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The main aim of this paper is to present some new character-
izations of Sobolev spaces on the Heisenberg group H. First,
among several results (Theorems 1.1 and 1.2), we prove that
if f € LP(H), p > 1, then f € WLP(H) if and only if

5P
su ——dudv < c©.
o<aE1 // u—ly|@+tr
[f(u)—f(v)|>6

This characterizations is in the spirit of the work by Bour-
gain, Brezis and Mironescu [5], in particular, the work by
Hoai-Minh Nguyen [29] in the Euclidean spaces. Our work
extends that of Nguyen to Sobolev spaces WP (H) for p > 1
in the setting of Heisenberg group. Second, corresponding to
the case p = 1, we give a characterizations of BV functions on
the Heisenberg group (Theorems 4.1 and 4.2). Third, we give
some more generalized characterizations of Sobolev spaces on
the Heisenberg groups (Theorems 5.1 and 5.2).

It is worth to note that the underlying geometry of the Eu-
clidean spaces, such as that any two points in RV can be
connected by a line-segment, plays an important role in the
proof of the main theorems in [29]. Thus, one of the main
techniques in [29] is to use the uniformity in every directions
of the unit sphere in the Euclidean spaces. More precisely, to

* Research is partly supported by a US NSF grant DMS#1301595.
* Corresponding author at: Department of Mathematics, Wayne State University, Detroit, MI 48202, USA.
E-mail addresses: xiaoyue.cui@wayne.edu (X. Cui), nguyenlam@wayne.edu (N. Lam), gzlu@Qwayne.edu

(G. Lu).

http://dx.doi.org/10.1016/j.jfa.2014.08.004

0022-1236/© 2014 Elsevier Inc. All rights reserved.


http://dx.doi.org/10.1016/j.jfa.2014.08.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jfa
mailto:xiaoyue.cui@wayne.edu
mailto:nguyenlam@wayne.edu
mailto:gzlu@wayne.edu
http://dx.doi.org/10.1016/j.jfa.2014.08.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfa.2014.08.004&domain=pdf

X. Cui et al. / Journal of Functional Analysis 267 (2014) 2962—-299/ 2963

deal with the general case o € SN~ it is often assumed that
oc=en =(0,...,0,1) and, hence, one just needs to work on
the one-dimensional case. This can be done by using the ro-
tation in the Euclidean spaces. Due to the non-commutative
nature of the Heisenberg group, the absence of this unifor-
mity on the Heisenberg group creates extra difficulties for us
to handle. Hence, we need to find a different approach to es-
tablish this characterization.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The theory of Sobolev spaces plays a crucial role in the study of many sides of partial
differential equations and calculus of variations. Moreover, the range of its applications
is much larger, such as problems in algebraic topology, complex analysis, differential
geometry, probability theory, etc.

The classical definition of Sobolev space is as follows: The Sobolev space WP (2) is
defined to be the set of all functions u € LP(2) such that for every multi-index o with
|a] < k, the weak partial derivative D®u belongs to LP({2), i.e.

WHhP(2) = {u € LP(£2) : D*u € LP(£2), Y|a| < k}.

Here, (2 is an open set in R™ and 1 < p < 400. The natural number k is called the order
of the Sobolev space W*P(§2). This definition can be extended easily to other settings
such as Riemannian manifolds, since the gradient is well-defined there [18]. Moreover, we
can also define the fractional Sobolev space, where the order & is not a natural number,
via Bessel potentials [33].

