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Abstract. — We establish the pseudo-di�erential variant of the Lp estimates for
multi-linear and multi-parameter Coifman-Meyer multiplier operators proved by
C. Muscalu, J. Pipher, T. Tao and C. Thiele in [21, 22]. This gives an a�rmative
answer to the question, raised in the book of C. Muscalu and W. Schlag [23], on
whether the Lp estimates for multi-linear and multi-parameter pseudo-di�erential
operators hold.
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568 W. DAI & G. LU

1. Introduction

1.1. Background. — For n � 1 and d � 1, let m be a bounded function in Rnd,
smooth away from the origin and satisfying Hörmander-Mikhlin conditions(1)

(1.1) |@↵

m(⇠)| . 1

|⇠||↵|

for su�ciently many multi-indices ↵. Denote by T

m

the n-linear operator de-
fined by

(1.2) T

m

(f1, . . . , fn

)(x) :=

Z

Rnd

m(⇠)

ˆ

f1(⇠1) · · · ˆ

f

n

(⇠

n

)e

2⇡ix·(⇠1+···+⇠

n

)
d⇠,

where ⇠ = (⇠1, . . . , ⇠n) 2 Rnd and f1, . . . , fn

are Schwartz functions on Rd.
From the classical Coifman-Meyer theorem (see [6, 7, 19, 11, 15]), we
know that the operator T

m

extends to a bounded n-linear operator from
L

p1
(Rd

) ⇥ · · · ⇥ L

p

n

(Rd

) into L

p

(Rd

), provided that 1 < p1, . . . , pn

 1
and 1

p

=

1
p1

+ · · · + 1
p

n

> 0. When n = 2, as a consequence of bilinear T1

theorem (see [6, 11]), there is also a pseudo-di�erential variant of the classical
Coifman-Meyer theorem for symbol a 2 BS

0
1,0(R3d

), that is, a satisfies the
di�erential inequalities

(1.3) |@�

x

@

↵

⇠

@

�

⌘

a(x, ⇠, ⌘)| .
d,↵,�,�

(1 + |⇠| + |⌘|)�|↵|�|�|

for su�ciently many multi-indices ↵, �, �. Namely, let T

a

be the corresponding
bilinear pseudo-di�erential operators defined by replacing m with a in (1.2),
then T

a

is bounded from L

p

(Rd

) ⇥ L

q

(Rd

) into L

r

(Rd

), provided that 1 <

p, q  1 and 1
r

=

1
p

+

1
q

> 0 (see [2], and see [3, 26, 23] for d = 1 case).
For large amounts of literature involving estimates for multi-linear Calderón-
Zygmund operators and multi-linear pseudo-di�erential operators, refer to e.g.,
[1, 6, 19, 9, 11, 12, 15, 23, 24].

However, when we come into the situation that a di�erential operator (with
di�erent behaviors on di�erent spatial variables x

i

, i = 1, . . . , d) acts on a
product of several functions (for instance, the bilinear form D↵

1 D�

2 (fg), where
‘D↵

1 f(⇠1, ⇠2) := |⇠1|↵ ˆ

f(⇠1, ⇠2) and ‘D�

2f(⇠1, ⇠2) := |⇠2|� ˆ

f(⇠1, ⇠2) for ↵, � > 0),
we realize that the necessity to investigate bilinear and bi-parameter operators

(1) Throughout this paper, A . B means that there exists a universal constant C > 0 such
that A  CB. If necessary, we use explicitly A .?,...,? B to indicate that there exists a
positive constant C?,...,? depending only on the quantities appearing in the subscript contin-
uously such that A  C?,...,?B.
⇤ The first author was partly supported by a grant of NNSF of China (Grant No.11371056)
and the second author was partly supported by a US NSF grant DMS-1301595.
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MULTI-LINEAR AND MULTI-PARAMETER PSEUDO-DIFF. OPERATORS 569

T

(2)
m

defined by

(1.4) T

(2)
m

(f, g)(x) :=

Z

R4

m(⇠, ⌘)

ˆ

f(⇠)ĝ(⌘)e

2⇡ix·(⇠+⌘)
d⇠d⌘,

where the symbol m is smooth away from the planes (⇠1, ⌘1) = (0, 0) and
(⇠2, ⌘2) = (0, 0) in R2 ⇥ R2 and satisfying the less restrictive Marcinkiewicz
conditions

(1.5) |@↵1
⇠1
@

�1

⇠2
@

↵2
⌘1
@

�2
⌘2

m(⇠, ⌘)| . 1

|(⇠1, ⌘1)|↵1+↵2
· 1

|(⇠2, ⌘2)|�1+�2

for su�ciently many multi-indices ↵ = (↵1,↵2), � = (�1,�2). It becomes more
complicated and di�cult to establish the L

p estimates for T

(2)
m

than in the one-
parameter multilinear situations or L

p estimates for linear multi-parameter
singular integrals (see e.g., [8] and [14]). In [21], by using the duality lemma
of L

p,1 presented in [24], the L

1,1 sizes and energies technique developed in
[25] and multi-linear interpolation (see e.g., [10, 25]), Muscalu, Pipher, Tao
and Thiele proved the following L

p estimates for T

(2)
m

(see also [23], and for
subsequent endpoint estimates see [16]).

Theorem 1.1 ([21]). — The bilinear operator T

(2)
m

defined by (1.4) maps
L

p

(R2
) ⇥ L

q

(R2
) ! L

r

(R2
) boundedly, as long as 1 < p, q  1 and

1
r

=

1
p

+

1
q

> 0.

In general, any collection of n generic vectors ⇠1 = (⇠

i

1)
d

i=1, . . . , ⇠n = (⇠

i

n

)

d

i=1

in Rd generates naturally the following collection of d vectors in Rn:

(1.6) ¯

⇠1 = (⇠

1
j

)

n

j=1,
¯

⇠2 = (⇠

2
j

)

n

j=1, . . . ,

¯

⇠

d

= (⇠

d

j

)

n

j=1.

Let m = m(⇠) = m(

¯

⇠) be a bounded symbol in L

1
(Rdn

) that is smooth away
from the subspaces {¯

⇠1 = 0} [ · · · [ {¯

⇠

d

= 0} and satisfying

(1.7) |@↵1

⇠̄1
· · · @↵

d

⇠̄

d

m(

¯

⇠)| .
dY

i=1

|¯⇠
i

|�|↵
i

|

for su�ciently many multi-indices ↵1, . . . ,↵d

. Denote by T

(d)
m

the n-linear mul-
tiplier operator defined by

(1.8) T

(d)
m

(f1, . . . , fn

)(x) :=

Z

Rdn

m(⇠)

ˆ

f1(⇠1) · · · ˆ

f

n

(⇠

n

)e

2⇡ix·(⇠1+···+⇠

n

)
d⇠.

In [22], Muscalu, Pipher, Tao and Thiele generalized Theorem 1.1 to the n-lin-
ear and d-parameter setting for any n � 1, d � 2, their result is stated in the
following theorem (see also [23]).

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



570 W. DAI & G. LU

Theorem 1.2. — ([22]) For any n � 1, d � 2, the n-linear, d-parameter
multiplier operator T

(d)
m

maps L

p1
(Rd

) ⇥ · · · ⇥ L

p

n

(Rd

) ! L

p

(Rd

) boundedly,
provided that 1 < p1, . . . , pn

 1 and 1
p

=

1
p1

+ · · · + 1
p

n

> 0.

Recently, J. Chen and the second author has provided an alternative proof
of the L

p estimates for the multilinear and multi-parameter Coifman-Meyer
Fourier multipliers established in [21, 22] using the multi-parameter Littlewood-
Paley theory instead of the time-frequency and para-product theory. In the
meantime, the authors of [5] also obtained the limited smoothness condition
on the Fourier multipliers under which the L

p estimates hold. The L

p esti-
mates for the trilinear pseudo-di�erential operators with flag symbols has also
been established by Zhang and the second author in [18] which extend the L

p

estimates for the trilinear Fourier multipliers with flag singularity proved by
C. Muscalu [20]. A symbolic calculus of the multilinear and multi-parameter
pseudo-di�erential operators has also been studied by Hong and the second
author in [13]. A Calderón-Vaillancourt type theorem for bi-parameter and
bilinear pseudo-di�erential operators with limited smoothness has also been
established by Zhang and the second author in [17].

1.2. Main results. — The purpose of this paper is to prove the pseudo-
di�erential variant of the L

p estimates for multi-linear, multi-parameter
Coifman-Meyer multiplier operators obtained in [21, 22] (see Theorem 1.1,
Theorem 1.2).

Suppose that a(x, ⇠, ⌘) is a smooth symbol satisfying
(1.9)

|@�1
x1
@

�2
x2
@

↵1
⇠1
@

�1

⇠2
@

↵2
⌘1
@

�2
⌘2

a(x, ⇠, ⌘)| . 1

(1 + |(⇠1, ⌘1)|)↵1+↵2
· 1

(1 + |(⇠2, ⌘2)|)�1+�2

for su�ciently many multi-indices ↵ = (↵1,↵2), � = (�1,�2), � = (�1, �2), and
denote by T

(2)
a

the bilinear operator given by

(1.10) T

(2)
a

(f, g)(x) :=

Z

R4

a(x, ⇠, ⌘)

ˆ

f(⇠)ĝ(⌘)e

2⇡ix·(⇠+⌘)
d⇠d⌘.

In this paper, we prove that the same L

p estimates as T

(2)
m

in Theorem 1.1 hold
true for the operator T

(2)
a

. The main theorem of this article is the following
result.

Theorem 1.3. — The bilinear and bi-parameter pseudo-di�erential operator
T

(2)
a

defined by (1.10) maps L

p

(R2
)⇥ L

q

(R2
) ! L

r

(R2
) boundedly, as long as

1 < p, q  1 and 1
r

=

1
p

+

1
q

> 0.
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MULTI-LINEAR AND MULTI-PARAMETER PSEUDO-DIFF. OPERATORS 571

In general, let symbol a = a(x, ⇠) = a(x,

¯

⇠) 2 C

1
(Rd(n+1)

) and satisfy the
di�erential inequalities

(1.11) |@�

x

@

↵1

⇠̄1
· · · @↵

d

⇠̄

d

a(x,

¯

⇠)| .
dY

i=1

(1 + |¯⇠
i

|)�|↵
i

|

for su�ciently many multi-indices ↵1, . . . ,↵d

and �. Denote by T

(d)
a

the n-linear
multiplier operator defined by

(1.12) T

(d)
a

(f1, . . . , fn

)(x) :=

Z

Rdn

a(x, ⇠)

ˆ

f1(⇠1) · · · ˆ

f

n

(⇠

n

)e

2⇡ix·(⇠1+···+⇠

n

)
d⇠,

then we can naturally generalize Theorem 1.3 to the n-linear and d-parameter
setting for any n � 1, d � 2 and obtain the pseudo-di�erential variant of
Theorem 1.2. Our generalized theorem in this paper is the following.

