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1 Introduction

The classical theory of harmonic analysis may be described as centering around the Hardy-Littlewood
maximal operator and its relationship with certain singular integral operators which commute with the
usual dilations on R™, given by

d:x—>6x, 6>0.

The above isotropic dilations can be replaced by more general non-isotropic groups of dilations. This mod-
ification produces many non-isotropic variants of the classical theories, such as, the multi-parameter pure
product theory corresponding to the dilations

8:x — (8,x,8,%,), x=(x,x,) € R""xR", § =(8,,6,), 8§, >0, &, >0,

which has been developed by many authors over the past decades. Similar to the classical theory, this theory
includes the boundedness of multi-parameter singular integral operators on the L? spaces (1 < p < c0)
and multi-parameter Hardy spaces H? (0 < p < 1). Another interesting feature of this multi-parameter
theory also includes the atomic decomposition of multi-parameter Hardy spaces, duality and interpolation
theorems on product spaces, and maximal function characterizations, etc. We refer the reader to the works
in [1-4, 10-13, 17, 18, 20, 23, 25, 26, 28, 33].
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To familiarize the reader with the background and the motivation of our study, we will explain how this
multi-parameter structure arises in other aspects of harmonic analysis, in particular, from the composition
of two singular integral operators with different homogeneities. To be more precise, for R” = R x R
with x = (x, x,,) where x' €¢ R"! and x,, € R, then we can consider two kinds of homogeneities

8:(x',x,) — 0x',0x,), &>0,
8:(x',x,) —» (0x',8%x,,), &>0.

The first is the classical isotropic dilations occurring in the classical Calder6n-Zygmund singular integrals,
while the second is non-isotropic and related to the heat equations (similar to that on the Heisenberg groups).
For x = (x',x,) € R x R, denote |x|, = (|x']* + |x,,|*)? and |x|, = (Ix> + |x,,])?. Then there are two differ-
ent types of singular integrals associated with these dilations.

Definition 1.1. A locally integrable function X, on R™ \ {0} is said to be a Calderén-Zygmund kernel associ-
ated with the isotropic homogeneity if

‘a K (x)‘ < Alx|;™ ol forall |a| > 0 (1.1)

and
Ki(x)dx =0 forallo<r <r, < co. (1.2)
r<Ixl <y
An operator T, is said to be a Calderén-Zygmund singular integral operator associated with the isotropic
homogeneity if T} (f)(x) = p.v.(X, * f)(x), where X, satisfies conditions in (1.1) and (1.2).

Definition 1.2. Suppose X, € L%OC(]R'" \ {0}). Then X, is said to be a Calder6n-Zygmund kernel associated

with the non-isotropic homogeneity if

0” aﬁ —-m—1—|a|-2,
S 3 )| < Bixl, ¥ foralla| =0, 20, (13)
and
J Ky(x)dx =0 forallo<r <r, < oo, (1.4)
ri<|x|,<r,

An operator T, is said to be a Calderén-Zygmund singular integral operator associated with the non-isotropic
homogeneity if T, (f)(x) = p.v.(X, = f)(x), where X, satisfies the conditions in (1.3) and (1.4).

Both the classical Calderén-Zygmund theory and theory of singular integral operators associated with the
non-isotropic dilations indicate that both the operators T, and T, are bounded on L? for 1 < p < co and
of weak type (1,1). Nevertheless, it is showed by Phong and Stein in [32] that in general the composition
operator T, o T, is not of weak-type (1,1). Moreover, the authors of [32] gave a necessary and sufficient
condition such that the composition operator T, o T, is of weak-type (1, 1). This answers the question raised by
Rivieré in [35]. In fact, the operators studied in [32] are compositions with different homogeneities and such
a composition operator arises naturally in the study of d-Neumann problem (see also Folland—-Stein [14]).

It is well known that any Calderén-Zygmund singular integral operator associated with the isotropic
homogeneity is bounded on the classical Hardy space H?(R™) with 0 < p < 1. A Calderdn—Zygmund singular
integral operator associated with the non-isotropic homogeneity is not bounded on the classical Hardy space
but bounded on the non-isotropic Hardy space (see [15]). However, the composition operator is bounded on
neither the classical Hardy space nor the non-isotropic Hardy space. This motivates the authors of [19] to
introduce a new Hardy space associated with the different homogeneities and establish the boundedness
of composition singular integrals on such Hardy spaces. It is interesting to note that such Hardy spaces are
of multi-parameter setting in nature. Recently, the duality theory of the multi-parameter Triebel-Lizorkin
spaces associated with the composition of two singular integral operators has been established by the first
two authors [8].
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Inspired by those works, and recent study of multi-parameter Triebel-Lizorkin spaces in the pure
product setting and as well as in the setting associated with the flag singular integrals [9, 29], we consider
multi-parameter Triebel-Lizorkin spaces associated with the composition of two singular integral operators
of different homogeneities. In particular, we are interested in the atomic decomposition of these spaces. Such
spaces associated with the different homogeneities were introduced earlier in [7] along with the boundedness
of the composition of two singular integral operators with different homogeneities on these spaces.

Forx = (x', x,,) € R™' xR, we recall two different norms: |x|, = (|x'|*+|x,,*)"/? and |x, = (|x'[*+]x,,])"/%.
We also use notations j A k = min{j, k} and j v k = max{j, k}. Denote
§p(R™) = {f € S(R™) : J f(x)x" dx = 0 for any multi-index o with |«| > O]»,
]Rm
and for a positive integer L,
SL(R™) = {f € S(R™) : J f(x)x" dx = 0 for any multi-index o with |a| < L - 1}.
]Rm
Let V) € $(R™) with
suppu’/m c {(E’,fm) eR™'xR: % <, < 2}, (1.5)
and
Y [yO@eIE, 27, )P =1 forall ¢€,€,) € R™\ {0}. (16)
jezZ
Let y? ¢ $(R™) with
suppl;(z\) c {(f',Em) eR™'xR: % <&, < \/E}, (1.7)
and
Y @@ *E 2%, )P =1 forall ¢,€,) € R™\ {0}. (1.8)
kez
Set

i) = i g2 (),
where w;l)(x', X)) = 2y W @2Ix 20x,), yP (¥, x,,) = 2K Dy (25x, 2% x,,). The following discrete Calderén
reproducing formula is from [19].
Theorem A. Suppose that ' and y®
tively. Then

are functions satisfying conditions in (1.5)—(1.6) and (1.7)-(1.8), respec-

f(x” xm) — Z Z 2—(m—1)(j/\k) 2_(j/\2k) (v/j,k % f)(z_(j/\k)el, 2_(j/\2k)em)
JKEZ (£1,6,)eZm 1 XZ. A ‘ (1.9)
Xy (x| =270 g N

where the series converges in L*(R™), 8o(R™) and S(R™).

