calderén reproducing formula on L? allows us to obtain
the LP,1 < p < oo, estimates of gp.

Theorem 5.1. Let 1 < p < co. Then there exist constants C1 and Co depending on p such
that for

Cillfllp < Mlgr(Hllp < Coll fllp-

In order to state our results for flag singular integrals, we need to recall some definitions
given in [NRS]. Following closely from [NRS], we begin with the definitions of a class of dis-
tributions on an Euclidean space RY. A k — normalized bump function on a space RY is
a C*—function supported on the unit ball with C*—norm bounded by 1. As pointed out in
[NRS], the definitions given below are independent of the choices of k, and thus we will simply
refer to "normalized bump function” without specifying k.

For the sake of simplicity of presentations, we will restrict our considerations to the case
RN = R™™ x R™. We will rephrase Definition 2.1.1 in [NRS] of product kernel in this case
as follows:

Definition 5.2. A product kernel on R"™™ x R™ is a distribution K on R"™ ™™ which
coincides with a C* function away from the coordinate subspaces (0,0, z) and (x,y,0), where
(0,0) € R™™™ and (x,y) € R"™™, and satisfies
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(1) (Differential Inequalities) For any multi-indices o = (a1, , o), B = (b1, , Om)
and T = (’Yl?"' 7r}/m)
020000 (@, )] < Co (] + [y = HAIPL o mmh

for all (x,y,z) € R" x R™ x R™ with |z| + |y| # 0 and |z| # 0.
(2) (Cancellation Condition)

I/ 0305 K (x,y,2)$1(82)dz| < Co (|| + [y[) 1717
Rm
for all multi-indices o, B and every normalized bump function ¢1 on R™ and every § > 0;

| [ 02K (x,y,2) (6, y)dady| < Cyz| 1
Rm™

for every multi-index v and every normalized bump function ¢o on R"*™ and every § > 0; and

| K(z,y,2)¢3(612, 01y, d22)dxdydz| < C

Rn+m+m

for every normalized bump function ¢3 on R"T™™ and every §; > 0 and d2 > 0.

Definition 5.3. A flag kernel on R™ x R™ is a distribution on R™"™™ which coincides with a
C®™ function away from the coordinate subspace {(0,y)} C R"*™, where 0 € R™ and y € R™
and satisfies

(1) (Differential Inequalities) For any multi-indices o = (o, -+ , o), 8= (B1, -+, Bm)

\8?85}((3773/)’ < Ca“g‘aj'|7n7‘a| . (’(IZ‘ + ’y‘)fm,w‘

for all (z,y) € R™ x R™ with |x| # 0.
(2) (Cancellation Condition)

[ @Koy < Colel "
for every multi-index o and every normalized bump function ¢1 on R™ and every 6 > 0;
[ 0K @ )oa(Ga)dal < Oyl

for every multi-index B and every normalized bump function ¢o on R"™ and every § > 0; and

| K(z,y)p3(012, d2y)dxdy| < C

Rn+m

for every normalized bump function ¢3 on R™™™ and every 61 > 0 and d3 > 0.
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By a result in [MRS], we may assume first that a flag kernel K lies in L'(R"*™). Thus,

there exists a product kernel K% on R"™ x R™ such that
K(z,y) = | Kiz,y—z2)dz
Rm

Conversely, if a product kernel K* lies in L'(R™™ x R™), then K (z,y) defined as above is a
flag kernel on R™ x R™. As pointed out in [MRS], we may always assume that K(z,y), a flag
kernel, is integrable on R"™ x R™ by using a smooth truncation argument.

As a consequence of Theorem 5.1, we give a new proof of the I”, 1 < p < 0o, boundedness
of flag singular integrals due to Nagel, Ricci and Stein in [NRS]. More precisely, let T'(f)(x,y) =

K * f(x,y) be a flag singular integral on R™ x R™. Then K is a projection of a product kernel
K% on R™™ x R™.

Theorem 5.4. Suppose that T is a flag singular integral defined on R™ x R™ with the flag
kernel K(z,y) = [ Kf(x,y — z,2)dz, where the product kernel K* satisfies the conditions of

R
Definition 5.2 above. Then T is bounded on LP for 1 < p < oo. Moreover, there exists a
constant C depending on p such that for f € LP,;1 < p < oo,

TNy < CllF o

In order to use the Littlewood-Paley-Stein square function gr to define the Hardy space,
one needs to extend the Littlewood-Paley-Stein square function to be defined on a suitable

distribution space. For this purpose, we first introduce the product test function space on
Rm » R™,
Definition 5.5. A Schwartz test function f(z,y,z) defined on R™ x R"™ x R™ is said to be a

product test function on R"™™ x R™ if

/f(ﬂﬁ,y, )%y dady = /f(ﬂﬁ,y, 2)27dz =0

for all multi-indices o, 3,7 of nonnegative integers.
If f is a product test function on R"™™ x R™ we denote f € Soo(R"T™ x R™) and the
norm of f is defined by the norm of Schwartz test function.