Theorem 1.4. — For any n � 1, d � 2, the n-linear, d-parameter pseudo-
di�erential operator T

(d)
a

maps L

p1
(Rd

)⇥ · · ·⇥ L

p

n

(Rd

) ! L

p

(Rd

) boundedly,
provided that 1 < p1, . . . , pn

 1 and 1
p

=

1
p1

+ · · · + 1
p

n

> 0.

Remark 1.5. — For simplicity, we will only prove Theorem 1.3 (the bilinear
and bi-parameter case, n = d = 2) in this paper. However, it will be clear from
the proof that we can extend the argument to the general n-linear, d-parameter
setting (Theorem 1.4) straightforwardly.

1.3. Outline of the proof strategy of our main theorems. — In this subsection, we
would like to give an overview of our proof strategy of main theorems and
indicate its additional di�culty and complexity compared with the case of L

p

estimates for one-parameter and multi-linear pseudo-di�erential operators of
C. Muscalu [26, 23] and the L

p estimates for multi-linear and multi-parameter
multiplier theorem of C. Muscalu, J. Pipher, T. Tao and C. Thiele [21, 22].

By using the idea by C. Muscalu in [26, 23] to prove the L

p estimates for one-
parameter (d=1) and bilinear pseudo-di�erential operators T

a

= T

(1)
a

, we will
first show that the proof of Theorem 1.3 can be essentially reduced to proving
a localized variant of the bilinear and bi-parameter Coifman-Meyer theorem
(Theorem 1.1), that is, some kind of localized L

p estimates of the localized
bilinear and bi-parameter operator T

(2),(0,0,

~0)
a

given by

T

(2),(0,0,

~0)
a

(f, g)(x) =

Z

R4

m

~0(⇠, ⌘)
ˆ

f(⇠)ĝ(⌘)e

2⇡ix·(⇠+⌘)
d⇠d⌘ · '00 ⌦ '

00
0(x).

Then, since the symbol m

~0(⇠, ⌘) of the operator T

(2),(0,0,

~0)
a

satisfies di�erential
estimates (3.9) which is stronger than the Marcinkiewicz condition (1.5), by
making use of the inhomogeneous Littlewood-Paley dyadic decomposition (2.2)
and Bony’s paraproducts decomposition (2.3), we can discretize the bilinear and

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



572 W. DAI & G. LU

bi-parameter operator T

(2),(0,0,

~0)
a

and reduce the proof of localized L

p estimates
of T

(2),(0,0,

~0)
a

to proving the localized L

p estimates for discrete and localized
bilinear and bi-parameter paraproduct operators of the form
�!
⇧

(2),(0,0,

~0)
a, R (f, g)(x) = {

X

R=I⇥J2R,

|I|,|J|1

c

R

1

|R| 12
hf,'

1
R

ihg,'

2
R

i'3
R

(x)} · '00 ⌦ '

00
0(x).

It’s actually an inhomogeneous variant of the discretization procedure presented
by Muscalu et al. in [21] to prove the bi-parameter Coifman-Meyer theorem
(Theorem 1.1).

Now, in order to prove Theorem 1.3, we only have the task of proving lo-
calized L

p estimates for the localized bilinear and bi-parameter paraproduct
operator

�!
⇧

(2),(0,0,

~0)
a, R (Proposition 4.1). One can observe that the supports of

functions f, g and the dyadic rectangles R = I⇥J may get close to or far away
from the integral region R00 = I0 ⇥ J0 in two di�erent directions x1 and x2

due to the bi-parameter setting, thus the situations will be more complicated
than the one-parameter case (d=1) considered in [3, 26, 23]. Since rapid decay
factors can be derived from '

3
R

when R is su�ciently far away from R00 in x1

or x2 directions (for example, R ✓ (5R00)
c), we will split the localized bilin-

ear and bi-parameter paraproduct operator
�!
⇧

(2),(0,0,

~0)
a, R into a summation of a

“main term,” “hybrid terms” and an “error term” (see Subsection 5.1).
Compared with the one-parameter case, there are mainly two key ingredients

in our estimates of
�!
⇧

(2),(0,0,

~0)
a, R (see Section 5), one is the estimates of the “main

term” and “hybrid terms,” the other is the estimates of the discrete bilinear
operators

�!
⇧

(2),(0,0,

~0)
a, R corresponding to bilinear operators involved in decom-

position (4.5) which contain at least one of ⇧

1
ll

or ⇧

2
ll

in the tensor products,
such as ⇧

1
lh

⌦ ⇧

2
ll

, ⇧

1
hl

⌦ ⇧

2
ll

, ⇧

1
hh

⌦ ⇧

2
ll

, ⇧

1
ll

⌦ ⇧

2
ll

, ⇧

1
ll

⌦ ⇧

2
hh

, ⇧

1
ll

⌦ ⇧

2
hl

and
⇧

1
ll

⌦⇧

2
lh

, here we will only consider the case ⇧

1
ll

⌦⇧

2
ll

without loss of generality.
For the estimates of the “main term” and “hybrid terms” (see Subsections 5.2
and 5.4), if the supports of f, g are close to R00 in both x1 and x2 directions
(supp f, supp g ✓ 15R00, say), we can apply the Coifman-Meyer theorem (The-
orem 1.1) or Theorem 2.5 directly; if for i = 1, 2, at least one of the supports
of f, g or dyadic rectangle R is far away from R00 in x

i

direction, we will obtain
enough decay factors from hf,'

1
R

i · hg,'

2
R

i or '3
R

; otherwise, if the supports
of f, g and dyadic rectangle R are all close to R00 in x1 (or x2) direction while
at least one of the supports of f, g are far away from R00 in x2 (or x1) direction,
we can apply the one-parameter paraproducts estimates (Theorem 2.4) with re-
spect to x1 (or x2) variable directly and obtain su�cient decay factors in x2 (or
x1) direction so as to reach our conclusions. As to the estimates of the discrete
bilinear operator

�!
⇧

(2),(0,0,

~0)
a, R corresponding to ⇧

1
ll

⌦ ⇧

2
ll

(see Subsection 5.5),
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MULTI-LINEAR AND MULTI-PARAMETER PSEUDO-DIFF. OPERATORS 573

one easily observe that at least two of the families of L

2-normalized bump func-
tions ('

i

I

)

I2 I for i = 1, 2, 3 and two of ('

j

J

)

J2 J for j = 1, 2, 3 are nonlacunary
respectively, which means that, when the supports of f, g and dyadic rectangle
R are all close to R00 in one direction (i.e., I ✓ 5I0 or J ✓ 5J0) but at least one
of the supports of f, g are far away from R00 in the other direction, we won’t
be able to apply the one-parameter paraproducts estimates (Theorem 2.4) with
respect to x1 or x2 variable any more; however, we can take advantage of the
additional properties that |I| ⇠ |J | ⇠ 1 for every dyadic intervals I 2 I and
J 2 J to obtain the convergence of both

P
I✓5I0

and
P

J✓5J0
; the other parts

of the estimates for the discrete bilinear operator
�!
⇧

(2),(0,0,

~0)
a, R corresponding

to ⇧

1
ll

⌦ ⇧

2
ll

are similar to the estimates of the standard discrete paraproduct
operator corresponding to ⇧

1
lh

⌦⇧

2
hl

.
The rest of this paper is organized as follows. In Section 2 we give some

useful notations and preliminary knowledge. In Section 3 we reduce the proof
of Theorem 1.3 to proving a localized variant of bilinear and bi-parameter
Coifman-Meyer multiplier estimates (Proposition 3.1). Section 4 is devoted to
reducing the proof of localized Coifman-Meyer multiplier estimates (Proposi-
tion 3.1) further to proving some localized discrete bilinear and bi-parameter
paraproducts estimates (Proposition 4.1). In Section 5 we carry out the proof of
Proposition 4.1, which completes the proof of our main theorem, Theorem 1.3.

2. Notations and preliminaries

Let ' 2 S(R) be an even Schwartz function such that supp '̂ ✓ [� 4
3 ,

4
3 ] and

'̂(⇠) = 1 on [� 3
4 ,

3
4 ], and define  2 S(R) to be the Schwartz function whose

Fourier transform satisfies ˆ

 (⇠) := '̂(

⇠

2 )� '̂(⇠) and supp

ˆ

 ✓ [� 8
3 ,� 3

4 ][ [

3
4 ,

8
3 ],

such that 0  '̂(⇠),

ˆ

 (⇠)  1. Then, for every integer k � 0, we define c'
k

,

c
 

k

2
S(R) by

c'
k

(⇠) := '̂(

⇠

2

k

),

c
 

k

(⇠) :=

ˆ

 (

⇠

2

k

) = ’'
k+1(⇠)� c'

k

(⇠)

and observe that

supp c'
k

✓ [�4

3

· 2k

,

4

3

· 2k

], supp

c
 

k

✓ [�8

3

· 2k

,�3

4

· 2k

] [ [

3

4

· 2k

,

8

3

· 2k

],

and supp

c
 

k

T
supp

”
 

k

0
= ? for any integers k, k

0 � 0 such that |k � k

0| � 2,
supp '̂

T
supp

c
 

k

= ? for any integer k � 1.
We use the convention ‘

 �1(⇠) := '̂(⇠), then it is easy to see

(2.1) 1 =

X

k��1

c
 

k

(⇠)
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for every ⇠ 2 R, as a consequence, one obtains the following inhomogeneous
Littlewood-Paley dyadic decomposition of arbitrary functions f, g 2 S0(R):

(2.2) f =

X

k1��1

f ⇤  
k1 , g =

X

k2��1

g ⇤  
k2 ;

furthermore, according to the criterion whether the support of a certain part
of ‘

f · g contains the origin of momentum space R
⇠

or not, we have Bony’s
paraproducts decomposition (see [4, 27, 28]) of the product f · g:

f · g =

X

k1,k2��1

(f ⇤  
k1)(g ⇤  k2)

= {
X

�1k1k2�2

+

X

�1k2k1�2

+

X

k1,k2��1, |k1�k2|1

}(f ⇤  
k1)(g ⇤  k2)

=

X

k�1

(f ⇤ f'
k

)(g ⇤  
k

) +

X

k�1

(f ⇤  
k

)(g ⇤ f'
k

) +

X

k�0

(f ⇤  
k

)(g ⇤ f
 

k

)(2.3)

+{(f ⇤ ')(g ⇤  ) + (f ⇤  )(g ⇤ ') + (f ⇤ ')(g ⇤ ')}
=: ⇧

lh

(f, g) + ⇧

hl

(f, g) + ⇧

hh

(f, g) + ⇧

ll

(f, g),

where cf'
k

(⇠) := ’'
k�1(⇠) =

ˆ

'̃(

⇠

2k

) for any k � 1, ˆ

'̃(⇠) := '̂(2⇠), and

f
 

k

:=

X

|k0�k|1, k

0�0

 

k

0

for any k � 0.

We use the notation h·, ·i to denote the complex scalar L

2 inner product;
and use A

c to denote the complementary set of a set A.