Remark 1.3. In the proof of Theorem A, the authors use the additional assumption that ") and y'? are real
and radial Schwartz functions. If dispensing with this assumption, (1.9) should be

f(x,,xm) _ Z Z 2—(m—1)(j/\k)2—(j/\2k)(l—pj)k % f)(zf(j/\k)er, zf(j/\zk)em)ll/j’k(xr _ 27(j/\k)€,,xm _ 27(j/\2k)em)’
JkeZ (¢',8,,)eZm ' xZ

where §; (x) = y; «(~x), which is a generation of [16, Lemma 2.1].

With the discrete Calderén reproducing formula, Triebel-Lizorkin spaces associated with different homo-
geneities were introduced in [7] as follows.
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Definition 1.4. Let 0 < p,q < co and & = («;, a,) € R?. The Triebel-Lizorkin type space with different homo-
geneities F,”?(R™) is defined by

EPIR™) = {f € $y(R™) : | Flgzageny < coh,

where

) . ) ) 1/q
- k 2k —(jnk) ol A—(jin2k li
||f||F;,q(]Rm) = H( Z 2 [(ink)a, +(jA2k)a,1q Z W/j,k " f(2 (N )B ) (N )em)quI(x )XI(xm))
jrkeZ (£',8,)€Zm"1xXZ

LP(]R"‘))

where I are dyadic cubes in R™! and J are dyadic intervals in R with the side length I(I) = 270N and
1(J) = 279"29 and the left lower corners of I and the left end points of J are 27"¢" and 27U"¢ _ respec-
tively.

This new Triebel-Lizorkin type space is well defined, since it has been proved in [7] that F;,x *4(R™) is inde-
pendent of the choice of the functions y' and y?. Nevertheless, it is not clear if such a space is equivalent to
the one defined by using the continuous form. One of the main purpose in this paper is to show that they are
indeed equivalent using both the discrete and continuous forms. This is described in the following theorem.

Theorem 1.5. Let 0 < p,q < co and & = («,, a,) € R% Suppose that y" and v satisfy conditions in (1.5)-(1.6)
and (1.7)-(1.8), respectively. Then

. . . . l/q
=[(jink 2k —(jnk) p! 4—(jn2k !
ll( Y pUernbeln Ry 00,270 e ) )X](xm))
j.keZ (€',¢,)ezm1xZ

LP(RR™)

‘ ‘ 1/q
- "( Yyl indalayy, f|q)

j.kez. LP(R™)

In the case of the pure product structure, the equivalence was proved in [29]. However, our multi-parameter
structure associated with the composition of two different homogeneities is more complicated. Therefore,
such an equivalence is not evident. Nevertheless, establishing such an equivalence is not just interesting but
also necessary to justify the definition of such multi-parameter Triebel-Lizorkin spaces. Otherwise the spaces
would seem to depend on the choice of the points used in Definition 1.4, namely, depending on the left lower
corners of I and the left end points of J are 2-"¢’ and 270"%)¢_ respectively, where I are dyadic cubes
in R™! and J are dyadic intervals in R with the side length I(I) = 29" and I(J) = 270"V,

When o, =a, =0, g=2and 0 < p < 1, our spaces F;’q(R’”) = ngm(]R"‘). Hence, our Theorem 1.5 also
verifies that the Hardy spaces HY (R™) given in [19] in the discrete form is actually equivalent to the one
defined in the continuous form.

Using the discrete Calderén reproducing formulae in Theorem A above, and an argument similar to that

in [20, 29], etc., one can obtain one direction,

. . 1/q
“( Z 2—[(]/\k)¢x1+(]/\2k)ocz]q|wj’k . flq)

jkez. LP(R™)

1/q
~[(ink in2k —(jnk) pl H—(jN2k !
< ||< z 5 L(AR)e +(jA2k)ec,1q Z |V’j,k x f(2 (jnk) p )2 Gn )em)rlxl(x )X](xm)>
jkeZ (€',8,)eZm X7

LAR™)

However, the other direction is harder. We will apply a similar argument in one-parameter setting as in the
work of Frazier and Jawerth [16] to prove the inequality in our multi-parameter setting under study.

Atomic decomposition is important in proving boundedness of operators on various function spaces
both in one-parameter and multi-parameter settings. Since the atoms and molecules were introduced in the
one-parameter setting by Coifman, Weiss, and Latter in [5, 6, 27], they have played a very important role
in harmonic and wavelet analysis [30, 31, 34]. The study of the operators acting on a space of functions
or distributions becomes easier when the elements in the space admit atomic decompositions. It is often
the case that it suffices to prove the uniform boundedness of an operator on atoms of the function space in
order to establish the boundedness of an operator on such a space. In the multi-parameter situations, atomic
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decomposition on multi-parameter Hardy spaces was established by Chang and Fefferman [1-3, 10], and was
applied to prove the boundedness of multi-parameter singular integral operators on Hardy spaces, using
the atomic decomposition together with the Journé’s covering lemma, by Fefferman [11], Journé [25, 26],
Pipher [33], Han, Lu and Ruan [21, 22] etc. A more refined and improved version of atomic decomposition in
the multi-parameter Hardy spaces was carried out in [24] and a boundedness criterion was established using
the atomic decomposition. Therefore, it is interesting and useful to establish the atomic decomposition and
the boundedness criterion on the multi-parameter Triebel-Lizorkin spaces associated with the composition
of two dilations of different homogeneities.

To obtain the atomic characterization of F,”?(R™), more precisely, of L*2(R™n EyU(R™), firstly we intro-
duce the following atoms.

Definition 1.6. Let0 < p < g < coanda = (a;, ) € R*. Adistributiona € S,(R™)’ is said to be a (p, g, «)-atom
of > I(R™)(NL*(R™)) if
(i) suppacQ, whelre 10 c R™ is an open set with finite measure,
(i) lallzmagen <1017,
(iii) [al ESaRmy < C, for some constant C,.
Moreover a can be further decomposed into some rectangle-atoms a, associated to the rectangle R = I x J
which is supported in 7R for some positive integer 7 independent of a, and such that
(iv) a= Y rem o With
1/q 11
<R€§<m el snge) < 1017,
(iv') for every g € S(R™), every polynomial P of degree at most N = [(m + 1)(1/min{p, g, 1} - 1)], and any
smooth cut off function 7, € S(R™) such that s = 1 on 7R, and 7R = 0 outside 27R, we have

(a,9) = {a,(g — P)yg).
Here and in the sequel, m(Q) is the set of all maximal dyadic rectangles contained in Q.

