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DUALITY OF MULTI-PARAMETER TRIEBEL-LIZORKIN

SPACES ASSOCIATED WITH THE COMPOSITION

OF TWO SINGULAR INTEGRAL OPERATORS

WEI DING AND GUOZHEN LU

Abstract. In this paper, we study the duality theory of the multi-parameter
Triebel-Lizorkin spaces Ḟα,q

p (Rm) associated with the composition of two sin-
gular integral operators on Rm of different homogeneities. Such composition
of two singular operators was considered by Phong and Stein in 1982. For
1 < p < ∞, we establish the dual spaces of such spaces as (Ḟα,q

p (Rm))∗ =

Ḟ−α,q′

p′ (Rm), and for 0 < p ≤ 1 we prove (Ḟα,q
p (Rm))∗ = CMO−α,q′

p (Rm). We

then prove the boundedness of the composition of two Calderón-Zygmund sin-

gular integral operators with different homogeneities on the spaces CMO−α,q′
p .

Surprisingly, such dual spaces are substantially different from those for the
classical one-parameter Triebel-Lizorkin spaces Ḟα,q

p (Rm). Our work requires
more complicated analysis associated with the underlying geometry generated

by the multi-parameter structures of the composition of two singular integral
operators with different homogeneities. Therefore, it is more difficult to deal
with than the duality result of the Triebel-Lizorkin spaces in the one-paramter
settings. We note that for 0 < p ≤ 1, q = 2 and α = 0, Ḟα,q

p (Rm) is the Hardy
space associated with the composition of two singular operators considered in
Rev. Mat. Iberoam. 29 (2013), 1127–1157. Our work appears to be the first
effort on duality for Triebel-Lizorkin spaces in the multi-parameter setting.

1. Introduction

The classical theory of one-parameter harmonic analysis may be considered as
centering around the Hardy-Littlewood maximal operator and its relationship with
certain singular integral operators which commute with the usual one-parameter
dilations on Rm, given by δ(x) = (δx1, · · · , δxm), δ > 0. If this isotropic dila-
tion is replaced by more general non-isotropic groups of dilations, then many non-
isotropic variants of the classical theories can be produced, such as the strong
maximal functions, multi-parameter singular integral operators, corresponding to
the multi-parameter dilations δ : x → (δ1x1, δ2x2), x = (x1, x2) ∈ Rn × Rm, δ =
(δ1, δ2), δ1, δ1 > 0. Such a multi-parameter theory has been developed extensively
over the past decades. We refer the reader to the work in [2–4, 8, 15, 17–21, 27, 32,
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33, 37–39, 42, 52, 54, 56]. Multi-parameter flag singular integrals and their bound-
edness on Lp and Hp spaces have been studied in [16, 31, 34, 45–48, 50, 55], multi-
parameter and multi-linear Coifman-Meyer Fourier multipliers have been investi-
gated in [5,9,10,35,43,44], and a theory of multi-parameter singular Radon trans-
forms have been developed in [58–60].

Recently, the authors of [30] developed a theory of new multi-parameter Hardy
space associated with the composition of two singular integral operators with dif-
ferent homogeneities and established the boundedness of the composition of such
singular integrals on this space. To be more precise, for Rm = Rm−1 × R with
x = (x′, xm) where x′ ∈ Rm−1 and xm ∈ R, they consider two kinds of homo-
geneities:

δ : (x′, xm) → (δx′, δxm), δ > 0,

and
δ : (x′, xm) → (δx′, δ2xm), δ > 0.

The first is the classical isotropic dilations occurring in the classical Calderón-
Zygmund singular integrals, while the second is non-isotropic and related to the
heat equations (also Heisenberg groups). For x = (x′, xm) ∈ Rm−1 × R, denote
|x|e = (|x′|2+ |xm|2) 1

2 and |x|h = (|x′|2+ |xm|) 1
2 . The singular integrals considered

in [30] are defined in the following.

Definition 1.1. A locally integrable function K1 on Rm\{0} is said to be a
Calderón-Zygmund kernel associated with the isotropic homogeneity if∣∣∣∣ ∂α

∂xα
K1(x)

∣∣∣∣ ≤ A|x|−m−|α|
e for all |α| ≥ 0,(1.1)

∫
r1<|x|e<r2

K1(x) dx = 0(1.2)

for all 0 < r1 < r2 < ∞.
An operator T1 is said to be a Calderón-Zygmund singular integral operator

associated with the isotropic homogeneity if T1(f)(x) = p.v.(K1 ∗ f)(x), where K1

satisfies conditions in (1.1) and (1.2).

Definition 1.2. Suppose K2 ∈ L1
loc(R

m\{0}). K2 is said to be a Calderón-
Zygmund kernel associated with the non-isotropic homogeneity if

(1.3)

∣∣∣∣ ∂α

∂(x′)α
∂β

∂(xm)β
K2(x

′, xm)

∣∣∣∣ ≤ B|x|−m−1−|α|−2β
h ∀ |α| ≥ 0, β ≥ 0,

(1.4)

∫
r1<|x|h<r2

K2(x) dx = 0

for all 0 < r1 < r2 < ∞.
An operator T2 is said to be a Calderón-Zygmund singular integral operator

associated with the non-isotropic homogeneity if T2(f)(x) = p.v.(K2 ∗ f)(x), where
K2 satisfies the conditions in (1.3) and (1.4).

Both the classical Calderón-Zygmund theory and theory of singular integral op-
erators associated with the non-isotropic dilations indicate that both the operators
T1 and T2 are bounded on Lp for 1 < p < ∞ and of weak-type (1, 1). Nevertheless,
it is shown by Phong and Stein in [51] that in general the composition operator
T1 ◦T2 is not of weak-type (1,1). Moreover, the authors of [51] gave a necessary and
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DUALITY OF MULTI-PARAMETER TRIEBEL-LIZORKIN SPACES 7121

sufficient condition such that the composition operator T1◦T2 is of weak-type (1,1).
This answers the question raised by Rivieré in [64]. In fact, the operators stud-
ied in [51] are compositions with different homogeneities, and such a composition
operator arises naturally in the study of the ∂̄-Neumann problem.

It is also well-known that any Calderón-Zygmund singular integral operator as-
sociated with the isotropic homogeneity is bounded on the classical Hardy space
Hp(Rm) with 0 < p ≤ 1. A Calderón-Zygmund singular integral operator asso-
ciated with the non-isotropic homogeneity is not bounded on the classical Hardy
space but bounded on the non-isotropic Hardy space (see e.g. [23]). However, the
composition operator T1 ◦ T2 is bounded on neither the classical Hardy space nor
the non-isotropic Hardy space. Thus, the natural question is to ask on what Hardy
space can the composition operator T1 ◦ T2 be bounded? To this end, the authors
of [30] introduced a new Hardy space Hp

hom(Rn) associated with the composition of
these two different homogeneities and proved that T1◦T2 is indeed bounded on such
spaces. Recently, the first author developed in [11] the theory of the Triebel-Lizorkin

spaces Ḟα,q
p (Rm) associated with the composition of these different homogeneities.

Such Triebel-Lizorkin spaces for 0 < p ≤ 1, α1 = α2 = 0 and q = 2 are the Hardy
spaces Hp

hom(Rn) considered in [30]. Triebel-Lizorkin spaces form a unifying class
of function spaces encompassing many well studied classical function spaces such as
Lebesgue spaces, Hardy spaces, the Lipschitz spaces, and the space BMO [22, 62].
Boundedness of singular integrals and pseudo-differential operators on the Triebel-
Lizorkin spaces have also been extensively studied; see, for example, Frazier and
Jawerth [22] and Torres [61].

The main goals of this paper are to identify the dual spaces CMO−α,q′

p of the

new Triebel-Lizorkin spaces Ḟα,q
p (Rm).

We now introduce the new Triebel-Lizorkin spaces associated with different ho-
mogeneities. Denote S0(Rm) = {f ∈ S(Rm) :

∫
Rm f(x)xαdx = 0, ∀ |α| ≥ 0}. Let

ψ(1) ∈ S(Rm) with

(1.5) suppψ̂(1) ⊆ {(ξ′, ξm) ∈ Rm−1 × R :
1

2
≤ |ξ|e ≤ 2}

and

(1.6)
∑
j∈Z

|ψ̂(1)(2−jξ′, 2−jξm)|2 = 1 for all (ξ′, ξm) ∈ Rm \ {0}.

Let ψ(2) ∈ S(Rm) with

(1.7) suppψ̂(2) ⊆ {(ξ′, ξm) ∈ Rm−1 × R :
1

2
≤ |ξ|h ≤ 21/2}

and

(1.8)
∑
k∈Z

|ψ̂(2)(2−kξ′, 2−2kξm)|2 = 1 for all (ξ′, ξm) ∈ Rm \ {0}.

Denote ψj,k(x) = ψ
(1)
j ∗ ψ

(2)
k (x), where ψ

(1)
j (x′, xm) = 2jmψ(1)(2jx′, 2jxm),

ψ
(2)
k (x′, xm) = 2k(m+1)ψ(2)(2kx′, 22kxm), and j ∧ k = min{j, k}, j ∨ k = max{j, k}.

The following discrete Calderón reproducing formula is from [30].
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7122 WEI DING AND GUOZHEN LU

Theorem A. Suppose that ψ(1) and ψ(2) are functions satisfying conditions in
(1.5)-(1.6) and (1.7)-(1.8), respectively. Then

f(x′, xm)

(1.9)

=
∑
j,k∈Z

∑
(�′,�m)∈Zm−1×Z

2−(m−1)(j∧k)2−(j∧2k)(ψj,k ∗ f)(2−(j∧k)�′, 2−(j∧2k)�m)

× ψj,k(x
′ − 2−(j∧k)�′, xm − 2−(j∧2k)�m),

where the series converges in L2(Rm), S0(Rm) and S ′
0(R

m).

Remark 1.3. Actually, in the proof of Theorem A, the authors of [30] have used the
additional assumptions that ψ(1) and ψ(2) are real and radial Schwartz functions.
Dispensing with these assumptions, (1.9) should be

f(x′, xm)

=
∑
j,k∈Z

∑
(�′,�m)∈Zm−1×Z

2−(m−1)(j∧k)2−(j∧2k)(ψ̃j,k ∗ f)(2−(j∧k)�′, 2−(j∧2k)�m)

× ψj,k(x
′ − 2−(j∧k)�′, xm − 2−(j∧2k)�m),

where ψ̃j,k(x) = ψj,k(−x), which is a generalization of Lemma 2.1 in [22].

For j, k ∈ Z, we denote Πj,k = {R = I × J : I are dyadic cubes in Rm−1, J are

dyadic intervals in R, with the side lengths l(I) = 2−(j∧k) and l(J) = 2−(j∧2k),
and the left lower corners of I and the left end points of J are xI = 2−(j∧k)�′ and
xJ = 2−(j∧2k)�m, respectively, (�′, �m) ∈ Zm−1 × Z

}
. We also set D =

⋃
j,k Πj,k.

One should note that, for any μ ∈ Z, there exist j, k ∈ Z and j′, k′ ∈ Z such
that 2−(j∧k) = 2−μ, 2−(j′∧2k′) = 2−μ respectively. But, for some (μ, ν) ∈ Z2, there
may not exist j, k such that 2−(j∧k) = 2−μ, 2−(j∧2k) = 2−ν since j ∧ k ≤ j ∧ 2k if
j, k ≥ 0. So D � {R = I × J : I are dyadic cubes in Rm−1, J are dyadic intervals
in R}.

With the discrete Calderón reproducing formula, the multi-parameter Triebel-
Lizorkin spaces with different homogeneities were introduced in [11] as follows.