An interval I on the real line R is called dyadic if it is of the form I =

2

�k

[n, n + 1] for some k, n 2 Z, a rectangle R on the plane R2 is called dyadic
if there exist some dyadic intervals I, J such that R = I ⇥ J . Following [23],
we first give the following definitions.

Definition 2.1. — For J ✓ R an arbitrary interval, we say that a smooth
function �

J

is a bump adapted to J , if and only if the following inequalities
hold:

(2.4) |�(l)
J

(x)| .
l,↵

1

|J |l · 1

(1 +

dist(x,J)
|J| )

↵

for every integer ↵ 2 N and for su�ciently many derivatives l 2 N. If �

J

is a
bump adapted to J , we say that |J |� 1

2
�

J

is an L

2-normalized bump adapted
to J .

tome 143 – 2015 – n

o

3



MULTI-LINEAR AND MULTI-PARAMETER PSEUDO-DIFF. OPERATORS 575

Definition 2.2. — A family of L

2-normalized adapted bump functions ('

I

)

I

is said to be nonlacunary if and only if for every I one has

supp c'
I

✓ [�4|I|�1
, 4|I|�1

].

A family of L

2-normalized adapted bump functions ('

I

)

I

is said to be lacunary
if and only if for any I one has

supp c'
I

✓ [�4|I|�1
, �1

4

|I|�1
] [ [

1

4

|I|�1
, 4|I|�1

].

Definition 2.3. — Let I be a finite set of dyadic intervals. A bilinear expres-
sion of the type

(2.5) ⇧ I (f, g) =

X

I2 I

c

I

1

|I| 12
hf, '

1
I

ihg, '

2
I

i'3
I

is called a bilinear discretized paraproduct if and only if (c

I

)

I

is a bounded
sequence of complex numbers and at least two of the families of L

2-normalized
bump functions ('

j

I

)

I

for j = 1, 2, 3 are lacunary in the sense of Definition 2.2.

Then the following is well-known, see e.g., [16, 23, 21, 22].

Theorem 2.4. — Any bilinear discretized paraproduct ⇧ I has a bounded map-
ping L

p ⇥L

q to L

r as long as 1 < p, q  1 and 1
r

=

1
p

+

1
q

> 0. Moreover, the
implicit constants in the bounds depend only on p, q, r and are independent of
the cardinality of I , provided that the sequence (c

I

)

I

in (2.5) is bounded by a
universal constant.

Consider two discretized classical paraproducts given by

⇧1, I (f1, g1) =

X

I2 I

c

I

1

|I| 12
hf1, '

1
I

ihg1, '
2
I

i'3
I

and
⇧2, J (f2, g2) =

X

J2 J

c

J

1

|J | 12
hf2, '

1
J

ihg2, '
2
J

i'3
J

,

and define the bi-parameter discretized paraproduct
�!
⇧ R by

�!
⇧ R = ⇧1, I ⌦⇧2, J

or, more generally, by

(2.6)
�!
⇧ R(f, g) =

X

R2R

c

R

1

|R| 12
hf, '

1
R

ihg, '

2
R

i'3
R

,

where the numbers c

R

are all bounded, the sum is over dyadic rectangles of
the form R = I ⇥ J and '

j

R

is defined by '

j

R

:= '

j

I

⌦ '

j

J

for j = 1, 2, 3. We
have the following L

p estimates for bi-parameter discretized paraproduct
�!
⇧ R

(for the proof, refer to [16, 23, 21, 22]).
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Theorem 2.5. — Any discrete bi-parameter paraproduct (2.6) is bounded
from L

p

(R2
)⇥L

q

(R2
) ! L

r

(R2
) provided that 1 < p, q  1 and 1

r

=

1
p

+

1
q

> 0.

In general, the extension of Theorem 2.5 to the n-linear and d-parameter set-
ting also holds (see [16, 22]), that is, there is an analogue of the Hölder-type L

p

estimates stated in Theorem 2.5 for the discretized d-parameter paraproducts
of the form

(2.7)
�!
⇧ R(f1, . . . , fn

) =

X

R2R

c

R

1

|R|n�1
2

hf1, '
1
R

i · · · hf
n

, '

n

R

i'n+1
R

,

where the sum runs over the dyadic parallelepipeds R = I1 ⇥ · · ·⇥ I

d

✓ Rd.

3. Reduction to a localized variant of bilinear,
bi-parameter Coifman-Meyer multiplier estimates

In this section, by using the idea presented by C. Muscalu in [26, 23] to prove
the L

p estimates for one-parameter (d=1) and bilinear pseudo-di�erential oper-
ators T

a

= T

(1)
a

, we will show that the proof of our main result (Theorem 1.3),
i.e., the Hölder-type L

p estimates for operator T

(2)
a

) can be essentially reduced
to proving a localized variant of the Coifman-Meyer theorem (Theorem 1.1).

To this end, we first pick two sequences of smooth functions ('

0
n

)

n2Z
and ('

00
m

)

m2Z respectively, such that supp'

0
n

✓ [n � 1, n + 1], supp'

00
m

✓
[m� 1, m + 1] and

(3.1)
X

n2Z
'

0
n

(x1) =

X

m2Z
'

00
m

(x2) = 1

for every x = (x1, x2) 2 R2. As a consequence, the bilinear and bi-parameter
operator T

(2)
a

can be decomposed as follows

(3.2) T

(2)
a

=

X

n, m2Z
T

(2), (n, m)
a

,

where T

(2), (n, m)
a

(f, g)(x) := T

(2)
a

(f, g)(x) · '0
n

⌦ '

00
m

(x).

Now we claim that for every n, m 2 Z, one has estimates

(3.3) kT (2), (n, m)
a

(f, g)k
L

r(R2) . kf �̃
R

nm

k
L

p(R2) · kg�̃
R

nm

k
L

q(R2)

provided that 1 < p, q  1 and 1
r

=

1
p

+

1
q

> 0, where the approximate cuto�
functions �̃

R

nm

(x) := �̃

I

n

⌦ �̃

J

m

(x), �̃
I

(x1) := (1 +

dist(x1,I)
|I| )

�100, �̃
J

(x2) :=

(1 +

dist(x2,J)
|J| )

�100, rectangles R

nm

:= I

n

⇥ J

m

, intervals I

n

:= [n � 1, n + 1],
J

m

:= [m� 1, m + 1].
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Suppose that we have proved this claim (3.3), Theorem 1.3 will also be
proved as a corollary, because we have

kT (2)
a

(f, g)k
L

r . (

X

n,m2Z
kT (2),(n,m)

a

(f, g)kr

L

r

)

1
r . (

X

n,m2Z
kf �̃

R

nm

kr

L

p

kg�̃
R

nm

kr

L

q

)

1
r

. (

X

n,m2Z
kf �̃

R

nm

kp

L

p

)

1
p

(

X

n,m2Z
kg�̃

R

nm

kq

L

q

)

1
q . kfk

L

p · kgk
L

q

,

as long as 1 < p, q  1 and 1
r

=

1
p

+

1
q

> 0, where we have used the convergence
of series

P
k�1 k

�s for s � 1 to obtain the last inequality. Therefore, we only
have the task of proving the claim (3.3).

Now arbitrarily fix n0, m0 2 Z, then the symbol of operator T

(2),(n0,m0)
a

can
be written as

a(x, ⇠, ⌘)'

0
n0

(x1)'
00
m0

(x2) = a(x, ⇠, ⌘)

g
'

0
n0

(x1)'
0
n0

(x1)
fi
'

00
m0

(x2)'
00
m0

(x2),

where g
'

0
n0

, fi
'

00
m0

are smooth functions supported on the interval ›
I

n0 :=

[n0 � 2, n0 + 2], fiJ
m0 := [m0�2, m0+2] and that equal 1 on the support of '0

n0
,

'

00
m0

, respectively. One can split the restricted symbol a(x, ⇠, ⌘)

g
'

0
n0

(x1)
fi
'

00
m0

(x2)

as a Fourier series with respect to the x variable and rewrite the symbol
of T

(2),(n0,m0)
a

as

(3.4) (

X

~

l2Z2

m

~

l

(⇠, ⌘)e

2⇡i(x1,x2)·(l1,l2)
) · '0

n0
⌦ '

00
m0

(x),

where the Fourier coe�cients

(3.5) m

~

l

(⇠, ⌘) =

Z

R2

a(x, ⇠, ⌘)

g
'

0
n0

(x1)
fi
'

00
m0

(x2)e
�2⇡ix·~l

dx.

Thus we have the decomposition

(3.6) T

(2),(n0,m0)
a

=

X

~

l2Z2

T

(2),(n0,m0,

~

l)
a

,

where

T

(2),(n0,m0,

~

l)
a

(f, g)(x) =

Z

R4

m

~

l

(⇠, ⌘)e

2⇡ix·~l
ˆ

f(⇠)ĝ(⌘)e

2⇡ix·(⇠+⌘)
d⇠d⌘·'0

n0
⌦'00

m0
(x)

for every ~l 2 Z2. By applying invariant operator L :=

�~

l·r
x

2⇡i|~l|2
with property

L(e

�2⇡ix·~l
) = e

�2⇡ix·~l to the expression (3.5) of m

~

l

(⇠, ⌘) and integrating by
parts su�ciently many times, we deduce from the estimates (1.9) of symbol
a(x, ⇠, ⌘) that
(3.7)

|@↵1
⇠1
@

�1

⇠2
@

↵2
⌘1
@

�2
⌘2

m

~

l

(⇠, ⌘)| . 1

(1 + |~l|)M

· 1

(1 + |(⇠1, ⌘1)|)|↵| · 1

(1 + |(⇠2, ⌘2)|)|�|
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for a su�ciently large number M and su�ciently many multi-indices ↵ =

(↵1,↵2), � = (�1,�2). One can observe from (3.7) that the Fourier coe�cients
m

~

l

(⇠, ⌘) decay rapidly in |~l| away from the origin ~

0, which is acceptable for
summation, it will be clear from our proof that we only need to consider the
operator corresponding to ~l =

~

0, which is given by
(3.8)

T

(2),(n0,m0,

~0)
a

(f, g)(x) =

Z

R4

m

~0(⇠, ⌘)
ˆ

f(⇠)ĝ(⌘)e

2⇡ix·(⇠+⌘)
d⇠d⌘ · '0

n0
⌦ '

00
m0

(x),

where the symbol m

~0(⇠, ⌘) satisfies the following di�erential estimates

(3.9) |@↵1
⇠1
@

�1

⇠2
@

↵2
⌘1
@

�2
⌘2

m

~0(⇠, ⌘)| .
1

(1 + |(⇠1, ⌘1)|)|↵| · 1

(1 + |(⇠2, ⌘2)|)|�|

for su�ciently many multi-indices ↵ = (↵1,↵2), � = (�1,�2).
Now assume that we have proved

(3.10) kT (2),(0,0,

~0)
a

(f, g)k
L

r(R2) . kf �̃
R00kL

p(R2) · kg�̃
R00kL

q(R2),

then we can infer from (3.8), (3.10) and translation invariance that

kT (2),(n0,m0,

~0)
a

(f, g)k
L

r(R2) = kT (2),(0,0,

~0)
a

(⌧

x1
n0
⌧

x2
m0

f, ⌧

x1
n0
⌧

x2
m0

g)k
L

r(R2)

. k⌧x1
n0
⌧

x2
m0

f �̃

R00kL

p(R2)k⌧x1
n0
⌧

x2
m0

g�̃

R00kL

q(R2)

= kf �̃
R

n0m0
k

L

p(R2) · kg�̃
R

n0m0
k

L

q(R2),

where ⌧x1
y

f(x) := f(x1 + y, x2) and ⌧

x2
y

f(x) := f(x1, x2 + y). Therefore, we
can assume n0 = m0 = 0, since n0, m0 2 Z are chosen arbitrarily, we come to
a conclusion that the proof of our claim (3.3), or more precisely, the proof of
Theorem 1.3 can be reduced to proving a localized variant of the bilinear and
bi-parameter Coifman-Meyer theorem, that is, the following proposition.

