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Multi-parameter Triebel–Lizorkin spaces associated
with the composition of two singular integrals
and their atomic decomposition
Abstract: Atomic decomposition plays an important role in establishing the boundedness of operators
on function spaces. Let 0 < �, � <∞ and � = (�1, �2) ∈ �2. In this paper, we introduce multi-parameter
Triebel–Lizorkin spaces ���, �� (��) associated with di�erent homogeneities arising from the composition of
two singular integral operators whose weak (1, 1) boundedness was �rst studied by Phong and Stein [32].
We then establish its atomic decomposition which is substantially di�erent from that for the classical
one-parameter Triebel–Lizorkin spaces. As an application of our atomic decomposition, we obtain the neces-
sary and su�cient conditions for the boundedness of an operator � on the multi-parameter Triebel–Lizorkin
type spaces. In the special case of �1 = �2 = 0, � = 2 and 0 < � ≤ 1, our spaces ���, �� (��) coincide with the
Hardy spaces ��com associated with the composition of two di�erent singular integrals (see [19]). Therefore,
our results also give an atomic decomposition of ��com. Our work appears to be the �rst result of atomic
decomposition in the Triebel–Lizorkin spaces in the multi-parameter setting.
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� Introduction

The classical theory of harmonic analysis may be described as centering around the Hardy–Littlewood
maximal operator and its relationship with certain singular integral operators which commute with the
usual dilations on��, given by

� : � → ��, � > 0.
The above isotropic dilations can be replaced by more general non-isotropic groups of dilations. This mod-
i�cation produces many non-isotropic variants of the classical theories, such as, the multi-parameter pure
product theory corresponding to the dilations

� : � → (�1�1, �2�2), � = (�1, �2) ∈ �� × ��, � = (�1, �2), �1 > 0, �2 > 0,
which has been developed bymany authors over the past decades. Similar to the classical theory, this theory
includes the boundedness of multi-parameter singular integral operators on the �� spaces (1 < � <∞)
and multi-parameter Hardy spaces �� (0 < � ≤ 1). Another interesting feature of this multi-parameter
theory also includes the atomic decomposition of multi-parameter Hardy spaces, duality and interpolation
theorems on product spaces, and maximal function characterizations, etc. We refer the reader to the works
in [1–4, 10–13, 17, 18, 20, 23, 25, 26, 28, 33].
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To familiarize the reader with the background and the motivation of our study, we will explain how this
multi-parameter structure arises in other aspects of harmonic analysis, in particular, from the composition
of two singular integral operators with di�erent homogeneities. To be more precise, for �� = ��−1 × �
with � = (��, ��) where �� ∈ ��−1 and �� ∈ �, then we can consider two kinds of homogeneities

� : (��, ��) → (���, ���), � > 0,� : (��, ��) → (���, �2��), � > 0.
The �rst is the classical isotropic dilations occurring in the classical Calderón–Zygmund singular integrals,
while the second is non-isotropic and related to the heat equations (similar to that on theHeisenberg groups).
For � = (��, ��) ∈ ��−1 × �, denote |�|� = (|��|2 + |��|2) 12 and |�|� = (|��|2 + |��|) 12 . Then there are two di�er-
ent types of singular integrals associated with these dilations.

De�nition 1.1. A locally integrable functionK1 on �� \ {0} is said to be a Calderón–Zygmund kernel associ-
ated with the isotropic homogeneity if

������� �
�
���K1(�)

������� ≤ �|�|−�−|�|� for all |�| ≥ 0 (1.1)

and
�

�
1

<|�|
�

<�
2

K1(�) �� = 0 for all 0 < �1 < �2 <∞. (1.2)

An operator �1 is said to be a Calderón–Zygmund singular integral operator associated with the isotropic
homogeneity if �1(�)(�) = p.v.(K1 ∗ �)(�), whereK1 satis�es conditions in (1.1) and (1.2).
De�nition 1.2. Suppose K2 ∈ �1loc(�� \ {0}). Then K2 is said to be a Calderón–Zygmund kernel associated
with the non-isotropic homogeneity if

������� �
�
�(��)� �

�
�(��)�K2(��, ��)

������� ≤ �|�|−�−1−|�|−2�� for all |�| ≥ 0, � ≥ 0, (1.3)

and
�

�
1

<|�|
�

<�
2

K2(�) �� = 0 for all 0 < �1 < �2 <∞, (1.4)

An operator�2 is said to be a Calderón–Zygmund singular integral operator associatedwith the non-isotropic
homogeneity if �2(�)(�) = p.v.(K2 ∗ �)(�), whereK2 satis�es the conditions in (1.3) and (1.4).
Both the classical Calderón–Zygmund theory and theory of singular integral operators associated with the
non-isotropic dilations indicate that both the operators �1 and �2 are bounded on �� for 1 < � <∞ and
of weak type (1, 1). Nevertheless, it is showed by Phong and Stein in [32] that in general the composition
operator �1 � �2 is not of weak-type (1, 1). Moreover, the authors of [32] gave a necessary and su�cient
condition such that the composition operator�1 � �2 is ofweak-type (1, 1). This answers the question raised by
Rivieré in [35]. In fact, the operators studied in [32] are compositions with di�erent homogeneities and such
a composition operator arises naturally in the study of ��-Neumann problem (see also Folland–Stein [14]).

It is well known that any Calderón–Zygmund singular integral operator associated with the isotropic
homogeneity is bounded on the classical Hardy space��(��)with 0 < � ≤ 1. A Calderón–Zygmund singular
integral operator associated with the non-isotropic homogeneity is not bounded on the classical Hardy space
but bounded on the non-isotropic Hardy space (see [15]). However, the composition operator is bounded on
neither the classical Hardy space nor the non-isotropic Hardy space. This motivates the authors of [19] to
introduce a new Hardy space associated with the di�erent homogeneities and establish the boundedness
of composition singular integrals on such Hardy spaces. It is interesting to note that such Hardy spaces are
of multi-parameter setting in nature. Recently, the duality theory of the multi-parameter Triebel–Lizorkin
spaces associated with the composition of two singular integral operators has been established by the �rst
two authors [8].
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Inspired by those works, and recent study of multi-parameter Triebel–Lizorkin spaces in the pure
product setting and as well as in the setting associated with the �ag singular integrals [9, 29], we consider
multi-parameter Triebel–Lizorkin spaces associated with the composition of two singular integral operators
of di�erent homogeneities. In particular, we are interested in the atomic decomposition of these spaces. Such
spaces associatedwith the di�erent homogeneities were introduced earlier in [7] alongwith the boundedness
of the composition of two singular integral operators with di�erent homogeneities on these spaces.

For � = (��, ��) ∈ ��−1×�, we recall two di�erent norms: |�|� = (|��|2+|��|2)1/2 and |�|� = (|��|2+|��|)1/2.
We also use notations � ∧ � = min{�, �} and � ∨ � = max{�, �}. Denote

S0(��) = �� ∈ S(��) : �
��
�(�)�� �� = 0 for any multi-index � with |�| ≥ 0�,

and for a positive integer �,
S�(��) = �� ∈ S(��) : �

��
�(�)�� �� = 0 for any multi-index � with |�| ≤ � − 1�.