Definition 1.4. Let 0 < p, q < ∞, α = (α1, α2) ∈ R2. The multi-parameter

Triebel-Lizorkin type space with different homogeneities Ḟα,q
p (Rm) is defined by

Ḟα,q
p (Rm) = {f ∈ S ′

0(R
m) : ‖f‖Ḟα,q

p (Rm) < ∞},

where

‖f‖Ḟα,q
p (Rm)

= ‖
( ∑

j,k∈Z

2−[(j∧k)α1+(j∧2k)α2]q

×
∑

(�′,�m)∈Zm−1×Z

|ψj,k ∗ f(2−(j∧k)�′, 2−(j∧2k)�m)|qχI(x
′)χJ(xm)

) 1
q ‖Lp(Rm),

where I are dyadic cubes in Rm−1 and J are dyadic intervals in R with the side
lengths l(I) = 2−(j∧k) and l(J) = 2−(j∧2k), and the left lower corners of I and the
left end points of J are 2−(j∧k)�′ and 2−(j∧2k)�m, respectively.
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This multi-parameter Triebel-Lizorkin space is well defined, since it has been
proved in [11] that Ḟα,q

p (Rm) is independent of the choice of the functions ψ1 and

ψ2. This space can also be characterized by its continuous form, that is,

‖
( ∑

j,k∈Z

2−[(j∧k)α1+(j∧2k)α2]q

×
∑

(�′,�m)∈Zm−1×Z

|ψj,k ∗ f(2−(j∧k)�′, 2−(j∧2k)�m)|qχI(x
′)χJ(xm)

) 1
q ‖Lp(Rm)

≈ ‖
( ∑

j,k∈Z

2−[(j∧k)α1+(j∧2k)α2]q|ψj,k ∗ f |q
) 1

q ‖Lp(Rm);(1.10)

for a rigorous proof, see [14].
In Definition 1.4, setting α1 = α2 = 0, q = 2, 0 < p ≤ 1, one obtains Hardy spaces

associated with different homogeneities Hp
com(Rm), which was introduced in [30] to

study the boundedness of composition operators with different homogeneities.
Note that the multi-parameter structure with different homogeneities is involved

in (1.10). If ψj,k(x, y) in (1.10) is the form ψ1
j (x) · ψ2

k(y), then we obtain the

Triebel-Lizorkin space of multi-parameter pure product Ḟ
α,q
p (Rn × Rm) with the

norm

‖
( ∑

j,k∈Z

2−(jα1+kα2)q|ψj,k ∗ f |q
) 1

q ‖Lp(Rn×Rm)

for f ∈ Ḟ
α,q
p (Rn × Rm), 0 < p, q < ∞, α = (α1, α2) ∈ R2. It has been introduced in

[42].
Let q′ denote the conjugate of q, so that 1/q + 1/q′ = 1 when 1 ≤ q ≤ ∞. If

0 < q < 1, it is also convenient to let q′ = ∞. The first main theorem of this paper
concerns the duality of the spaces Ḟα,q

p when p > 1.

Theorem 1.1. Suppose 1 < p < ∞, 0 < q < ∞, α = (α1, α2) ∈ R2; then

(Ḟα,q
p )∗ = Ḟ−α,q′

p′ .

Namely, if g ∈ Ḟ−α,q′

p′ , then the map lg, given by lg(f) = 〈f, g〉, defined initially for

f ∈ S0, extends to a continuous linear functional on Ḟα,q
p with ‖lg‖ � ‖g‖

Ḟ−α,q′
p′

.

Conversely, every l ∈ (Ḟα,q
p )∗ satisfies l = lg for some g ∈ Ḟ−α,q′

p′ with ‖lg‖ ≈
‖g‖

Ḟ−α,q′
p′

.

Though there have been extensive works on dual spaces of multi-parameter
Hardy spaces (see [2], [21], [31], [28], [29], [30], etc.), the duality of Triebel-Lizorkin
spaces has only been studied in the one-parameter settings started in [22, 62];
see also [1] for anisotropic Triebel-Lizorkin spaces, [36] for weighted anisotropic
Triebel-Lizorkin spaces. For 0 < p, q < ∞, α ∈ R, the Triebel-Lizorkin space of
one-parameter Ḟα,q

p (Rm) with the norm

‖
(∑

j∈Z

2−jq|ψj ∗ f |q
) 1

q ‖Lp(Rm)
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7124 WEI DING AND GUOZHEN LU

was investigated in [22,62]. There it was shown that the dual space of Ḟα,q
p (Rm) is

(Ḟα,q
p (Rm))∗ =

{
Ḟ−α,q′

p′ (Rm), 1 ≤ p < ∞;

Ḟ−α+m(1/p−1),∞
∞ (Rm), 0 < p < 1,

(1.11)

where Ḟα,q
∞ (Rm) is defined to be the set of all f ∈ S ′

0(R
m) such that

‖f‖Ḟα,q
∞ (Rm) = sup

Q dyadic cubes

( 1

|Q|

∫
Q

∞∑
j=− log2 l(Q)

2−jαq|ψj ∗ f |qdx
)1/q

< ∞.

It is well known that Ḟ0,2
p (Rm) is the classical Hardy space Hp, 0 < p ≤ 1. From

(1.11), one has

(Hp)
∗ = Ḟm(1/p−1),∞

∞ (Rm).

The method to obtain (1.11) no longer works in multi-parameter cases when 0 <
p ≤ 1. By using techniques of discrete Littlewood-Paley theory developed in [31,34]
for flag Hardy spaces, the authors established the dual spaces for flag Hardy spaces.
Using similar ideas of discrete Littlewood-Paley theory, the dual spaces for Hardy
spaces on product spaces of homogeneous type and on weighted multi-parameter
Hardy spaces have been obtained in [28, 29] and [41]. To give an idea of such
dual spaces in the simplest form, we state the dual space of multi-parameter pure

product Hardy space Hp = Ḟ
0,2
p (Rn × Rm) by another form, for 0 < p ≤ 1,

(Hp)
∗ = CMOp,

where f ∈ CMOp is defined by

‖f‖CMOp
= sup

Ω

( 1

|Ω| 2p−1

∫
Ω

∑
j,k∈Z

∑
R∈Πj,k,R⊆Ω

(|ψj,k ∗ f(xI , xJ)|2χR(x))dx
)1/2

for all open sets Ω ⊆ Rn × Rm with finite measure (see [41]). Combining the
techniques developed in [22,62] for one-parameter Triebel-Lizorkin spaces and [34]
for multi-parameter Hardy spaces, we investigate the dual spaces of the multi-
parameter Triebel-Lizorkin spaces associated with different homogeneities when
0 < p ≤ 1. Before we state the duality result, we first give the definition of
CMOα,q

p (Rm).

Definition 1.5. For 0 < p ≤ 1, 1 ≤ q ≤ ∞, α = (α1, α2) ∈ R2 and with I, J and
xI , xJ being the same as before, the space CMOα,q

p (Rm) is defined by

CMOα,q
p (Rm) = {f ∈ S ′

0(R
m) : ‖f‖CMOα,q

p (Rm) < ∞},
where

‖f‖CMOα,q
p (Rm) = sup

Ω

( 1

|Ω|
q
p−

q

q′

∫
Ω

∑
j,k∈Z

2−[(j∧k)α1+(j∧2k)α2]q

×
∑

R∈Πj,k,R⊆Ω

(|ψj,k ∗ f(xI , xJ)|qχR(x))dx
)1/q

.(1.12)

Remark 1.6. If 0 < p ≤ 1, 1 ≤ q < ∞, (1.12) is

‖f‖CMOα,q
p

= sup
Ω

1

|Ω|
1
p−

1
q′

( ∑
R⊆Ω,R∈D

(|I|α1/(m−1)|J |α2 |ψj,k ∗ f(xI , xJ)|)q|R|
)1/q

,
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and naturally, if q = ∞, (1.12) is interpreted as

‖f‖CMOα,∞
p

= sup
Ω

1

|Ω| 1p−1
sup

R⊆Ω,R∈D
|I|α1/(m−1)|J |α2 ||ψj,k ∗ f(xI , xJ )|.

To see that the space CMOα,q
p is well defined, one needs to show the following

theorem, which is actually also one of the main theorems of the paper.

Theorem 1.2. Suppose that ψj,k and ϕj′,k′ satisfy the same conditions in (1.5)-
(1.8). Then if 0 < p ≤ 1, 1 ≤ q ≤ ∞, α = (α1, α2) ∈ R2, one has

sup
Ω

( 1

|Ω|
q
p−

q
q′

∫
Ω

∑
j,k∈Z

2−[(j∧k)α1+(j∧2k)α2]q

×
∑

R∈Πj,k,R⊆Ω

(|ψj,k ∗ f(xI , xJ)|qχR(x))dx
)1/q

≈ sup
Ω

( 1

|Ω|
q
p−

q

q′

∫
Ω

∑
j,k∈Z

2−[(j∧k)α1+(j∧2k)α2]q

×
∑

R∈Πj,k,R⊆Ω

(|ϕj,k ∗ f(xI , xJ)|qχR(x))dx
)1/q

for f ∈ S ′
0.

The proof of this theorem can follow from the ψ-transforms that correspond
between the multi-parameter Triebel-Lizorkin spaces Ḟα,q

p and the discrete multi-

parameter Triebel-Lizorkin sequence spaces ḟα,q
p indexed by the multi-parameter

dyadic rectangles in Rm associated with the underlying structures of the composi-
tion of two singular integrals. Since the definition of Ḟα,q

p (Rm) is independent of

the choice of the functions ψ1 and ψ2, this theorem is immediate once we prove
the following duality theorem (Theorem 1.3). Nevertheless, we offer another proof
following the proof of Theorem 2.3.

The dual spaces for Ḟα,q
p when 0 < p ≤ 1 are considerably different from those for

1 < p < ∞ and more difficult to get, in particular in the multi-parameter settings.
Therefore, the following duality result is the third main theorem of this paper.

Theorem 1.3. Suppose 0 < p ≤ 1, 0 < q < ∞, α = (α1, α2) ∈ R2. Then

(Ḟα,q
p )∗ = CMO−α,q′

p

where q′ is defined to be ∞ when 0 < q ≤ 1.

By duality, one can obtain the boundedness of T1 ◦ T2 on CMO−α,q′

p , which is
the last main theorem in this paper.

Theorem 1.4. Suppose 0 < p ≤ 1, 1 < q ≤ ∞, α = (α1, α2) ∈ R2. Then the
composition operator T = T1 ◦ T2 is bounded on CMOα,q

p .

Remark 1.7. In this paper, we only carry out the duality theory in the multi-
parameter setting associated with the dilations of the composition of two singu-
lar integral operators. This is essentially within the framework concerning the
translation-invariant environment in the Euclidean spaces. The more general case
involving more families of dilations and more parameters has been outlined in Sec-
tion 6, Appendix. An interested reader can carry out the details following the same
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scheme in this paper without essential difficulty but with more technicalities. The
perhaps more interesting but more complicated case of considering the translation
non-invariant dilations which are more related to the ∂-problem studied by, e.g.,
Greiner and Stein [26], Nagel and Stein [49, 50] will be carefully investigated in a
future project. We thank the referee for pointing out this more relevant situation to
us. In fact, multi-parameter local Hardy space theory parallel to the one-parameter
local Hardy space theory of Goldberg [24] has been recently developed by the au-
thors [12] in which the atomic decomposition and duality theory has been estab-
lished. Applications of proving boundedness of certain classes of operators on such
spaces are also given in [12]. With similar ideas, one can also establish that the
composition of two translation non-invariant singular integral operators of different
homogeneities are bounded on such multi-parameter local Hardy spaces [13]. Fur-
thermore, we have proved the boundedness of multi-parameter pseudo-differential
operators and Fourier integral operators on such spaces. Multi-parameter local
Hardy space theory can be extended to the setting of multi-parameter local Triebel-
Lizorkin and Besov spaces as done in the classical multi-parameter Hardy spaces
[11, 14, 16, 42].