Sobolev spaces on Riemannian manifolds or with metric measure spaces as targeted
spaces have been studied by, e.g., Korevaar and Schoen [19], Hebey [18], etc. There have
been characterizations of Sobolev spaces in doubling metric measure spaces. For instance,
various characterizations of first order Sobolev spaces in metric measure spaces have been
given using a Lipschitz type (pointwise) estimate by Hajlasz [17], then using Poincaré
type inequalities by Franchi, Lu and Wheeden [16] for the first order Sobolev spaces (see
also Franchi, Hajlasz and Koskela [15]), and subsequently by Liu, Lu and Wheeden [21]
for high order Sobolev spaces, etc. The Heisenberg group (and more generally, stratified
groups) is a special case of metric measure spaces with doubling measures. The char-
acterizations given in [17,16] and [21] also give alternative definitions of non-isotropic
Sobolev spaces on the Heisenberg group. Indeed, it was shown in [21] that the definition
of non-isotropic Folland—Stein spaces [14] is equivalent to the Sobolev spaces on stratified
groups using the higher order Poincaré inequalities (see also [23,24,26,27,10]).

Nevertheless, the main purpose of our paper focuses on those types of characterizations
of Sobolev spaces on the Heisenberg group in the spirit of characterizations given by
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Bourgain, Brezis and Mironescu [5] and Hoai-Minh Nguyen [29] in the Euclidean spaces.
To this end, we will first recall those results of [5] and [29].

Theorem A. (See Bourgain, Brezis and Mironescu [5].) Let g € LP(RN), 1 < p < oo.
Then g € WHP(RYN) 4ff

/ / lg(@ y|p pn(|x —y|)dzdy < C, ¥n>1,
RN RN

for some constant C' > 0. Moreover,

lim / lo(x) = 9(w)I” = y|P pn(|z — y|)dedy = Ky /‘Vg |pdm

n—oo
RN RN RN
Vg € LP(RY).
Here

Knyp = / le - o|Pdx

SN—-1

for any e € SN=1. Here (pn)nen is a sequence of nonnegative radial mollifiers satisfying

lim [ pp(r)r¥"tdr=0, VY7 >0,
n—oo
oo
lim | p,(r)rN"tdr =1.
n—oo
0

This result is studied further and extended in [2-4,7,20,28,31].

Recently, Hoai-Minh Nguyen [29] established some new characterizations of the
Sobolev space W1P(RY) that are closely related to Theorem A. More precisely, it was
conjectured by Brezis and confirmed in [29] that

Theorem B. (See H. M. Nguyen [29].) Let 1 < p < co. Then

(a) There exists a positive constant Cn , depending only on N and p such that

// y|N+pdxdy <Cnp /|Vg )[Pda, V6 >0, Vg e WHP(RY).
RNRN RN
lg(z)—g(y)[>4

(b) If g € LP(RY) satisfies
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sup // —————dzdy < o0,
0<s<1 |z — y|N+p

\9(96) g y)l>5

then g € WLP(RN).
(¢) Moreover, for any g € WHP(RY),

. or 1 P

RNRN RN
lg(z)—g(y)|>6

This result is considered further in [6,30].

In this paper, we will establish results of the type similar to Theorem B in the setting
of Heisenberg groups. Let H = C™ x R be the n-dimensional Heisenberg group whose
group structure is given by

(z,t)- (1) = (z+ 2, t +t' + 2Im(z - 2)),

for any two points (z,¢) and (2/,¢') in H. The Lie algebra of H is generated by the left
invariant vector fields

0 0 0 0 0
ot = om YVigp oy Ui
for i = 1,...,n. These generators satisfy the non-commutative relationship

(X, Y;] = —46,,T.

Moreover, all the commutators of length greater than two vanish, and thus this is a
nilpotent, graded, and stratified group of step two.

For each real number r € R, there is a dilation naturally associated with Heisenberg
group structure which is usually denoted as

6-(2,t) = (rz,rt), V(z,t) € H.

However, for simplicity we will write ru to denote d,u. The Jacobian determinant of 4,
is ¢, where Q = 2n + 2 is the homogeneous dimension of H.