We also denote (Spr(R"T™ x R™)) by the collection of Schwartz test functions f(z,y, 2)
defined on R™*™ x R™ with

u av 9% o
[fllsye = sup (1 2]+ [y| + |z]) > Iﬁﬁﬁf@w, z)| < oo,
ER™ yEeR™ 2ER o <M,|B[<M, A<M y
and
/ flay, 2)a*yPdedy = | f(x,y,2)27dz =0
Rn+m Rm

for all indices «, 8,7 < M.
Similarly, we denote (S (R™™ x R™))’ the dual of Sp(R"t™ x R™).
We now define the test function space Sg on R™ x R™ associated with the flag structure.
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Definition 5.6. A function f(x,y) defined on R™ x R™ is said to be a test function in Sp(R™ X
R™) if there exists a function f* € Soo(R™™ x R™) such that

f(357y): /fﬁ(l',y—Z,Z)dZ.
Rm

If f € Sp(R™ x R™), then the norm of f is defined by

I fllsp(rrxrRm) = inf{||fﬁ|]3w(Rn+mem) . for all representations of f given above}.
We denote by (Sp)’ the dual space of Sp.

We also denote that a function f(z,y) defined on R™ x R™ is said to be a test function
in Sp s (R™ x R™) if there exists a function f* € Sp(R™™™ x R™) such that

flz,y) = /fﬁ(x,y—z,z)dz.
Rm

If f € Spa(R™ x R™), then the norm of f is defined by
| fllspar (Rrx Ry = inf{”fﬁHSM(Rnerme) : for all representations of f given above}.

We denote by (Sgar) the dual space of Sp .

We would like to point out that the implicit multi-parameter structure is involved in Sp.
Since the functions v constructed above belong to Sp(R™ x R™), so the Littlewood-Paley-
Stein square function gp can be defined for all distributions in (Sg)’. Formally, we can define
the flag Hardy space as follows.

Definition 5.7. Let 0 <p < 1. HP(R" X R™) ={f € (Sp) : gr(f) € LP(R" x R™)}.
If f € HP(R"™ x R™), the norm of f is defined by

1 ez, = lgr (F)llp-

A natural question arises whether this definition is independent of the choice of functions
¥;k. Moreover, to study the HP-boundedness of flag singular integrals and establish the
duality result of HY., this formal definition is not sufficiently good. We need to discretize the
norm of HY. In order to obtain such a discrete Hf norm we will prove the Min-Max-type
inequalities. The main tool to provide such inequalities is the Calderén reproducing formula
given below. To be more specific, we will prove that such a formula still holds on test function
space Sp(R"™ x R™) and its dual space (Sp)’. Furthermore, using an approximation procedure
and the almost orthogonality argument, we prove the following discrete Calderén reproducing
formula.

Theorem 5.8. Suppose that ;. are the same as before. Then

F@y) = 3 SN Tk, v, 2,y * f (2, 00)
Gk T 1
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where {/;Lk(l',y,a;],y‘]) € Spm(R" x R™),I C R",J C R™, are dyadic cubes with side-length
(1) =277"N and £(J) = 27N 1-273=N for a fived large integer N, x1,1y; are any fized points
in I, J, respectively, and the above series converges in the norm of Spa(R"™ x R™) and in the
dual space (Skar)'.

The above discrete Calderén reproducing formula provides the following Min-Max type
inequalities. We use the notation A =~ B to denote that two quantities A and B are comparable
independent of other substantial quantities involved in the context.

Theorem 5.9. Suppose pV), (1) € S(R™™), ) ¢2) e S(R™) and

b(z,y) = / B2,y — 2@ (2)dz

o, y) = / 6D,y — 2 (2)dz,

and Yk, ¢ satisfy the conditions in Theorem 5.8. Then for f € (Spar) where M depends
onp and 0 < p < oo,

D37 sup s x f (s o) P (@)X ()} 2
J 7 I uelved

~IOCDSD DT dnf [gje s fu, o) Pxa@)xs (v)} 2l
g k J 1 ’

where I C R",J C R™, are dyadic cubes with side-length £(I) = 2=9=N and ¢(J) = 27 k=N 4
273N for a fived large integer N,x1 and xj are indicator functions of I and J, respectively.

The Min-Max type inequalities in Theorem 5.9 give the discrete Littlewood-Paley-Stein
square function

9B (N @, y) =D D DN i+ flanun) Pxa(@)xa (y)
ik J 1
where I, J, x7, and y; are the same as before.
From this it is easy to see that the Hardy space Hp in Definition 5.7 is well defined and

the HY. norm of f is equivalent to the L? norm of g‘li;,. By use of the Min-Max type inequalities,
we will prove the boundedness of flag singular integrals on HF.

Theorem 5.10. Suppose that T is a flag singular integral with the kernel K(x,y) satisfying
the same conditions as in Theorem 5.4. Then T is bounded on H%, for 0 < p < 1. Namely, for
all 0 < p <1 there exists a constant Cp, such that

ITH) iz, < Cpll 7Ly
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To obtain the H}. — LP boundedness of flag singular integrals, we prove the following
general result:

Theorem 5.11. Let 0 < p < 1. If T is a linear operator which is bounded on L*(R™*™) and
HY.(R™x R™), then T can be extended to a bounded operator from Hp.(R™ x R™) to LP(R™™).

From the proof, we can see that this general result holds in a very broad setting, which
includes the classical one-parameter and product Hardy spaces and the Hardy spaces on spaces
of homogeneous type. Our method in proving this result offers an alternative approach of R.
Fefferman’s criterion on boundedness of a singular integral operator by restricting its action
on rectangle atoms [F4], combining with Journe’s geometric lemma (see [J1], [J2] and [P]).