The organization of this paper is as follows. Section 2 introduces the multi-
parameter ψ-transform Sψ and its inverse ψ-transform Tψ. These transforms cor-

respond between the multi-parameter Triebel-Lizorkin spaces Ḟα,q
p and the dis-

crete multi-parameter Triebel-Lizorkin sequence spaces ḟα,q
p indexed by the multi-

parameter dyadic rectangles in Rm associated with the underlying structures of the
composition of two singular integrals. We also introduce the discrete sequence form
Cα,q

p of the space CMOα,q
p . Thus, we prove in Theorem 2.1 that the operators

Sψ : Ḟα,q
p → ḟα,q

p and Tψ : ḟα,q
p → Ḟα,q

p are bounded, and Tψ ◦Sψ is the identity on

Ḟα,q
p . Then we establish in Theorem 2.3 that the operators Sψ : CMOα,q

p → Cα,q
p

and Tψ : Cα,q
p → CMOα,q

p are bounded, and Tψ ◦ Sψ is the identity on CMOα,q
p .

The proof of Theorem 2.3 is rather involved, and the underlying geometry of the
multi-paramter structures is extensively used. Section 3 concerns the imbedding
theorems and gives a characterization of imbedding of �r spaces into ḟα,q

p and imbed-

ding of ḟα,q
p into �r spaces. In Section 4, we establish the duality of the sequence

space ḟα,q
p . Section 5 gives the proof of the duality of the space Ḟα,q

p and establishes
the boundedness of the composition of two singular integral operators on the dual
spaces CMOα,q

p .

2. Multi-parameter ψ-transform

In order to prove the duality theorems, following Frazier and Jawerth in the
one-parameter case [22] (see also [61]), we should first do these in the correspond-
ing discrete multi-parameter Triebel-Lizorkin sequence spaces. For any R ∈ Πj,k,

setting ψR(x) = |R|1/2ψj,k(x
′ − xI , xm − xJ ), then by (1.9), it’s easy to have

f(x) =
∑
R∈D

〈f, ψR〉ψR(x).(2.1)

Definition 2.1. Suppose that ψ(1) and ψ(2) are functions satisfying conditions in
(1.5)-(1.6) and (1.7)-(1.8), respectively. Define the multi-parameter ψ-transform
Sψ as the map taking f ∈ S ′

0(R
m) to the sequence Sψf = {(Sψf)R}R, where
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(Sψf)R = 〈f, ψR〉. Define the inverse multi-parameter ψ-transform Tψ as the map
taking a sequence s = {sR}R to Tψs =

∑
R sRψR(x).

By (2.1), for f ∈ S0, g ∈ S ′
0 one has

〈f, g〉 = 〈
∑
R∈D

(Sψf)RψR(x), g〉 = 〈Sψf, Sψg〉.(2.2)

For a sequence s = sR, one also has the following identity:

〈Sψf, s〉 =
∑
R∈D

〈f, ψR〉sR = 〈f,
∑
R∈D

sRψR〉 = 〈f, Tψs〉.(2.3)

The discrete Triebel-Lizorkin sequence space ḟα,q
p is defined as follows.

Definition 2.2. For 0 < p < ∞, 0 < q ≤ ∞, α = (α1, α2) ∈ R2, define ḟα,q
p to be

the collection of all complex-valued sequences s = {sR}R such that

(2.4) ‖s‖ḟα,q
p

= ‖
( ∑

R∈D
(|I|α1/(m−1)|J |α2 |sR|χ̃R(x))

q
)1/q

‖Lp < ∞

where χ̃R(x) = |R|−1/2χR(x).

Remark 2.3. If q = ∞, (2.4) is interpreted as

‖s‖ḟα,∞
p

= ‖ sup
R∈D

(|I|α1/(m−1)|J |α2 |sR|χ̃R)‖Lp < ∞.

We also need the discrete sequence form of CMOα,q
p .

Definition 2.4. For 0 < p ≤ 1, 1 ≤ q ≤ ∞, α = (α1, α2) ∈ R2, define Cα,q
p to be

the collection of all complex-valued sequences t = {tR}R such that

(2.5) ‖t‖Cα,q
p

= sup
Ω

( 1

|Ω|
q
p−

q

q′

∫
Ω

∑
R⊆Ω,R∈D

(|I|α1/(m−1)|J |α2 |tR|χ̃R(x))
qdx

)1/q

where χ̃R(x) is the same as the form defined in Definition 2.2.

Remark 2.5. Naturally, if 0 < p ≤ 1, 1 ≤ q < ∞, (2.5) is

‖t‖Cα,q
p

= sup
Ω

1

|Ω|
1
p−

1
q′

( ∑
R⊆Ω,R∈D

(|I|α1/(m−1)|J |α2 |tR||R|−1/2)q|R|
)1/q

;

and if 0 < p ≤ 1, q = ∞, (2.5) is interpreted as

‖t‖Cα,∞
p

= sup
Ω

1

|Ω| 1p−1
sup

R⊆Ω,R∈D
|I|α1/(m−1)|J |α2 |tR||R|−1/2.

Then the following generalization of the fundamental result of Theorem 2.2 in
[22] holds.

Theorem 2.1. Suppose 0 < p < ∞, 0 < q ≤ ∞, α = (α1, α2) ∈ R2, and ψ(1) and
ψ(2) are functions satisfying conditions in (1.5)-(1.6) and (1.7)-(1.8), respectively.

The operators Sψ : Ḟα,q
p → ḟα,q

p and Tψ : ḟα,q
p → Ḟα,q

p are bounded, and Tψ ◦ Sψ is

the identity on Ḟα,q
p .
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Proof. The boundedness of Sψ is immediate since

‖Sψ(f)‖ḟα,q
p

= ‖f‖Ḟα,q
p

from the definition.
We now outline the proof of Tψ’s boundedness. For a sequence s = {sR}R∈D,

let f(x) = Tψs =
∑

R sRψR(x). Then by almost orthogonality estimates (e.g. see
Lemma 3.1 in [30]), one has

|ψj′,k′ ∗ ψj,k(xI′ − xI , xJ′ − xJ )|

� 2−|j−j′|L2−|k−k′|L 2(j∧j′∧k∧k′)(m−1)

(1 + 2j∧j′∧k∧k′ |xI′ − xI |)(M+m−1)

× 2j∧j′∧2(k∧k′)

(1 + 2j∧j′∧2(k∧k′)|xJ′ − xJ |)(M+1)
.

Hence for any v′′ ∈ xI′ , v′m ∈ xJ′ ,

|f ∗ ψj′,k′(xI′ , xJ′)|

�
∑
j,k

2−|j−j′|L2−|k−k′|LC1

{
Ms

( ∑
R∈Πj,k

|R|−1/2|sR|χIχJ

)δ

(v′′, v′m)

}1/δ

for a δ > 0 which can be sufficiently small if one chooses M big enough by Lemma
3.2 in [30]. Summing over j′, k′ and (�′′, �′m), one has( ∑

j′,k′∈Z

2−[(j′∧k′)α1+(j′∧2k′)α2]q
∑

(�′′,�′m)

|ψj′,k′ ∗ f(xI′ , xJ′)|qχI′(x′′)χJ′(x′
m)

) 1
q

≤ C
( ∑

j′,k′∈Z

2−[(j′∧k′)α1+(j′∧2k′)α2]q
[∑

j,k

2−|j−j′|L2−|k−k′|L

×C1

{
Ms

( ∑
R∈Πj,k

|R|−1/2|sR|χIχJ

)δ

(v′′, v′m)

}1/δ]q) 1
q

.

Then by the inequality (
∑

l al)
q ≤

∑
l a

q
l , if 0 < q ≤ 1, or Cauchy’s inequality with

exponents q, q′, 1q + 1
q′ = 1, if q > 1, we obtain

( ∑
j′,k′∈Z

2−[(j′∧k′)α1+(j′∧2k′)α2]q
∑

(�′′,�′m)

|ψj′,k′ ∗ f(xI′ , xJ′)|qχI′(x′′)χJ′(x′
m)

) 1
q

�
( ∑

j,k∈Z

2−[(j∧k)α1+(j∧2k)α2]q

{
Ms

( ∑
R∈Πj,k

|R|−1/2|sR|χIχJ

)δ

(v′′, v′m)

}q/δ) 1
q

.

Applying Fefferman-Stein’s vector-valued strong maximal inequality on Lp/δ(�q/δ)
provided δ < min{p, q, 1}, we complete the proof. �

Next, we will obtain a similar correspondence between CMOα,q
p and Cα,q

p . Fol-
lowing the proof of Lemma 3.1 in [30], one can obtain the following almost orthog-
onality estimates.
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Lemma 2.2. Suppose that ψj,k and ϕj′,k′ satisfy the same conditions in (1.5)-(1.8).
Then for any given integers L1, L2 and M , there exists a constant C = C(L,M) > 0
such that

|ψj,k ∗ ϕj′,k′(x′, xm)|

≤ C2−|j−j′|L12−|k−k′|L2
2(j∧k)(m−1)2j∧2k

(1 + 2j∧k|x′|)(M+m−1)(1 + 2j∧2k|xm|)(M+1)
.

Proof. One can write

(ψj,k ∗ ϕj′,k′)(x′, xm)

=

∫
Rm−1×R

(ψ
(1)
j ∗ ϕ(1)

j′ )(x′ − y′, xm − ym)(ψ
(2)
k ∗ ϕ(2)

k′ )(y
′, ym)dy′dym.

Then by classical almost orthogonality estimates, one has

(2.6) |ψ(1)
j ∗ ϕ(1)

j′ (u′, um)| ≤ C
2(j∧j′)m 2−|j−j′|L1

(1 + 2(j∧j′)|u′|)(M+m−1) (1 + 2(j∧j′)|um|)(M+1)

and

(2.7) |ψ(2)
k ∗ ϕ(2)

k′ (y
′, ym)| ≤ C

2(k∧k′)(m+1) 2−|k−k′|L2

(1 + 2(k∧k′)|y′|)(M+m−1) (1 + 22(k∧k′)|ym|)(M+1)

for any positive integer L1, L2 and M . With the same process as in the proof of
Lemma 3.1 in [30], we have

|ψj,k ∗ ϕj′,k′(x′, xm)| ≤ C2−|j−j′|L12−|k−k′|L2
2(j∧j′∧k∧k′)(m−1)

(1 + 2j∧j′∧k∧k′ |x′|)(M+m−1)

× 2j∧j′∧2(k∧k′)

(1 + 2j∧j′∧2(k∧k′)|xm|)(M+1)
,

which gives

|ψj,k ∗ ϕj′,k′(x′, xm)| � 2−|j−j′|L12−|k−k′|L2
2(j∧k)M−(j∧j′∧k∧k′)M2(j∧k)(m−1)

(1 + 2j∧k|x′|)(M+m−1)

×2(j∧2k)M−(j∧j′∧2(k∧k′))M2j∧j′∧2(k∧k′)

(1 + 2j∧2k|xm|)(M+1)
.

After observing that

j ∧ k − j ∧ j′ ∧ k ∧ k′ ≤ |j − j′|+ |k − k′|
and

j ∧ 2k − j ∧ j′ ∧ 2(k ∧ k′) ≤ |j − j′|+ 2|k − k′|,
we obtain the desired result. �

The next theorem concerns the actions of the multi-parameter ψ-transform Sψ

and its inverse ψ-transform Tψ on the space CMOα,q
p and its discrete sequence form

Cα,q
p . We prove that operators Sψ : CMOα,q

p → Cα,q
p and Tψ : Cα,q

p → CMOα,q
p

are bounded, and Tψ ◦ Sψ is the identity on CMOα,q
p . The proof of this theorem

is rather involved, and the underlying geometry of the multi-parameter structures
of the dyadic rectangles associated with the composition of two operators with
different homogeneities plays an important role. These sorts of ideas have been
initially used in [31] and then [30] for duality of flag Hardy spaces, and similar
ideas have been used subsequently for Hardy spaces in different multi-parameter
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settings (see [28], [29], [41], etc.). Nevertheless, it is more difficult and complicated
to carry out our multi-parameter Triebel-Lizorkin spaces.

Theorem 2.3. Suppose 0 < p ≤ 1 ≤ q ≤ ∞, α = (α1, α2) ∈ R2, and ψ(1) and
ψ(2) are functions satisfying conditions in (1.5)-(1.6) and (1.7)-(1.8), respectively.
Then the operators Sψ : CMOα,q

p → Cα,q
p and Tψ : Cα,q

p → CMOα,q
p are bounded,

and Tψ ◦ Sψ is the identity on CMOα,q
p .