Let �(1) ∈ S(��) with
supp��(1) ⊆ �(��, ��) ∈ ��−1 × � : 12 ≤ |�|� ≤ 2�, (1.5)

and
��∈� |��(1)(2

−���, 2−���)|2 = 1 for all (��, ��) ∈ �� \ {0}. (1.6)

Let �(2) ∈ S(��) with
supp��(2) ⊆ �(��, ��) ∈ ��−1 × � : 12 ≤ |�|� ≤ �2�, (1.7)

and

�
�∈�
|��(2)(2−���, 2−2���)|2 = 1 for all (��, ��) ∈ �� \ {0}. (1.8)

Set ��,�(�) = �(1)� ∗ �(2)� (�),
where�(1)� (��, ��) = 2���(1)(2���, 2���),�(2)� (��, ��) = 2�(�+1)�(2)(2���, 22���). The followingdiscreteCalderón
reproducing formula is from [19].

Theorem A. Suppose that �(1) and �(2) are functions satisfying conditions in (1.5)–(1.6) and (1.7)–(1.8), respec-
tively. Then

�(��, ��) = ��,�∈� �
(�� ,�

�

)∈��−1×�
2−(�−1)(�∧�)2−(�∧2�)(��,� ∗ �)(2−(�∧�)��, 2−(�∧2�)��)
× ��,�(�� − 2−(�∧�)��, �� − 2−(�∧2�)��), (1.9)

where the series converges in �2(��), S0(��) and S�0(��).
Remark 1.3. In the proof of Theorem A, the authors use the additional assumption that �(1) and �(2) are real
and radial Schwartz functions. If dispensing with this assumption, (1.9) should be

�(��, ��) = ��,�∈� �
(�� ,�

�

)∈��−1×�
2−(�−1)(�∧�)2−(�∧2�)( ���,� ∗ �)(2−(�∧�)��, 2−(�∧2�)��)��,�(�� − 2−(�∧�)��, �� − 2−(�∧2�)��),

where ���,�(�) = ��,�(−�), which is a generation of [16, Lemma 2.1].

With the discrete Calderón reproducing formula, Triebel–Lizorkin spaces associated with di�erent homo-
geneities were introduced in [7] as follows.
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De�nition 1.4. Let 0 < �, � <∞ and � = (�1, �2) ∈ �2. The Triebel–Lizorkin type space with di�erent homo-
geneities ���, �� (��) is de�ned by

���, �� (��) = {� ∈ S�0(��) : ��� ���, �
�

(��) <∞},
where

��� ���, �
�

(��) = �������� ��,�∈� 2
−[(�∧�)�

1

+(�∧2�)�
2

]� �
(�� ,�

�

)∈��−1×�
|��,� ∗ �(2−(�∧�)��, 2−(�∧2�)��)|���(��)��(��)�1/����������(��),

where � are dyadic cubes in ��−1 and � are dyadic intervals in � with the side length �(�) = 2−(�∧�) and�(�) = 2−(�∧2�), and the left lower corners of � and the left end points of � are 2−(�∧�)�� and 2−(�∧2�)��, respec-
tively.

This new Triebel–Lizorkin type space is well de�ned, since it has been proved in [7] that ���, �� (��) is inde-
pendent of the choice of the functions �1 and �2. Nevertheless, it is not clear if such a space is equivalent to
the one de�ned by using the continuous form. One of the main purpose in this paper is to show that they are
indeed equivalent using both the discrete and continuous forms. This is described in the following theorem.

Theorem 1.5. Let 0 < �, � <∞ and � = (�1, �2) ∈ �2. Suppose that �(1) and �(2) satisfy conditions in (1.5)–(1.6)
and (1.7)–(1.8), respectively. Then

�������� ��,�∈� 2
−[(�∧�)�

1

+(�∧2�)�
2

]� �
(�� ,�

�

)∈��−1×�
|��,� ∗ �(2−(�∧�)��, 2−(�∧2�)��)|���(��)��(��)�1/����������(��)

≈ �������� ��,�∈� 2
−[(�∧�)�

1

+(�∧2�)�
2

]�|��,� ∗ �|��1/����������(��).
In the case of the pure product structure, the equivalence was proved in [29]. However, our multi-parameter
structure associated with the composition of two di�erent homogeneities is more complicated. Therefore,
such an equivalence is not evident. Nevertheless, establishing such an equivalence is not just interesting but
also necessary to justify the de�nition of suchmulti-parameter Triebel–Lizorkin spaces. Otherwise the spaces
would seem to depend on the choice of the points used in De�nition 1.4, namely, depending on the left lower
corners of � and the left end points of � are 2−(�∧�)�� and 2−(�∧2�)��, respectively, where � are dyadic cubes
in��−1 and � are dyadic intervals in� with the side length �(�) = 2−(�∧�) and �(�) = 2−(�∧2�).

When �1 = �2 = 0, � = 2 and 0 < � ≤ 1, our spaces ���, �� (��) = ��com(��). Hence, our Theorem 1.5 also
veri�es that the Hardy spaces ��com(��) given in [19] in the discrete form is actually equivalent to the one
de�ned in the continuous form.

Using the discrete Calderón reproducing formulae in Theorem A above, and an argument similar to that
in [20, 29], etc., one can obtain one direction,

�������� ��,�∈� 2
−[(�∧�)�

1

+(�∧2�)�
2

]�|��,� ∗ �|��1/����������(��)
� �������� ��,�∈� 2

−[(�∧�)�
1

+(�∧2�)�
2

]� �
(�� ,�

�

)∈��−1×�
|��,� ∗ �(2−(�∧�)��, 2−(�∧2�)��)|���(��)��(��)�1/����������(��).

However, the other direction is harder. We will apply a similar argument in one-parameter setting as in the
work of Frazier and Jawerth [16] to prove the inequality in our multi-parameter setting under study.

Atomic decomposition is important in proving boundedness of operators on various function spaces
both in one-parameter and multi-parameter settings. Since the atoms and molecules were introduced in the
one-parameter setting by Coifman, Weiss, and Latter in [5, 6, 27], they have played a very important role
in harmonic and wavelet analysis [30, 31, 34]. The study of the operators acting on a space of functions
or distributions becomes easier when the elements in the space admit atomic decompositions. It is often
the case that it su�ces to prove the uniform boundedness of an operator on atoms of the function space in
order to establish the boundedness of an operator on such a space. In the multi-parameter situations, atomic
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decomposition onmulti-parameter Hardy spaces was established by Chang and Fe�erman [1–3, 10], and was
applied to prove the boundedness of multi-parameter singular integral operators on Hardy spaces, using
the atomic decomposition together with the Journé’s covering lemma, by Fe�erman [11], Journé [25, 26],
Pipher [33], Han, Lu and Ruan [21, 22] etc. A more re�ned and improved version of atomic decomposition in
the multi-parameter Hardy spaces was carried out in [24] and a boundedness criterion was established using
the atomic decomposition. Therefore, it is interesting and useful to establish the atomic decomposition and
the boundedness criterion on the multi-parameter Triebel–Lizorkin spaces associated with the composition
of two dilations of di�erent homogeneities.

To obtain the atomic characterization of ���, �� (��), more precisely, of �2(��) ∩ ���, �� (��), �rstly we intro-
duce the following atoms.