We are now ready to give some remarks here. Firstly, when 0 < p < 1,9 = 2,« = (0, 0), we then obtain the def-
inition of atoms in HZ . Different from classical definitions of atoms in pure product Hardy spaces [11, 24],
an additional good condition: ||a| He, < C, is involved. This condition can be obtained from the remaining
conditions in pure product spaces (see the appendix of [24]). But it seems hard to do so in H? . Secondly,

if (p, g, «)-atoms are locally integrable, one can see that (iv") is the usual cancellation condition.

Theorem 1.7. Suppose 0 < p<q<co and a = (), &) € R%. Let f € L*(R™)n F,"(R™). Then there exists
a sequence of (p, q, «)-atoms {a;} of F;"q(]R'") and a sequence of scalars {A;} with (3, |\,[P)/? < C|| ]l (R
such that

f= Z Aia;
i
and the series converge to f in both L*(R™) and F;‘ *1(R™), where C is a positive constant independent of f.

Sincewhen0 < p<g<ooandp<l, f = |f ||£ wa () is subadditive, we have the following corollary.
P

Corollary 1.8. Suppose a = (a),a,) € R%,0< p<1,p<g<ocoand f € L*. Then f € E,>(R™) if and only if f
can be written as f = ¥, M\;a; in L*(R™) and in Ey9(R™), where a; are (p,q,«)- atoms of F,"*(R™) and {1;}
satisfies (3, |1;1°)'/? < co. Moreover,

1/p .
||f||F:,q(]Rm) = inf{(Z IA,-IP) cf = Z A;a; where a; are (p, q, «)-atoms ofFI‘,’"q(IR’")}.
In the multi-parameter setting, a boundedness criterion has been established in [24]. In the setting of multi-
parameter Triebel-Lizorkin spaces associated with the composition of two singular integrals, we will confirm
such a boundedness criterion as well. As an application of Corollary 1.8, we obtain a boundedness criterion
for linear operators from F,"I(R™) to F,"*(R™).
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Theorem 1.9. Suppose « = («;,a,) € R, 0< p< 1, p<q < oo. If T is a linear operator bounded on L*(R™),
then T is bounded on F,"*(R™) if and only if

sup{IIT(a)Ilp;,q(Rm) :alisany (p, g, «)-atom ofF;"‘i(]an)} < 0.

The organization of this paper is as follows. In Section 2, we will prove that the discrete definition of
Triebel-Lizorkin type space is equivalent to its continuous form. Section 3 gives F,”/(R™) norm estimates of
a function restricted in a domain. Section 4 contains the proofs of Theorem 1.7 (the atomic decomposition)
and Theorem 1.9 (boundedness criterion).

Throughout this paper, C is a positive constant which is independent of essential parameters and not
necessarily the same at each occurrence. Constants with subscript, such as C,, do not change in different
occurrences. We denote f < Cgby f < g.If f < g < f, we write f =~ g.

2 Comparison principle

In this section, for j,k € Z, denote IT ik to be the set of all R = I x J such that I are dyadic cubes in R™", J are
dyadic intervals in R, with the side length I(I) = 279" and I(J) = 279"%%) | and the left lower corners of I and
the left end points of J are x; = 2”Y"¢" and x; = 279"*¥¢, , respectively, (¢',¢,,) € Z™' x Z; and we set

D= Unj,k.
Jk

One should note that, forany u € Z, there exist j,k € Zand j, k' € Zsuch that2~0"™ = 27 and 270"") = y7#
respectively. But, for some y, v € Z, there may be no j, k such that 2-0"%) = 27# 20720 — 3Vsince jak < jA2k
if ,k>0.S0D ¢ {R = I x J : I are dyadic cubes in R™, J are dyadic intervals in R}. For R € II i,k setting

yr(x) = IRy (& - xp, x,, — X)),

then by (1.9), it is easy to have
)= Y (LyRyre).
ReD

For 0 < p,g < 00, & = (o, ;) € R?, corresponding to discrete multi-parameter Triebel-Lizorkin spaces
associated with the composition of two homogeneities, we shall define f;‘ *4(R™) which is the collection of all
complex-valued sequences s = {sz}zep such that

q
s

e = (X Qs o)

R=IxJeD

Note that, for R € II, , setting sp(x) = |R|1/2(u/j)k % f)(x;, x)), one has

Ifllgea = ||5||f:"7-
Next for a sequence s = {sg}pep, 0 < r < +00, and a fixed A > 0, define the sequence s” = {(s})g}ren DY

n=( ¥ o )’

param (L+ 1)y — 2 DA+ 1) xp — x5

whereP=1'"x]" e D,R=1x].

Lemma 2.1. Suppose 0 < a <r < +oco and A > (m — 1)r/a. Fix a dyadic rectangle R = I x ] € D, denote 11 as
a collection of dyadic rectangles P = I' x J' with I(P) = I(R). Then for each x € R,

|5p|r Ur a 1a
(Z (L + 1) egr — DAL+ 1) —x,|)l) = C(MS<Z ! XP>(x)> :

Pell Pell

where C depends only on r, A, m, and M is the strong maximal function.

Remark 2.2. We want to point out, if the side-lengths of R are I(I) = 27/ and I(J) = 27/"%, respectively,
then IT may be a subset of IT; ;..
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Proof. Set
Ag={I": 1) Mxp = xl <1} By={" :10) Mxp — x5 < 1},

andfor¢t >1ands>1,
Ay ={I 27 <) Mg —xgl <2 Bo={" 25 < 1) M xp - xp] < 2°)
For any fixed ¢, s > 0, denote
E={w,w,) e """ xR:|w' - x| < QU +1D)Vm -1, |w,, - x;| < 2°1(J) + 1(])}.
Then A, x B, € Eand I x J ¢ E. Obviously,
|E| < 2"V 1n2°) 1.