Proof. We only prove Tψ is bounded since the rest is obvious. Let t = {tR′}R′ ∈
Cα,q

p and f =
∑

tR′ψR′ . When 1 ≤ q < ∞, we are going to prove

sup
Ω

1

|Ω|
1
p−

1
q′

( ∑
R=I×J⊆Ω,R∈D

(|I|α1/(m−1)|J |α2 |ϕj,k ∗ f(xI , xJ )|)q|R|
)1/q

� sup
Ω

1

|Ω|
1
p−

1
q′

( ∑
R′=I′×J′⊆Ω,R′∈D

(|I ′|α1/(m−1)|J ′|α2 |tR′ ||R′|−1/2)q|R′|
)1/q

.(2.8)

For any R′ ∈ Πj′k′ , by Lemma 2.2, one has

|ϕj,k ∗ ψR′(xI , xJ)| ≤ C|R′|1/22−|j−j′|(L1+L2)2−|k−k′|(L1+2L2)

× 2(j
′∧k′)(m−1)

(1 + 2j′∧k′ |xI − xI′ |)(M+m−1)

× 2j
′∧2k′

(1 + 2j′∧2k′ |xJ − xJ′ |)(M+1)
.

Since |j′ ∧ k′ − j ∧ k| ≤ |j − j′| + |k − k′|, |j′ ∧ 2k′ − j ∧ 2k| ≤ |j − j′| + 2|k − k′|,
one has

|ϕj,k ∗ ψR′(xI , xJ)| ≤ C|R′|−1/2 2−L1|j′∧k′−j∧k|

(1 + 2j′∧k′ |xI − xI′ |)(M+m−1)

× 2−L2|j′∧2k′−j∧2k|

(1 + 2j′∧2k′ |xJ − xJ′ |)(M+1)

for any sufficiently larger L1, L1. Using conditions (1.5), (1.7), it is easy to see that

(ϕj,k ∗ ψj′,k′(· − 2−(j′∧k′)�′, · − 2−(j′∧2k′)�m))∧(ξ′, ξm)

= ϕ̂j,k(ξ
′, ξm)ψ̂j′,k′(ξ′, ξm) exp(−2πi[2−(j′∧k′)�′ξ′ + 2−(j′∧2k′) �mξm])

= 0 if |j′ − j| > 1 or |k′ − k| > 1,

from which follows

|ϕj,k ∗ f(xI , xJ )|q �
∑
R′

|tR′ |q|ϕj,k ∗ ψR′(xI , xJ)|q.
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Hence ∑
R=I×J⊆Ω,R∈D

(|I|α1/(m−1)|J |α2 |ϕj,k ∗ f(xI , xJ )|)q|R|

�
∑

R=I×J⊆Ω,R∈D

∑
R′=I′×J′∈D

|I|qα1/(m−1)|J |qα2 |tR′ |q|R′|−q/2|R|

×
(

|I|
|I ′| ∧

|I ′|
|I|

)qL1/(m−1)
1

(1 + dist(I,I′)
�(I′) )M

(
|J |
|J ′| ∧

|J ′|
|J |

)qL2

1

(1 + dist(J,J′)
�(J′) )M

=
∑

R=I×J⊆Ω,R∈D

∑
R′=I′×J′∈D

(
|I|
|I ′|

)qα1/(m−1)(
|J |
|J ′|

)qα2

|R|
|R′|

×
(

|I|
|I ′| ∧

|I ′|
|I|

)qL1/(m−1)(
|J |
|J ′| ∧

|J ′|
|J |

)qL2

1

(1 + dist(I,I′)
�(I′) )M

1

(1 + dist(J,J′)
�(J′) )M

(|I ′|α1/(m−1)|J ′|α2 |tR′ ||R′|−1/2)q|R′|

�
∑

R=I×J⊆Ω,R∈D

∑
R′=I′×J′∈D

(
|I|
|I ′| ∨

|I ′|
|I|

)q|α1|/(m−1)+1(
|J |
|J ′| ∨

|J ′|
|J |

)q|α2|+1

×
(

|I|
|I ′| ∧

|I ′|
|I|

)qL1/(m−1)(
|J |
|J ′| ∧

|J ′|
|J |

)qL2

1

(1 + dist(I,I′)
�(I′) )M

1

(1 + dist(J,J′)
�(J′) )M

× (|I ′|α1/(m−1)|J ′|α2 |tR′ ||R′|−1/2)q|R′|

=
∑

R=I×J⊆Ω,R∈D

∑
R′=I′×J′∈D

(|I ′|α1/(m−1)|J ′|α2 |tR′ ||R′|−1/2)q|R′|

×
(

|I|
|I ′| ∧

|I ′|
|I|

)L(
|J |
|J ′| ∧

|J ′|
|J |

)L
1

(1 + dist(I,I′)
�(I′) )M

1

(1 + dist(J,J′)
�(J′) )M

by setting qL1/(m− 1)− q|α1|/(m− 1)− 1 = L = qL2 − q|α2| − 1. Thus

sup
Ω

1

|Ω|
1
p−

1
q′

( ∑
R=I×J⊆Ω,R∈D

(|I|α1/(m−1)|J |α2 |ψj,k ∗ f(xI , xJ)|)q|R|
)1/q

� sup
Ω

1

|Ω|
1
p−

1
q′

( ∑
R=I×J⊆Ω,R∈D

∑
R′=I′×J′∈D

r(R,R′)p(R,R′)(2.9)

×(|I ′|α1/(m−1)|J ′|α2 |tR′ ||R′|−1/2)q|R′|
)1/q

,

where

r(R,R′) =

(
|I|
|I ′| ∧

|I ′|
|I|

)L(
|J |
|J ′| ∧

|J ′|
|J |

)L

and

p(R,R′) =
1

(1 + dist(I,I′)
�(I′) )M

1

(1 + dist(J,J′)
�(J′) )M

.
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In order to prove inequality (2.8), using (2.9), we only need to prove

sup
Ω

1

|Ω|
1
p−

1
q′

( ∑
R=I×J⊆Ω,R∈D

∑
R′=I′×J′∈D

r(R,R′)p(R,R′)

×(|I ′|α1/(m−1)|J ′|α2 |tR′ ||R′|−1/2)q|R′|
)1/q

� sup
Ω

1

|Ω|
1
p−

1
q′

( ∑
R′=I′×J′⊆Ω,R′∈D

(|I ′|α1/(m−1)|J ′|α2 |tR′ ||R′|−1/2)q|R′|
)1/q

.(2.10)

To do this, define

Ω0,0 =
⋃

R=I×J⊆Ω

3(I × J).

For any R ⊆ Ω, let Ai,l(R) be the collection of dyadic rectangles R′ so that

A0,0(R) = {R′ = I ′ × J ′ ⊆ Ω : dist(I, I ′) ≤ �(I) ∨ �(I ′), dist(J, J ′) ≤ �(J) ∨ �(J ′)},

and for i ≥ 1,

Ai,0(R) = {R′= I ′× J ′ ⊆ Ω : (2i−1�(I ′)) ∨ �(I) < dist(I, I ′) ≤ (2i�(I ′)) ∨ �(I),

dist(J, J ′) ≤ �(J) ∨ �(J ′)},

and for l ≥ 1,

A0,l(R) = {R′ = I ′ × J ′ ⊆ Ω : dist(I, I ′) ≤ �(I) ∨ �(I ′),

(2l−1�(J ′)) ∨ �(J) < dist(J, J ′) ≤ (2l�(J ′)) ∨ �(J)},

and for i, l ≥ 1,

Ai,l(R) = {R′= I ′× J ′ ⊆ Ω : (2i−1�(I ′)) ∨ �(I) < dist(I, I ′) ≤ (2i�(I ′)) ∨ �(I),

(2l−1�(J ′)) ∨ �(J) < dist(J, J ′) ≤ (2l�(J ′)) ∨ �(J)},

and i, l ≥ 0,

Ai,j = {R′ = I ′ × J ′ ∈ D : 3(2iI ′ × 2lJ ′) ∩ Ω0,0 �= ∅}.

It is easy to see that for any R ⊆ Ω,
⋃

i,l≥0 Ai,l(R) = D, Ai,l(R) ∩ Ai′,l′(R)= ∅
if (i, l) �= (i′, l′) and Ai,l(R) ⊆ Ai,l. Note that for R′ ∈ Ai,j(R), i, l ≥ 0,

1 +
dist(I, I ′)

�(I ′)
� 2i, 1 +

dist(J, J ′)

�(J ′)
� 2l,

from which follows

p(R,R) � 2−(i+l)M .
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Hence

1

|Ω|
1
p−

1
q′

( ∑
R=I×J⊆Ω,R∈D

∑
R′=I′×J′∈D

r(R,R′)p(R,R′)

× (|I ′|α1/(m−1)|J ′|α2 |tR′ ||R′|−1/2)q|R′|
)1/q

=
1

|Ω|
1
p−

1
q′

( ∑
R=I×J⊆Ω,R∈D

∑
i,l≥0

∑
R′∈Ai,l(R)

r(R,R′)p(R,R′)

× (|I ′|α1/(m−1)|J ′|α2 |tR′ ||R′|−1/2)q|R′|
)1/q

=
1

|Ω|
1
p−

1
q′

( ∑
R=I×J⊆Ω,R∈D

∑
i,l≥0

∑
R′∈Ai,l

χR′∈Ai,l(R)r(R,R′)p(R,R′)

× (|I ′|α1/(m−1)|J ′|α2 |tR′ ||R′|−1/2)q|R′|
)1/q

� 1

|Ω|
1
p−

1
q′

(( ∑
R′∈A0,0

+
∑
i≥1

∑
R′∈Ai,0

+
∑
l≥1

∑
R′∈A0,l

+
∑
i,l≥1

∑
R′∈Ai,l

)
2−(i+l)M

×
∑

R⊆Ω,R∈D
χR′∈Ai,l(R)r(R,R′)(|I ′|α1/(m−1)|J ′|α2 |tR′ ||R′|−1/2)q|R′|

)1/q

= (I1 + I2 + I3 + I4)
1/q.

We only estimate I4 since estimates of estimate I1, I2 and I3 can be concluded
by applying the same techniques.

For each integer h ≥ 1, let F i,l
h = {R′ = I ′ × J ′ ∈ Ai,l : |3(2iI ′ × 2lJ ′) ∩ Ω0,0| ≥

1
2h
|2iI ′ × 2lJ ′|}. Let

Di,l
h = F i,l

h \F i,l
h−1 and Ωi,l

h =
⋃

R′∈Di,l
h

R′.

Then

I4 =
1

|Ω|
q
p−

q

q′

∑
i,l≥1

∑
h≥1

∑
R′∈Di,l

h

2−(i+l)M
∑

R⊆Ω,R∈D
χR′∈Ai,l(R)r(R,R′)

× (|I ′|α1/(m−1)|J ′|α2 |tR′ ||R′|−1/2)q|R′|.

To estimate the right-hand side of the above inequality, we only need to estimate∑
R⊆Ω,R∈D

χR′∈Ai,l(R)r(R,R′).

Firstly, because R′ ∈ Ai,l(R), one has 3R ∩ 3(2iI ′ × 2jJ ′) �= ∅. For R ⊆ Ω, there
are four cases:

Case 1: |2iI ′| ≥ |I|, |2lJ ′| ≥ |J |; Case 2: |2iI ′| ≥ |I|, |2lJ ′| ≤ |J |;
Case 3: |2iI ′| ≤ |I|, |2lJ ′| ≥ |J |; Case 4: |2iI ′| ≤ |I|, |2lJ ′| ≤ |J |.