We use £ = (z,t) to denote any point (z,t) € H and p(€) = (Jz|* +2)3 to denote the
homogeneous norm of ¢ € H. With this norm, we can define a Heisenberg ball centered
at & = (z,t) with radius R: B(§, R) = {v € H: p(§~! - v) < R}. The volume of such a
ball is o = CoR® for some constant Cg depending only on Q. We also define X the
unit sphere in the Heisenberg group H:

Y={¢ecH:p() =1}
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We use Vi f to express the horizontal subgradient of the function f: H — R:
Vef => ((X;H)X;+ (Y;1)Y;).
j=1

Let £2 be an open set in H. We use W, *(£2) to denote the completion of C5°(£2)
under the norm || f|ly1.0 o) = (o (IVmf|? + | fP)du) />,

The first aim of this paper is to prove the following estimates for functions in the
Sobolev space WP (H):

Theorem 1.1. Let 1 < p < 0o and f € WHP(H). Then

(a) There exists a positive constant Cq,, depending only on Q,p such that

€|f f(o)[Pte
Oiligl // U)Q+ dudv + pu=t-v) Q+dedv

\f(U) fv)|<1 \f(U) fv)|>1

goQ,p/WHf )|” du.
H

(b) There holds

T

H

\f(u) f v)|<1
where K¢, 15 a constant defined as follows

KQ,p=/|<e,a’>y”da= /|<(e,0),a>|pda

x

for any (e,0) € X.
c) There exists a positive constant Cg , such that
Q.p

// dudv<ch/|va )| du, V8> 0.

\f(u v)|>5

(d) Moreover,

. 1
hgn_:(r)lf // o) Q+pdudv = iKva/|VHf | du.
H
If U) f(v >0
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Our Theorem 1.1 extends Theorem 3 of H.M. Nguyen [29] in the Euclidean spaces.
Using Theorem 1.1, we set up new characterizations of the Sobolev space W (H) which
is one of the main purposes of this paper. More precisely, we prove that

Theorem 1.2. Let 1 < p < 0o and f € LP(H). Then the following are equivalent:

(1) f€Whe(H).

(2)
) 6\f — f(w)P+e
021;21 // 1 C0)a dudv + // T v) dudv<oo

\f(u ")|<1 \f(u) U)|>1

sup // py dudv < 00.
0<6<1 v)

u) f )>8

(4) There exists a nonnegative function F' € LP(H) such that
|f(u) = f()| < pu™"-v)(F(u) + F(v)) for a.e. u,v € H.

(5) The L' to LP Poincaré inequalities hold for every metric ball B in H. Namely, there
exists a function g € LY (H) and an absolute constant C > 0 independent of the
ball B such that

loc

)
B

for some 1 < q < p, where r(B) is the radius of the ball B.

The equivalence of (1), (2) and (3) in the above Theorem 1.2 in the Euclidean spaces
was given in Theorem 3 of [29].

The following remarks are in order. First, the proofs of the main theorems (e.g.,
Theorem B) in [29] rely on the underlying geometry of the Euclidean spaces, such as
that any two points can be connected by a line-segment. Second, it is worth to note
that one of the main techniques in the proof of Theorem B is to use the uniformity in
every directions of the unit sphere in the Euclidean spaces. More precisely, to deal with
the general case o € SV~1, it is often to be assumed that o = ey = (0,...,0,1) and,
hence, one just needs to work on 1-dimensional case. This can be done by using the
rotation in the Euclidean spaces. In the case of Heisenberg groups, this type of property
is not available because of the structure of the Heisenberg groups, in particular, the
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dilation. Hence, we need to find a different approach to this characterization. In fact,
we will use the representation formula on the Heisenberg group proved in [22] to obtain
estimate (2.1). This estimate will allow us to establish a useful lemma (Lemma 2.2 in
Section 2). Third, as we have shown in [21], (1), (4) and (5) are all equivalent. Therefore,
the new ingredient here is that (1), (2) and (3) are equivalent. Fourth, results of this
paper together with characterizations of second order Sobolev spaces in Euclidean spaces
established in [12] have been presented in [11]. We have also extended results in this paper
to general stratified groups in [13].