Proposition 3.1. — Let bilinear operator T

(2),(0,0,

~0)
a

be defined by

(3.11) T

(2),(0,0,

~0)
a

(f, g)(x) =

Z

R4

m

~0(⇠, ⌘)
ˆ

f(⇠)ĝ(⌘)e

2⇡ix·(⇠+⌘)
d⇠d⌘ · '00 ⌦ '

00
0(x),

where the symbol m

~0(⇠, ⌘) satisfies di�erential estimates (3.9), then we have

(3.12) kT (2),(0,0,

~0)
a

(f, g)k
L

r(R2) . kf �̃
R00kL

p(R2) · kg�̃
R00kL

q(R2),

provided that 1 < p, q  1 and 1
r

=

1
p

+

1
q

> 0.

4. Discretization into localized bilinear and bi-parameter paraproducts estimates

In this section, by making use of the inhomogeneous Littlewood-Paley de-
composition (2.2) and Bony’s paraproducts decomposition (2.3), we will apply
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an inhomogeneous variant of the discretization procedure presented by Mus-
calu et al. in [21] to reduce the operator T

(2),(0,0,

~0)
a

to averages of discrete and
localized bilinear and bi-parameter paraproduct operators of the form

(4.1)
�!
⇧

(2),(0,0,

~0)
a, R (f, g)(x) = {

X

R=I⇥J2R,

|I|,|J|1

c

R

1

|R| 12
hf,'

1
R

ihg,'

2
R

i'3
R

} ·'00⌦'000(x).

Observe that the symbol m

~0(⇠, ⌘) of T

(2),(0,0,

~0)
a

doesn’t have singularity near
the planes (⇠1, ⌘1) = (0, 0), (⇠2, ⌘2) = (0, 0) in R2 ⇥ R2 and satisfies (3.9),
which is stronger than the Marcinkiewicz condition (1.5), thus in the present
case, it will be clear from the discretization procedure that one can use the
L

1-normalized bump functions { 
k

}
k��1 (which are adapted to intervals of

sizes 2

�k . 1 and of heights 2

k) to carry out inhomogeneous Littlewood-Paley
dyadic decomposition with respect to x1 and x2 variables respectively. That is
the reason why we can restrict further that the summation in (4.1) runs over
dyadic intervals having the property that |I|, |J | . 1.

We proceed the discretization procedure as follows. First, from the inhomo-
geneous one-parameter Littlewood-Paley decomposition (2.1), we can see that
the bilinear paraproducts decomposition (2.3) with respect to x1 variable is
equivalent to the following decomposition of symbol 1(⇠1, ⌘1):

1(⇠1, ⌘1) = (

X

k1��1

d
 

k1(⇠1))(

X

k2��1

d
 

k2(⌘1)) =

X

k1,k2��1

d
 

k1(⇠1)
d
 

k2(⌘1)

=

X

k�1

cf'
k

(⇠1)
c
 

k

(⌘1) +

X

k�1

c
 

k

(⇠1)
cf'

k

(⌘1) +

X

k�0

c
 

k

(⇠1)
cf
 

k

(⌘1)(4.2)

+{'̂(⇠1)
ˆ

 (⌘1) +

ˆ

 (⇠1)'̂(⌘1) + '̂(⇠1)'̂(⌘1)}.
Similarly, we can decompose the symbol 1(⇠2, ⌘2) as

1(⇠2, ⌘2) =

X

l�1

“‹'
l

(⇠2)
“
 

l

(⌘2) +

X

l�1

“
 

l

(⇠2)
“‹'

l

(⌘2) +

X

l�0

“
 

l

(⇠2)
“‹
 

l

(⌘2)(4.3)

+{'̂(⇠2)
ˆ

 (⌘2) +

ˆ

 (⇠2)'̂(⌘2) + '̂(⇠2)'̂(⌘2)}.
Note that 1(⇠, ⌘) = 1(⇠1, ⌘1) ·1(⇠2, ⌘2), one obtain immediately from (4.2), (4.3)
a decomposition of the symbol 1(⇠, ⌘) as a sum of sixteen terms. We can also
split the symbol m

~0(⇠, ⌘) := m

~0(⇠, ⌘) · 1(⇠, ⌘) as a sum of sixteen terms in the
same way as 1(⇠, ⌘), one of these terms is
X

k,l�1

m

~0(⇠, ⌘)
cf'

k

(⇠1)
c
 

k

(⌘1)
“
 

l

(⇠2)
“‹'

l

(⌘2) :=

X

k,l�1

m

~0(⇠, ⌘)(
cf'

k

⌦ “
 

l

)(⇠) · (c 
k

⌦ “‹'
l

)(⌘).
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Therefore, by splitting the symbol m

~0(⇠, ⌘) as above, one can decompose the
operator T

(2),~0
a

given by

(4.4) T

(2),~0
a

(f, g)(x) :=

Z

R4

m

~0(⇠, ⌘)
ˆ

f(⇠)ĝ(⌘)e

2⇡ix·(⇠+⌘)
d⇠d⌘

into a sum of sixteen bilinear and bi-parameter paraproduct operators as fol-
lows:

T

(2),~0
a

(f, g)

= (⇧

1
lh

⌦⇧

2
lh

)(f, g) + (⇧

1
lh

⌦⇧

2
hl

)(f, g) + (⇧

1
lh

⌦⇧

2
hh

)(f, g) + (⇧

1
lh

⌦⇧

2
ll

)(f, g)

+ (⇧

1
hl

⌦⇧

2
lh

)(f, g) + (⇧

1
hl

⌦⇧

2
hl

)(f, g) + (⇧

1
hl

⌦⇧

2
hh

)(f, g) + (⇧

1
hl

⌦⇧

2
ll

)(f, g)

+ (⇧

1
hh

⌦⇧

2
lh

)(f, g) + (⇧

1
hh

⌦⇧

2
hl

)(f, g) + (⇧

1
hh

⌦⇧

2
hh

)(f, g) + (⇧

1
hh

⌦⇧

2
ll

)(f, g)

+ (⇧

1
ll

⌦⇧

2
lh

)(f, g) + (⇧

1
ll

⌦⇧

2
hl

)(f, g) + (⇧

1
ll

⌦⇧

2
hh

)(f, g) + (⇧

1
ll

⌦⇧

2
ll

)(f, g),

(4.5)

where ⇧

i denotes one of the “low-high,” “high-low,” “high-high” and “low-low”
paraproducts (defined in Section 2, (2.3)) with respect to x

i

variable for i = 1, 2,
for instance, one of these operators can be expressed as

T

(2),~0
a,(lh,hl)(f, g)(x) := (⇧

1
lh

⌦⇧

2
hl

)(f, g)(x)(4.6)

:=

X

k,l�1

Z

R4

m

~0(⇠, ⌘)(f ⇤ (f'
k

⌦  

l

))

^
(⇠)(g ⇤ ( 

k

⌦ ‹'
l

))

^
(⌘)e

2⇡ix·(⇠+⌘)
d⇠d⌘.

Observe that the nine operators in the decomposition (4.5) of T

(2),~0
a

(which
don’t contain the exponents ⇧

1
ll

or ⇧

2
ll

in the tensor products) are quite similar
to the operator T

(2),~0
a,(lh,hl), all of them can be reduced to averages of classi-

cal discrete bilinear paraproduct operators of the form (2.6) with restrictions
|I|, |J | . 1 and at least two of the families of L

2-normalized bump functions
('

j

I

)

I

for j = 1, 2, 3 are lacunary in the sense of Definition 2.2, the same prop-
erty also holds for ('

j

J

)

J

(j = 1, 2, 3).

But the situations are subtle for the other seven operators in the decom-
position (4.5) of T

(2),~0
a

which contain at least one of components ⇧

1
ll

or ⇧

2
ll

in
tensor products, such as ⇧

1
lh

⌦⇧

2
ll

, ⇧

1
hl

⌦⇧

2
ll

, ⇧

1
hh

⌦⇧

2
ll

, ⇧

1
ll

⌦⇧

2
ll

, ⇧

1
ll

⌦⇧

2
hh

,
⇧

1
ll

⌦⇧

2
hl

, ⇧

1
ll

⌦⇧

2
lh

. By the discretization procedure described below, one can
reduce these seven operators to averages of discrete bilinear paraproduct oper-
ators of the form (2.6) with restrictions |I|, |J | . 1 (at least one of I, J satisfies
|I| ⇠ 1 or |J | ⇠ 1), and for at least one of the two dyadic interval families
I and J (here we assume the tensor product contains ⇧

1
ll

and hence suppose
it is dyadic interval family I without loss of generality), one has |I| ⇠ 1 for
every I 2 I and at least two of the families of L

2-normalized bump functions
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('

j

I

)

I2 I for j = 1, 2, 3 are nonlacunary. Therefore, there are mainly two di�er-
ences between these seven bilinear operators and the operator T

(2),~0
a,(lh,hl). First,

these seven operators can’t be reduced to averages of classical discrete bilinear
paraproduct operators of the form (2.6) which is applicable for Theorem 2.5.
Second, the one-parameter paraproducts estimates (Theorem 2.4) can’t be ap-
plied to each of the components ⇧

i

ll

(i = 1, 2) either. However, observe that
⇧

i

ll

are both summations of finite terms for i = 1, 2 and the dyadic intervals
I 2 I (corresponding to ⇧

1
ll

), J 2 J (corresponding to ⇧

2
ll

) satisfy |I| ⇠ 1 and
|J | ⇠ 1, so we can take advantage of the Coifman-Meyer theorem (Theorem 1.1)
and the fact that both

P
I✓5I0

and
P

J✓5J0
are finite summations to avoid the

troubles of applying Theorem 2.5 and Theorem 2.4(see Subsection 5.5 in Sec-
tion 5). It will be clear from the proof that the other parts of our arguments
have nothing to do with the properties whether the families of L

2-normalized
bump functions ('

j

I

)

I2 I and ('

j

J

)

J2 J for j = 1, 2, 3 are lacunary or not (see
Subsection 5.2, 5.3 and 5.4 in Section 5), thus we can deal with these seven
operators in a quite similar way as T

(2),~0
a,(lh,hl).