From the definition of Ai,l(R), one can see that if R′ ∈ Case 2, then

�(J) = (2l−1�(J ′)) ∨ �(J) < dist(J, J ′) ≤ (2l�(J ′)) ∨ �(J) = �(J),
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7134 WEI DING AND GUOZHEN LU

which implies Case 2 is an empty set. For the same reason, Case 3 is also an empty
set. We split I4 into two terms:

I4 =
1

|Ω|
q
p−

q
q′

∑
i,l≥1

∑
h≥1

∑
R′∈Di,l

h

2−(i+l)M (
∑

R∈Case 1

+
∑

R∈Case 4

)χR′∈Ai,l(R)r(R,R′)

×(|I ′|α1/(m−1)|J ′|α2 |tR′ ||R′|−1/2)q|R′|
= I14 + I44 .

In Case 1, since R′ ∈ Ai,l(R) and R′ ∈ Di,l
h , one has

(2.11) |R| ≤ |3R ∩ 3(2iI ′ × 2lJ ′)| ≤ |3(2iI ′ × 2lJ ′) ∩ Ω0,0| ≤ 1

2h−1
|3(2iI ′ × 2lJ ′)|.

In r(R,R′), we should compare the side-length of R with the side-length of R′. We
divide R ⊆ Ω into four categories:

Category 1.1 |I| ≤ |I ′|, |J | ≤ |J ′|; Category 1.2 |I| ≤ |I ′|, |J | > |J ′|;
Category 1.3 |I| > |I ′|, |J | ≤ |J ′|; Category 1.4 |I| > |I ′|, |J | > |J ′|.

For Category 1.1, (2.11) gives 2i(m−1)+l|R′| = 2h−1−2m+η|R| for some integer η > 0
since I, I ′ are all dyadic, where 2−2m is used to offset 3m. For each fixed η > 0,
the number of such R’s must be less than 7m2h−1−2m+η since R ⊆ 7(2iI ′ × 2lJ ′).
Therefore ∑

R∈Case1,|I|≤|I′|,|J|≤|J′|
χR′∈Ai,l(R)r(R,R′) ≤ 7m

∑
η>0

(2i(m−1)+l)L

(2h−1−2m+η)L−1

� 2iLm−h(L−1)+lL.

For Category 1.2, |I| ≤ |I ′|, |J | > |J ′|. From (2.11), one has

|I||J ′| ≤ |R| ≤ |3R ∩ 3(2iI ′ × 2lJ ′)| ≤ |3(2iI ′ × 2lJ ′) ∩ Ω0,0| ≤ 1

2h−1
|3(2iI ′ × 2lJ ′)|.

It follows that

|I| ≤ 3m2
i(m−1)+l

2h−1
|I ′|;

hence 2
i(m−1)+l |I ′| = 2h−1−2m+θ|I| for some integer θ > 0. For each fixed θ > 0,

the number of such I’s must be less than 7m−12h−1−2m−l+θ since I ⊆ 7(2iI ′).
Moreover from |J ′| < |J | ≤ |2lJ ′| we have |2βJ ′| = |J | for some positive integer β
with 1 ≤ β ≤ l. For each fixed β > 0, the number of such J ’s must be less than
72(l−β) since J ⊆ 7(2lJ ′). Hence∑
R∈Case1,|I|≤|I′|,|J|>|J′|

χR′∈Ai,l(R)r(R,R′) ≤ 7m
∑
θ>0

l∑
β=1

(2i(m−1))L

(2h−1−2m−l+θ)L−1

2l−β

2Lβ

� l2iLm−h(L−1)+3lL.

With a similar argument to Category 1.2, for Category 1.3 one can obtain the
following estimates:∑

R∈Case1,|I|>|I′|,|J|≤|J′|
χR′∈Ai,l(R)r(R,R′) � i22iLm−h(L−1)+2lL.

For Category 1.4, from (2.11) one has

|R′| ≤ 1

2h−1
|3(2iI ′ × 2lJ ′)|,
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from which follows that 2h−1 ≤ 3m2i(m−1)+l. On the other hand, with |R′| ≤ |R| ≤
|2iI ′ × 2lJ ′|, one has 2i(m−1)+l|R′| = 2λ|R| for some integer 0 ≤ λ ≤ i(m− 1) + l.
For each fixed λ ≥ 0, the number of such R’s must be less than 7m2λ since R ⊆
7(2iI ′ × 2lJ ′). So

∑
R∈Case1,|I|>|I′|,|J|>|J′|

χR′∈Ai,l(R)r(R,R′) =

i(m−1)+l∑
λ=0

7m2λ
( 2λ

2i(m−1)+l

)L

� 2im+l.

Therefore

I14 =
1

|Ω|
q
p−

q
q′

∑
i,l≥1

∑
h≥1

∑
R′∈Di,l

h

2−(i+l)M
∑

R∈Case 1

χR′∈Ai,l(R)r(R,R′)

× (|I ′|α1/(m−1)|J ′|α2 |tR′ ||R′|−1/2)q|R′|

� 1

|Ω|
q
p−

q
q′

∑
i,l≥1

(∑
h≥1

(2iLm−h(L−1)+lL + l2iLm−h(L−1)+3lL

+ i22iLm−h(L−1)+2lL) +
∑

h:2h−1≤3m2i(m−1)+l

2im+l
)
2−(i+l)M |Ωi,l

h |
q
p−

q

q′

× 1

|Ωi,l
h |

q
p−

q

q′

∑
R′⊆Ωi,l

h

(|I ′|α1/(m−1)|J ′|α2 |tR′ ||R′|−1/2)q|R′|

�
∑
i,l≥1

(∑
h≥1

24iLm−h(L−1)+4lL +
∑

h:2h−1≤3m2i(m−1)+l

2im+l
)

× 2−(i+l)M (22h)
q
p−

q
q′ sup

Ω̄

1

|Ω̄|
q
p−

q

q′

∑
R′⊆Ω̄

(|I ′|α1/(m−1)|J ′|α2 |tR′ ||R′|−1/2)q|R′|

� sup
Ω̄

1

|Ω̄|
q
p−

q

q′

∑
R′⊆Ω̄

(|I ′|α1/(m−1)|J ′|α2 |tR′ ||R′|−1/2)q|R′|

since |Ωi,l
h | � 22h|Ω0,0| ≤ 22h|Ω|, 0 < p ≤ 1 ≤ q ≤ ∞ and choosing M > 4mL with

L large enough.

In Case 4, firstly, since R′ ∈ Ai,l(R) and R′ ∈ Di,l
h , one has

|2iI ′ × 2lJ ′| ≤ |3R ∩ 3(2iI ′ × 2lJ ′)| ≤ |3(2iI ′ × 2lJ ′) ∩ Ω0,0| ≤ 1

2h−1
|3(2iI ′ × 2lJ ′)|,

which follows h ≤ 22m+1. Moreover, from |2iI ′| ≤ |I|, |2lJ ′| ≤ |J |, one has
2i(m−1)+l+σ|R′| = |R| for some integer σ ≥ 0. For each fixed σ ≥ 0 and any
R′, the number of such R’s must be less than 7m. In this situation, we have the
following estimates:∑

R∈Case4

χR′∈Ai,l(R)r(R,R′) =
∑
σ≥0

7m
( 1

2i(m−1)+l+σ

)L

� 2im+l.

Then with the same process, one has

I44 � sup
Ω̄

1

|Ω̄|
q
p−

q
q′

∑
R′⊆Ω̄

(|I ′|α1/(m−1)|J ′|α2 |tR′ ||R′|−1/2)q|R′|.

We then complete the proof of (2.8).
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7136 WEI DING AND GUOZHEN LU

When q = ∞, for t = {tR′}R′ ∈ Cα,q
p and f =

∑
tR′ψR′ , we are going to prove

sup
Ω

1

|Ω| 1p−1
sup

R=I×J⊆Ω,R∈D
|I|α1/(m−1)|J |α2 |ϕj,k ∗ f(xI , xJ)|

� sup
Ω

1

|Ω| 1p−1
sup

R′=I′×J′⊆Ω,R′∈D
|I ′|α1/(m−1)|J ′|α2 |tR′ ||R′|−1/2

Its proof is similar to the case of 0 < q < ∞; hence we only give an outline.
For convenience, we use the same symbols as above. With the same process, one

has

1

|Ω| 1p−1
sup

R=I×J⊆Ω,R∈D
|I|α1/(m−1)|J |α2 |ϕj,k ∗ f(xI , xJ)|

� 1

|Ω| 1p−1
sup

R=I×J⊆Ω,R∈D

∑
R′=I′×J′∈D

|I|α1/(m−1)|J |α2 |tR′ ||R′|−1/2

×
(

|I|
|I ′| ∧

|I ′|
|I|

)L1/(m−1)
1

(1 + dist(I,I′)
�(I′) )M

(
|J |
|J ′| ∧

|J ′|
|J |

)L2

1

(1 + dist(J,J′)
�(J′) )M

=
1

|Ω| 1p−1
sup

R=I×J⊆Ω,R∈D

∑
R′=I′×J′∈D

(
|I|
|I ′|

)α1/(m−1)(
|J |
|J ′|

)α2

×
(

|I|
|I ′| ∧

|I ′|
|I|

)L1/(m−1)
1

(1 + dist(I,I′)
�(I′) )M

(
|J |
|J ′| ∧

|J ′|
|J |

)L2

1

(1 + dist(J,J′)
�(J′) )M

|I ′|α1/(m−1)|J ′|α2 |tR′ ||R′|−1/2

� 1

|Ω| 1p−1
sup

R=I×J⊆Ω,R∈D

∑
R′=I′×J′∈D

|I ′|α1/(m−1)|J ′|α2 |tR′ ||R′|−1/2

×
(

|I|
|I ′| ∧

|I ′|
|I|

)L(
|J |
|J ′| ∧

|J ′|
|J |

)L
1

(1 + dist(I,I′)
�(I′) )M

1

(1 + dist(J,J′)
�(J′) )M

=
1

|Ω| 1p−1
sup

R=I×J⊆Ω,R∈D

∑
R′=I′×J′∈D

r(R,R′)p(R,R′)|I ′|α1/(m−1)|J ′|α2 |tR′ ||R′|−1/2

=
1

|Ω| 1p−1
sup

R=I×J⊆Ω,R∈D

( ∑
R′∈A0,0(R)

+
∑
i≥1

∑
R′∈Ai,0(R)

+
∑
l≥1

∑
R′∈A0,l(R)

+
∑
i,l≥1

∑
R′∈Ai,l(R)

)
2−(i+l)Mr(R,R′)|I ′|α1/(m−1)|J ′|α2 |tR′ ||R′|−1/2

= B1 +B2 +B3 +B4.

We only estimate B4 since estimates of B1, B2 and B3 can be concluded by
applying the same techniques.

For each integer h ≥ 1, let F i,l
h = {R′ = I ′ × J ′ ∈ Ai,l(R) : |3(2iI ′ × 2lJ ′)∩R| ≥

1
2h
|2iI ′ × 2lJ ′|}. Let

Di,l
h = F i,l

h \F i,l
h−1 and Ωi,l

h =
⋃

R′∈Di,l
h

R′.
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Then

B4 =
1

|Ω| 1p−1
sup

R=I×J⊆Ω,R∈D

∑
i,l≥1

∑
h≥1

∑
R′∈Di,l

h

2−(i+l)Mr(R,R′)

× |I ′|α1/(m−1)|J ′|α2 |tR′ ||R′|−1/2.

To estimate the right-hand side of the above inequality, we only need to estimate∑
R′∈Di,l

h

r(R,R′).

Firstly, because R′ ∈ Ai,l(R), one has 3R ∩ 3(2iI ′ × 2jJ ′) �= ∅. For R′ ∈ Di,l
h , there

are also four cases:
Case 1: |2iI ′| ≥ |I|, |2lJ ′| ≥ |J |; Case 2: |2iI ′| ≥ |I|, |2lJ ′| ≤ |J |;
Case 3: |2iI ′| ≤ |I|, |2lJ ′| ≥ |J |; Case 4: |2iI ′| ≤ |I|, |2lJ ′| ≤ |J |.

It is easy to see that Case 2, Case 3 are none. Then B4 = B1
4 +B4

4 .
For R′ ∈ Case 1, one has

|R| ≤ |3R ∩ 3(2iI ′ × 2lJ ′)| ≤ |3(2iI ′ × 2lJ ′) ∩ Ω0,0| ≤ 1

2h−1
|3(2iI ′ × 2lJ ′)|.