Thus for any x € R,

Ispl” ~tAy-sk r
2 L+ 1Dy — 2 DM+ ) My — x5 DA <22 > Ispl

Pell t,520 I'x]'€(A,xBy)NII

e rla
< Y2t > |sP|”>
t,520 I'x]"e(A,xBy)NII

rla
= Z 2_tA2_SA|R|_r/a<J Z |Sp|aXde)

t,s>0 I'x]'€(A,xB,)NII

rla
Z 2—tA2—S/\|R|—r/a|E|T/a<MS( Z |SP|aXP)(x))

t,s>0 Pell

rla
_ Z 2—t[l—(m—1)r/u]2—s(l—r/a)<Ms< Z |SP|aXP>(x))

t,s>0 Pell

(3 3 sl )eo)

Pell

IN

N

since A > (m - 1)r/a. O

Lemma 2.3. Suppose « = (a;, ;) € R*, 0 < p,q < 0o, and A > m — 1. Then

*
Isll o1 = Usipingpupl -
Proof. We only need to prove
.
"Smin(p,q) "fp""q s "5||fp""‘1:

since the converse estimates is trivial. Let r = min(p, gq),e = -1+ A/(m - 1),anda = r/(1 + ¢/2). ThenO < a < r
and A > (m — 1)r/a. For all j,k € Z, by Lemma 2.1, one has

Y @< ¥ |sp|xp)a(x>)1/a.

R=Ix] P=I'x]’'
D=2, 1()=271" I(1")=27"%, 1" )=27 2%

Hence,

a qlay1/q
e[S 000 i) @) < e

jkez P:[’x]’ )
l(II):Z—J/\k’ Z(I/):Z—j/\zk

by applying Fefferman-Stein’s vector-valued strong maximal inequality on the space L?/*(£7%) since we
have a < r = min(p, g). O

For any R € IT; ;, we consider its generations. With the following Lemma 2.4, one can see that for a positive
integer y, a dyadic rectangle R = T x J with I(T) = 279"~ and I(J) = 27Y"*Y~¥ may not be in D. So we should
consider its generations with side length I(T) = 2~k and 1(J) = 27072k Of course, for any integer y,

[R=TxJ:UI) =27 UPED y(J) = 270 ke 73 = D.



32 —— W.Ding, G.LuandY. Zhu, Multi-parameter Triebel-Lizorkin spaces DE GRUYTER

Lemma 2.4. Foreveryy € Z, y > 0, there exist j, k € Z such that
(GAk+yp, jn2k+y) ¢ A={(jAk jA2k): jkeZ}.

Proof. LetA, = {(m,n): j,k € Z, m > n > 0}. Note that A ;NA = @since jAk < jA2k when j, k > 0. By choosing
jo = kg = -1, wesee thatforall y > 2,

(o Nko + 95 jo N 2ky +y) € Ay

It follows that (jy A ko + v, jo A 2ky +7y) ¢ A.Fory = 1, we have (j, Aky + 1, jo A 2ky + 1) = (0,-1) ¢ A. O
Lemma 2.5. Let y € Z withy > 0 be fixed. For any j, k € Z, we have
5~ Inkty) _ o=jnky=y .1
and
L, 2 Umke
2 < ————— <27, (2.2)

2-jN2k
Proof. Formula (2.1) is trivial. As to (2.2), if j < 2k, obviously, we obtain
27"k~ 277 and j+y<2k+y)

which gives

o= (tnAkty) _ o=(j4y) _ 9=in=y _ =inZky—y.
When j > 2k, one has 27/"% = 27 If j + y > 2(k + y), one has 27" 2k+7) — 5=20k+y) _ 5=2ky=2y _ 5=jn2ky=2y,
If j + y < 2(k + ), one has 27272 < 270" < 27277 Hence

2—(J'+y)/\2(k+y) 2—(j+y) B B
= e27,27]. O

2-in2k T2
Remark 2.6. When y < 0, formula (2.1) also holds and (2.2) is replaced by
2~ (Hpn2(key)

-y _
27 < 2-jn2k

Lemma 2.7. Suppose f € 8'(R™) and supp f < {£ : || <2}. Lety € Z withy > 0 and let j,k € Z. For R € I s
letag = sup g | f(y) andby, = maxfinf 5 | f(y)] : R = I x J, I(D) = 270 PNED 1 (f) = 7GR RY. Let
a={aglgandb = {bR,y}R. If0 < r < 00, l(R) = 1 and y is sufficiently large, then

(@) = (B )
Proof. From the definition it is easy to see

(b))g < (@ )g-
To prove the converse direction, we first suppose f € S(R™) and supp f c{f: €| <3).ForeveryP =1 x]J
with I(P) = I(R), there exist some R, = I, x J, < P with I(I)) = 27U ) and 1(j,) = 2702k " and some
y1 € Rysuch thata, = f(y;). Take y, € R, such that inf ., | ()| = f(3,). Since [(P) = I(R) = 1, we get

Iy, =yl < (2GR | H=2GINEILIZ o ()=2N0 | 5=2N2R01/2y=y 5=

by Lemma 2.5. So by the Mean-Value Theorem,
ap — inf |[f(P)] = f(7) = f(y2) < Iy = yalsup IVF(p)] < 27 sup [Vf(y)l,
YER, y€eP yEP

which implies that

ap < bp, + 27 sup [VF(y)l.

yeP

Letdp = sup ., [Vf(y)land d = {dp}p. Then

(@) < O +277(d))g (2.3)
Let g € S with g(§) = 1if |£] < 3 and g(&) € {&: |&] < 7). Itis easy to see that f = f * g = (fg)v. Arguing as in
the proof of [16, Lemma A.4] or [19, Theorem 1.3], we obtain

f =Y Y fepx)gx’ - xpx, - x7),

(D=11(NH=1
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where x; and xj are the left lower corners of T and the left end points of J, respectively. Hence

dp<sup Y Y |f(xpxpIVa(y' - x5y, - X7)
VP B=11(7)=1
])L/r

>

[(1+|xy—xp)(1+]x; —x1,|)]M’ [(L+ x5 —xp DX+ |2y —xp])
(1+|x1~—x1|)"/’ (1+|x]~—x]|))‘/’

<sup D N |fCep xPIVG(Y =X Y —x7)
YR D=11()=1

where P = I' x ' and where x and x, are the left lower corners of I' and the left end points of J', respectively.
Since g € 8, we have

1 1
supvg(y' —xp,y,, — x7) <
yeg I 7D TID= ler = xp DM (1 + Lo = xp DM

for any larger M > 0. Therefore,

@in=( X i )"

(1+ |xp — x, D1+ lxp — xII)"
1(P)=I(R)

| f(xp x7)| 1 r
S{ z (z z (1+|xf—x1|)}‘/’(1+Ixf—xIII)L(l+Ixf—xll)"/’(l+|xf—x],|)L>}

P D=1 1(T=
1(P)=I(R) I(I)=11(J)=1

for any sufficiently large L. If r > 1, by Holder’s inequality,

* |f(xf,x7)|r 1
@)y = { Z < Z Z (1 + |7 = DM+ |xp = xp DE/2 (1 + |2y = 2, DML + |y = x],l)“/2>

P TN=11(T=
1(P)=I(R) II)=11(J)=1

Z Z 1 r/r' S 1/r
“ , ) |
ieaien U+ P = xp D' P+ |y = xp )2

< { z Z z |f(xf$ xf)lr 1 }l/r
- (1 + loep = DM+ |xp = xp DE2 (1 + Loeg = 2, DAL + Loey = xp[)E772

P D=1 (D=
1o iy [D=110)=1

| f Cep, )l 1r .
) ( Z Z (1 + loep = DM+ |x7 - x,l)]‘> < (@, )g-

I(D=11(J)=1

Likewise, if 0 < r < 1, it suffices to use (Y a;)" < Y a; to obtain the same estimate (d); < (a,)z. Therefore, by
taking sufficiently large y in (2.3) we have (a); < (d))g.