In particular, for flag singular integral we can deduce from this general result the following

Corollary 5.12. Let T be a flag singular integral as in Theorem 5.10. Then T is bounded
from HR.(R™ x R™) to LP(R™™) for 0 <p < 1.

To study the duality of H%., we introduce the space CMO¥..

Definition 5.13. Let ¢, be the same as in (5.1). We say that f € CMOY. if f € (Sp) and
it has the finite norm HfHC’MOp defined by

sup Z/ > Wik (s y)Pxr(@)x (y) dady

7—1
QLR Gk o LJ:IxJCQ

for all open sets  in R™ x R™ with finite measures, and I C R",J C R™, are dyadic cubes
with side-length £(I) = 277 and £(J) = 27% + 277 respectively.

Note that the Carleson measure condition is used and the implicit multi-parameter struc-
ture is involved in CM O% space. When p = 1, as usual, we denote by BMOp the space
CM O};. To see the space CMOY, is well defined, one needs to show the definition of CMO%,
is independent of the choice of the functions 1); ;. This can be proved, again as in the Hardy
space H7., by the following Min-Max type inequality.

Theorem 5.14. Suppose jy, ¢j i satisfy the same condition (5.1). Then for f € (Spar)
where M depends on p,

supd —5— 55" S sup [k S AL~

2
QL Qp T T ixgcquelved

supd —5— > Y Y Lt 1650 fwv)P L

Q \Q!Wl 7k IxJCO

where I C R",J C R™, are dyadic cubes with side-length £(I) = 277N and £(J) = 27N 4
273N for a fized large integer N respectively, and Q0 are all open sets in R™ x R™ with finite

measures.
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To show that space C M O% is the dual space of H%., we also need to introduce the sequence
spaces.

Definition 5.15. Let sP be the collection of all sequences s = {srx.} such that

1

2

Isllsr = [ DD lsrwa PHTHI ™ X (@)X () < 00,

5k I,J
Lp

where the sum runs over all dyadic cubes I C R™,J C R™ with side-length ¢(I) = 273~V and
0(J) =27F=N 1 273=N for a fired large integer N, and x1, and x; are indicator functions of
I and J respectively.

Let cP be the collection of all sequences s = {s;xj} such that

1
2

1
||S||cp :Slglzp Pl Z Z |5[><J|2 < 00,

2_
Q> ! Gk I,J:IXxJCQ

where  are all open sets in R™ x R™ with finite measures and the sum runs over all dyadic
cubes I C R™,J C R™, with side-length I(I) = 297N and I(J) = 27N 4 277N for a fized
large integer N.

We would like to point out again that certain dyadic rectangles used in sP and P reflect
the implicit multi-parameter structure. Moreover, the Carleson measure condition is used in

the definition of ¢P. Next, we obtain the following duality theorem.

Theorem 5.16. Let 0 < p < 1. Then we have (sP)* = ¢P. More precisely, the map which
maps s = {syxy} to < s,t >= > sy« ytrixg defines a continuous linear functional on sP with
IxJ
operator norm ||t|| sy« = [[t[|cr, and moreover, every £ € (sP)* is of this form for some t € cP.
When p = 1, this theorem in the one-parameter setting on R™ was proved in [FJ]. The
proof given in [FJ] depends on estimates of certain distribution functions, which seems to be
difficult to apply to the multi-parameter case. For all 0 < p < 1 we give a simple and more
constructive proof of Theorem 5.8, which uses the stopping time argument for sequence spaces.
Theorem 5.8 together with the discrete Calderén reproducing formula and the Min-Max type
inequalities yields the duality of HE.

Theorem 5.17. Let 0 < p < 1. Then (Hp)* = CMOY.. More precisely, if g € CMOY., the
map Ly given by £y(f) =< f,g >, defined initially for f € Sp, extends to a continuous linear

functional on HY. with ||(g] ~ ||g||CMO%. Conversely, for every { € (H%)* there exists some
g € CMOY, so that £ = {y. In particular, (H}.)* = BMOp.

As a consequence of the duality of H}p and the H}T—boundedness of flag singular integrals,
we obtain the BM Op-boundedness of flag singular integrals. Furthermore, we will see that
L>* C BMOpf and, hence, the L>® — BMOpr boundedness of flag singular integrals is also
obtained. These provide the endpoint results of those in [MRS1] and [NRS]. These can be

summarized as follows:
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Theorem 5.18. Suppose that T is a flag singular integral as in Theorem 5.2. Then T is
bounded on BMOp. Moreover, there exists a constant C' such that

| T () Bror < CllfllBrOg-

Next we have the Calderén-Zygmund decomposition and interpolation theorems on the
flag Hardy spaces. We note that HP(R" x R™) = LP(R™™™) for 1 < p < co.

Theorem 5.19. (Calderdn-Zygmund decomposition for flag Hardy spaces) Let 0 < py < 1,py <
p < p1 < oo and let « > 0 be given and f € HP(R™ x R™). Then we may write f = g+ b
where g € HE' (R™ x R™) with p < p1 < 0o and b € HY?(R™ x R™) with 0 < py < p such that

Iy < CaP=P||f|[% and [[b][7%, < CaP?>=P|[f|[%,,, where C is an absolute constant.
HF F HF F

Theorem 5.20. (Interpolation theorem on flag Hardy spaces) Let 0 < pa < p1 < oo and T be
a linear operator which is bounded from HY? to LP? and bounded from HY' to LP', then T is
bounded from H;} to LP for all po < p < p1. Similarly, if T is bounded on H?Q and Hgl, then
T is bounded on HY. for all py < p < p1.