We divide R′ ∈ Case 1 into four categories:
Category 1.1 |I| ≤ |I ′|, |J | ≤ |J ′|; Category 1.2 |I| ≤ |I ′|, |J | > |J ′|;
Category 1.3 |I| > |I ′|, |J | ≤ |J ′|; Category 1.4 |I| > |I ′|, |J | > |J ′|.

In Category 1.1, we have 2i(m−1)+l|R′| = 2h−1−2m+η|R| for some integer η >
0. Moreover, for any fixed η > 0 and R, the number of such R′’s is less than
7m2i(m−1)+l since 3R ∩ 3(2iI ′ × 2jJ ′) �= ∅ and |2iI ′| ≥ |I|, |2lJ ′| ≥ |J |. Hence∑

R′∈Category 1.1

r(R,R′) =
∑
η≥0

7m2i(m−1)+l
( 2i(m−1)+l

2h−1−2m+η

)L

� 22imL+2lL−hL.

In Category 1.2, one has 2
i(m−1)+l |I ′| = 2h−1−2m+θ|I| for some integer θ > 0.

For each fixed θ > 0 and R, the number of such I ′’s must be less than 7m−12i(m−1).
Moreover, from |J ′| < |J | ≤ |2lJ ′|, we have |2βJ ′| = |J | for some positive integer β
with 1 ≤ β ≤ l. For each fixed β > 0 and J , the number of such J ′’s must be less
than 72(l−β). Hence∑

R∈Category 1.2

r(R,R′) ≤ 7m
∑
η>0

l∑
β=1

2i(m−1)(2i(m−1)+l)L

(2h−1−2m+θ)L
2l−β

2Lβ

� l22iLm−hL+2lL.

With a similar argument, one has∑
R∈Category 1.3

r(R,R′) � i22iLm−hL+2lL.

In Category 1.4, one has 2h−1 ≤ 3m2i(m−1)+l, and with |R′| ≤ |R| ≤ |2iI ′×2lJ ′|,
one has 2i(m−1)+l|R′| = 2λ|R| for some integer 0 ≤ λ ≤ i(m− 1)+ l. For each fixed
λ ≥ 0, the number of such R′’s must be less than 7m2i(m−1)+l. So

∑
R∈Category 1.4

r(R,R′) =

i(m−1)+l∑
λ=0

7m2i(m−1)+l
( 2λ

2i(m−1)+l

)L

� 2im+l.
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Therefore

B1
4 =

1

|Ω| 1p−1
sup

R=I×J⊆Ω,R∈D

∑
i,l≥1

∑
h≥1

∑
R′∈Case 1

2−(i+l)Mr(R,R′)|I ′|α1/(m−1)

×|J ′|α2 |tR′ ||R′|−1/2

≤ 1

|Ω| 1p−1
sup

R=I×J⊆Ω,R∈D

∑
i,l≥1

∑
h≥1

∑
R′∈Case 1

2−(i+l)Mr(R,R′)|Ωi,l
h |

× 1

|Ωi,l
h | 1p−1

sup
R∈Ωi,l

h

|I ′|α1/(m−1)|J ′|α2 |tR′ ||R′|−1/2

� sup
Ω

1

|Ω| 1p−1
sup

R′=I′×J′⊆Ω,R′∈D
|I ′|α1/(m−1)|J ′|α2 |tR′ ||R′|−1/2.

With a similar argument for the rest, we can obtain the desired result. We then
have completed the proof. �
Proof of Theorem 1.2. Suppose that ϕ(1) and ϕ(2) are functions satisfying condi-
tions in (1.5)-(1.6) and (1.7)-(1.8), respectively. For f ∈ CMOα,q

p , setting ϕR(x) =

|R|1/2ϕj,k(x
′ − xI , xm − xJ ) with R ∈ Πj,k, and tR = 〈f, ϕR〉 = ϕj,k ∗ f(xI , xJ), by

Theorem 2.3, we have f =
∑

R tRϕR and t = {tR}R ∈ Cα,q
p . Then (2.8) gives

sup
Ω

1

|Ω|
1
p−

1
q′

( ∑
R=I×J⊆Ω,R∈D

(|I|α1/(m−1)|J |α2 |ψj,k ∗ f(xI , xJ)|)q|R|
)1/q

� sup
Ω

1

|Ω|
1
p−

1
q′

( ∑
R=I×J⊆Ω,R∈D

(|I|α1/(m−1)|J |α2 |tR||R|−1/2)q|R|
)1/q

The conclusion of Theorem 1.2 follows immediately. �

3. Imbedding theorems

In this section, we give a characterization of imbedding of �r spaces into ḟα,q
p

and imbedding of ḟα,q
p into �r spaces. This result was first established by Verbitsky

[63] in the dyadic cubes with respect to an arbitrary positive locally finite measure
on the Euclidean space and was generalized by Bownik [1] to discrete anisotropic
Triebel-Lizorkin sequence spaces.

Theorem 3.1. Assume that Π is any subfamily D and {cR}R∈Π is any positive
sequence.

(i) Suppose 0 < p < r ≤ q ≤ ∞. Then the inequality

‖
( ∑

R∈Π

|sR|q(cR)qχR

)1/q

‖Lp ≤ C‖s‖�r(3.1)

holds for all scalar sequences s = {sR}R∈Π if and only if∫
sup
R∈Π

(
(cR)

r|R|
)p/(r−p)

χR(x)dx < ∞.(3.2)

(ii) Suppose 0 < q ≤ r < p < ∞. Then the inequality

‖
( ∑

R∈Π

|sR|q(cR)qχR

)1/q

‖Lp ≥ C‖s‖�r(3.3)

holds for all scalar sequences s = {sR}R∈Π if and only if (3.2) holds.
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To establish Theorem 3.1 we will follow the original approach of Verbitsky [63].
Thus, we recall the following known results.

Lemma 3.2 (Theorem 1 (i)(ii) of [63]). Let 0 < p < r ≤ q ≤ ∞. Then∥∥∥(∑
i∈I

(|si|qϕq
i

)1/q∥∥∥
Lp

≤ C‖s‖�r

holds if ∫
sup
i

[(
φr−p
i (x)‖φi‖pLp

)]p/(r−p)

dx < ∞.

Suppose 0 < q ≤ r < p < ∞. Then∥∥∥(∑
i

(|si|qϕq
i

)1/q∥∥∥
Lp

≥ C‖s‖�r

holds if ∫
sup
i

[(
φp−r
i (x)/‖φi‖pLp

)]p/(p−r)

dx < ∞.

Lemma 3.3 (Theorem 1.1 of [53]). Let 0 < p < r < ∞, I be any index set, and
{ϕi}i∈I be a family in Lp. Then, the inequality∥∥∥ sup

i∈I
(|si|ϕi)

∥∥∥
Lp

≤ C‖s‖�r

holds for all scalar sequences s = {si}i∈I ∈ �r if and only if there exists a non-
negative measurable function F ≥ 0 with

∫
F (x)dx ≤ 1, such that

sup
i∈I

‖F−1/pϕi‖Lr,∞(μ) < ∞,

where Lr,∞(μ) is a weak-Lr with respect to the measure du(x) = F (x)dx defined by

‖f‖Lr,∞(μ) =
(
sup
t>0

trμ({x ∈ Rm : |f(x)| > t})
)1/r

< ∞

for f ∈ Lr,∞(μ).

Lemma 3.4 (Remark 3 of [63]). If 0 < q = r < p < ∞, then

‖
(∑

i∈I

|si|qφq
i

)1/q

‖Lp ≥ C‖s‖�r

holds if and only if there exists F ≥ 0 such that∫
F (x)dx ≤ 1 and inf

i
‖F−1/pφi‖Lr(μ) > 0,

where dμ(x) = F (x)dx.

Proof of Theorem 3.1. We begin with the proof of part (i). Firstly (3.2)⇒ (3.1) is
a direct consequence of Lemma 3.2 since

∫
(cRχR(x))

pdx = (cR)
p|R|.

Now suppose that (3.1) holds for p < r. By imbedding �q ↪→ �∞ and Lemma 3.3,
there exists a non-negative measurable function F ≥ 0 with

∫
F (x)dx ≤ 1, such

that

(3.4) sup
R∈Π

‖F−1/pcRχR‖Lr,∞(μ) = sup
R∈Π

cR‖F−1/pχR‖Lr,∞(μ) < ∞,
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7140 WEI DING AND GUOZHEN LU

where dμ = Fdx. Let f = F−1/pχR; then ‖f‖Lp(μ) = |R|1/p. Suppose p < s < r
and 1/s = t/p + (1 − t)/r with 0 < t < 1. Applying the well-known interpolation
inequality (e.g. Proposition 1.1.14 of [25])

‖f‖Ls(μ) ≤ C‖f‖tLp,∞(μ)‖f‖1−t
Lr,∞(μ),

one has for any R ∈ Π,

(

∫
R

F−s/p+1dx)1/s ≤ C|R|t/p‖F−1/pχR‖1−t
Lr,∞(μ).

Letting δ = s/p− 1 and combining the above inequality with (3.4), we obtain(
cR|R|1/r

)pr/(r−p)( 1

|R|

∫
R

F−δdx
)1/δ

≤ C < ∞.

On the other hand, by Hölder’s inequality with exponents δ+ε
ε , δ+ε

δ one has( 1

|R|

∫
R

F−δdx
)1/δ( 1

|R|

∫
R

F εdx
)1/ε

≥ 1,

for all δ, ε > 0. Hence(
cR|R|1/r

)pr/(r−p)

≤ C
( 1

|R|

∫
R

F εdx
)1/ε

≤ C(Ms(F
ε)(x))1/ε

for x ∈ R, where Ms denotes the strong maximal operator. Since Ms is bounded
on L1/ε for 0 < ε < 1, we have∫

sup
R∈Π

(
(cR)

r|R|
)p/(r−p)

χRdx �
∫
(Ms(F

ε)(x))1/εdx �
∫

F (x)dx < ∞.

We then have completed the proof of part (i) of Theorem 3.1.
We now give the proof of part (ii). The second part of Lemma 3.2 gives the

proof of (3.2)⇒ (3.3). Now suppose that (3.3) holds. We first prove (3.2) for
q = r following the original argument of Verbitsky [63]. By Lemma 3.4, there exists
F ∈ L1, F ≥ 0, such that

inf
R∈Π

∫
F 1−r/p(cRχR)

rdx = inf
R∈Π

(cR)
r

∫
R

F 1−r/pdx > 0.

It follows from the above inequality that∫
sup
R∈Π

(
(cR)

r|R|
)p/(r−p)

χR(x)dx ≤
∫

sup
R∈Π

( 1

|R|

∫
R

F 1−r/pdy
)p/(p−r)

χR(x)dx

≤
∫ (

Ms(F
1−r/p)(x)

)p/(p−r)

dx

≤ C

∫
F (x)dx < ∞.

When q < r, we use the argument of Bownik [1] by taking advantage of the

already established duality of ḟα,1
p , p > 1. Note that by duality

‖s‖�r = sup
t={tR}

(
∑

|sR|q|tR|q)1/q
‖t‖�rq/(r−q)

.

Hence (3.3) is equivalent to the inequality

(3.5) (
∑
R∈Π

|sR|q|tR|q)1/q ≤ C‖
( ∑

R∈Π

|sR|q(cR)qχR

)1/q

‖Lp‖t‖�rq/(r−q) .
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On the other hand, since 1 < p/q < ∞, by the already established duality (ḟα,1
p/q )

∗ =

ḟ−α,∞
p/(p−q), one has for α = ( 12 (m− 1), 12 ),

sup
u={uR}

|
∑

uRv̄R|
‖
∑

uRχR‖Lp/q

= sup
u={uR}

|〈u, v〉|
‖u‖ḟα,1

p/q

= ‖v‖ḟ−α,∞
p/(p−q)

(3.6)

= ‖ sup
R∈D

|vR||R|−1χR‖Lp/(p−q) .