For the general case, one can apply a standard regularization argument to remove the assumption
f € S(R™) (see [16, Lemma A.4]). O

For any R € II; , and positive integer y, denote
Ay ={R=TxJeD:II) =2 UPEN Ty = 27 UED R c Ry,

Define the sequence inf, (f) = {infz,(f)}z by inf,(f) = IR|'? max{inf g ¢; x * f(»)] : R € A}}. At last, for
convenience, we denote

1/q
R =[(jAk)e, +(jA2k)e;1q q
flgge = (3 210Wme0 iy, o )

jkez. LP(R™)

for f € 8. Then we have the following lemma.

Lemma 2.8. Suppose a = («;,a,) € R* and 0 < p,q < co. For any y > 0, one has
IECON oo < Clfllzga,

where C is independent of f € S(').
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Proof. First define a sequence s = {sp} by
_pll/2 .
SP - |P| }IIEIIf; |¢Au—y,v—y * f()’)l

forP=1'xJ' e DwithI(I') = 27" and~l(]')~: 2‘1‘“2”, uv € Z.ForR e Il; ,, with j + y = y,k + y = v, we may
assume inf R,y( f) takes its maximum at R, = I, x J, € A;, that is,

inf(f) = [RI'” inf |¢; . * f()l.
Ry Y€Ry

Forany P € A", since [(I') = 27Uk and (') = 2702 by ] emma 2.5 together with |x, — xpl < 27Nk

and |x; — x5 | < 27772 one has

« szl Ur
e |
P ZR: (1 + 1) oy = xgDMA+ 1) ey — x5

(R)=I(P)
. Isg, |
T+ X - xfo|)}‘/’(1 + l(]')_1|x,: - xfo|)M’

2 |sg, [277Mr27"

Therefore,

. ~ A A %y o~
1Rnf(f)XR < Z 2 /r22y /r(sr )PXP'
v PeAl,

Applying Lemma 2.5 and Lemma 2.7, when «, > 0, one has

Binf(ll jea = (Y A1 D11% inf ()] 7 (x))? "
Y £t - Ry AR LP
ReD
< 2yl/r22y/\/r2yotl+2y(x2 ||S* "f“"i
L

< 2y)t/r22y)\/r2yal +2ye, ”S”f;q

1/q
_ 2y)t/r22y/\/r2})(oc1+¢x2) < Z (|I’|061/(m*1)|]’|¢xz|SR|XR(x))‘1) ”LP

PeD
1/q
< IRy yya +2yes ( Y @y gy f|)q> |
UVEZ Lr
1/
_ zy)t/r22y/\/r2yal+2yrx2 ( Z (2—[(j+y)/\(k+y)]tx,2—[(j+y)/\2(k+y)]a2|¢j)k N f|)q> ql
j.kez Lr
. . 1/q
< M 2Afr gya < Y (@ Uy R f|)q> ’
jkez. L
Similarly, we obtain
. w VAT 5 2YA [T 4 —pet, -
Iaf (Ol pea < 27727552772 fll e
when «, < 0. Then we complete the proof. O

Now we define the sequence sup(f) = {sup(f)}z by setting sup,(f) = [R|"/? Sup g |9 * F(Y)I.

Lemma 2.9. Suppose & = (a,,a,) € R%, 0 < p.q < 00, and y > 0 is sufficiently large. Then for f € 8'(R™),
1Az = IIiI;f(f)IIf-;-q = [sup(f)ll joa-

Proof. Firstly, one has the following relationship:

. . pla \'P
- k k
I s = (j( Y, sy, foop) dx)

j.keZ

j ; plq 1/p
= (J( Z Z 2_[(]Ak)al+(1/\2k)“2]q|l//j,k " f(x)lq) Xr(x) dx)

j>k€Z Rell;

< Isup(f)l o
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Now it is easy to see that, for R = I x J with I[(I) = 27" and I(J) = 277"%*,

—jnk —jn2k
sup [y f(x'sx,)l = sup ly  f27Y, 27"y,
X€R yeQ

where Q is a cube in R” with I(Q) = 1. Note that
(ij L * f(z—j/\k . 2—j/\2k X ))A(E’)Em) _ Z(j/\k)(m—l)zj/\zkv’/‘l(2—j+j/\k£1, 2—j+j/\2k£m)17/\2(2—k+j/\k£r, 2_2k+j/\2k£m)f(£l"§m)'

From the compact conditions (1.5), (1.7), & must satisfy [27/"/"*¢'| < 2 and [27%/"*¢'| < 2, which give |&'| < 2
by comparing j and k. Similarly, by comparing j and 2k, we obtain |,,| < 2, which is the aim to restrict the
support of 1?2\) in the set {(¢',,) e R" ' xR: % <&, < 22} smaller than the range in references [7, 19].
Therefore applying Lemma 2.7 to each of the functions y; , * f(27"*y',277"%y, ) we obtain

(sup(f);)r S (il;f(f)f)R-
Let r = min{p, q}. Then Lemma 2.3 gives
Isup(H)l oo < Iinf(F)l oo
Combining the above with Lemma 2.8, we complete the proof. O

Proof of Theorem 1.5. Similar to the proof of Lemma 3.4 in this paper, we can obtain || f|| o < £ Fe We omit
the details. By Lemma 2.9 together with the obvious fact || f|| pet < lsup(N)l foas We complete the proof. O

3 Restriction estimates

Before we give the atomic decomposition, we need some lemmas. Firstly we need an almost orthogonality
estimates proved in [19].