In a word, we only need to consider the operator T

(2),~0
a,(lh,hl) from now on, and

the proof of Proposition 3.1, or more precisely, the proof of Theorem 1.3 can
be reduced to proving the following localized estimates for T

(2),~0
a,(lh,hl):

(4.7) kT (2),~0
a,(lh,hl)(f, g) · '00 ⌦ '

00
0kL

r(R2) . kf e�
R00kL

p(R2) · kge�
R00kL

q(R2),

as long as 1 < p, q  1 and 1
r

=

1
p

+

1
q

> 0.

Now consider the trilinear form ⇤

(2),~0
a,(lh,hl)(f, g, h) associated to T

(2),~0
a,(lh,hl)(f, g),

which can be written as

⇤

(2),~0
a,(lh,hl)(f, g, h) :=

Z

R2

T

(2),~0
a,(lh,hl)(f, g)(x)h(x)dx(4.8)

=

X

k,l�1

Z

⇠+⌘+�=0
m

~0,k,l

(⇠, ⌘, �)(f ⇤ (f'
k

⌦  

l

))

^
(⇠)(g ⇤ ( 

k

⌦ ‹'
l

))

^
(⌘)

⇥(h ⇤ ( 

0
k

⌦  

0
l

))

^
(�)d⇠d⌘d�,

where c
 

0
k

(�1) :=

“
 

0
(

�1

2k

), “
 

0
l

(�2) :=

“
 

0
(

�2

2l

) for any k, l 2 Z,  

0 is a
Schwartz function such that supp

“
 

0 ✓ [�4,� 1
16 ] [ [

1
16 , 4] and “

 

0
= 1

on [� 10
3 ,� 1

12 ] [ [

1
12 ,

10
3 ], while m

~0,k,l

(⇠, ⌘, �) := m

~0(⇠, ⌘) · (�

0
k

⌦ �

00
l

)(⇠, ⌘, �),
where �

0
k

(⇠1, ⌘1, �1) := �

0
(

⇠1

2k

,

⌘1

2k

,

�1

2k

), �00
l

(⇠2, ⌘2, �2) := �

00
(

⇠2

2l

,

⌘2

2l

,

�2

2l

) for any
k, l 2 Z, and �0⌦�00 is an appropriate smooth function supported on a slightly
larger parallelepiped than supp ((e'⌦  )

^
(⇠)( ⌦ e')

^
(⌘)( 

0 ⌦  

0
)

^
(�)), which

equals 1 on supp ((e'⌦  )

^
(⇠)( ⌦ e')

^
(⌘)( 

0 ⌦  

0
)

^
(�)). We can decompose
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m

~0,k,l

(⇠, ⌘, �) as a Fourier series:

(4.9) m

~0,k,l

(⇠, ⌘, �)

=

X

~n1, ~n2, ~n32Z2

C

k,l

~n1, ~n2, ~n3
e

2⇡i(n01,n

0
2,n

0
3)·(⇠1,⌘1,�1)/2k

e

2⇡i(n001 ,n

00
2 ,n

00
3 )·(⇠2,⌘2,�2)/2l

,

where the Fourier coe�cients C

k,l

~n1, ~n2, ~n3
(k, l � 1) are given by

(4.10) C

k,l

~n1, ~n2, ~n3

=

Z

R6

m

~0,k,l

((2

k

⇠1, 2
l

⇠2), (2
k

⌘1, 2
l

⌘2), (2
k

�1, 2
l

�2))e
�2⇡i( ~n1·⇠+ ~n2·⌘+ ~n3·�)

d⇠d⌘d�.

By taking advantage of the di�erential estimates (3.9) for symbol m

~0(⇠, ⌘), one
deduce from (4.10) and integrating by parts su�ciently many times that

(4.11) |Ck,l

~n1, ~n2, ~n3
| .

3Y

j=1

1

(1 + | ~n
j

|)M

for any k, l � 1, where M is su�ciently large.

Then, by a straightforward calculation, we can rewrite (4.8) as

⇤

(2),~0
a,(lh,hl)(f, g, h) =

X

~n1, ~n2, ~n32Z2
,k,l�1

⇤

~n1, ~n2, ~n3,k,l

(f, g, h)

(4.12)

:=

X

k,l�1

X

~n1, ~n2, ~n32Z2

C

k,l

~n1, ~n2, ~n3

Z

R2

(f ⇤ (f'
k

⌦  

l

))(x� (2

�k

n

0
1, 2

�l

n

00
1))

⇥ (g ⇤ ( 

k

⌦ ‹'
l

))(x� (2

�k

n

0
2, 2

�l

n

00
2))(h ⇤ ( 

0
k

⌦  

0
l

))(x� (2

�k

n

0
3, 2

�l

n

00
3))dx.

Since the rapid decay in (4.11) is acceptable for summation, we only need to
consider the part of the trilinear form corresponding to ~n1 = ~n2 = ~n3 = (0, 0):

(4.13) ˜

⇤

(2),~0
a,(lh,hl)(f, g, h) :=

X

k,l�1

⇤

~0,

~0,

~0,k,l

(f, g, h).

By splitting the integral region R2 into the union of unit squares, the L

2-nor-
malization procedure and simple calculations, we can rewrite (4.13) as

˜

⇤

(2),~0
a,(lh,hl)(f, g, h)

=

X

k,l�1

Z 1

0

Z 1

0

X

I dyadic,

|I|=2�k

X

J dyadic,

|J|=2�l

1

|I| 12
· 1

|J | 12
hf,'

1,⌫

0

I

⌦ '

1,⌫

00

J

ihg,'

2,⌫

0

I

⌦ '

2,⌫

00

J

i

⇥hh,'

3,⌫

0

I

⌦ '

3,⌫

00

J

id⌫0d⌫00
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=:

Z 1

0

Z 1

0

X

R=I⇥J dyadic,

|I|,|J|<1

1

|R| 12
hf,'

1,⌫

R

ihg,'

2,⌫

R

ihh,'

3,⌫

R

id⌫,

where '1,⌫

0

I

is defined by '

1,⌫

0

I

(x1) := 2

� k

2 f'
k

(2

�k

(n + ⌫

0
)� x1) and I is the

dyadic interval [2

�k

n, 2

�k

(n + 1)], and all the L

2-normalized bump functions
'

j,⌫

0

I

(adapted to I) and 'j,⌫

00

J

(adapted to J) for j = 1, 2, 3 can also be defined
similarly in such a way respectively.

The bilinear operator corresponding to the trilinear form ˜

⇤

(2),~0
a,(lh,hl)(f, g, h)

can be written as

(4.14) f�!
⇧

(2),~0

a

(f, g)(x) =

Z 1

0

Z 1

0

X

R=I⇥J dyadic,

|I|,|J|<1

1

|R| 12
hf,'

1,⌫

R

ihg,'

2,⌫

R

i'3,⌫

R

(x)d⌫.

Since f�!
⇧

(2),~0

a

(f, g) is an average of some discrete bilinear paraproduct operators
depending on the parameters ⌫ = (⌫1, ⌫2) 2 [0, 1]

2, it is enough to prove our
localized estimates (3.12) in Proposition 3.1 for each of them, uniformly with
respect to parameters ⌫ = (⌫1, ⌫2). We will do this in the particular case when
the parameters ⌫ = (⌫1, ⌫2) = (0, 0), but the same argument works in general.
In this case, we change our notation and rewrite the corresponding bilinear
operator in (4.14) as

(4.15)
�!
⇧

(2),~0
a

(f, g)(x) =

X

R=I⇥J dyadic,

|I|,|J|<1

1

|R| 12
hf,'

1
R

ihg,'

2
R

i'3
R

(x).

Now we reach a conclusion that in order to prove the localized Coifman-
Meyer estimates in Proposition 3.1, we only need to prove that the bilinear
operator

�!
⇧

(2),(0,0,

~0)
a

:=

�!
⇧

(2),~0
a

· '00 ⌦ '

00
0 satisfies estimates

(4.16) k�!⇧ (2),(0,0,

~0)
a

(f, g)k
L

r(R2) . kf�
R00kL

p(R2) · kg�
R00kL

q(R2)

for any 1 < p, q  1 and 1
r

=

1
p

+

1
q

> 0.

By Fatou’s lemma, we can also restrict the summation in the definition
of
�!
⇧

(2),(0,0,

~0)
a

on arbitrary finite set R of dyadic rectangles, and prove the
estimates are uniform with respect to di�erent choices of the set R. In a word,
we have reduced the proof of Proposition 3.1, or more precisely, the proof of
Theorem 1.3 to proving the following localized estimates for discrete bilinear
paraproducts

�!
⇧

(2),(0,0,

~0)
a, R .
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Proposition 4.1. — Let localized and discrete bilinear paraproduct operator
�!
⇧

(2),(0,0,

~0)
a, R be defined by

(4.17)
�!
⇧

(2),(0,0,

~0)
a, R (f, g)(x) = {

X

R=I⇥J2R,

|I|,|J|1

c

R

1

|R| 12
hf,'

1
R

ihg,'

2
R

i'3
R

} · '00 ⌦ '

00
0(x)},

where R is an arbitrary finite set of dyadic rectangles and sequence (c

R

)

R

is
bounded by a universal constant, then we have

(4.18) k�!⇧ (2),(0,0,

~0)
a, R (f, g)k

L

r(R2) . kf�
R00kL

p(R2) · kg�
R00kL

q(R2),

as long as 1 < p, q  1 and 1
r

=

1
p

+

1
q

> 0. Moreover, the implicit constants in
the bounds depend only on p, q, r and are independent of the cardinality of R.

5. Proof of Theorem 1.3

In this section, we prove our main Result Theorem 1.3 by carrying out the
proof of Proposition 4.1.

5.1. Strategy of the proof. — First observe the form of operator
�!
⇧

(2),(0,0,

~0)
a, R .