Let

vR =

{
|tR|q(cR)−q, R ∈ Π;
0, R ∈ D\Π,

and

uR =

{
|sR|q(cR)q, R ∈ Π;
0, R ∈ D\Π.

Then (3.6) may be rewritten in the following form by taking the qth roots:
(3.7)

sup
s={sR}

∣∣∣∑R∈Π |sR|q|tR|q
∣∣∣1/q∥∥∥(∑R∈Π |sR|q(cR)qχR)1/q

∥∥∥
Lp

=
∥∥∥ sup

R∈Π
|tR|(cR)−1|R|−1/qχR

∥∥∥
Lpq/(p−q)

.

Let p1 = pq/(p − q), r1 = rq/(r − q) and c̃R = (cR)
−1|R|−1/q. Combining (3.5)

with (3.7) yields ∥∥∥ sup
R∈Π

|tR|(c̃R)χR

∥∥∥
Lp1

≤ C‖t‖�r1

for all t = {tR}R. Using the facts that p1r1/(r1 − p1) = pr/(p − r), p1 < r1, and
applying (i) of Theorem 3.1, we get from the preceding inequality∫

sup
R∈Π

(
(c̃R)

r1 |R|
)p1/(r1−p1)

χR(x)dx =

∫
sup
R∈Π

(
(cR)

r|R|
)p/(r−p)

χR(x)dx < ∞.

Hence (3.2) holds for q < r. We thus have completed the proof. �

4. Duality of ḟα,q
p

Theorem 4.1. Suppose 1 < p < ∞, 0 < q < ∞, α = (α1, α2) ∈ R2. Then

(ḟα,q
p )∗ = ḟ−α,q′

p′ .

Proof. For any s ∈ ḟα,q
p , t ∈ ḟα,q′

p′ we have

|
∑
R∈D

sR t̄R|

≤
∫ ∑

R∈D
|I|α1/(m−1)|J |α2 |sR|χ̃R(x)|I|−α1/(m−1)|J |−α2 |tR|χ̃R(x)dx

≤
∫ ( ∑

R∈D
(|I|α1/(m−1)|J |α2 |sR|χ̃R(x))

q
)1/q

×
( ∑

R∈D
(|I|−α1/(m−1)|J |−α2 |tR|χ̃R(x))

q′
)1/q′

dx

≤ ‖s‖ḟα,q
p

‖t‖
ḟ−α,q′
p′

,
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7142 WEI DING AND GUOZHEN LU

by duality if 1 ≤ q < ∞ or by imbedding �q ↪→ �1 if 0 < q < 1. This yields that t
is a continuous linear functional on ḟα,q

p and

‖t‖(ḟα,q
p )∗ ≤ ‖t‖

ḟ−α,q′
p′

.

For the converse direction, we split its proof into 2 cases: (p, q) ∈ (1,∞)× [1,∞)
and (1,∞)× (0, 1).

Case 1: (p, q) ∈ (1,∞) × [1,∞). This case is elementary. Take any l ∈ (ḟα,q
p )∗.

Then there exists some sequence t = tR such that l(s) =
∑

R sR t̄R for any s =

{sR}R ∈ ḟα,q
p . Now we need a well-known result that

(Lp(lq))∗ = Lp′
(lq

′
)(4.1)

if 1 < p < ∞, 1 < q < ∞, where

Lp(lq) =
{
f = {fv} : ‖f‖Lp(lq) = ‖(

∑
v

|fv|q)1/q‖Lp < ∞
}
,

with the pairing 〈f, g〉 =
∫ ∑

v fv ḡv for f ∈ Lp(lq), g ∈ Lp′
(lq

′
) (see e.g. [62]). Let

I : ḟα,q
p → Lp(lq) be defined by

I(s) = {fj,k}j,k∈Z, where fj,k =
∑

R∈Πj,k

|I|α1/(m−1)|J |α2sRχ̃R(x).

Clearly, the map I is a linear isometry onto a subspace of Lp(lq). By the Hahn-

Banach Theorem, there exists l̃ ∈ (Lp(lq))∗ such that l̃ ◦ I = l and ‖l̃‖ = ‖l‖. By

(4.1), l̃(f) = 〈f, g〉 for some g ∈ Lp′
(lq

′
) with ‖g‖Lp′ (lq′) ≤ ‖l‖. Hence

l(s) = l̃(I(s)) =

∫ ∑
j,k

fj,kḡj,k

=

∫ ∑
j,k

(
∑

R∈Πj,k

|I|α1/(m−1)|J |α2sRχ̃R(x))ḡj,k(x)dx

=
∑
j,k

∑
R∈Πj,k

sR

(
|I|α1/(m−1)|J |α2 |R|−1/2

∫
R

ḡj,k(x)dx
)

=
∑
j,k

∑
R∈Πj,k

sRtR = 〈t, s〉,

for all s ∈ ḟα,q
p , where t = {tR}R with tR = |I|α1/(m−1)|J |α2 |R|−1/2

∫
R
ḡj,k(x)dx

for R ∈ Πj,k. Then

‖t‖
ḟ−α,q′
p′

= ‖
∑
j,k

∑
R∈Πj,k

(
1

|R|

∫
R

gj,k)χR(x)‖Lp′

≤ ‖{Ms(gj,k)}‖Lp′ (lq′ ) � ‖g‖Lp′ (lq′) ≤ ‖l‖.

This completes the proof of Case 1.

Case 2: (p, q) ∈ (1,∞) × (0, 1). In this case, Lp(lq) is not a normed space; hence
we can’t use the Hahn-Banach theorem.
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Take l ∈ (ḟα,q
p )∗. Then there exists some sequence t = tR such that for any

s = {sR}R ∈ ḟα,q
p ,

(4.2)

|l(s)| = |
∑
R

sR t̄R| ≤ C‖s‖ḟα,q
p

= C‖
( ∑

R∈D
(|I|α1/(m−1)|J |α2 |sR|χ̃R(x))

q
)1/q

‖Lp .

If we prove the estimates

‖t‖ḟ−α,∞
p′

= ‖ sup
R∈D

(|I|−α1/(m−1)|J |−α2 |tR|χ̃R(x)‖Lp′ < ∞,

we then complete the proof.

Define Π = {R ∈ D, tR �= 0}, and let uR = sRt̄R, cR = |I|α1/(m−1)|J|α2

|R|1/2|tR| for R ∈ Π.

We may assume that sR t̄R ≥ 0 for all R ∈ D by choosing proper sR. Moreover we
can assume sR = 0 if R /∈ Π. Then (4.2) can be rewritten as

‖u‖�1 ≤ c‖
( ∑

R∈Π

|uR|q(cR)qχR

)1/q

‖Lp

for all u = {uR}R∈Π. Then (ii) of Theorem 3.1 with 0 < q < r = 1 < p < ∞ yields∫
sup
R∈Π

(
(cRχR)|R|

)p/(1−p)

dx < ∞,

that is, ∫
sup
R∈Π

(
(|I|−α1/(m−1)|J |−α2 |tR||R|−1/2χR)

)p/(p−1)

dx < ∞.

We thus have completed the proof. �

Theorem 4.2. Suppose 0 < p ≤ 1, 0 < q < ∞, α = (α1, α2) ∈ R2. Then

(ḟα,q
p )∗ = C−α,q′

p .

Proof. We first assume 1 ≤ q < ∞. Suppose t ∈ C−α,q′

p . For any s ∈ ḟα,q
p , set

h(x) =
( ∑

R∈D
(|I|α1/(m−1)|J |α2 |sR|χ̃R(x))

q
)1/q

,

and for k ∈ Z,
Ωk = {x ∈ Rm : h(x) > 2k},

Bk = {R ∈ D : |R ∩ Ωk| >
1

2
|R|, |R ∩ Ωk+1| ≤

1

2
|R|}.

One can obtain

|
∑
R∈D

sRtR| =
∑
k

∑
R∈Bk

(|I|−α1/(m−1)|J |−α2 |tR||R|− 1
2 |R|

1
q′ )

×(|I|α1/(m−1)|J |α2 |sR||R| 12 |R|−
1
q′ )

≤
{∑

k

[ ∑
R∈Bk

(|I|−α1/(m−1)|J |−α2 |tR||R|− 1
2 |R|

1
q′ )q

′
]p/q′

×
[ ∑
R∈Bk

(|I|α1/(m−1)|J |α2 |sR||R| 12 |R|−
1
q′ )q

]p/q}1/p

.(4.3)
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7144 WEI DING AND GUOZHEN LU

Let Ω̃k = {x ∈ Rm,Ms(χΩk
)(x) > 1

2}; then |Ω̃k| � |Ωk|. One sees that if R ∈ Bk,

then one has R ⊆ Ω̃k. So

[ ∑
R∈Bk

(|I|−α1/(m−1)|J |−α2 |tR||R|− 1
2 |R|

1
q′ )q

′
]1/q′

=
1

|Ω̃| 1p− 1
q

[ ∑
R∈Bk

(|I|−α1/(m−1)|J |−α2 |tR||R|− 1
2 |R|

1
q′ )q

′
]1/q′

|Ω̃| 1p− 1
q

� ‖t‖
C−α,q′

p
|Ωk|

1
p−

1
q .

On the other hand, using the fact that if R ∈ Bk, R ⊆ Ω̃k, one also obtains

1

2
|R| < |R\Ωk+1| = |R ∩ Ω̃k\Ωk+1|.

Hence

[ ∑
R∈Bk

(|I|α1/(m−1)|J |α2 |sR||R| 12 |R|−
1
q′ )q

]1/q
=

[ ∑
R∈Bk

(|I|α1/(m−1)|J |α2 |sR||R|
1
2−

1
q′ −

1
q )q|R|

]1/q
�

[ ∑
R∈Bk

(|I|α1/(m−1)|J |α2 |sR||R|−1/2)q|R ∩ Ω̃k\Ωk+1|
]1/q

=
(∫

Ω̃k\Ωk+1

∑
R∈Bk

(|I|α1/(m−1)|J |α2 |sR|χ̃R(x))
qdx

)1/q

≤
(∫

Ω̃k\Ωk+1

hq(x)dx
)1/q

� 2k|Ωk|1/q.

Combining (4.3) with the above inequality, one obtains

|
∑
R∈D

sRtR| � ‖t‖
Cα,q′

p
(
∑
k

2kp|Ωk|)1/p � ‖t‖
C−α,q′

p
‖s‖ḟα,q

p
.

Next, we will prove C−α,q′

p ⊇ (ḟα,q
p )∗. Let � ∈ (ḟα,q

p )∗. Then there exists some

t = {tR}R such that for every s = {sR}R ∈ ḟα,q
p , �(s) =

∑
R sRtR and

|
∑
R

sRtR| ≤ ‖�‖(ḟα,q
p )∗‖s‖ḟα,q

p
.

Once having shown t ∈ C−α,q′

p , we will then complete the proof. For any open set
Ω ⊆ Rm with finite measure, let X = {R ∈ D : R ⊆ Ω}, and let μ be a measure on
X such that the μ-measure of R is |R| if 1 ≤ q < ∞ or μ(R) = 1 if q = 1. Then by
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the above inequality, one has

( ∑
R⊆Ω,R∈D

(|I|−α1/(m−1)|J |−α2 |tR||R|−1/2)q
′ |R|

)1/q′

= ‖|I|−α1/(m−1)|J |−α2 |tR||R|−1/2‖lq′(X,dμ)

= sup
‖s‖lq(X,dμ)≤1

∣∣∣ ∑
R⊆Ω,R∈D

|I|−α1/(m−1)|J |−α2 |tR||R|−1/2sR|R|
∣∣∣

≤ ‖�‖(ḟα,q
p )∗ sup

‖s‖lq(X,dμ)≤1

‖|I|−α1/(m−1)|J |−α2 |R|−1/2sR|R|‖ḟα,q
p

.