De�nition 1.6. Let 0 < � ≤ � <∞ and� = (�1, �2) ∈ �2. A distribution � ∈ S0(��)� is said to be a (�, �, �)-atom
of ���, �� (��)(∩�2(��)) if
(i) supp � ⊂ �, where� ⊆ �� is an open set with �nite measure,
(ii) ��� ���, �

�

(��) ≤ |�| 1�− 1� ,
(iii) ��� ���, �

�

(��) ≤ �0 for some constant �0.
Moreover � can be further decomposed into some rectangle-atoms �� associated to the rectangle � = � × �
which is supported in �� for some positive integer � independent of �, and such that
(iv) � = ∑�⊂�(�) �� with

� �
�∈�(�)
����� ���, �

�

(��)�
1/� ≤ |�| 1�− 1� ,

(iv�) for every � ∈ S(��), every polynomial � of degree at most � = [(� + 1)(1/min{�, �, 1} − 1)], and any
smooth cut o� function �� ∈ S(��) such that �� ≡ 1 on ��, and �� ≡ 0 outside 2��, we have

��, �� = ��, (� − �)���.
Here and in the sequel,�(�) is the set of all maximal dyadic rectangles contained in�.
We are now ready to give some remarks here. Firstly, when 0 < � ≤ 1, � = 2, � = (0, 0), we then obtain the def-
inition of atoms in ��com. Di�erent from classical de�nitions of atoms in pure product Hardy spaces [11, 24],
an additional good condition: �����

com

≤ �0 is involved. This condition can be obtained from the remaining
conditions in pure product spaces (see the appendix of [24]). But it seems hard to do so in ��com. Secondly,
if (�, �, �)-atoms are locally integrable, one can see that (iv�) is the usual cancellation condition.
Theorem 1.7. Suppose 0 < � ≤ � <∞ and � = (�1, �2) ∈ �2. Let � ∈ �2(��) ∩ ���, �� (��). Then there exists
a sequence of (�, �, �)-atoms {��} of ���, �� (��) and a sequence of scalars {��} with (∑� |��|�)1/� ≤ ���� ���, �

�

(��)
such that � =�� ����
and the series converge to � in both �2(��) and ���, �� (��), where � is a positive constant independent of �.
Since when 0 < � ≤ � <∞ and � ≤ 1, � → ���� ���, �

�

(��) is subadditive, we have the following corollary.
Corollary 1.8. Suppose � = (�1, �2) ∈ �2, 0 < � ≤ 1, � ≤ � <∞ and � ∈ �2. Then � ∈ ���, �� (��) if and only if �
can be written as � = ∑� ���� in �2(��) and in ���, �� (��), where �� are (�, �, �)- atoms of ���, �� (��) and {��}
satis�es (∑� |��|�)1/� <∞. Moreover,

��� ���, �
�

(��) ≈ inf���� |��|
��1/� : � =�� ���� where �� are (�, �, �)-atoms of ��

�, �� (��)�.
In the multi-parameter setting, a boundedness criterion has been established in [24]. In the setting of multi-
parameter Triebel–Lizorkin spaces associatedwith the composition of two singular integrals, wewill con�rm
such a boundedness criterion as well. As an application of Corollary 1.8, we obtain a boundedness criterion
for linear operators from ���, �� (��) to ���, �� (��).
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Theorem 1.9. Suppose � = (�1, �2) ∈ �2, 0 < � ≤ 1, � ≤ � <∞. If � is a linear operator bounded on �2(��),
then � is bounded on ���, �� (��) if and only if

sup{��(�)� ���, �
�

(��) : � is any (�, �, �)-atom of ���, �� (��)} <∞.
The organization of this paper is as follows. In Section 2, we will prove that the discrete de�nition of
Triebel–Lizorkin type space is equivalent to its continuous form. Section 3 gives ���, �� (��) norm estimates of
a function restricted in a domain. Section 4 contains the proofs of Theorem 1.7 (the atomic decomposition)
and Theorem 1.9 (boundedness criterion).

Throughout this paper, � is a positive constant which is independent of essential parameters and not
necessarily the same at each occurrence. Constants with subscript, such as �1, do not change in di�erent
occurrences. We denote � ≤ �� by � � �. If � � � � �, we write � ≈ �.

� Comparison principle

In this section, for �, � ∈ �, denoteΠ�,� to be the set of all � = � × � such that � are dyadic cubes in��−1, � are
dyadic intervals in �, with the side length �(�) = 2−(�∧�) and �(�) = 2−(�∧2�), and the left lower corners of � and
the left end points of � are �� = 2−(�∧�)�� and �� = 2−(�∧2�)��, respectively, (��, ��) ∈ ��−1 × �; and we set

D =�
�,�
Π�,�.

One shouldnote that, for any� ∈ �, there exist �, � ∈ � and ��, �� ∈ � such that 2−(�∧�) = 2−� and 2−(��∧2��) = 2−�
respectively. But, for some �, � ∈ �, theremay be no �, � such that 2−(�∧�) = 2−�, 2−(�∧2�) = 2−� since �∧� ≤ �∧2�
if �, � ≥ 0. SoD � {� = � × � : � are dyadic cubes in��−1, � are dyadic intervals in�}. For � ∈ Π�,�, setting

��(�) = |�|1/2��,�(�� − ��, �� − ��),
then by (1.9), it is easy to have �(�) = �

�∈D
��,�����(�).

For 0 < �, � <∞, � = (�1, �2) ∈ �2, corresponding to discrete multi-parameter Triebel–Lizorkin spaces
associated with the composition of two homogeneities, we shall de�ne ���, �� (��)which is the collection of all
complex-valued sequences � = {��}�∈D such that

��� ���, �
�

= �������� ��=�×�∈D(|�|
�
1

/(�−1)|�|�2 |��|���(�))��1/���������� .
Note that, for � ∈ Π�,�, setting ��(�) = |�|1/2(��,� ∗ �)(��, ��), one has

��� ���, �
�

= ��� ���, �
�

.
Next for a sequence � = {��}�∈D, 0 < � < +∞, and a �xed � > 0, de�ne the sequence �∗� = {(�∗� )�}�∈D by

(�∗� )� = � ��:�(�)=�(�)
|��|�(1 + �(�)−1|��� − ��|)�(1 + �(�)−1|��� − ��|)� �

1/�

where � = �� × �� ∈ D, � = � × �.
Lemma 2.1. Suppose 0 < � ≤ � < +∞ and � > (� − 1)�/�. Fix a dyadic rectangle � = � × � ∈ D, denote Π as
a collection of dyadic rectangles � = �� × �� with �(�) = �(�). Then for each � ∈ �,

���∈Π
|��|�(1 + �(�)−1|��� − ��|)�(1 + �(�)−1|��� − ��|)� �

1/� ≤ ��M����∈Π |��|
����(�)�1/�,

where � depends only on �, �,�, andM� is the strong maximal function.
Remark 2.2. We want to point out, if the side-lengths of � are �(�) = 2−�∧� and �(�) = 2−�∧2�, respectively,
then Πmay be a subset of Π�,�.
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Proof. Set �0 = {�� : �(�)−1|��� − ��| ≤ 1}, �0 = {�� : �(�)−1|��� − ��| ≤ 1},
and for � ≥ 1 and � ≥ 1,

� � = {�� : 2�−1 < �(�)−1|��� − ��| ≤ 2�}, �� = {�� : 2�−1 < �(�)−1|��� − ��| ≤ 2�}.
For any �xed �, � ≥ 0, denote

� = {(��,��) ∈ ��−1 × � : |�� − ��| ≤ (2��(�) + �(�))�� − 1, |�� − ��| ≤ 2��(�) + �(�)}.
Then � � × �� ⊆ � and � × � ⊆ �. Obviously,

|�| � 2�(�−1)|�|2�|�|.
Thus for any � ∈ �,
��∈Π

|��|�(1 + �(�)−1|��� − ��|)�(1 + �(�)−1|��� − ��|)� � ��,�≥0 2
−��2−�� �

��×��∈(�
�

×�
�

)∩Π
|��|�

� ��,�≥0 2
−��2−��� �

��×��∈(�
�

×�
�

)∩Π
|��|���/�

= ��,�≥0 2
−��2−��|�|−�/��� �

��×��∈(�
�

×�
�

)∩Π
|��|�������/�

≤ ��,�≥0 2
−��2−��|�|−�/�|�|�/��M����∈Π |��|

����(�)��/�

= ��,�≥0 2
−�[�−(�−1)�/�]2−�(�−�/�)�M����∈Π |��|

����(�)��/�

� �M����∈Π |��|
����(�)��/�,

since � > (� − 1)�/�.
Lemma 2.3. Suppose � = (�1, �2) ∈ �2, 0 < �, � <∞, and � > � − 1. Then