The plan of this paper is as follows: In Section 2, we will study some helpful lem-
mas and use them to prove Theorem 1.1 which gives properties of Sobolev functions in
WLP(H) for 1 < p < co. Theorem 1.2 gives the characterizations of Sobolev functions
in WhP(H) for 1 < p < oo and will be considered in Section 3. The borderline case
p = 1 (i.e., for BV functions) will be investigated in Section 4. We also study some
generahzatlons and variants in Section 5 which extends Theorems 1.1 and 1.2.

2. Proof of Theorem 1.1
2.1. Some preliminary lemmas

We first recall an elementary lemma from [29] and include a proof.

Lemma 2.1. Let {2 be a measurable set in R™, @ and ¥ be two measurable nonnegative
functions on §2, and o« > —1. Then

1
e% o 1 a—+1 1
/ / 0 (z)dzdd = / | 145 (2)¥(x)dx + / o 1W(x)dx.

0 &(z)>6 P(x)<1 P(x)>1
Proof. Using Fubini’s theorem, we get

1

0 (z)dxdd
0 &(z)>6
1 D(x)
= / /50‘![/(55)d5dx+ / /5(1 x)dddx
P(z)>1 0
- / L w(w)de + / qu%l(x)w(m)dx. g
a+1 a+1
B(2)>1 B(2)<1

Next lemma is crucial in establishing our new characterizations of Sobolev spaces on
the Heisenberg group H. In the Euclidean spaces, H.M. Nguyen [29] used the property
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that every two points can be connected by a line-segment and then used the mean-value
theorem to control the difference of | f(x) — f(z + he)| (where h € RY and e € SV~1) by
the Hardy-Littlewood maximal function of the partial derivative of f in the direction
of e. Such an argument does not work on the Heisenberg group. Therefore, we need to
adapt a new argument by using the representation formula on the Heisenberg group H
established in [22].

Lemma 2.2. Let f € WYP(H), 1 < p < oo. Then we have

oP

p
Wdu‘lv = CQ,p/WHf(U)’ du, ¥6>0

[f(w)=f(v)|>6

where Cq,p 1s a positive constant depending only on @ and p.

Proof. First, we recall the following pointwise estimate on stratified groups proved in [22]
(see Lemma 3.1 on page 382 there), for any metric ball B in H and every u € B, we have

Vi f(v
e |<c/|u_“f,Q1

where fp is the average of f over B and c is a positive uniform constant bigger than or
equal to 1.
Then we can show that

[f(u) = f(v)] < Agupp(u™ - v) (M(|Vif]) (u) + M (|Vafl)(v))
for a.e. u,v € H (2.1)

where M denoted the Hardy-Littlewood maximal function
M) () [ 1w
u) = sup ——— v)dv
750 [B(u, 1)
B(u,r)

and Ag , is the universal constant depending only on @ and p.
Now noting that by (2.1):

{[£(w) = f(v)| > 6}
C{Aqpp(u™ o) (M(IVafl) () + M (Vi fl)(v)) > 5}

c {p(ul ~v)M(|VHf|)(U) > ﬁ} U {p(ul .v)M(|VHf|)(U) > 2A(;p }7

we get
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/ / Q - —— dudv

\f(U) (v)|>5

opP
: / / ol Ty

p(u=t-v)M \wal)(u>

2AQ P

op
¥ / / ot jar

p(u—l.v)Mquf\)( v)> 5x—
Denote

I o dud
o // plu=T o)@1Y
H H

p(u= ) M(|Vinf ) (w) > 35—

oP
I2 = // Wdudv
H H

p(u=t o) M (Vi f 1) (0)> 72—

Now, we estimate I;.

Set
v=u-ho
where
ceX={ueH:u =1},
h € [0, 00),
then

[ 5"
L= / / / o rdhdudo

X H O
M (1) () > g

o
/ / / oy dhdudo

QAQ pM\VHfl(u)

= 1//[2AQ,pM|VHf|(u)]pduda

p
T H
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(QAQ,p)p P
< B2 8 [ 10119110 dudo

X H
< C’Q,p/|VHf(u)|pdu.
H
Similarly, to estimate I, we put
u=uv-ho.