We point out that the Calderén-Zygmund decomposition in pure product domains for all
LP functions (1 < p < 2) into H! and L? functions and interpolation theorem was established
by Chang and R. Fefferman ([CF1], [CF2]) (see for more precise statement in Section 6).

We end the introduction of this subsection with the following remarks. As we can see
from the definition of flag kernels, the regularity satisfied by flag singular kernels is better than
that of the product singular kernels. It is thus natural to conjecture that the Hardy space
associated with flag singular integrals should be larger than the classical pure product Hardy
space. This is indeed the case. In fact, if we define the flag kernel on R™ x R™ by

K(.%',y) = /[?(m - Z727y>dz7
Rn

where K (x,2,y) is a pure product kernel on R™ x R"*™_ and let /I-;f: be the flag Hardy space
associated with this structure, thus we have shown in a forthcoming paper that H P(R"xR™) =
HY.(R"x R™)NHY.(R" x R™). Results in [MRS1] and [NRS] together with those in this section
demonstrate that the implicit multi-parameter structure, the geometric property of sets of
singularities and regularities of singular kernels and multipliers are closely related.

5.2 Test function spaces, almost orthogonality estimates and discrete Calderon
reproducing formula

In this section, we develop the discrete Calderén reproducing formula and the Min-Max in-
equalities on test function spaces. These are crucial tools in establishing the theory of Hardy
spaces associated with the flag type multi-parameter dilation structure. The key ideas to pro-
vide the discrete Calderon reproducing formula and the Min-Max-Poélya-type inequalities are
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the continuous version of the Calderén reproducing formula on test function spaces and the
almost orthogonality estimates.

If Y4(z,y,z,u,v,w) for (x,y,2),(u,v,w) € R* x R™ x R™ is a smooth function and
satisfies the differential inequalities

001007 05202 02 (w, y, 2, u, v, w))|
N M
< AN,M,aLOQﬂlﬂzﬁ/hw(l +lz—ul+ |y o)) (1+ [z —w|)

and the cancellation conditions

[z v ety dedy = [,z o) s

= /wﬁ(x,y,z,u,U,w)uo‘%ﬁQdudv = /@bﬁ(:c,y,z,u,v,w)wwdw =0,
and for fixed 29 € R™,yo € R™, ¢* (2,9, 2, 20, o) € Seo( R™™ x R™) and satisfies
laglaglazlgbﬁ(xa Y, z, %o, y0)|

< By mar, g, (1+ |2 — 20| + |y — o) N (1 +12)) Y,

for all positive integers N, M and multi-indices aq, a2, 81, 82,71,72 of nonnegative integers.
Then we have the following almost orthogonality estimate:

Lemma 5.21. For any given positive integers L1, Lo and K1, Ko, there exists a constant C =
C(Ly, Ly, K1, K9) depending only on L1, Lo, K1, Ko and the constants given above such that for

all positive t, s, t', s’ we have

| / wgs('rayvZ?“avaw)¢g/7sl(uavvwvx(]ayO)dUdvdw‘

Rn+m+m
K K
SC(E A E/)Ll(i A ‘i/)Lz (tvi)™ (s Vv s)he 7
t t s/ S (t\/t’—i—‘x—x0‘+‘y_y0’)(n+m+l(1) (SVS/+’Z’)(m+K2)

where ¥} (,y, z,u,v,w) =t MsTMGH(L Y 2 4L 0 gpg

0 5.y, 2, m0,90) = €TSS, T T )

Lemma 5.22. Let 1, ¢ € Sp(R™ x R™), and %, ¢F € Soo(R™™ x R™) such that

Qﬁ(l’,y) = R wﬁ(l‘,y—Z,Z)dZ, d)(x?y> = R (bﬁ(x?y_zaz)dz

Then
(gbﬁ * gbﬁ) (r,y — z,2)dz.

™m

o)) = [

Lemma 5.22 can be proved very easily. Using this lemma and the almost orthogonality
estimates on R"™™ x R™, we can get the following
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Lemma 5.23. For any given positive integers L1, Lo and K1, Ko, there exists a constant C =
C(L1, Lo, K1, K3) depending only on Ly, Ly, K1, Ko such that if t V' < sV, then

‘wt,s * (pt’,s’(x?y)‘
K K.
cod Aty p Sy, v CALO b
t/ t s/ S (t \Va 4 =+ ‘$|)(n+K1) (3 V-4 + ’y‘)(m+K2)

and if t vVt > sV s, then

|7/Jt7s * ¢t’,s’ (55, y)|

L e (tv 1)
I A s s (t V! + |x|) (KD (¢ |y])m+R2)

We can use these estimates to prove the following continuous version of the Calderén

reproducing formula on test function space Sp(R™ x R™) and its dual space (Sg)’.