Since the integral region is R00 := I0 ⇥ J0 := [�1, 1]⇥ [�1, 1], we observe that
for these terms that R = I ⇥ J 2 R is far away from R00 in the summation
in (4.17), for instance, R ✓ (5R00)

c, there will be rapid decay factors derived
from the L

2-normalized bump function '3
R

, and hence these terms will be small
and easily estimated. Therefore, the main terms in the summation in (4.17)
will be the ones that R ✓ 5R00 (say), one easily deduce from the Coifman-
Meyer theorem (Theorem 1.1) or Theorem 2.5 that the main contribution in
these cases comes from the cuto�s of f and g whose supports are not far
away from R00 (for instance, f�15R00 and g�15R00), since the function �̃

R00 is
bounded from below near the rectangle R00; for other parts of f , g which are
supported far away from R00, there will be rapid decay factors derived from
hf,'

1
R

i · hg,'

2
R

i, which is acceptable for summation.
According to the above analysis and observing that in the bi-parameter

setting the dyadic rectangles R = I ⇥ J may get close to or far away from the
integral region R00 = I0⇥J0 in two di�erent directions x1 and x2 which is more
complicated than the one-parameter case, we split the bilinear paraproduct
operator

�!
⇧

(2),(0,0,

~0)
a, R as follows:

(5.1)
�!
⇧

(2),(0,0,

~0)
a, R :=

�!
⇧

(2),(0,0,

~0)
a, R,I

+

�!
⇧

(2),(0,0,

~0)
a, R,II

+

�!
⇧

(2),(0,0,

~0)
a, R,III

+

�!
⇧

(2),(0,0,

~0)
a, R,IV

,
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where the main term
(5.2)
�!
⇧

(2),(0,0,

~0)
a, R,I

(f, g)(x) := {
X

R2R, R✓5R00,

|I|, |J|1

c

R

|R| 12
hf,'

1
R

ihg,'

2
R

i'3
R

(x)}'00 ⌦ '

00
0(x)},

the error term
(5.3)
�!
⇧

(2),(0,0,

~0)
a, R,II

(f, g)(x) := {
X

R2R, |I|, |J|1,

I✓(5I0)
c

, J✓(5J0)
c

c

R

|R| 12
hf,'

1
R

ihg,'

2
R

i'3
R

}'00 ⌦ '

00
0(x)},

and the hybrid terms
(5.4)
�!
⇧

(2),(0,0,

~0)
a, R,III

(f, g)(x) := {
X

R2R, |I|, |J|1,

I✓5I0, J✓(5J0)
c

c

R

|R| 12
hf,'

1
R

ihg,'

2
R

i'3
R

(x)}'00 ⌦ '

00
0(x)},

(5.5)
�!
⇧

(2),(0,0,

~0)
a, R,IV

(f, g)(x) := {
X

R2R, |I|, |J|1,

I✓(5I0)
c

, J✓5J0

c

R

|R| 12
hf,'

1
R

ihg,'

2
R

i'3
R

(x)}'00 ⌦ '

00
0(x)}.

5.2. Estimates of the main term ~

⇧

(2),(0,0,

~0)
a, R,I

. — Observe that R ✓ 5R00 in this
situation, we can’t obtain enough decay factors from '

3
R

on the integral region
R00, but if one of f or g is supported far away from the region R00, we will get
decay factors from hf,'

1
R

i · hg,'

2
R

i, which is acceptable for summation. To this
end, let us decompose the functions f , g as follows:

(5.6) f =

X

n1,m12Z
f�e

I

n1

�e
J

m1

=:

X

n1,m12Z
f�e

R

n1m1

,

(5.7) g =

X

n2,m22Z
g�e

I

n2

�e
J

m2

=:

X

n2,m22Z
g�e

R

n2m2

,

where e
I

n

i

:= [n

i

, n

i

+ 1), e
J

m

i

:= [m

i

, m

i

+ 1), e
R

n

i

m

i

:=

e
I

n

i

⇥ e
J

m

i

for i = 1, 2.
Now insert the two decompositions into the Formula (5.2) for

�!
⇧

(2),(0,0,

~0)
a, R,I

and
we get

(5.8)
�!
⇧

(2),(0,0,

~0)
a, R,I

(f, g)(x) =

X

n1,m12Z

X

n2,m22Z

�!
⇧

(2),(0,0,

~0)
a, R,I

(f�e
R

n1m1

, g�e
R

n2m2

).

If all the n1, m1, n2, m2 are not far from zero, that is, |n1|, |m1|, |n2|, |m2| 
15, then one gets from the Coifman-Meyer theorem (Theorem 1.1), or more
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precisely, the discrete paraproducts estimates theorem (Theorem 2.5) that

k
X

|n1|,|m1|15

X

|n2|,|m2|15

�!
⇧

(2),(0,0,

~0)
a, R,I

(f�e
R

n1m1

, g�e
R

n2m2

)k
L

r

(5.9)

. kf
X

|n1|,|m1|15

�e
R

n1m1

k
L

p · kg
X

|n2|,|m2|15

�e
R

n2m2

k
L

q . kf �̃
R00kL

pkg�̃
R00kL

q

,

since �̃
R00 is bounded from below near the rectangle R00.

If, however, we faces the other fifteen di�erent situations when at least one
of |n1|, |m1|, |n2|, |m2| is large, we mainly consider two kind of cases: first, there
are at least one of n1, n2 and one of m1, m2 are large, for instance, suppose all
of |n1|, |m1|, |n2|, |m2| > 15 are large, then hf�e

R

n1m1

,'

1
R

i · hg�e
R

n2m2

,'

2
R

i will
provide a decay factor of the type:

1

(1 +

|n1|�6
|I| )

N1

· 1

(1 +

|m1|�6
|J| )

M1

· 1

(1 +

|n2|�6
|I| )

N2

· 1

(1 +

|m2|�6
|J| )

M2

for su�ciently large number N1, M1, N2 and M2, which is acceptable for both
the summations

X

|n1|,|n2|>15

X

I✓5I0

and

X

|m1|,|m2|>15

X

J✓5J0

on dyadic intervals I, J ; second, there are at least one of n1, n2 or at least one
of m1, m2 that is large, for instance, suppose |n1| > 15 is large, the other m1,
n2, m2 are not far from zero, then in a similar but simpler way as above, we
deduce that hf,'

1
R

i will provide a decay factor of the type (1+

|n1|�6
|I| )

�N1 for N1

su�ciently large, which is only enough for the summation
P

|n1|>15

P
I✓5I0

on
dyadic intervals I, we can apply the one-parameter paraproducts estimates
(Theorem 2.4) to solve the summation

P
J✓5J0

on dyadic intervals J .

As analyzed above, we only consider the case that all of |n1|, |m1|, |n2|, |m2| >

15 are large, the proofs of other cases are similar. For arbitrary |n1|, |m1|, |n2|,
|m2| > 15 and each fixed R ✓ 5R00, since 'j

R

= '

j

I

⌦'j

J

and ('

j

I

)

I2 I , ('

j

J

)

J2 J
are families of L

2-normalized bump functions adapted to intervals I, J respec-
tively for j = 1, 2, 3, we deduce from Hölder’s inequality the corresponding
one-term bilinear operator satisfies the following estimates

k c

R

|R| 12
hf�e

R

n1m1

,'

1
R

ihg�e
R

n2m2

,'

2
R

i'3
R

· '00 ⌦ '

00
0kL

r

(5.10)

. 1

|R| 12
(1 +

dist(

e
I

n1 , I)

|I| )

�N1
(1 +

dist(

e
J

m1 , J)

|J | )

�M1
(

1

|R| 12
kf�e

R

n1m1

k
L

p |R|
p�1

p

)·
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⇥ (1 +

dist(

e
I

n2 , I)

|I| )

�N2
(1 +

dist(

e
J

m2 , J)

|J | )

�M2
(

1

|R| 12
kg�e

R

n2m2

k
L

q |R|
q�1

q

)

|R| 1
r

|R| 12

. (1 +

dist(

e
I

n1 , I)

|I| )

�N1
(1 +

dist(

e
J

m1 , J)

|J | )

�M1
(1 +

dist(

e
I

n2 , I)

|I| )

�N2

⇥(1 +

dist(

e
J

m2 , J)

|J | )

�M2kf�e
R

n1m1

k
L

p · kg�e
R

n2m2

k
L

q

for any 1 < p, q  1 and 1
r

=

1
p

+

1
q

> 0, here we have used the facts that

(1 +

dist(x1, I)

|I| )

N

j |I| 12'j

I

, (1 +

dist(x2, J)

|J | )

M

j |J | 12'j

J

are also L

1-normalized bump functions adapted to dyadic intervals I, J re-
spectively for j = 1, 2, where N1, M1, N2, M2 are su�ciently large numbers (it
will be enough for us to assume N1, M1, N2, M2 ' 1000).

By using (5.2), one can use the triangle inequality if r � 1 and the subad-
ditivity of k · kr

L

r

if 0 < r < 1 to sum the contributions of every R ✓ 5R00

with |I|, |J |  1 given by (5.10) together and obtain (we only present here the
arguments for 0 < r < 1, the cases r � 1 can be treated similarly):

k�!⇧ (2),(0,0,

~0)
a, R,I

(f�e
R

n1m1

, g�e
R

n2m2

)kr

L

r

(5.11)

.
X

k,l�0

X

R=I⇥J✓5R00,

|I|=2�k

,|J|=2�l

[(1 +

|n1|� 6

2

�k

)

�N1
(1 +

|m1|� 6

2

�l

)

�M1
(1 +

|n2|� 6

2

�k

)

�N2

⇥ (1 +

|m2|� 6

2

�l

)

�M2
]

rkf�e
R

n1m1

kr

L

p

· kg�e
R

n2m2

kr

L

q

. [

Y

i=1,2

1

(|n
i

|� 6)

N

i

· 1

(|m
i

|� 6)

M

i

]

r · kf�e
R

n1m1

kr

L

p

· kg�e
R

n2m2

kr

L

q

for any |n1|, |m1|, |n2|, |m2| > 15.

One easily obtain that

(5.12) (|n
i

|� 6)

�N

i

2 . min

x12eIn

i

�̃

I0(x1), (|m
i

|� 6)

�M

i

2 . min

x22e
J

m

i

�̃

J0(x2)

for i = 1, 2 and every |n1|, |m1|, |n2|, |m2| > 15, where N1, M1, N2, M2 ' 1000

are large enough.

Therefore, by using (5.11) and (5.12), one can use the triangle inequality if
r � 1 and the subadditivity of k · kr

L

r

if 0 < r < 1 to sum the contributions
of
�!
⇧

(2),(0,0,

~0)
a, R,I

(f�e
R

n1m1

, g�e
R

n2m2

) together and obtain (we only present here the
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arguments for r � 1, the cases 0 < r < 1 can be treated similarly):

k
X

|n1|,|m1|>15

X

|n2|,|m2|>15

�!
⇧

(2),(0,0,

~0)
a, R,I

(f�e
R

n1m1

, g�e
R

n2m2

)k
L

r

(5.13)

.
X

|n1|,|m1|>15

X

|n2|,|m2|>15

Y

i=1,2

1

(|n
i

|� 6)

N

i

1

(|m
i

|� 6)

M

i

kf�e
R

n1m1

k
L

pkg�e
R

n2m2

k
L

q

.
X

|n1|,|m1|>15

X

|n2|,|m2|>15

Y

i=1,2

1

(|n
i

|� 6)

N

i

2

1

(|m
i

|� 6)

M

i

2

kf �̃
R00kL

pkg�̃
R00kL

q

. kf �̃
R00kL

p · kg�̃
R00kL

q

.

Similar to estimates (5.9) and (5.13), we can get the estimates for the other
di�erent fourteen cases, then we insert these estimates into the decomposition
(5.8) and finally get the estimates of

�!
⇧

(2),(0,0,

~0)
a, R,I

as follows

k�!⇧ (2),(0,0,

~0)
a, R,I

(f, g)k
L

r(R2) = k
X

n1,m12Z

X

n2,m22Z

�!
⇧

(2),(0,0,

~0)
a, R,I

(f�e
R

n1m1

, g�e
R

n2m2

)k
L

r

. kf �̃
R00kL

p(R2) · kg�̃
R00kL

q(R2),(5.14)

provided that 1 < p, q  1 and 1
r

=

1
p

+

1
q

> 0, this concludes our estimates

of the main term
�!
⇧

(2),(0,0,

~0)
a, R,I

.