Lemma3.1. Lety',¢' € 8, (R™),i=1,2,y, and ¢; , be defined as before and let L be a positive integer. Then
for any given integer M, there exists a constant C = C(L, M) > 0 such that

(jnj' AknK")(m=1) A N2(kAK")
/ —1j=f' 1L~ lk—K'|L 2 2
Wk * ¢y (x', x,,)| < C2 =7 Ly Ikl

(1 + zj/\j’/\k/\k’lxll)(M+m—1) (1 + 2j/\j’/\2(k/\k’)|xm|)(M+1) !
The following lemma is a variant of [19, Lemma 3.2]. The main difference between them is that we restrict the

sum in a collection.

Lemma 3.2. For j, 'k, k' € Z, let R=1x ] € I1; be fixed. Suppose that for a positive integer N, I1 is a col-
lection of P=1' x J' where I' are dyadic cubes in R™, J' are dyadic cubes in R, with I(I') = 27U "<)=N
and1(J') = 27" 2N "and the left lower corners of I' are xp, the left end points of J' are xj. Then for

1o -1
anyu,v €I, u,,v,, €], and any M":m_l <6<,
Z(m—l)(j/\j'/\k/\k') 2j/\j’/\2k/\2k' 2—(m—1)[(j’/\k')+N] 2—(j’/\2k’)—N |(¢j,)k, * f)(xz',x]')|
et (1 + 2IN'NeAK! |3y 1, |) M +m=1) (1 + 20N N2KA2K |y xI,D(MH)

s 1/6
!
< CI{MS< Z |(¢jl’k/ * f)(xl/,x]/)|XI,X[:) (‘U ,Um)} 5
I'x]'ell
where Cl _ Cz—mN(l—l/&)2(m—1)(1/571)(]4/\1(',]'/\1()+ 2(1/671)(]~1/\2k’,j/\2k)+’. here (a — b)+ = max{a - b, 0} and Ms is the
strong maximal function.

Proof. Let

!
(g luw = xpl I T T
AO_{I.WSIL BO_{I-IX1>WSI,

andforr>1,s>1,

!
I AN | lu' — xI’l r _ )7 I Hs—1 —lum ~ xl,l S
A, = {I 12 < W <2 }, Bs = {I I x],2 < 2—(j/\j’/\2k/\2k') <27t
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For any fixed r, s > 0, denote
. . 1 . . . ! .
E = {(wl’wm) c ]Rm—l « R : |wl _ ull < 2r—(]/\] NkAK') + (m _ 1)1/22—(]/\k)’ Iwm _ Mm| < 27—(]/\] N2kN2k") + 2—(]/\2k)}.

Then A, x B, ¢ Eand I x ] < E. Obviously,
|E| < C2(m=DIr=GAJ ARNK)] 5 [s=(Aj N2kn2K)]

m—1
Thus for T < <1,

2(m—1)(j/\j'/\k/\k’)2j/\j'/\2k/\2k' 2—(m—1)[(j'/\k')+N]2—(j'/\2k')—N |(¢j,’k, * f)(xI,,x[,)|

e (1+ 2j/\j’/\k/\k’|ul _ x]’l)(M+m_1) (1+ 2j/\j’/\2k/\2k’|um _ x][|)(M+1)
<C z 2—7(M+m—1)2—5(M+1)2(m—1)(j/\j'/\k/\k')2jl\j'/\2k/\2k’2—(m—1)[(j'/\k')+N]2—(j'/\2k')—N
7,20 s Vs
(Y 1@ Dol
I'x]'€(A,xB,)NII
-C Z 2T (Mm=1) 5 =s(M+1) 5 (m=1)IA] AKNK') 5 jAJ N2KN2K |Ir|1—1/6”l|1—1/6|E|1/6
7,520

1/8
x { _ J- z |(¢j’,k’ * f)(xlr,x]r)laxﬂxj, dx}

|E| E I'xJ'€(A,xBy)NII
5 1/8
o LT (I Y (YR TR 17 757 RCART)
I'xJ'ell
where in the last step we use the following deduction:
Z 2—r(M+m—l)2—s(M+l)2(m—1)(j/\j'/\k/\k')2j/\j’/\2k/\2k'|II|1—1/6|]!|1—1/6|E|1/6 - Z T (MAm=1) 5 =s(M+1) 5 (m=1)r/3 55/8
7,520 7,520

< CC,

m—1
because of § > 77— . O

In order to obtain the compact support of the atoms, we need a discrete Calder6n-type identity on the space
L*(R™) n F;*/(R™) which is dense in E,"(R™) (see [7]). To do this, let ¢ € S, (R™) with supp ¢ < B(0, 1),

> 190 THP =1 forall§ e R™\ {0}, €8)
jez.
where L > 10M will be specified in application. We also let ¢ € 8, (R™) with supp ¢*® < B(0, 1),
Y 1@ 2%, )P =1 forall (£,£,) € R" xR\ {(0,0)}. (.2)

keZ.
Set
$ik = ¢+ 87,
where ¢;.1)(x) =2 (27x) and ¢ (x', x,,) = 25" D¢@ (2kx', 2% x,,). The discrete Calderén-type identity is
then given by the following [7].

Theorem B. Let ¢ and ¢ satisfy conditions (3.1) and (3.2) respectively. Then for any f € L*(R™) N ESU(R™),
there exists some h € L*(R™) n F; *4(R™) such that for a sufficiently large N € N,
Fx,) = Z z |1||]|¢j,k(x' N 2—(j/\2k)—N€m)(¢j)k « (2 NN g p=(iR-Np
G kEZ (€ 8,) ez xZ

where the series converge in L* and in FI‘,"’q(lR"‘), I are dyadic cubes in R™' and ] are dyadic intervals in R
with side-length I(I) = 2~9"N and I(J) = 2-U"~N " and the left lower corners of I and the left end points of |
are 27UNON g gnd 2-UN-Np  respectively. Moreover,

”f”LZ(]Rm) = ||h||L2(]Rm)

and
||f||}‘=:"1(n{m) = "h”F;’q(Rmy (3-3)
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Remark 3.3. The above theorem gives an equivalent norm of F;"q(lR’”), that is, if f € L* N F;"q(ll{'”), then

1/q
-1 k 2k —(jnk)-N —(jn2k)-N
C2 ”f"F;’q(IRm) l|( Z 2” [(jnk)e +(jA2k)a, 1q z |¢J,k*h(2 (jnk) el)z (jn2k) em)quI(x’)X](xm)>
jrkez (¢',¢,)ezm1x7Z

< C2"f||F;’q(]Rm)'

LP(R™)

for some positive constant C,. Note that the above relationship is different from (3.3). One can prove it by
applying a similar proof as the following Lemma 3.4 combining Theorem A with Theorem B. See [7] for details.