Theorem 5.24. Suppose that 1; ;. are the same as in Lemma 5.1. Then

F@,y) =D ik =i+ f(2,y), (5.2)
J k

where the series converges in the norm of S and in dual space (Sp)'.
Proof: Suppose f € Sp and f(z,y) = [ f*(z,y— 2z, 2)dz, where f* € Soo(R™™ x R™). Then,
Rm

by the classical Calderén reproducing formula as mentioned in the first section, for all ff € L2,

fﬁ(x7y’ Z) = Zz¢ﬁ7k * w§7k * fﬂ(xvyaz)u
ik

where ¢ (2,9, 2) = ¥\ (2, y)v”) (2).
We claim that the above series converges in Soo(R™™ x R™). This claim yields

If@y) = D> D etk f@,y)lse

—N<GSN —M<k<M

S LACYEEE D DI DI PR PRy CY R L2
Rm

—N<j<N —M<k<M
S Hfﬂ(x,y,z)— Z Z wik*d)_g,k*fﬁ(xuyaz)nsoo
—N<GSN —M<k<M

where the last term above goes to zero as N and M tend to infinity by the above claim.

The convergence in dual space follows from the duality argument. The proof of Theorem
5.13 is complete. Q.E.D.

Using Theorem 5.24, we prove the discrete Calderén reproducing formula.
Proof of Theorem 5.8: We first discretize (5.2) as follows. For f € Sp, by (5.2) and using an
idea similar to that of decomposition of the identity operator due to Coifman, we can rewrite

fa) =25 [ [ vt = uy = w) W x £) (0, 0)dudw

gk 1J 7 7
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gk I,J

/ / Vi —uyy — w)dudw | (i % ) (@1,57) + RO (@, 1)-
J I

We shall show that R is bounded on Sg with the small norm when I and J are dyadic
cubes in R” and R™ with side length 277~ and 275~ 4+ 277N for a large given integer N,
and xj,yy are any fixed points in I, J, respectively.

We now set

R(f)(@,y)
Z /w (x —u,y —w) [(Pn* f) (w,w) = (Y * f) (21, y5)] dudw
sk LJ 7T

:////Rﬁ(w’y o Z’Z’u,7vl? w,)fti(u,’Ul;U)’)du,d'Uldw,dZ

— [ Ry - 220
RTTL

where R¥(z,y, z,u',v',w') is the kernel of RE.
Thus we can show that for any M, RE(f9)(x,y, z) € Sy (R™™ x R™) and

IRF () sy (ntm sy < C27 V|| FElsys rmtom s rom

which implies

IR(HI < C27N] 11

Details can be found in [HL3].
Using the boundedness of R on Sp with the norm at most C2~V, if N is chosen large
enough, then we obtain

=2 SN SR [ [l = e o)dudo] (o9) (e s 1) or.),
i ok J I |i=0 7

Set

ZRZ//¢j:k( — U, - —v)dudv (m,y) = |I\|J|?,Zj,k($,y,x1,yj).
=0 7T

It remains to show {/;j’k(:r, y,x1,Ys) € Sk,m- This, however, follows easily.
Q.E.D

Remark 5.25. If we begin with discretizing (5.2)) by

) =YY Y st~y —un) [ [ e e £) wo)dudo + R ),
i ok J I 7
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and repeating the similar proof, then the discrete Calderdn reproducing formula can also be

given by the following form

) =SS S k(= 20y — 9P ),
7 k J I

where |I||J|7Zj7k(f)(x1,yj o f [k * Y (f)(u,v)dudv. We leave the details of these
1=0J I
proofs to the reader.

Before we prove the Min-Max type inequality, we first prove the following lemma.

Lemma 5.26. Let I,I', J,J' be dyadic cubes in R™ and R™ respectively such that ((I) =
27I=N g(J) = 279N 4 27N o'y = 277N and £(J') = 277N 4 27K =N Thus for any
u,u* € I and v,v* € J, we have when j N7 >k ANK

9—1i—3'|L1—|k—k'|L29—(iAJ") K1—(kAK") K2|I/||J/|
el (A NACTAN D]

Z K /
,J (2 Ing' +|U—$[l|)n+ 1(2 knk +|’U—yJ ’)

L
< Cy(N,r,j, i k, k/)zf\j*j’lh 9 |k—FK'[L2 {MS [(Z Z |pjr ke x f(zr, yJ’)‘XJ’XI') ] } (u”,v")
Jor

and when j A\ j < kANK

D

7 (273N u — wp )T (270N o — g

s 1
< 02(N7 T,j,j,,k},k‘/)2_‘j_j/|L1 . 2—\k—k'|L2 {M [(ZZ |¢j’,k" * f(xllvyjl)|XJ/XIl> ] } (U*,U*)

Jr

90— i=3'|L1—1k—k'|L2a9—(GAF" ) K1 — (A5’ K2‘[/HJ/‘
DmH(Q\d)j ok [yl

where M is the Hardy-Littlewood mazximal function on R™*™, My is the strong mazimal func-

tion on R™ x R, and max } <r and

n+nK1 ’ m—T—an
CL(N, 7, j, §' ke, k) = 2G=DN(tm) _ gGAT i) +m(knk =k (1=3)
Co(N, 1, ], 7 k, k') = 2G=DN(tm) oln(AT'=3")+m(Gnd" =5 (1=3)

We now are ready to give the
Proof of Theorem 5.9: By Theorem 5.8, f € Sg s can be represented by

D) =D I IS NN e (g, w0, y00) (b4 % f) (@1, 900)-
j/

kJr

We write

sk * f) (u,v)

=3 Y>> (¢j,kz % gy (- '7331',?4]')) (u,0) (¢50 00 % f) (@1, y0).