5.3. Estimates of the error term ~

⇧

(2),(0,0,

~0)
a, R,II

. — Since R = I ⇥ J with I ✓ (5I0)
c,

J ✓ (5J0)
c, R is su�ciently far away from the integral region R00, the operator

�!
⇧

(2),(0,0,

~0)
a, R,II

has su�ciently many rapid decay factors derived from '

3
R

and can
be considered as an error term.

One can decompose the operator
�!
⇧

(2),(0,0,

~0)
a, R,II

as

(5.15)
�!
⇧

(2),(0,0,

~0)
a, R,II

:=

X

|n|,|m|�5

�!
⇧

nm

a, R,

where
(5.16)
�!
⇧

nm

a, R(f, g)(x) := {
X

R2R, R✓R

nm

,|I|, |J|1,

I✓(5I0)
c

, J✓(5J0)
c

c

R

|R| 12
hf,'

1
R

ihg,'

2
R

i'3
R

}'00 ⌦ '

00
0(x)}

for |n|, |m| � 5. For arbitrary |n|, |m| � 5 and each fixed R ✓ R

nm

, since 'j

R

=

'

j

I

⌦ '

j

J

and ('

j

I

)

I2 I , ('

j

J

)

J2 J are families of L

2-normalized bump functions
adapted to intervals I, J respectively for j = 1, 2, 3, we deduce from Hölder’s
inequality the corresponding one-term bilinear operator satisfies the following
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estimates

k c

R

|R| 12
hf,'

1
R

ihg,'

2
R

i'3
R

· '00 ⌦ '

00
0kL

r

(5.17)

. 1

|R| 12
(

1

|R| 12
kf �̃

R

nm

k
L

p |R|
p�1

p

) · ( 1

|R| 12
kg�̃

R

nm

k
L

q |R|
q�1

q

)(1 +

dist(I, I0)

|I| )

�N

⇥ (1 +

dist(J, J0)

|J | )

�M |R| 1
r

� 1
2

. (1 +

dist(I, I0)

|I| )

�N

(1 +

dist(J, J0)

|J | )

�Mkf �̃
R

nm

k
L

p · kg�̃
R

nm

k
L

q

for any 1 < p, q  1 and 1
r

=

1
p

+

1
q

> 0, here we have used the facts that

(1 +

dist(x1, I)

|I| )

N |I| 12'j

I

and (1 +

dist(x2, J)

|J | )

M |J | 12'j

J

are also L

1-normalized bump functions adapted to dyadic intervals I, J re-
spectively for j = 1, 2, 3, where N , M are su�ciently large numbers (it will be
enough for us to assume N, M ' 1000).

By using (5.16) and summing the contributions of every R ✓ R

nm

given by
(5.17), we get the estimates of operator

�!
⇧

nm

a, R as follows:

k�!⇧nm

a, R(f, g)k
L

r

(5.18)

. (

X

k,l�0

X

R=I⇥J✓R

nm

,

|I|=2�k

,|J|=2�l

(1 +

|n|� 2

2

�k

)

�N

(1 +

|m|� 2

2

�l

)

�M

)kf �̃
R

nm

k
L

pkg�̃
R

nm

k
L

q

. 1

(|n|� 2)

N

· 1

(|m|� 2)

M

kf �̃
R

nm

k
L

p · kg�̃
R

nm

k
L

q

for any |n|, |m| � 5 and r � 1; if 0 < r < 1, we can use the subadditivity
of k · kr

L

r

to sum the contributions in a completely similar way and get the
estimate (5.18).

Since we have for arbitrary |n|, |m| � 5,

(|n|� 2)

�200
(|m|� 2)

�200
max

x2R2
{(1+

dist(x1, In

)

|I
n

| )

�100
(1+

dist(x2, Jm

)

|J
m

| )

�100}

. min

x2R

nm

{(1 +

dist(x1, I0)

|I0|
)

�100
(1 +

dist(x2, J0)

|J0|
)

�100},

and hence we infer that

(5.19) (|n|� 2)

�N

3
(|m|� 2)

�M

3 |�̃
R

nm

(x)| . |�̃
R00(x)|
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for every x 2 R2 and |n|, |m| � 5, where N, M ' 1000 are large enough.

Therefore, by using (5.15), (5.18) and (5.19), one can use the triangle inequal-
ity if r � 1 and the subadditivity of k ·kr

L

r

if 0 < r < 1 to sum the contributions
of
�!
⇧

nm

a, R together and obtain (we only present here the arguments for 0 < r < 1,
the cases r � 1 can be treated similarly):

k�!⇧ (2),(0,0,

~0)
a, R,II

(f, g)kr

L

r

.
X

|n|,|m|�5

k�!⇧nm

a, Rk
r

L

r

.
X

|n|,|m|�5

1

(|n|� 2)

rN

· 1

(|m|� 2)

rM

kf �̃
R

nm

kr

L

p

· kg�̃
R

nm

kr

L

q

.
X

|n|,|m|�5

(|n|� 2)

�N

6
(|m|� 2)

�M

6 kf �̃
R00kr

L

p

kg�̃
R00kr

L

q

. kf �̃
R00kr

L

p

kg�̃
R00kr

L

q

,

and hence we get the estimates for
�!
⇧

(2),(0,0,

~0)
a, R,II

as follows

(5.20) k�!⇧ (2),(0,0,

~0)
a, R,II

(f, g)k
L

r(R2) . kf �̃
R00kL

p(R2) · kg�̃
R00kL

q(R2),

as long as 1 < p, q  1 and 1
r

=

1
p

+

1
q

> 0, this concludes our estimates of

the error term
�!
⇧

(2),(0,0,

~0)
a, R,II

.

5.4. Estimates of the hybrid terms ~⇧(2),(0,0,

~0)
a, R,III

and ~⇧(2),(0,0,

~0)
a, R,IV

. — We will only es-

timate the hybrid term
�!
⇧

(2),(0,0,

~0)
a, R,III

, since by symmetry the arguments for esti-

mating
�!
⇧

(2),(0,0,

~0)
a, R,IV

is completely similar.

The operator
�!
⇧

(2),(0,0,

~0)
a, R,III

may be regarded as the “hybrid” in two aspects.

First, it behaves like the main term
�!
⇧

(2),(0,0,

~0)
a, R,I

in x1 direction, because I ✓ 5I0

and if one of the functions f , g is supported far away from I0 in x1 direction,
then hf,'

1
I

i or hg,'

2
I

i will provide su�cient decay factors. Second, similar to
the error term

�!
⇧

(2),(0,0,

~0)
a, R,II

, since J ✓ (5J0)
c, decay factors can always be derived

from '

3
J

(x2), no matter whether the supports of f , g are far away from J0 in x2

direction or not. Therefore, the proof strategy for the hybrid term
�!
⇧

(2),(0,0,

~0)
a, R,III

will be a reasonable combination of the arguments for main term and error
term.

First, we split the functions f , g only with respect to x1 variable:

(5.21) f =

X

n12Z
f�e

I

n1

, g =

X

n22Z
g�e

I

n2

,
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and insert the two decompositions into the Formula (5.4) for
�!
⇧

(2),(0,0,

~0)
a, R,III

. We

can decompose the operator
�!
⇧

(2),(0,0,

~0)
a, R,III

as

(5.22)
�!
⇧

(2),(0,0,

~0)
a, R,III

:=

X

n1,n22Z

X

|m|�5

�!
⇧

(n1,n2),m
a, R ,

where

(5.23)
�!
⇧

(n1,n2),m
a, R (f, g)(x)

:= {
X

R2R, |I|,|J|1,

I✓5I0, J✓(5J0)
c

,

J✓J

m

c

R

|R| 12
hf�e

I

n1

,'

1
R

ihg�e
I

n2

,'

2
R

i'3
R

(x)}'00 ⌦ '

00
0(x)}

for every n1, n2 2 Z and |m| � 5.

We mainly consider two kind of cases: first, at least one of n1, n2 are large,
there are three di�erent subcases which can be estimated similarly, for instance,
suppose both of |n1|, |n2| > 15 are large, then hf�e

I

n1

,'

1
R

i · hg�e
I

n2

,'

2
R

i will
provide a decay factor of the type:

1

(1 +

|n1|�6
|I| )

N1

· 1

(1 +

|n2|�6
|I| )

N2

for su�ciently large number N1 and N2, which is acceptable for the summationP
|n1|,|n2|>15

P
I✓5I0

on dyadic intervals I, at the same time, since J ✓ (5J0)
c,

'

3
R

will provide su�ciently rapid decay factors on |m| � 5 of the type
1

(1 +

|m|�2
|J| )

M

for the summation
P

|m|�5

P
J✓J

m

; second, both of n1, n2 are not far from zero,
we can apply directly the one-parameter paraproducts estimates (Theorem 2.4)
to solve the summation

P
I✓5I0

on dyadic intervals I, then in a quite similar
but simpler way as above, we deduce that '3

R

will provide enough decay factors
on |m| for the summation

P
|m|�5

P
J✓J

m

.

As analysed above, we only consider the case that both of |n1|, |n2| > 15 are
large, the proofs of other three cases are similar. For arbitrary |n1|, |n2| > 15,
|m| � 5 and each fixed R = I ⇥ J with I ✓ 5I0, J ✓ J

m

, since 'j

R

= '

j

I

⌦ '

j

J

and ('

j

I

)

I2 I , ('

j

J

)

J2 J are families of L

2-normalized bump functions adapted
to intervals I, J respectively for j = 1, 2, 3, we deduce from Hölder’s inequality
the corresponding one-term bilinear operator satisfies the following estimates

k c

R

|R| 12
hf�e

I

n1

,'

1
R

ihg�e
I

n2

,'

2
R

i'3
R

· '00 ⌦ '

00
0kL

r(R2)(5.24)

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



592 W. DAI & G. LU

. (1 +

dist(

e
I

n1 , I)

|I| )

�N1
(1 +

dist(

e
I

n2 , I)

|I| )

�N2

⇥k 1

|J | 12
hkf�e

I

n1

k
L

p

x1
, |'1

J

|ihkg�e
I

n2

k
L

q

x1
, |'2

J

|i'3
J

· '000kL

r

x2

. (1 +

dist(

e
I

n1 , I)

|I| )

�N1
(1 +

dist(

e
I

n2 , I)

|I| )

�N2
(1 +

dist(J, J0)

|J | )

�M

⇥ 1

|J | 12
(

1

|J | 12
kf�e

I

n1

�̃

J

m

k
L

p(R2)|J |1�
1
p

)(

1

|J | 12
kg�e

I

n2

�̃

J

m

k
L

q(R2)|J |1�
1
q

)|J | 1
r

� 1
2

. (1 +

dist(

e
I

n1 , I)

|I| )

�N1
(1 +

dist(

e
I

n2 , I)

|I| )

�N2
(1 +

dist(J, J0)

|J | )

�M

⇥kf�e
I

n1

�̃

J

m

k
L

p(R2) · kg�e
I

n2

�̃

J

m

k
L

q(R2)

for any 1 < p, q  1 and 1
r

=

1
p

+

1
q

> 0, here we have used the facts that
(1 +

dist(x1,I)
|I| )

N

j |I| 12'j

I

is also an L

1-normalized bump function adapted to
dyadic interval I for j = 1, 2 and (1+

dist(x2,J)
|J| )

M |J | 12'3
J

is also an L

1-normal-
ized bump function adapted to dyadic interval J , where N1, N2, M are su�-
ciently large numbers (it will be enough for us to assume N1, N2, M ' 1000).