��� ���, �
�

≈ ��∗min(�,�)� ���, �
�

.
Proof. We only need to prove ��∗min(�,�)� ���, �

�

� ��� ���, �
�

,
since the converse estimates is trivial. Let � = min(�, �), � = −1 + �/(� − 1), and � = �/(1 + �/2). Then 0 < � < �
and � > (� − 1)�/�. For all �, � ∈ �, by Lemma 2.1, one has

��=�×��(�)=2−�∧� , �(�)=2−�∧2�
(�∗� )� ���(�) � �M�� �

�=��×���(��)=2−�∧� , �(��)=2−�∧2�
|��|�����(�)�1/�.

Hence,

��∗� � ���, �
�

� �������� ��,�∈��M�� �
�=��×���(��)=2−�∧� , �(��)=2−�∧2�

|��|�1/(�−1)|��|�2 |��|�����(�)��/��1/���� � ��� ���, �
�

by applying Fe�erman–Stein’s vector-valued strong maximal inequality on the space ��/�(��/�) since we
have � < � = min(�, �).
For any � ∈ Π�,�, we consider its generations. With the following Lemma 2.4, one can see that for a positive
integer �, a dyadic rectangle �� = �� × �� with �(��) = 2−(�∧�)−� and �(��) = 2−(�∧2�)−� may not be inD. So we should
consider its generationswith side length �(��) = 2−(�+�)∧(�+�) and �(��) = 2−(�+�)∧2(�+�). Of course, for any integer �,

{�� = �� × �� : �(��) = 2−(�+�)∧(�+�), �(��) = 2−(�+�)∧2(�+�), �, � ∈ �} = D.
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Lemma 2.4. For every � ∈ �, � > 0, there exist �, � ∈ � such that
(� ∧ � + �, � ∧ 2� + �) ∉ Λ = {(� ∧ �, � ∧ 2�) : �, � ∈ �}.

Proof. LetΛ 1 = {(�, �) : �, � ∈ �, � > � ≥ 0}. Note thatΛ 1∩Λ = � since �∧� ≤ �∧2�when �, � ≥ 0. By choosing�0 = �0 = −1, we see that for all � ≥ 2,
(�0 ∧ �0 + �, �0 ∧ 2�0 + �) ∈ Λ 1.

It follows that (�0 ∧ �0 + �, �0 ∧ 2�0 + �) ∉ Λ. For � = 1, we have (�0 ∧ �0 + 1, �0 ∧ 2�0 + 1) = (0,−1) ∉ Λ.
Lemma 2.5. Let � ∈ � with � ≥ 0 be �xed. For any �, � ∈ �, we have

2−(�+�)∧(�+�) = 2−�∧�2−� (2.1)

and
2−2� ≤ 2−(�+�)∧2(�+�)2−�∧2� ≤ 2−�. (2.2)

Proof. Formula (2.1) is trivial. As to (2.2), if � ≤ 2�, obviously, we obtain
2−�∧2� = 2−� and � + � ≤ 2(� + �)

which gives 2−(�+�)∧2(�+�) = 2−(�+�) = 2−�2−� = 2−�∧2�2−�.
When � > 2�, one has 2−�∧2� = 2−2�. If � + � > 2(� + �), one has 2−(�+�)∧2(�+�) = 2−2(�+�) = 2−2�2−2� = 2−�∧2�2−2�.
If � + � ≤ 2(� + �), one has 2−2�2−2� ≤ 2−(�+�) ≤ 2−2�2−�. Hence

2−(�+�)∧2(�+�)2−�∧2� = 2
−(�+�)
2−2� ∈ [2−2�, 2−�].

Remark 2.6. When � < 0, formula (2.1) also holds and (2.2) is replaced by

2−� ≤ 2−(�+�)∧2(�+�)2−�∧2� ≤ 2−2�.
Lemma 2.7. Suppose � ∈ S�(��) and supp �� ⊆ {� : |�| ≤ 2}. Let � ∈ � with � ≥ 0 and let �, � ∈ �. For � ∈ Π�,�,
let �� = sup�∈� |�(�)|and ��,� = max{inf�∈ �� |�(�)| : �� = �� × ��, �( ��) = 2−(�+�)∧(�+�), �( ��) = 2−(�+�)∧2(�+�), �� ⊆ �}. Let� = {��}� and � = {��,�}�. If 0 < � <∞, �(�) = 1 and � is su�ciently large, then

(�∗� )� ≈ (�∗� )�.
Proof. From the de�nition it is easy to see (�∗� )� ≤ (�∗� )�.
To prove the converse direction, we �rst suppose � ∈ S(��) and supp �� ⊆ {� : |�| ≤ 3}. For every � = �� × ��
with �(�) = �(�), there exist some ��0 = ��0 × ��0 ⊆ � with �( ��0) = 2−(�+�)∧(�+�) and �( ��0) = 2−(�+�)∧2(�+�), and some�1 ∈ ��0 such that �� = �(�1). Take �2 ∈ ��0 such that inf�∈ ��

0

|�(�)| = �(�2). Since �(�) = �(�) = 1, we get
|�1 − �2| � (2−2[(�+�)∧(�+�)] + 2−2[(�+�)∧2(�+�)])1/2 � (2−2(�∧�) + 2−2(�∧2�))1/22−� � 2−�

by Lemma 2.5. So by the Mean-Value Theorem,

�� − inf�∈ ��
0

|�(�)| = �(�1) − �(�2) ≤ |�1 − �2| sup�∈� |∇�(�)| � 2−� sup�∈� |∇�(�)|,
which implies that �� � ��,� + 2−� sup�∈� |∇�(�)|.
Let �� = sup�∈� |∇�(�)| and � = {��}�. Then

(�∗� )� � (�∗� )� + 2−�(�∗� )�. (2.3)

Let � ∈ S with ��(�) = 1 if |�| ≤ 3 and ��(�) ⊆ {� : |�| ≤ �}. It is easy to see that � = � ∗ � = ( �� ��)∨. Arguing as in
the proof of [16, Lemma A.4] or [19, Theorem 1.3], we obtain

�(�) = �
�(��)=1
�
�(��)=1
�(���, ���)�(�� − ���, �� − ���),
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where ��� and ��� are the left lower corners of �� and the left end points of ��, respectively. Hence
�� ≤ sup�∈� ��(��)=1 ��(��)=1 |�(���, ���)|��(�

� −���, �� −���)
≤ sup�∈� ��(��)=1 ��(��)=1 |�(���, ���)|��(�

� −���, �� −���) [(1+ |��� −��� |)(1+ |�� −��� |)]�/�(1+ |��� −��|)�/�
[(1+ |��� −��� |)(1+ |�� −��� |)]�/�(1+ |��� −��|)�/� ,

where� = �� × �� andwhere ��� and ��� are the left lower corners of �� and the left end points of ��, respectively.
Since � ∈ S, we have

sup�∈� ��(�� − ���, �� − ���) � 1(1 + |��� − ��� |)�
1(1 + |��� − ��� |)�

for any larger� > 0. Therefore,
(�∗� )� = � ���(�)=�(�)

|��|�(1 + |��� − ��|)�(1 + |��� − ��|)� �
1/�

� � ���(�)=�(�)
� �
�(��)=1
�
�(��)=1

|�(���, ���)|(1 + |��� − ��|)�/�(1 + |��� − ��� |)�
1(1 + |��� − ��|)�/�(1 + |��� − ��� |)� �

��1/�

for any su�ciently large �. If � > 1, by Hölder’s inequality,
(�∗� )� � � ���(�)=�(�)

� �
�(��)=1
�
�(��)=1

|�(���, ���)|�(1 + |��� − ��|)�(1 + |��� − ��� |)��/2
1(1 + |��� − ��|)�(1 + |��� − ��� |)��/2 �

× � �
�(��)=1
�
�(��)=1

1(1 + |��� − ��� |)���/2(1 + |��� − ��� |)���/2 �
�/���1/�

� � ���(�)=�(�)
�
�(��)=1
�
�(��)=1

|�(���, ���)|�(1 + |��� − ��|)�(1 + |��� − ��� |)��/2
1(1 + |��� − ��|)�(1 + |��� − ��� |)��/2 �

1/�

� � �
�(��)=1
�
�(��)=1

|�(���, ���)|�(1 + |��� − ��|)�(1 + |��� − ��|)� �
1/� ≤ (�∗� )�.

Likewise, if 0 < � ≤ 1, it su�ces to use (∑ ��)� ≤ ∑ ��� to obtain the same estimate (�∗� )� � (�∗� )�. Therefore, by
taking su�ciently large � in (2.3) we have (�∗� )� � (�∗� )�.

For the general case, one can apply a standard regularization argument to remove the assumption� ∈ S(��) (see [16, Lemma A.4]).

For any � ∈ Π�,� and positive integer �, denote
��� = {�� = �� × �� ∈ D : �(��) = 2−(�+�)∧(�+�), �(��) = 2−(�+�)∧2(�+�), �� ⊆ �}.

De�ne the sequence inf�(�) = {inf�,�(�)}� by inf�,�(�) = |�|1/2max{inf�∈�� |��,� ∗ �(�)| : �� ∈ ���}. At last, for
convenience, we denote

��� �F�, �

�

= �������� ��,�∈� 2
−[(�∧�)�

1

+(�∧2�)�
2

]�|��,� ∗ �|��1/����������(��)
for � ∈ S�0. Then we have the following lemma.

Lemma 2.8. Suppose � = (�1, �2) ∈ �2 and 0 < �, � <∞. For any � ≥ 0, one has
�inf� (�)� ���, ��

≤ ���� �F�, �

�

,
where � is independent of � ∈ S�0.
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Proof. First de�ne a sequence � = {��} by
�� = |�|1/2 inf�∈� |��−�,�−� ∗ �(�)|

for � = �� × �� ∈ Dwith �(��) = 2−�∧� and �(��) = 2−�∧2�, �, � ∈ �. For � ∈ Π�,�, with � + � = �, � + � = �, wemay
assume inf�,�(�) takes its maximum at ��0 = ��0 × ��0 ∈ ���, that is,

inf�,� (�) = |�|1/2 inf�∈��
0

|��,� ∗ �(�)|.
For any� ∈ ���, since �(��) = 2−(�+�)∧(�+�) and �(��) = 2−(�+�)∧2(�+�), by Lemma 2.5 together with |��� − ���

0

| ≤ 2−�∧�
and |��� − ���

0

| ≤ 2−�∧2�, one has
(�∗� )� = � ����(��)=�(�)

|���|�(1 + �(��)−1|��� − ���|)�(1 + �(��)−1|��� − ���|)� �
1/�

≥ |���
0

|
(1 + �(��)−1|��� − ���

0

|)�/�(1 + �(��)−1|��� − ���
0

|)�/�
� |���

0

|2−��/�2−2��/�.
Therefore, inf�,� (�)��� � ��∈��

�

2��/�22��/�(�∗� )� ���.
Applying Lemma 2.5 and Lemma 2.7, when �2 ≥ 0, one has

�inf� (�)� ���, ��

= �������� ��∈D(|�|
�
1

/(�−1)|�|�2 | inf�,� (�)|���(�))��
1/����������

� 2��/�22��/�2��1+2��2��∗� � ���, �
�

� 2��/�22��/�2��1+2��2��� ���, �
�

= 2��/�22��/�2�(�1+�2)�������� ��∈D(|�
�|�1/(�−1)|��|�2 |��|���(�))��1/����������

≤ 2��/�22��/�2��1+2��2�������� ��,�∈�(2
−(�∧�)�

12−(�∧2�)�2 |��−�,�−� ∗ �|)��1/����������
= 2��/�22��/�2��1+2��2�������� ��,�∈�(2

−[(�+�)∧(�+�)]�
12−[(�+�)∧2(�+�)]�2 |��,� ∗ �|)��1/����������

≤ 2��/�22��/�2��2�������� ��,�∈�(2
−(�∧�)�

12−(�∧2�)�2 |��,� ∗ �|)��1/���������� .
Similarly, we obtain �inf� (�)� ���, ��

� 2��/�22��/�2−��2��� �F�, �

�

when �2 < 0. Then we complete the proof.

Now we de�ne the sequence sup(�) = {sup�(�)}� by setting sup�(�) = |�|1/2 sup�∈� |��,� ∗ �(�)|.
Lemma 2.9. Suppose � = (�1, �2) ∈ �2, 0 < �, � ≤∞, and � ≥ 0 is su�ciently large. Then for � ∈ S�(��),

��� �F�,�

�

≈ �inf� (�)� ���, ��

≈ �sup(�)� ���, �
�

.
Proof. Firstly, one has the following relationship:

��� �F�, �

�

= ��� �
�,�∈�
2−[(�∧�)�1+(�∧2�)�2]�|��,� ∗ �(�)|���/� ���

1/�

= ��� �
�,�∈�
��∈Π

�, �

2−[(�∧�)�1+(�∧2�)�2]�|��,� ∗ �(�)|���/���(�) ���
1/�

≤ �sup(�)� ���, �
�

.
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Now it is easy to see that, for � = � × � with �(�) = 2−�∧� and �(�) = 2−�∧2�,
sup�∈� |��,� ∗ �(��, ��)| = sup�∈� |��,� ∗ �(2−�∧���, 2−�∧2���)|,

where � is a cube in�� with �(�) = 1. Note that
(��,� ∗ �(2−�∧� ⋅ , 2−�∧2� ⋅ ))∧(��, ��) = 2(�∧�)(�−1)2�∧2���1(2−�+�∧���, 2−�+�∧2���)��2(2−�+�∧���, 2−2�+�∧2���) ��(��, ��).
From the compact conditions (1.5), (1.7), �� must satisfy |2−�+�∧���| ≤ 2 and |2−�+�∧���| ≤ 2, which give |��| ≤ 2
by comparing � and �. Similarly, by comparing � and 2�, we obtain |��| ≤ 2, which is the aim to restrict the
support of��(2) in the set {(��, ��) ∈ ��−1 × � : 12 ≤ |�|� ≤ 21/2}, smaller than the range in references [7, 19].
Therefore applying Lemma 2.7 to each of the functions ��,� ∗ �(2−�∧���, 2−�∧2���) we obtain

(sup(�)∗� )� � (inf� (�)∗� )�.
Let � = min{�, �}. Then Lemma 2.3 gives

�sup(�)� ���, �
�

� �inf� (�)� ���, ��

.
Combining the above with Lemma 2.8, we complete the proof.