On the other hand,

‖|I|−α1/(m−1)|J |−α2 |R|−1/2sR|R|‖ḟα,q
p

= ‖
( ∑

R⊆Ω,R∈D
(|I|α1/(m−1)|J |α2 |I|−α1/(m−1)|J |−α2 |R|−1/2|sR||R|χ̃R(x))

q
)1/q

‖Lp

= ‖
( ∑

R⊆Ω,R∈D
(|sR|χR(x))

q
)1/q

‖Lp

≤
{∫

Ω

∑
R⊆Ω,R∈D

(|sR|χR(x))
qdx

}1/q

|Ω| 1p− 1
q

by Holder’s inequality since 0 < p ≤ 1 ≤ q < ∞. So

( ∑
R⊆Ω,R∈D

(|I|−α1/(m−1)|J |−α2 |tR||R|−1/2)q
′ |R|

)1/q′

≤ ‖�‖(ḟα,q
p )∗ sup

‖s‖lq(X,dμ)≤1

{∫
Ω

∑
R⊆Ω,R∈D

(|sR|χR(x))
qdx

}1/q

|Ω| 1p− 1
q

≤ ‖�‖(ḟα,q
p )∗ |Ω|

1
p−

1
q ,

that is, t ∈ C−α,q′

p .

When 0 < q < 1, by the trivial imbedding ḟα,q
p → ḟα,1

p , one has

(ḟα,q
p )∗ ⊇ (ḟα,1

p )∗ = C−α,∞
p .

To show the other direction, as above, let � ∈ (ḟα,q
p )∗. Then there exists some

t = {tR}R such that for every s = {sR}R ∈ ḟα,q
p , �(s) =

∑
R sRtR and

|
∑
R

sRtR| ≤ ‖�‖(ḟα,q
p )∗‖s‖ḟα,q

p
.
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We now prove ‖t‖C−α,∞
p

= sup
Ω

1

|Ω|
1
p
−1

sup
R⊆Ω,R∈D

|I|−α1/(m−1)|J |−α2 |tR||R|−1/2 < ∞.

For any fixed R = I × J ∈ D, let δQ,R = 1 if Q = R; otherwise δQ,R = 0. So

sup
R⊆Ω,R∈D

|I|−α1/(m−1)|J |−α2 |tR||R|−1/2

= sup
R⊆Ω,R∈D

∑
Q=Ĩ×J̃⊆Ω

δQ,R|Ĩ |−α1/(m−1)|J̃ |−α2 |Q|−1/2|tQ|

≤ sup
R⊆Ω,R∈D

‖�‖(ḟα,q
p )∗‖δQ,R|Ĩ|−α1/(m−1)|J̃ |−α2 |Q|−1/2‖ḟα,q

p

= sup
R⊆Ω,R∈D

‖�‖(ḟα,q
p )∗‖|R|−1χR‖Lp

= sup
R⊆Ω,R∈D

‖�‖(ḟα,q
p )∗ |R| 1p−1 ≤ sup

R⊆Ω,R∈D
‖�‖(ḟα,q

p )∗ |Ω|
1
p−1

since 0 < p ≤ 1, which implies our desired results, and we thus have completed the
proof of Theorem 4.2. �

5. Duality of Ḟα,q
p

In this section we derive the duality of Theorem 1.1 and Theorem 1.3 from
Theorem 4.1 and Theorem 4.2, respectively, in the sequence space cases. It is known
from Proposition 3.1 in [11] that S0(Rm) is dense in Ḟα,q

p (Rm) for 0 < p, q < ∞.

Proof of Theorem 1.1. Let g ∈ Ḟ−α,q′

p′ (Rm), f ∈S0(Rm) and 1<p<∞, 0< q <∞.

Then by the identity (2.2) one has 〈f, g〉 = 〈Sψf, Sψg〉. Hence

|〈f, g〉| ≤ ‖Sψf‖ḟα,q
p (Rm)‖Sψg‖ḟ−α,q′

p′ (Rm)
� ‖f‖Ḟα,q

p (Rm)‖g‖Ḟ−α,q′
p′ (Rm)

by Theorem 4.1 and Theorem 2.1. This proves that ‖lg‖ � ‖g‖
Ḟ−α,q′

p′ (Rm)
.

Conversely, suppose l ∈ (Ḟα,q
p (Rm))∗. Then l1 ≡ l◦Tψ ∈ (ḟα,q

p )∗, so by Theorem

4.1, there exists t = {tR}R ∈ ḟ−α,q′

p′ such that

l1(s) = 〈s, t〉 =
∑
R

sRt̄R

for all s = {sR}R ∈ ḟα,q
p (Rm). Moreover ‖t‖

ḟ−α,q′
p′

≈ ‖l1‖ � ‖l‖ for the boundedness
of Tψ. Note that l1 ◦ Sψ = l ◦ Tψ ◦ Sψ = l since Tψ ◦ Sψ is an identity by Theorem
2.1. Then letting g = Tψ(t) and f ∈ S0(Rm), one has

l(f) = l1(Sψ(f)) = 〈Sψ(f), t〉 = 〈f, Tψ(t)〉 = 〈f, g〉
by (2.3), which implies that l = lg, and by Theorem 2.1 again, one has

‖g‖
Ḟ−α,q′

p′
= ‖Tψ(t)‖Ḟ−α,q′

p′
� ‖t‖

ḟ−α,q′
p′

� ‖l‖.

We have then completed the proof of Theorem 1.1. �
Proof of Theorem 1.3. One can go through the same process as above to finish the
proof of Theorem 1.3. We shall omit the details. �
Proof of Theorem 1.4. We assume that Ki is the kernel of the convolution operator
Ti, i = 1, 2, and T ∗ is the conjugate operator of T with the kernel K∗. One may
check that

K∗ ∗ f(x) = K̃2 ∗ K̃1 ∗ f(x) = K̃1 ∗ K̃2 ∗ f(x)
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for f ∈ C∞
c , where K̃i(x) = Ki(−x), i = 1, 2. Hence T ∗ is bounded on Ḟα,q

p for

all 0 < p, q < ∞, α ∈ R2 by Theorem 1.5 in [11] since K̃i satisfy Definition 1.1,
Definition 1.2, respectively.

For ∀ 1 ≤ q < ∞, there exists a 0 < q̃ < ∞ such that q̃′ = q. Then by Theorem
1.3,

‖T (f)‖CMOα,q
p

= sup
‖g‖

Ḟ
−α,q̃′
p

≤1

|〈T (f), g〉|

= sup
‖g‖

Ḟ
−α,q̃′
p

≤1

|〈f, T ∗(g)〉|

≤ sup
‖g‖

Ḟ
−α,q̃′
p

≤1

‖f‖CMOα,q
p

‖T ∗(g)‖
Ḟ−α,q̃′

p

� sup
‖g‖

Ḟ
−α,q̃′
p

≤1

‖f‖CMOα,q
p

‖g‖
Ḟ−α,q̃′

p

≤ ‖f‖
CMOα,q′

p
.

We thus have completed the proof of Theorem 1.4. �

6. Appendix

The multi-parameter Triebel-Lizorkin spaces we study here are associated with
the composition of two singular integral operators with the specific dilations

δ : (x′, xm) → (δx′, δxm), δ > 0

and

δ : (x′, xm) → (δx′, δ2xm), δ > 0.

The first is the classical isotropic dilations occurring in the classical Calderón-
Zygmund singular integrals, while the second is non-isotropic and related to the
heat equations (also Heisenberg groups).

As we explained in the introduction, these two dilations are motivated by the
study of weak-(1, 1) boundedness of the composition of two singular integrals by
Phong and Stein [51]. This composition of such two singular integral operators
is particularly interesting because they essentially arise naturally in the study of
the ∂̄-Neumann problem (see [26], [49], [50], [51]). This motivates us to study the
function spaces associated with the composition of two such dilations and then the
boundedness of relevant operators. It is worthwhile to note that the underlying
multi-parameter structure we study is intrinsic to the composition of these two
dilations. Nevertheless, the multi-parameter structures we consider are still in
the framework of the translation-invariant environment. The more general case of
translation non-invariant dilations will be studied in a forthcoming project.

Though we restrict our attention to the above two very specific dilations in this
paper, all results in this paper can be carried out to the composition with more sin-
gular integral operators associated with more general non-isotropic homogeneities.
To see this, let

δi : (x1, x2, · · · , xm) → (δ
λi,1

i x1, δ
λi,2

i x2, · · · , δλi,m

i xm)

for δi > 0, λi,t > 0, 1 ≤ i ≤ n and 1 ≤ t ≤ m.
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For x ∈ Rm we denote |x|i =

√
|x1|

2
λi,1 + |x2|

2
λi,2 + · · ·+ |xm|

2
λi,m . Let ψ(i) ∈

S(Rm) with

supp ψ̂(i) ⊆ {(ξ1, ξ2, · · · , ξm) ∈ Rm :
1

2
≤ |ξ|i ≤ 2}

and∑
ji∈Z

|ψ̂(i)(2−jiλi,1ξ1, 2
−jiλi,2ξ2, · · · , 2−jiλi,mξm)|2 = 1 ∀(ξ1, ξ2, · · · , ξm) ∈ Rm/{0}.

Set ψj1,j2,···,jn(x) = ψ
(1)
j1

∗ ψ(2)
j2

∗ · · · ∗ ψ(n)
jn

(x), where

ψ
(i)
ji
(x) = 2ji(λi,1+λi,2+···+λi,m)ψ(i)(2jiλi,1x1, 2

jiλi,2x2, · · · , 2jiλi,mxm).

Then we can obtain the following general discrete Calderón reproducing formula:

Theorem B. Suppose that ψ(i), i = 1, · · · , n, are functions satisfying the above
conditions, respectively. Then

f(x1, x2, · · · , xm)

=
∑

j1,··· ,jn∈Z

∑
(�1,··· ,�m)∈Zm

m∏
t=1

2−(j1λ1,t∧j2λ2,t∧···∧jnλn,t)

× (ψj1,j2,···,jn ∗ f)(2−(j1λ1,1∧j2λ2,1∧···∧jnλn,1)�1, · · · ,
2−(j1λ1,m∧j2λ2,m∧···∧jnλn,m)�m)

× ψj1,j2,···,jn(x1 − 2−(j1λ1,1∧j2λ2,1∧···∧jnλn,1)�1, · · · ,
xm − 2−(j1λ1,m∧j2λ2,m∧···∧jnλn,m)�m),

where the series converges in L2(Rm), S0(Rm) and S ′
0(R

m).

With the above discrete Calderón reproducing formula, the multi-parameter
Triebel-Lizorkin spaces with different homogeneities can be introduced as follows:

Definition. Let 0 < p, q < ∞, α = (α1, α2, · · · , αm) ∈ Rm. The multi-parameter

Triebel-Lizorkin type spaces with different homogeneities Ḟα,q
p (Rm) are defined by

Ḟα,q
p (Rm) = {f ∈ S ′

0(R
m) : ‖f‖Ḟα,q

p (Rm) < ∞},

where

‖f‖Ḟα,q
p (Rm)

= ‖
( ∑

j1,··· ,jn∈Z

m∏
t=1

2−(j1λ1,t∧j2λ2,t∧···∧jnλn,t)αtp

×
∑

(�1,··· ,�m)∈Zm

|(ψj1,j2,···,jn ∗ f)(2−(j1λ1,1∧j2λ2,1∧···∧jnλn,1)�1, · · · ,

2−(j1λ1,m∧···∧jnλn,m)�m)|qχI1(x1)χI2(x2) · · ·χIm(xm)
) 1

q ‖Lp(Rm),

where {It}t=1,··· ,m are dyadic intervals in R with the side length l(It) =

2−(j1λ1,t∧···∧jnλn,t), and the left end points of It are 2−(j1λ1,t∧j2λ2,t∧···∧jnλn,t)�t,
respectively.
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Applying the same techniques as in this paper, one can establish the duality
theory (Theorem 1.1) of the multi-parameter Triebel-Lizorkin spaces associated
with these more general non-isotropic dilations. The details of the proofs appear to
be very lengthy and complicated to present in the more general situation. Therefore,
we shall not discuss these in more detail in this paper.
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