j/ k/ J/ I/
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-/

Using the almost orthogonality estimates by choosing t = 277, s = 27k ¢/ = 277
s’ =275 and for any given positive integers L1, Lo, K1, K2 we have if j A j > kA K,

(5% By s, ) ) ()
9—li=J'|L1~|k—K'|L29—(iAj" ) K1~ (kAK) K2|]’||J’|

TN fu— g )T 2Ry — )T

|G * f(@r s yp)]

and when j A 7/ < k A k' we have

| (1/}Jk * (Z)]/ k’(‘, .7le,yjl)> (u,'l))‘
9~ li=J'| L1~k =K'|L2 g = (AT ) K1 =GN Ko | 7| | 77|
= @I 1 el @i 4 oyl o S

Using Lemma 5.26 for any u,u* € I, xpp € I’, v,v* € J and y;» € J', we have

sk f(u,v)]

<C Yy 27l gk {Ms [(ZZ | ke f(xl/»yJ/)|XJ’XI/> ] } (u*,v")

31K A > kAR Jr

+ Oy Z 2*\j*jf\L1 ,Qf\kfk/\Lz {M [(ZZ |¢j’,k’ % f(l“l',yJ')|XJ’X[/> ] } (u*,v*)

G kg AG <kAK! Jr

< 3 2 lid i gL {MS [(ZZ |pjr g * f(ﬂfluyJ')\XJ'XI') ] } (u®,07%)

j/,k/ J/ I/
where M is the Hardy-Littlewood maximal function on R"™™ M is the strong maximal
function on R" x R™, and max{, &, 1} <7 <p.

Applying the Holder’s inequality and summing over j, k, I, J yields

1

2

SN sup e fu,v)Pxrxg

ik IJuEIUE

= o
N

<C Z MS(Z g ke * [, yr)|xrxs)”

j/7k/ I/,Jl

Since xp and y - are arbitrary points in I’ and J’, respectively, we have

2

DD sup [dnx flu,0)Pxixg

ok IJuEI'UG

RN
NI

=¢ /zk:/ MS(I/ZJ/ ueIi{lz)feJ/ |Gjr i * f(w,v) [ xrxs)" )
j b b
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and hence, by the Fefferman-Stein vector-valued maximal function inequality [FS1] with r < p,

we get
bl
19222 sup [ujuxflw0)Pxrxs o o
Tk g 1 uelveJ
1
2
<CISI DD D nf ey = f(w,0)Pxexs ¢
7w e
This ends the proof of Theorem 5.9. Q.E.D.

5.3 Discrete Littlewood-Paley-Stein square function, boundedness of flag
singular integrals on Hardy spaces H%, from H7. to L?

The main purpose of this section is to establish the Hardy space theory associated with the
flag multi-parameter structure using the results we have proved in the previous subsections.
As a consequence of Theorem 5.9, it is easy to see that the Hardy space H%. is independent
of the choice of the functions 1. Moreover, we have the following characterization of H%. using
the discrete norm.

Proposition 5.27. Let 0 < p < 1. Then we have

2

[l ze, ~ | S e fany)Pxr@xs @) ¢l
Tk T 1

where j,k, YV, x1,XJ,%I1,YJ are same as in Theorem 5.9.
Before we give the proof of the boundedness of flag singular integrals on H7., we show
several properties of H ?.

Proposition 5.28. Sp(R™ x R™) is dense in HF.

Theorem 5.29. If f € L2(R"™™) N HP(R" x R™),0 < p < 1, then f € LP(R™™™) and there
is a constant C, > 0 which is independent of the L? norm of f such that

1fllp < CUF Nz

To show theorem 5.29, we need a discrete Calderén reproducing formula on L2(R™™).
To be more precise, take ¢ € Cg°(R™™) with

/ oW (z, y)a*y dzdy = 0, for all a, 8 satisfying 0 < |a| < My, 0 < || < Mo, (5.3)
Rn+m

where M is a large positive integer which will be determined later, and

S 16026, 2796)2 = 1, for all (&1,&) € R™™\{(0,0)},
J
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and take ¢(2) € C§°(R™) with

) (2)27dz = 0 for all 0 < || < Mo,
Rm
and 30, [6®) (277€,)? = 1 for all & € R™\{0}.
Furthermore, we may assume that ¢(!) and ¢(?) are radial functions and supported in the
unit balls of "™ and R™ respectively. Set again

1 2
On(oy) = |6 @y =287 @)
By taking the Fourier transform, it is easy to see the following continuous version of
Calderén reproducing formula on L?: for f € L2(R"™™),

F@,y) =YD dinx dje * f(,y).
k

J

For our purpose, we need the discrete version of the above reproducing formula.

Theorem 5.30. There exist functions &Sjk and an operator TJQI such that

Fy) =Y3 "33k — 20y — yn)din * (T (f)) (@1,95)
Gk T T

where functions ajk(a:—xj, y—1yyg) satisfy the conditions in (5.3) with aq, B1,v1, N, M depending
on My, vo = x; and yo = yj. Moreover, Tﬁl is bounded on L*>(R™™) and HP(R"™ x R™), and

the series converges in L*(R™™).

Remark 5.31. The difference between Theorem 5.8 and Theorem 5.30 are that our gjk m
Theorem 5.30 has compact support. The price we pay here is that gjk only satisfies the moment
condition of finite order, unlike that in Theorem 5.8 where the moment condition of infinite
order is satisfied. Moreover, the formula in Theorem 5.30 only holds on L?(R™ ™) while the

formula in Theorem 5.8 holds in test function space Spar and its dual space (Spar)’ .