Proof of Theorem 1.5. Similar to the proof of Lemma 3.4 in this paper, we can obtain ��� �F�, �

�

� ��� ���, �
�

. We omit
the details. By Lemma 2.9 together with the obvious fact ��� ���, �

�

≤ �sup(�)� ���, �
�

, we complete the proof.

� Restriction estimates

Before we give the atomic decomposition, we need some lemmas. Firstly we need an almost orthogonality
estimates proved in [19].

Lemma 3.1. Let ��, �� ∈ S�(��), � = 1, 2, ��,� and ���,�� be de�ned as before and let � be a positive integer. Then
for any given integer�, there exists a constant � = �(�,�) > 0 such that

|��,� ∗ ���,�� (��, ��)| ≤ �2−|�−��|�2−|�−��|� 2(�∧��∧�∧��)(�−1)(1 + 2�∧��∧�∧�� |��|)(�+�−1) 2�∧��∧2(�∧��)(1 + 2�∧��∧2(�∧��)|��|)(�+1) .
The following lemma is a variant of [19, Lemma 3.2]. The main di�erence between them is that we restrict the
sum in a collection.

Lemma 3.2. For �, ��, �, �� ∈ �, let � = � × � ∈ Π�,� be �xed. Suppose that for a positive integer �, Π is a col-
lection of � = �� × �� where �� are dyadic cubes in ��−1, �� are dyadic cubes in �, with �(��) = 2−(��∧��)−�
and �(��) = 2−(��∧2��)−�, and the left lower corners of �� are ��� , the left end points of �� are ��� . Then for
any ��, �� ∈ �, ��, �� ∈ �, and any �−1�+�−1 < � ≤ 1,

�
��×��∈Π
2(�−1)(�∧��∧�∧��) 2�∧��∧2�∧2�� 2−(�−1)[(��∧��)+�] 2−(��∧2��)−�(1 + 2�∧��∧�∧�� |�� − ��� |)(�+�−1)

|(��� ,�� ∗ �)(��� , ��� )|(1 + 2�∧��∧2�∧2�� |�� − ��� |)(�+1)
≤ �1�M�� ���×��∈Π |(��� ,�� ∗ �)(��� , ��� )|�������

�(��, ��)�1/�,
where �1 = �2−��(1−1/�)2(�−1)(1/�−1)(��∧��−�∧�)+ 2(1/�−1)(��∧2��−�∧2�)+ ; here (� − �)+ = max{� − �, 0} and M� is the
strong maximal function.

Proof. Let

�0 = ��� : |�� − ��� |2−(�∧��∧�∧��) ≤ 1�, �0 = ��� : �� × ��,
|�� − ��� |2−(�∧��∧2�∧2��) ≤ 1�,

and for � ≥ 1, � ≥ 1,
�� = ��� : 2�−1 < |�� − ��� |2−(�∧��∧�∧��) ≤ 2��, �� = ��� : �� × ��, 2�−1 <

|�� − ��� |2−(�∧��∧2�∧2��) ≤ 2��.
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For any �xed �, � ≥ 0, denote
� = {(��,��) ∈ ��−1 × � : |�� − ��| ≤ 2�−(�∧��∧�∧��) + (� − 1)1/22−(�∧�), |�� − ��| ≤ 2�−(�∧��∧2�∧2��) + 2−(�∧2�)}.

Then �� × �� ⊂ � and � × � ⊆ �. Obviously,
|�| ≤ �2(�−1)[�−(�∧��∧�∧��)] 2[�−(�∧��∧2�∧2��)].

Thus for �−1�+�−1 < � ≤ 1,
�
��×��∈Π
2(�−1)(�∧��∧�∧��)2�∧��∧2�∧2�� 2−(�−1)[(��∧��)+�]2−(��∧2��)−�(1 + 2�∧��∧�∧�� |�� − ��� |)(�+�−1)

|(��� ,�� ∗ �)(��� , ��� )|(1 + 2�∧��∧2�∧2�� |�� − ��� |)(�+1)
≤ � ��,�≥0 2

−�(�+�−1)2−�(�+1)2(�−1)(�∧��∧�∧��)2�∧��∧2�∧2��2−(�−1)[(��∧��)+�]2−(��∧2��)−�
× � �
��×��∈(�

�

×�
�

)∩Π
|(��� ,�� ∗ �)(��� , ��� )|��1/�

= � ��,�≥0 2
−�(�+�−1)2−�(�+1)2(�−1)(�∧��∧�∧��)2�∧��∧2�∧2�� |��|1−1/�|��|1−1/�|�|1/�
× � 1|�| �� �

��×��∈(�
�

×�
�

)∩Π
|(��� ,�� ∗ �)(��� , ��� )|������� ���

1/�

≤ �1�M�� ���×��∈Π |(��� ,�� ∗ �)(��� , ��� )|�������
�(��, ��)�1/�,

where in the last step we use the following deduction:

��,�≥0 2
−�(�+�−1)2−�(�+1)2(�−1)(�∧��∧�∧��)2�∧��∧2�∧2�� |��|1−1/�|��|1−1/�|�|1/� = �1 ��,�≥0 2

−�(�+�−1)2−�(�+1)2(�−1)�/�2�/�
≤ ��1

because of � > �−1�+�−1 .
In order to obtain the compact support of the atoms, we need a discrete Calderón-type identity on the space�2(��) ∩ ���, �� (��) which is dense in ���, �� (��) (see [7]). To do this, let �(1) ∈ S�(��) with supp �(1) ⊆ �(0, 1),

��∈� |��(1)(2
−��)|2 = 1 for all � ∈ �� \ {0}, (3.1)

where � ≥ 10� will be speci�ed in application. We also let �(2) ∈ S�(��) with supp �(2) ⊆ �(0, 1),
�
�∈�
|��(2)(2−���, 2−2���)|2 = 1 for all (��, ��) ∈ ��−1 × � \ {(0, 0)}. (3.2)

Set ��,� = �(1)� ∗ �(2)� ,
where �(1)� (�) = 2���(1)(2��) and �(2)� (��, ��) = 2�(�+1)�(2)(2���, 22���). The discrete Calderón-type identity is
then given by the following [7].

Theorem B. Let �(1) and �(2) satisfy conditions (3.1) and (3.2) respectively. Then for any � ∈ �2(��) ∩ ���, �� (��),
there exists some � ∈ �2(��) ∩ ���, �� (��) such that for a su�ciently large� ∈ �,
�(��, ��) = ��,�∈� �

(�� ,�
�

)∈��−1×�
|�||�|��,�(�� − 2−(�∧�)−���, �� − 2−(�∧2�)−���)(��,� ∗ �)(2−(�∧�)−���, 2−(�∧2�)−���),

where the series converge in �2 and in ���, �� (��), � are dyadic cubes in ��−1 and � are dyadic intervals in �
with side-length �(�) = 2−(�∧�)−� and �(�) = 2−(�∧2�)−�, and the left lower corners of � and the left end points of �
are 2−(�∧�)−��� and 2−(�∧2�)−���, respectively. Moreover,

����2(��) ≈ ����2(��)
and ��� ���, �

�

(��) ≈ ��� ���, �
�

(��). (3.3)
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Remark 3.3. The above theorem gives an equivalent norm of ���, �� (��), that is, if � ∈ �2 ∩ ���, �� (��), then
�−12 ��� ���, �

�

(��) ≤ �������� ��,�∈� 2
−[(�∧�)�

1

+(�∧2�)�
2

]� �
(�� ,�

�

)∈��−1×�
|��,�∗�(2−(�∧�)−���, 2−(�∧2�)−���)|���(��)��(��)�1/����������(��)

≤ �2��� ���, �
�

(��).
for some positive constant �2. Note that the above relationship is di�erent from (3.3). One can prove it by
applying a similar proof as the following Lemma 3.4 combining TheoremAwith TheoremB. See [7] for details.