In the pure product Hardy space case [24], to get atomic decompositions, one needs to establish duality of
corresponding space. Our approach is different from this scheme by using the following lemma.

Lemma3.4. Let 0 < p,q < 00, a = (a;, &) € R?, ¢V and ¢\? satisfy conditions (3.1) and (3.2) respectively, with
L>(m+ 1)(% - 1) +lay] + 2lacy -

For (j, k) € 72, let 11 ik be a collection of rectangles R = I x ] where I are dyadic cubesin R™, Jare dyadic inter-
vals in R, with the side length I(I) = 29N and 1(J) = 207N and the left lower corners of I and the left end
pointsof ] are x; = 2~ (GAO-N p! and x; = 27 (jn2k)= Ne , respectively, for some (€', ¢,,) € Z".If 0 < § < min{p, g, 1},
then

5 3 IR, = 0= ) % @ W1 )

Jok ReTT;

/q
<G| 3 2wl § g, s el (o ))

jrkeZ Rell; ,

% q m
EPURm)

LP(RR™)

for the positive constance C, in Remark 3.3.

Remark 3.5. From this lemma one can see that the order L in the cancellation condition of ¢ and ¢'* should

be bigger than (m + 1)(—— mm{P =Y —1) + |, | + 2|e,| which is reflected in (iv') of Definition 1.6.

Proof. Lety ;s be the same as in Theorem A. By Lemma 3.1, for (" e)ez" " x2,

_(' AR —(i' k!
lyj o * b k(2 AR !t _ xp,2 G )8,'41 - xp)|

(jinj' AknK")(m-1) NG A2(kAK")
Ve \Loa— VK 2 2
<C2 1j ]|L2 |k-k'|L

(1 + 2j/\j’/\k/\k’|2—(j’/\k’)en _ x[|)(M+m—1) (1 + 2j/\j’/\2(k/\k’)|2—(j’/\2k’)errn _ x}|)(M+1)'

Hence, with Lemma 3.2, for M <d<land anyv el, v e J', where I' are dyadic cubes in R™~ Land J/
are dyadic intervals in R with 51de length I(I') = 2~ G'ND and 1) =2" (' A2k )| and the left lower corners of I'
and the left end points of J' are x;; = 27U ¢" and x; = 2~ (i'n2k’ '¢! | respectively, we have

|z Z RI$; (- = 51> - = X)) X (¢ * I)(xp, %)) # Wj o (2‘(j’/\k’)ell’2—(j/A2k’)€:n)
Jok ReTT;

2(j/\j’/\k/\k’)(m—1)2]‘/\;"/\2(k/\k’)

< CZ 2—|j—j'|L2—|k—k'|L Z 2—[(j/\k)+N](m—l)z—(j/\lk)—N

T T A—(i' N oI _
X Rgﬁ.k (1 + 2iNj NkAK |2 (j' Nk )e _xll)(M-rm 1)
s

((/)j,k * h)(xp, x])
1+ 2j/\j’/\2(k/\k’)|2—(j’/\2k’)€r/n _x]|)(M+1)

.o ’ 5 1/6
< CZ o li=i' 1Ly =lk—k lL{Ms( Z |(¢j,k 1) (x;, x])lXIX]) (v//’v:n)} ‘
ok Rell;
Set
h=3 Y IRI$; p(x' = x1, %, — x;) % (§; 1 * W)(xp, x)).

Jok ReTT;
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Summing over j',k" and (¢", €] ), forany v € I',v] € J', we have

1/q
~[(j' K ' A2k 7 " '
Z o[ Ak +(j 2K ety 1 Z h/’j’,k’ *h(xI,)x],)quI,(x )X]’(xm))
i kez e

gt .1 ' . ' 8 1/64q\1/q
sC( Z 2 [G' Ak ay +(j A2k )txz]q[zz—U—J ILy=Ik—k |LC1{MS( z |(¢j,k*h)(x1)x])|X1X]) (U,’,U:n)} ] ) ‘

jikez Jrk Rell,

When 0 < g < 1, using the inequality (¥, a)? < Y, a/,

! ! ! ! l/q
[ Ak 2k =
Z 2 (G N+ A2k ) lg Z ly i * h(xly,x,,)quI,(x")X],(x:n)>

jKez e
0 Dot o ' 8 q/8\1/q
<o 3 glomimttmy il e ¥ 16 s D) @ef )
jhk'ez jk Rell;
<C —[(jAk)ay +(jA2k)e, 1 O 1\
<c( Y 2 P T 160 s W xln ) @) )
JrkeZ Rell;

where in the last inequality we use the facts that
G AK —jak), <lj-jl+1k=K1l, (' A2k —jn2k), <|j-j|+2lk-K
and
1
L>(m+ ”(5 - 1) +lay | + 2lacy ),

then

! ! . . ! . .ol !
o[ AR = jnk)ay +(j A2k = jA2k)ey)q 5 =L j=j 1L 5 =lk=k ILinJ <C.

jhk'ez
When g > 1, by Cauchy’s inequality with exponents g, q' ,é + % =1,forallo<e<1,
[ AR Y + (7 A2k a1 z a. (n r O\
z 2 1 2 z |V’j’,k’ * hQxp, xp)|"xp (x )X],(xm))
jLk'ez e".e)
o ¥ 2—[(]"/\k')tx1+(j'/\2k')a2]q[z2—|j—j'|Lq'82—|k—k'|Lq's]q/q’
<
j’,k/EZ ik
~1j-5'1L(1-€) kK" |Lq(1-8) TN AR
x [y oty kK00 g (O 1y W02l ) @) )
ok Rel;
~[(jAk)ay +(jiA2k)ay)q 8 1%\
<c( )2 M( Y 1@ = W xly ) @ o) ,
j.kez REﬁj,k

where in the last inequality we use the similar estimates as in the case of 0 < g < 1, since

.ol r ! !
Z 2—|]—] |Lq 62—|k—k |Lg'e <C
jik

and

—1(' A= ARy +(j' A2K' = iA2k)e; 1q 4= j— 7 ILq(1-€) » ~ k=K' |Lq(1-€) ~q
2 1 2147 2 cl<cC

jLk'ez

when ¢ is close to 0, since L > (m + 1)(% — 1) + |y | + 2|, |. Applying Fefferman—Stein’s vector-valued strong
maximal inequality on L/°(£%/) provided & < min{p, g, 1}, we complete the proof. O

Remark 3.6. All conditions on § can be satisfied if we choose M large enough.
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4 Atomic decomposition

We are ready to give the atomic decompositions. For convenience, in this section, the function h(x), the
positive integers N are always from the discrete Calder6n-type identity in Theorem B and « = («;, «,). For
fixed j, k € Z, denote by Hﬁ."’ « the set of all R =T x J such that I are dyadic cubes in R™ ! and J are dyadic
intervals in R with the side lengths I(I) = 2~9"9~N and I(J) = 27"2P-N and the left lower corners of I and the
left end points of J are x; = 2”"¥N¢" and x; = 27U Ng  respectively, (¢, ¢,,) € Z™.