Proof of Theorem 5.30: Following the proof of Theorem 5.8, we have
fa) =X XSS [ oata =y = o)dude] (0. % 1) (e1,0) + RO e.0),
I

where I, J, j,k and R are the same as in Theorem 5.8.
Thus,

Lemma 5.32. Let 0 < p < 1. Then the operator R is bounded on L?*(R"™™)N HP(R™ x R™)
whenever My is chosen to be a large positive integer. Moreover, there exists a constant C' > 0
such that

IR()ll2 < C27If]l2

and
R ee(rrx rmy < CTNHfHHp(Ranmy
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Proof of Lemma 5.32: Following the proofs of Theorems 5.8 and 5.9 and using the
discrete Calderén reproducing formula for f € L2(R"™), we have

gr (R

IS DD D T Wi xR Pxaxa ¢l
ik J

1

IN

[V

=18 X2 >0 W (g xR (e G s yar) - g+ Pl yan)) ) P

Gk, L0 KT

where 7, k, v, x1, X7, 21,y are the same as in Theorem 5.9.
We claim:

| (i R (o)) ) (@:9)]

< 02 Noli=i'IKg—|k=K|K /
Rm

9—(Ini") K 9— (kAR K

— d
(2-GN) F o —ap| + [y — 2z — yp)nrmtK (2-RAR) f [[ym+E z

where we have chosen for simplicity L1 = Lo = K1 = Ko = K < Mo,mGSU(MLK7 WmK) < p,
and My is chosen to be a lager integer later.

Assuming the claim for the moment, repeating a similar proof in Lemma 5.26 and then
Theorem 5.9, we obtain

|HgF(Rf)Hp < 027N||{Z Z{MS(ZZ ‘¢j/,k/ * f(xf’vyJ’)’XJ’XI’)T}%}%Hp

j/ kl J/ I/

_ 1 _
< CT NI Y DD Wy x farya) Pxexad 2l < C27 N fllp (re s ey

j/ k/ J/ I/

It is clear that the above estimates still hold when p is replaced by 2. These imply the assertion
of Lemma 5.32.
We now prove the Claim. Again, by the proof of Theorem 5.8,

R ({/;j',k'(', Ty, yJ/)) (x,y) = Rﬁ(x, y—z,z,u v, w/){bvjlvk/(', Ty, yJ/)du/dv/dw/dz
Rm
where RF(x,y,z,u/,v',w') is similar to R* as given in the proof of Theorem 5.8 but, as
we pointed out in Remark 5.31, that the difference between Rf here and R given in the
proof of Theorem 5.8 is the moment conditions. However, the almost orthogonality esti-
mate still holds if we only require sufficiently high order of moment conditions. More pre-
cisely, if we replace the moment conditions in (5.3) "for all ay, 31,71, a2, B2,72” by "for all
laal, |81, |7ls |2y | B2], |v2] < My where My is a large integer, then the orthogonal estimate
still holds with L1, Lo, K1, K9 depending on M. Thus, the claim follows by applying the same
proof as that of Theorem 5.8, and the proof of Lemma 5.32 is complete. Q. E. D.
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We now return to the proof of Theorem 5.30.
Denote (Ty) ™! = Y72, RY, where

Tn(f) :ZZZZ[//%MIE—%y—v)dUdUd} (D5 * f) (x1,97)-
FE I A

Lemma 4.5 shows that if IV is large enough, then both of Ty and (Ty)~! are bounded on
L?(R™™) N HP(R™ x R™). Hence, we can get the following reproducing formula

F@y) =Y 333 Gk — 20,y — ys)djn * (T (f)) (@1,5)
Tk T 1

where %k(:ﬂ —x,y—vy) = ﬁﬁ [ [ i —ar— (u—21),y — yj — (v —ys))dudv satisfies the
J I

estimate in (5.3) and the series converges in L?(R"T™).
This completes the proof of Theorem 5.30. Q.E.D.
As a consequence of Theorem 5.30, we obtain the following

Corollary 5.33. If f € L2(R"™™) N HP(R™ x R™) and 0 < p < 1, then

1~ IS SN 1o (TR () .y Pxa (@)xs ) D)
Ji kK J

I
where the constants are independent of the L? norm of f.

To see the proof of Corollary 5.33, note that if f € L?(R"*™), one can apply the Calderon
reproducing formulas in Theorem 5.8 and 5.30 and then repeat the same proof as in Theorem
5.9. We leave the details to the reader.

As a consequence of Theorem 5.29, we have the following
Corollary 5.34. H-(R"™ x R™) is a subspace of L*(R™ x R™).