In the pure product Hardy space case [24], to get atomic decompositions, one needs to establish duality of
corresponding space. Our approach is di�erent from this scheme by using the following lemma.

Lemma 3.4. Let 0 < �, � <∞, � = (�1, �2) ∈ �2, �(1) and �(2) satisfy conditions (3.1) and (3.2) respectively, with
� > (� + 1)�1� − 1� + |�1| + 2|�2|.

For (�, �) ∈ �2, let�Π�,� be a collection of rectangles� = � × �where �are dyadic cubes in��−1, �are dyadic inter-
vals in�, with the side length �(�) = 2−(�∧�)−� and �(�) = 2−(�∧2�)−�, and the left lower corners of � and the left end
points of � are �� = 2−(�∧�)−��� and �� = 2−(�∧2�)−���, respectively, for some (��, ��) ∈ ��. If 0 < � < min{�, �, 1},
then ���������,� ��∈�Π

�, �

|�|��,�(�� − ��, �� − ��) × (��,� ∗ �)(��, ��)������� ���, �
�

(��)

≤ �2�������� ��,�∈� 2
−[(�∧�)�

1

+(�∧2�)�
2

]� �
�∈�Π

�, �

|��,� ∗ �(��, ��)|���(��)��(��)�1/����������(��)
for the positive constance �2 in Remark 3.3.
Remark 3.5. From this lemma, one can see that the order� in the cancellation conditionof�(1) and�(2) should
be bigger than (� + 1)( 1min{�,�,1} − 1) + |�1| + 2|�2| which is re�ected in (iv�) of De�nition 1.6.
Proof. Let ���,�� be the same as in Theorem A. By Lemma 3.1, for (���, ���) ∈ ��−1 × �,
|���,�� ∗ ��,�(2−(��∧��)��� − ��, 2−(��∧2��)��� − ��)|

≤ �2−|�−��|�2−|�−��|� 2(�∧��∧�∧��)(�−1)(1 + 2�∧��∧�∧�� |2−(��∧��)��� − ��|)(�+�−1)
2�∧��∧2(�∧��)(1 + 2�∧��∧2(�∧��)|2−(��∧2��)��� − ��|)(�+1) .

Hence, with Lemma 3.2, for �−1�+�−1 < � ≤ 1 and any ��� ∈ ��, ��� ∈ ��, where �� are dyadic cubes in ��−1 and ��
are dyadic intervals in � with side-length �(��) = 2−(��∧��) and �(��) = 2−(��∧2��), and the left lower corners of ��
and the left end points of �� are ��� = 2−(��∧��)��� and ��� = 2−(��∧2��)���, respectively, we have���������,� ��∈�Π

�, �

|�|(��,�( ⋅ − ��, ⋅ − ��) × (��,� ∗ �)(��, ��)) ∗ ���,�� (2−(��∧��)���, 2−(��∧2��)���)�������
≤ ��
�,�
2−|�−��|�2−|�−��|� �

�∈�Π
�, �

2−[(�∧�)+�](�−1)2−(�∧2�)−� 2(�∧��∧�∧��)(�−1)2�∧��∧2(�∧��)(1 + 2�∧��∧�∧�� |2−(��∧��)��� − ��|)(�+�−1)
× (��,� ∗ �)(��, ��)(1 + 2�∧��∧2(�∧��)|2−(��∧2��)��� − ��|)(�+1)

≤ ��
�,�
2−|�−��|�2−|�−��|��M�� ��∈�Π

�, �

|(��,� ∗ �)(��, ��)|������(���, ���)�1/�.
Set �� =�

�,�
�
�∈�Π

�, �

|�|��,�(�� − ��, �� − ��) × (��,� ∗ �)(��, ��).
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Summing over ��, �� and (���, ���), for any ��� ∈ ��, ��� ∈ ��, we have
� �
��,��∈�
2−[(��∧��)�1+(��∧2��)�2]� �

(��� ,��
�

)
|���,�� ∗ ��(��� , ��� )|���� (���)��� (���)�1/�

≤ �� �
��,��∈�
2−[(��∧��)�1+(��∧2��)�2]���

�,�
2−|�−��|�2−|�−��|��1�M�� ��∈�Π

�, �

|(��,� ∗ �)(��, ��)|������(���, ���)�1/����1/�.
When 0 < � ≤ 1, using the inequality (∑� ��)� ≤ ∑� ��� ,
� �
��,��∈�
2−[(��∧��)�1+(��∧2��)�2]� �

(��� ,��
�

)
|���,�� ∗ ��(��� , ��� )|���� (���)��� (���)�1/�

≤ �� �
��,��∈�
2−[(��∧��)�1+(��∧2��)�2]��

�,�
2−|�−��|��2−|�−��|����1�M�� ��∈�Π

�, �

|(��,� ∗ �)(��, ��)|������(���, ���)��/��1/�

≤ �� �
�,�∈�
2−[(�∧�)�1+(�∧2�)�2]��M�� ��∈�Π

�, �

|(��,� ∗ �)(��, ��)|������(���, ���)��/��1/�

where in the last inequality we use the facts that

(�� ∧ �� − � ∧ �)+ ≤ |� − ��| + |� − ��|, (�� ∧ 2�� − � ∧ 2�)+ ≤ |� − ��| + 2|� − ��|
and

� > (� + 1)�1� − 1� + |�1| + 2|�2|,
then

�
��,��∈�
2−[(��∧��−�∧�)�1+(��∧2��−�∧2�)�2]�2−|�−��|��2−|�−��|����1 ≤ �.

When � > 1, by Cauchy’s inequality with exponents �, ��, 1� + 1�� = 1, for all 0 < � < 1,
� �
��,��∈�
2−[(��∧��)�1+(��∧2��)�2]� �

(��� ,��
�

)
|���,�� ∗ ��(��� , ��� )|���� (���)��� (���)�1/�

≤ �� �
��,��∈�
2−[(��∧��)�1+(��∧2��)�2]���

�,�
2−|�−��|����2−|�−��|������/��

× ��
�,�
2−|�−��|��(1−�)2−|�−��|��(1−�)��1�M�� ��∈�Π

�, �

|(��,� ∗ �)(��, ��)|������(���, ���)��/���1/�

≤ �� �
�,�∈�
2−[(�∧�)�1+(�∧2�)�2]��M�� ��∈�Π

�, �

|(��,� ∗ �)(��, ��)|������(���, ���)��/��1/�,
where in the last inequality we use the similar estimates as in the case of 0 < � ≤ 1, since

�
�,�
2−|�−��|����2−|�−��|���� ≤ �

and

�
��,��∈�
2−[(��∧��−�∧�)�1+(��∧2��−�∧2�)�2]�2−|�−��|��(1−�)2−|�−��|��(1−�)��1 ≤ �

when � is close to 0, since � > (� + 1)( 1� − 1) + |�1| + 2|�2|. Applying Fe�erman–Stein’s vector-valued strong
maximal inequality on ��/�(��/�) provided � < min{�, �, 1}, we complete the proof.