Noting that p(u=!-v) = |[v~ 1 u|, we still can get
Iy < CQ,p/‘VHf(u”pdu.
H

The proof now is completed. O

Before we state and prove the next lemma, we like to make the following remark. Let
feWbhP(H), 1 < p < co. We denote

// )Q+pdudv

\f(U) v)|>6

/ / 5|f v() Q)f+e dudv.

\f(U) (v)IS1

and

This quantity J(¢) in the Euclidean spaces was first introduced by H.M. Nguyen in
Theorem 3 of [29] and played an important role in the proof of Theorem 2 in [29]. This
quantity J(¢) on the Heisenberg group also appears in our Theorems 1.1 and 1.2 and
plays an important role in our characterizations of Sobolev spaces WP (H) as well.

By Lemma 2.2, liminfs_,0 I(8) does exist. In the setting of Euclidean spaces [29], this
limit is rather easy to evaluate. More precisely, by polar coordinates and the rotations
in the Euclidean spaces, it is often assumed in [29] that o = ey = (0,...,0,1). Thus,

SN=1 the author in [29] just needs to consider the

to deal with the general case o €
one-dimensional case. Then, using real analysis techniques such as the Maximal function,
Lebesgue’s dominated convergence theorem, Hoai-Minh Nguyen finds successfully the
exact value of lim infs_,o I(9). In our setting of Heisenberg group H, this approach is not
available because of the underlying geometry on the Heisenberg group. Hence, we need
to propose a new method in order to calculate liminfs_,o I(§). Indeed, our main idea is

that we will first study the relations of I(¢) and J(e).
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In fact, we can prove the following results on the Heisenberg group which are important
for us to establish the characterizations of Sobolev spaces W1 (H) on the Heisenberg

group.

Lemma 2.3. Let f € WYP(H), 1 < p < oo. There hold

1
liminf J(g) > — lim inf (9)
e—0 p =0

1
limsup J(g) < = limsup I(9).
e—0 P s-0

Proof. By Lemma 2.2, liminfs_,¢ 7(6) and limsup;_,, I(J) exist. Assume that

liminf I(§) = C

6—0

limsup I(d) = D.
6—0

We first prove that
1
lim i(r)1f/(p +)edHI(8)ds > pC. (2.2)
e—
0

Indeed, since

liminf I(§) = C,

6—0

for every 7 > 0, we can find a number X (7) € (0,1) such that
I(6)>C —7 forall§ € (0,X(1)).

Then

1
lim inf/(p +£)es*HI(8)ds
e—0

0
X(7) 1
= lim inf l / (p+e)ed=11(8)ds + / (p+ 5)6651[(5)d6]
E—r
0 X(7)

X(7)
> limi e—1
_hgn_}lélf/(p—i-a)sé I1(6)ds
0
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X(7)
> lim inf / (p+¢e)e6* HC —7)dd
e—0
0
=p(C—7).

Since 7 is arbitrary, we now can conclude that

. (p+¢e)espte—t
hm lnf —_— =
e—0 p(u—l . U)Q“l‘p

0 |f(uw)=f(v)|>6

dudvddé > pC.

Using Lemma 2.1 with a« = p+¢ — 1, &(u,v) = |f(u) — f(v)], ¥(u,v) =

obtain

1
2aTo)aFer Ve

o £ p+e
hgn_g(r)lf[ // |f ()Q)-‘!-p dudv + // LR ———————dudv| > pC.

[£( f('“ [<1 u) f('u [>1

lim // —— o dudv =0,
e—0 U U

\f(U) f(v)|>1

Noting that

we have

pte
lim inf // €|f 0 dudv > pC.

e—0 )Q+

f(v <1
Similarly, since

limsup I(§) = D,
6—0

for every 7 > 0, we can find a number X (7) € (0, 1) such that
I(6) <D+71 forall§ e (0,X(7)).