Proof: Given f € H:(R™™), by Proposition 5.28, there is a sequence {f,} such that f, €

L2(R™ ™) N H-(R™™) and f,, converges to f in the norm of HL(R"*™). By Theorem 5.29,

fn converges to g in L'(R"*™) for some g € L'(R"™™). Therefore, f = g in (S). Q.E.D.
We now turn to the

Proof of Theorem 5.10: We assume that K is the kernel of T. Applying the discrete Calderén

reproducing formula in Theorem 5.30 implies that for f € L2(R"™™) N HP(R™ x R™),

S o # K * £, 9) Pxa@)xs ()} 2

gk I,J

=IO SIS ST s ¢ K 5 G (- — - =y )@, y)djrae * (TRH)) (@r v P (@) xs ()2 lp,

Gk LT kI

where the discrete Calderén reproducing formula in L?(R"*t™) is used.
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Note that ¢;;, are dilations of bump functions, by estimates similar to the those of or-
thogonal estimates, one can easily check that

ik % K % bjopr (- — - — ypr) ()| < 02717 1K= lk=kK

/ 2—(N"K 9— (kK"K

Y] . i dz?
s (2—(3/\3 ) + z—ap|+ |y — 2 — yJ,’)n+m+K (2—(kAk) T ’z‘)m—‘rK

where K depends on M given in Theorem 5.30 and M is chosen to be large enough. Repeating
a similar proof in Theorem 5.9 together with Corollary 5.33, we obtain

IT Al < IS MO S 165+ (TRM) @y xarxr) 3 (. 9) 2
—

]'/ J/ I/

< CI DY D It (T3 () sy P (0)xr (@)} 2 < Ol g
KT

where the last inequality follows from Corollary 5.33.

Since L?(R™™™) is dense in HL(R™ x R™), T can extend to a bounded operator on
HYP.(R™ x R™). This ends the proof of Theorem 5.10.

Proof of HY. to L? boundedness We note that H% N L? is dense in HY., so we only
have to show this for f € Hb N L?. This follows from Theorems 5.29 and 5.10 immediately.
Q.E.D.

5.4 Calderén-Zygmund decomposition and interpolation on flag Hardy spaces
HP(R™ x R™)

The main purpose of this section is to derive a Calderén-Zygmund decomposition using func-

tions in flag Hardy spaces. Furthermore, we will prove an interpolation theorem on HP(R"™ X

R™).

We first recall that Chang and R. Fefferman established the following Calderén-Zygmund
decomposition on the pure product domains R% x R% ([CF2]).

Calderén-Zygmund Lemma: Let o > 0 be given and f € LP(R?), 1 < p < 2. Then
we may write f = g+ b where g € L?(R?) and b € H'(R2 x R%) with ||g]|3 < o®7P||f||h and
||b||H1(RixRi) < Cal=P||f||h, where ¢ is an absolute constant.

We now prove the Calderén-Zygmund decomposition in the setting of flag Hardy spaces,
namely we give the

Proof of Theorem 5.19 We first assume f € L?(R"™™)N HP(R"™ x R™). Let a > 0 and
Q= {(z,y) € R" x R™: S(f)(z,y) > a2}, where, as in Corollary 5.33,

S y) =3 i (T () (@r ) Pxr(x)xs ()

gk I,J

It has been shown in Corollary 5.33 that f € L?(R™*™)NHP(R" x R™) then |\f||H§ ~ ||S()llp-
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In the following we take R = I x J as all dyadic rectangles in R" x R™ with |I| = 29—V
|J| =277=N 4-27k=N wwhere j, k are integers and N is large enough.
Let
Ro = {R = I x J, such that |[R N Q| < ;|R|}

and for £ > 1
1 1
Re= {R: I x J, such that |[RNQp_q| > §|R] but [RN Q| < 2|R\}.

By the discrete Calderén reproducing formula in Theorem 5.30,

flz,y) = ZZ ||| bz — 1oy — yn) b * (T () (z1,9.7)

ik 1,7

=>" > k(e — zr.y — yn)di * (T (f)) (@r,92)
1>1 IxJER,

+ Z 1| J| bz — 21,y — yn)bjn * (T () (x1,9.)
IxJERy

=b(z,y) + g(z,y)
Such b(z,y) and g(z,y) satisfy the desired properties. Details can be found in [HL3].

We are now ready to prove the interpolation theorem on Hardy spaces H% for all 0 < p <

Proof of Theorem 5.20: Suppose that T is bounded from H}? to LP? and from H7' to
LPr. For any given A > 0 and f € H%., by the Calderén-Zygmund decomposition,

f(z,y) = g(z,y) +b(z,y)

with

9llz < CXPIf |y and 1Bl < CA=PI1f |1y
F

HP?

Moreover, we have proved the estimates
lolf, <€ [ S(F)P (@, y)dady
F S(f)(z,y

and

bl < © / 1) (2, y)dady
7y

which implies that
1A= » [ o (@) s D) > A da
0
00 B by S _ A
<o [Tor i {wn s Tawal > 5 flaatp [ @ ol > 5 o

<p [t | S e p)dadyda+p [t [ S(F)P(z, y)ddyda
0 S(f)(zy 0 S(f)(zy
<alrie,
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Thus,
T fllp < Cllf e

for any ps < p < p1. Hence, T is bounded from H g to LP.
To prove the second assertion that 7' is bounded on Hf} for po < p < p1, for any given
A > 0and f € HY, by the Calderén-Zygmund decomposition again

{(@,9) 9T f)(w,y)] > o}
<l{@y) : 9@ @yl > S} +1{@y) : 9T @y > 5}
< Ca|[Tg|[fy, + Ca™|[T0| %,

< Ca™ gl + Ca P [b| 7%,

gmw/ &NwmmeMW/ S(F)P2 (e, y)dady
S(f)(z,y)<a S(f)(zy) >

which, as above, shows that ||Tf||H§ < Cllg(TH)|]p < C’HfHHg for any po < p <p1. Q.E.D.
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