Remark 3.6. All conditions on � can be satis�ed if we choose� large enough.
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� Atomic decomposition

We are ready to give the atomic decompositions. For convenience, in this section, the function �(�), the
positive integers � are always from the discrete Calderón-type identity in Theorem B and � = (�1, �2). For
�xed �, � ∈ �, denote by Π��,� the set of all � = � × � such that � are dyadic cubes in ��−1 and � are dyadic
intervals in�with the side lengths �(�) = 2−(�∧�)−� and �(�) = 2−(�∧2�)−�, and the left lower corners of � and the
left end points of � are �� = 2−(�∧�)−��� and �� = 2−(�∧2�)−���, respectively, (��, ��) ∈ ��.
Proof of Theorem 1.7. Consider

��� (�)(�) = � ��,�∈� 2
−[(�∧�)�

1

+(�∧2�)�
2

]� �
�∈Π�

�, �

|��,� ∗ �(��, ��)|���(��)��(��)�1/�.
Then by Remark 3.3, ��� ���, �

�

(��) ≈ ���� (�)���(��).
For any � ∈ �2(��) ∩ ���, �� (��), set

�� = {(��, ��) ∈ ��−1 × � : ��� (�)(�) > 2�},
and

B� = �(�, �, �, �) : |(� × �) ∩ ��| > 12 |� × �|, |(� × �) ∩ ��+1| ≤ 12 |� × �|�.
Obviously, ��+1 ⊆ ��, and if ��+1 = ��, then B� = �, hence B� ∩ B� = � if � �= �. We say a rectangle � ∈ B�
means � = � × � with �(�) = 2−(�∧�)−�, �(�) = 2−(�∧2�)−�, and (�, �, �, �) ∈ B�.

By Theorem B, we write

�(��, ��) =�� �(�,�,�,�)∈B
�

|�|��,�(�� − ��, �� − ��) × (��,� ∗ �)(��, ��),
where the series converges in �2(��) and in ���, �� (��). To obtain the atomic decomposition, rewrite

�(��, ��) =�� ����(�
�, ��),

where ��(��, ��) = 1�� �(�,�,�,�)∈B
�

|�|��,�(�� − ��, �� − ��) × (��,� ∗ �)(��, ��),
and

�� = �2|���| 1�− 1� �� �(�,�,�,�)∈B
�

|��,� ∗ �(��, ��)|�2−(��1+��2)���(�) ���1/�,
where ��� = �(��, ��) :��(��

�

)(��, ��) > 110�� �.
Note that functions �(1) and �(2) are supported in the unit ball. Then for a �xed � ∈ B�, ��,�(�� − ��, �� − ��)
is supported in 2�+3�, which implies that �� is supported in ���. To see that the �� satisfy (ii) in De�nition 1.6,
we write ��(��, ��) = 1�� ��(��, ��),
where ��(��, ��) = �(�,�,�,�)∈B

�

|�| ��,�(�� − ��, �� − ��) × (��,� ∗ �)(��, ��)
=�
�,�
�
�×�∈�Π

�, �

|�| ��,�(�� − ��, �� − ��) × (��,� ∗ �)(��, ��),
and �Π�,� = {� = � × � : (�, �, �, �) ∈ B�}.
By Lemma 3.4

���� ���, �
�

≤ �2�� �(�,�,�,�)∈B
�

|��,� ∗ �(��, ��)|�2−(��1+��2)���(�) ���1/�,
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which implies that ���� ���, �
�

(��) ≤ |���| 1�− 1� .
Again by Lemma 3.4, we have

���� ���, �
�

≤ �2��� �(�,�,�,�)∈B
�

|��,� ∗ �(��, ��)|�2−(��1+��2)���(�)��/� ���1/�

≤ �2�� �(�,�,�,�)∈B
�

|��,� ∗ �(��, ��)|�2−(��1+��2)���(�) ���1/�|���| 1�− 1�
by Hölder’s inequality, which implies that

���� ���, �
�

(��) ≤ 1.
Now, we check (iii). Firstly, we consider the case � < �. It is easy to have that, if � = (��, ��) ∈ � ∈ B� such

that��(��∩��
�

\�
�+1

)(�) > 12 , then
��(�) = ��/�� (�) ≤ 2�/���/�� (��∩��

�

\�
�+1

)(�).
Thus, by the Fe�erman–Stein vector-valued strong maximal inequality, for 0 < � < � <∞,

��� = ��|���|1− �� �� �(�,�,�,�)∈B
�

|��,� ∗ �(��, ��)|�2−(��1+��2)���(�) ����/�

≤ ��|���|1− �� �� �(�,�,�,�)∈B
�

|��,� ∗ �(��, ��)|�2−(��1+��2)���/�� (��∩��
�

\�
�+1

)(�) ����/�

� |���|1− �� � �
��

�

\�
�+1

�
(�,�,�,�)∈B

�

|��,� ∗ �(��, ��)|�2−(��1+��2)���(�) ���
�/�

� |���|1− �� (2��|��� \ ��+1|) ��≤ 2��|���| � 2��|��|.
Hence �� �

�� � ���� (�)����(��) ≈ ���� ���, �
�

(��).
If � = �, then (iii) easily follows from the de�nition of �� and Remark 3.3.

To verify conditions (iv), note that �� = ∑�∈�(��
�

) ��,�, where
��,�(��, ��) = 1�� ��∈B

�

,�⊂�
|�|��,�(�� − ��, �� − ��) × (��,� ∗ �)(��, ��).

Since for each �xed� ∈ B�, supp ��,�(�� − ��, �� − ��) ⊆ 2�+3�, it follows that supp ��,� ⊆ 2�+3�. Generally, for
any � ∈ B�, there may exist more than one � ∈ �(���) such that � ⊂ �. In order to ensure non-intersection,
once an�0 ∈ �(���) has been selected such that� ⊂ �0, then any other� ∈ �(���)will not be allowed to do so.
Obviously, the ��,� satisfy the cancellation condition (iv�) since ��,� ∈ S�(��).

With the same proof as in the estimation of ���� ���,�
�

(��), one has

���,�� ���, �
�

(��) ≤ 1�� �� �
�∈B

�

, 2�+3�⊂�
|��,� ∗ �(��, ��)|�2−(��1+��2)���(�) ���1/�

which shows that

�
�∈�(��

�

)
���,��� ���, �

�

(��) ≤ 1��� � �(�,�,�,�)∈B
�

|��,� ∗ �(��, ��)|�2−(��1+��2)���(�) ��.
Hence

� �
�∈�(��

�

)
���,��� ���, �

�

(��)�
1/� ≤ |���| 1�− 1� .
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Proof of Theorem 1.9. From De�nition 1.6, for any (�, �, �)-atom �, we have ��� ���, �
�

(��) ≤ �0. So when � is
a bounded operator on ���, �� (��), we have the one direction.

On the other hand, for an � ∈ �2(��) ∩ ���, �� (��), by Corollary 1.8, we have
� =�� ����

in �2(��) and ���, �� (��)with {��} being (�, �, �)- atoms of ���, �� (��). Since � is a bounded operator on �2(��),�(�)(�) = ∑� ���(��)(�), using that � → ���� ���, �
�

(��) is subadditive when 0 < � ≤ � <∞ and � ≤ 1, one has
��(�)�� ���, �

�

(��) ≤�� �
�� ��(��)�� ���, �

�

(��) ��� �
�� � ���� ���, �

�

(��)

which can be extended to the entire ���, �� (��) by density.
Funding: The �rst author’s research is partly supported by NNSF of China grants (11271209 and 11371056);
the second author’s research is partly supported by a US NSF grant DMS 1301595; the third author’s research
is partly supported by a NNSF of China 11271209.
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