By using (5.23), one can use the triangle inequality if r � 1 and the sub-
additivity of k · kr

L

r

if 0 < r < 1 to sum the contributions of every R = I ⇥ J

with I ✓ 5I0, J ✓ J

m

and |I|, |J |  1 given by (5.24) together and obtain (we
only present here the arguments for 0 < r < 1, the cases r � 1 can be treated
similarly):

k�!⇧ (n1,n2),m
a, R (f, g)kr

L

r(R2)(5.25)

.
X

k,l�0

X

I✓5I0,

|I|=2�k

X

J✓J

m

,

|J|=2�l

[(1 +

|n1|� 6

2

�k

)

�N1
(1 +

|n2|� 6

2

�k

)

�N2
(1 +

|m|� 2

2

�l

)

�M

]

r

⇥kf�e
I

n1

�̃

J

m

kr

L

p(R2) · kg�e
I

n2

�̃

J

m

kr

L

q(R2)

. [

Y

i=1,2

1

(|n
i

|� 6)

N

i

]

r

1

(|m|� 2)

Mr

· kf�e
I

n1

�̃

J

m

kr

L

p(R2) · kg�e
I

n2

�̃

J

m

kr

L

q(R2)

for any |n1|, |n2| > 15 and |m| � 5.

Since we have for arbitrary |m| � 5,

(|m|� 2)

�200
max

x22R
(1 +

dist(x2, Jm

)

|J
m

| )

�100 . min

x22J

m

(1 +

dist(x2, J0)

|J0|
)

�100
,

and hence we infer that

(5.26) (|m|� 2)

�M

4 |�̃
J

m

(x2)| . |�̃
J0(x2)|
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for every x2 2 R and |m| � 5, where M ' 1000 are large enough.
One also easily obtain that

(5.27) (|n
i

|� 6)

�N

i

2 . min

x12eIn

i

�̃

I0(x1),

for i = 1, 2 and every |n1|, |n2| > 15, where N1, N2 ' 1000 are large enough.
Therefore, by using (5.25), (5.26) and (5.27), one can use the triangle in-

equality if r � 1 and the subadditivity of k · kr

L

r

if 0 < r < 1 to sum the
contributions of

�!
⇧

(n1,n2),m
a, R (f, g) together and obtain (we only present here the

arguments for r � 1, the cases 0 < r < 1 can be treated similarly):

k
X

|n1|,|n2|>15

X

|m|�5

�!
⇧

(n1,n2),m
a, R (f, g)k

L

r(5.28)

.
X

|n1|,|n2|>15

X

|m|�5

[

Y

i=1,2

1

(|n
i

|� 6)

N

i

]

1

(|m|� 2)

M

kf�e
I

n1

�̃

J

m

k
L

pkg�e
I

n2

�̃

J

m

k
L

q

.
X

|n1|,|n2|>15

X

|m|�5

[

Y

i=1,2

1

(|n
i

|� 6)

N

i

2

]

1

(|m|� 2)

M

2

kf �̃
R00kL

pkg�̃
R00kL

q

. kf �̃
R00kL

p · kg�̃
R00kL

q

.

Similar to the proof of estimate (5.28), we can get the same estimates for the
other di�erent three cases, then we insert these estimates into the decomposi-
tion (5.22) and finally get the estimates of

�!
⇧

(2),(0,0,

~0)
a, R,III

as follows

k�!⇧ (2),(0,0,

~0)
a, R,III

(f, g)k
L

r(R2) = k
X

n1,n22Z

X

|m|�5

�!
⇧

(n1,n2),m
a, R (f, g)k

L

r(R2)(5.29)

. kf �̃
R00kL

p(R2) · kg�̃
R00kL

q(R2),

provided that 1 < p, q  1 and 1
r

=

1
p

+

1
q

> 0, this concludes our estimates

of the hybrid term
�!
⇧

(2),(0,0,

~0)
a, R,III

.

As to the other hybrid term
�!
⇧

(2),(0,0,

~0)
a, R,IV

, by symmetry, we can estimate it

in a completely similar way as
�!
⇧

(2),(0,0,

~0)
a, R,III

by exchanging our arguments on
variables x1 and x2, and finally obtain that

(5.30) k�!⇧ (2),(0,0,

~0)
a, R,IV

(f, g)k
L

r(R2) . kf �̃
R00kL

p(R2) · kg�̃
R00kL

q(R2),

provided that 1 < p, q  1 and 1
r

=

1
p

+

1
q

> 0, this concludes our estimates

of the hybrid terms
�!
⇧

(2),(0,0,

~0)
a, R,III

and
�!
⇧

(2),(0,0,

~0)
a, R,IV

.

5.5. Remarks on estimates for bilinear operators involved in decomposition (4.5)
which contain at least one of components ⇧

i

ll

(i = 1, 2) in tensor products. — From
the estimates of the standard discrete paraproduct operator corresponding
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to bilinear operator ⇧

1
lh

⌦ ⇧

2
hl

presented in Subsections 5.2-5.4, we realize
when the supports of f, g and dyadic rectangle R are all close to R00 in one
direction (i.e., I ✓ 5I0 or J ✓ 5J0) but at least one of the supports of f, g are
far away from R00 in the other direction, we need to apply the one-parameter
paraproducts estimates (Theorem 2.4) with respect to x1 or x2 variable,
which is unfortunately inapplicable for the discretized operators

�!
⇧

(2),(0,0,

~0)
a, R

corresponding to bilinear operators that contain at least one of ⇧

1
ll

or ⇧

2
ll

in
the tensor products.

Indeed, by a completely similar discretization procedure described in Sec-
tion 4, one can reduce these seven bilinear operators

⇧

1
lh

⌦⇧

2
ll

, ⇧

1
hl

⌦⇧

2
ll

, ⇧

1
hh

⌦⇧

2
ll

, ⇧

1
ll

⌦⇧

2
ll

, ⇧

1
ll

⌦⇧

2
hh

, ⇧

1
ll

⌦⇧

2
hl

, ⇧

1
ll

⌦⇧

2
lh

appearing in the decomposition (4.5) of T

(2),~0
a

to averages of discrete bilinear
paraproduct operators of the form (2.6) with restrictions |I|, |J | . 1, and for
at least one of the two dyadic interval families I and J (here we assume the
tensor product contains ⇧

1
ll

and hence suppose it is dyadic interval family
I without loss of generality), one has |I| ⇠ 1 for every I 2 I and at least
two of the families of L

2-normalized bump functions ('

j

I

)

I2 I for j = 1, 2, 3

are nonlacunary. Therefore, di�erent from the operator T

(2),~0
a,(lh,hl), these seven

operators can’t be reduced to averages of classical discrete bilinear paraproduct
operators of the form (2.6) which is applicable for Theorem 2.5, even both the
components ⇧

1
ll

and ⇧

2
ll

are inapplicable for Theorem 2.4.
However, if the supports of both f and g are not far from the rectangle

R00 := I0 ⇥ J0 := [�1, 1] ⇥ [�1, 1], without loss of generality, we consider the
operator ⇧

1
ll

⌦⇧

2
ll

, the cuto�s f�15R00 and g�15R00 , since e�
R00 is bounded from

below on 15R00, we deduce from Coifman-Meyer theorem (Theorem 1.1) that
(5.31)
k⇧1

ll

⌦⇧

2
ll

(f�15R00 , g�15R00) · '00 ⌦ '

00
0kL

r(R2) . kf e�
R00kL

p(R2) · kge�
R00kL

q(R2)

for any 1 < p, q  1 and 1
r

=

1
p

+

1
q

> 0, which is acceptable for proving
Proposition 3.1. Otherwise, if one of the supports of functions f , g is far away
from the rectangle R00, note that ⇧

i

ll

are both summations of finite terms
for i = 1, 2 and the dyadic intervals I 2 I (corresponding to ⇧

1
ll

), J 2 J
(corresponding to ⇧

2
ll

) satisfy |I| ⇠ 1 and |J | ⇠ 1, so we don’t need any decay
factors or one-parameter paraproducts estimates (Theorem 2.4, which can’t
be applied to ⇧

1
ll

and ⇧

2
ll

) to make sure the summations
P

I✓5I0
or

P
J✓5J0

converge (see Subsection 5.2 and 5.4), since both
P

I✓5I0
and

P
J✓5J0

are
finite summations for |I| ⇠ 1 and |J | ⇠ 1. It is clear from the proof presented
in Subsections 5.1 - 5.4 that the other parts of our arguments have nothing to
do with the properties whether the families of L

2-normalized bump functions
('

j

I

)

I2 I and ('

j

J

)

J2 J for j = 1, 2, 3 are lacunary or not, we can deal with these
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seven operators in a quite similar way as T

(2),~0
a,(lh,hl)(see Subsection 5.1, 5.2, 5.3

and 5.4).

5.6. Conclusions. — By combining the estimate (5.14) for the main term
�!
⇧

(2),(0,0,

~0)
a, R,I

, (5.20) for the error term
�!
⇧

(2),(0,0,

~0)
a, R,II

, (5.29), (5.30) for the hy-

brid terms
�!
⇧

(2),(0,0,

~0)
a, R,III

,
�!
⇧

(2),(0,0,

~0)
a, R,IV

and inserting them into the decomposition
(5.1), we finally obtain the estimates for the localized and discrete bilinear
paraproduct operator

�!
⇧

(2),(0,0,

~0)
a, R as follows:

k�!⇧ (2),(0,0,

~0)
a, R (f, g)k

L

r(R2)

(5.32)

. k�!⇧ (2),(0,0,

~0)
a, R,I

(f, g)k
L

r(R2) + k�!⇧ (2),(0,0,

~0)
a, R,II

(f, g)k
L

r(R2) + k�!⇧ (2),(0,0,

~0)
a, R,III

(f, g)k
L

r(R2)

+ k�!⇧ (2),(0,0,

~0)
a, R,IV

(f, g)k
L

r(R2) . kf �̃
R00kL

p(R2) · kg�̃
R00kL

q(R2),

as long as 1 < p, q  1 and 1
r

=

1
p

+

1
q

> 0, which completes the proof of
Proposition 4.1.

This concludes the proof of our main result, Theorem 1.3.
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