Proof of Theorem 1.7. Consider
SHA() = { AR L I h(xf’x1)|qu(x')x,(xm)}1/q.
jokez. RelY,
Then by Remark 3.3,
1Al gmeny = 185 (O Lo em)-
Forany f € L*(R™) n F,"I(R™), set
Q; = {(x',x,,) € R xR : S3(f)(x) > 2'},
and . )
B =GR LD 1T X DO > ST 1T x D)0l < 51 x 1]

Obviously, Q;,; € Q;, and if Q;,, = Q;, then B, =0, hence B,nB; =0 if i # j. We say a rectangle R € B;
means R = I x J with [(I) = 27UMO=N 1) = 2707O-N ‘and (j,k,1,]) € B;.
By Theorem B, we write

f(x',xm) = Z Z IRIgb]-’k(x’ = Xps Xy — X)X (¢j,k * h)(xp, x;),

i (kL])eB;

where the series converges in L>(R™) and in F;‘ *4(R™). To obtain the atomic decomposition, rewrite

f(x', X,,) = Z A,-a,-(x',xm),

where
! 1 !
a(x,x,) == ) IRIg;(x = xpx,, - x)) X (b5 h)(xp, ),
i (jk,I,])eB;
and
a5 4y~ +he)q e
A = G0, (J Y 19 * hx, x| 120D () dx) :
(o ke, I, ])€B;
where

—_ i ! 1
Q= {(x s Xm) + My(Xo) (x5 X,,) > 1oNm }

Note that functions ¢ and ¢® are supported in the unit ball. Then for a fixed R € B;, ¢, ,(x' - x;, x,, — X))
is supported in 2N**R, which implies that g, is supported in Q,. To see that the g; satisfy (ii) in Definition 1.6,
we write )

ai('x’)xm) = bi(x” xm))

A
where , '
b(x\x) = ) IR (& = xp X, = xp) X (B4 % W) (g, %))
Gk L)eB;
= z Z R ‘Pj,k(x' = Xp Xy = X)) X (1 * M) (xp, X)),
Jok IxJ€TL;
and
ﬁj,k = {R = IX] : (_],k)I;]) € Bl}
By Lemma 3.4

. 1/q
”bi"quc,q < CZ(J Z |¢j,k * h(xbX])|q2_(]“‘+k“2)qXR(X) dx) ,
(sk, I,])eB;
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which implies that

_ 1
||a,-||1;~;,q(]Rm) < |Qi|q P,

Again by Lemma 3.4, we have

) plq 1/p
Iyl < czq( Y g h(xl,x])|‘12‘(1a1+kaz)qXR(x)> dx)
sk, I,])eB;

=

. Va __
<ol X s hl iz U g dx) G

(j-k, I,])€B;

by Holder’s inequality, which implies that
||ai||F:,q(]Rm) <1

Now, we check (iii). Firstly, we consider the case p < g. Itis easy to have that, if x = (x, x,,) € R € B;such
that M,(xzng\0,,,)(*) > 3, then

Xr(%x) = X?z/p(x) < Zq/PMg/p(XRnﬁ,-\QM)(x)'

Thus, by the Fefferman-Stein vector-valued strong maximal inequality, for 0 < p < g < oo,

~ . rla
=G| X gy a2y ) )

(G ke, I, J)€B;
P11 4G ke )y galp Pl
< CPIGy|" s Y Ik * hlxp xp)|72 MY?(xpegia,, ) (%) dx
-k, I,])eB;
—~ 1 P (j ke,) p/q
< Q] q< J z I,k * Bxp, xp)| 12757y () dx)
5i\Qi+l (])k’IJ)E%i

= 1-2 iq1 4
< |Q,| (2 |Q1.\Ql.+1|)q
< 2|0 < 27

Hence
P o p - p
DA S ISG sy = 1 Wy
1

If p = g, then (iii) easily follows from the definition of A; and Remark 3.3.
To verify conditions (iv), note that a; = ¥ z.,.a,) % r» Where

ai,R(x',xm) = /\i z IQIgb]-)k(x' = Xp Xy — Xp) X (@) 1 * M) (xp, x)).
1 QeB;,QCcR
Since for each fixed Q € B, supp ¢; 1 (x - x;, x,, — x;) € 2VQ, it follows that supp a; < 2" R. Generally, for
any Q € B;, there may exist more than one R € m((Q;) such that Q c R. In order to ensure non-intersection,
onceanR, € m(ﬁi) has been selected such that Q ¢ R,, then any other R ¢ m(ﬁ,-) will not be allowed to do so.
Obviously, the a; , satisfy the cancellation condition (iv') since ¢ ik € Sp(R™).
With the same proof as in the estimation of ||| £29(rm)> ONE has

! 4oy +a)g Va

la; gl gemy < T Y |6, 1 * hixp, x))|%2 yr(x) dx
i QeB;, 2N3QCR

which shows that

1 o, +k
Z ”ai,RHZM(Rm) < F J Z |¢j,k * h(x,,x])|‘12 (o + otz)qXR(x) dx.
Rem(;) ! i 7 (kLDeB;

Hence

IA

2l
o=
]

q ta
Y laelngen)

Rem(Q;)
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Proof of Theorem 1.9. From Definition 1.6, for any (p, g, «)-atom a, we have ||a||F-:,q(]Rm) < C,. So when T is
a bounded operator on F,”?(R™), we have the one direction.
On the other hand, foran f € L*(R™) n E;>(R™), by Corollary 1.8, we have

f= Z/\iai

in L*(R™) and E(R™) with {a;} being (p, g, «)- atoms of F,;>?(R™). Since T is a bounded operator on L2(R™),
T(f)(x) = }; A;,T(a;)(x), using that f — ||f||§u,q(]Rm) is subadditive when 0 < p < g < co and p < 1, one has
4

ITCO s gny < 2 AT @ iy < D AT < W e
which can be extended to the entire F,"/(R™) by density. O
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