Then

1
lim sup/(p +£)e6 LI (8)do

e—0

X(7) 1

:limsupl/(p+5)55€1](6)d6+ /(p+6)€5€1](5)d5]
0

e—0
X(r)
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X(r)
< lim sup l / (p+¢e)e6* (D +7)ds

e—0
0

1
+(p+6)sX(7—)€’1CQ7p/|VHf |pdu / 1d5]
(r)

i X
X(r)
< lim sup / (p+¢e)ed* (D + 7)ds
e—0
0
< p(D + 7).

Since 7 is arbitrary, we now can conclude that

1
edpte 1
Jimn sup M

e—0 p( )
0 |f(u)=f(v)|>6

dudvdé < pD.

Using Lemma 2.1 with a =p+e—1, &(u,v) = |f(u) — f(v)|, ¥(u,v) =

obtain

2994

1
pluT-o)@Frr We

lim su 5\f ()|p+6dudv—|— ———dudv| < pD
1P 0)Q+p a1 vQ+p = P

\f(u v)|<1 If(U) f(v)|>1

Noting that

lim // — dudv =0,
e—0 u ’U

\f(U) f(v)|>1

we have

pte
lim sup // €|f — f)l dudv < pD.

e—0 )Q+

f(v <1

Lemma 2.4. There holds

_KQ,p/|VHf du<hm1nf // T )@

\f(U) f(v)|>5

for any f € WHP(H), 1 < p < oo.

O

——————dudv,
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Proof. First, we notice by the change of variable that

// Q+p ——dudv = /// hp“ ——dhdudo.

XY H O
)= f ()18 | Lushe) f () g

Now, fix 0 = (¢/,09p41) € X, with ¢’ € C", we will show that

1 /| P B [
;/’VH}C(U) o |"du < hgn_}(r]lf // hp+1 ——dhdu. (2.3)
H

| flwdha)—f ) |y

Indeed, since for a.e. (h,u) € (0,00) x H:

1 §—0 1
e X g fssng =1 5 1y (1) = g X1V () 0y > 1y (B ),

by Fatou’s lemma, we have

h(rsn_j(l)lf // thrldhd //h X (Vaf (w),07 |h>1}(h,u)dhdu
H 0

| £lwdha)=f(u) |y

1
p

Now, again by the Fatou’s lemma, we obtain

o 9P

If(w)—=f(v)[>8

= lim inf / / / hp — dhdudo

Y H O
‘ f(u'5h6<fh)*f(u) [h>1

Z/lignjélf // hp+1 dhdudo
0

b

| f(u'5hr<7)*f(u) [h>1

/ / (Vif(u),o")| dudo

- 5KQ,I,/|VIHIf(u)]’Ddu. O
H
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Lemma 2.5. Let f € C3(H). Then

lim sup // E‘f ()Q>J|rp+€ dudv < Kg p /|VHf(u)|pdu.
i

e—0

\f(U) (v)|<1

Proof. By setting v = u - ho, we have

// s|f ()Q)erEdudv _ /// e|f(u- hclrllﬂ (U)|p+€dudhd0.

YHO
\f(U) f(v)|<1 [f (u-ho)—f(u)|<1

In the following, C' will be a constant independent of u, h, o, €.

3

Since f € C§(H), by triangle inequality and Taylor expansion [25], we have
|f(u-ho) = f(u)| < |V f(u).ho'| + Ch* for (o,u,h) € ¥ x By x (0, R).

Also, we can find M > 0 such that |V f(u).0'| < M for all (o,u) € X x By.
Hence,

[Fu-ho) = f()[7 < [|Vf(u).ho'| + Cn*]"™
< |VF(u).ho'|" 4 ChrFEFL

Thus,

lim sup / / / elf (u-ho) = SO e

e—0 hp+1
X Ba O
|f(u-ho)—f(u)|<1

h /|p+e hp+5+1
< limsup///gvf al +Ce dhdudo

e—=0 hp+1

Y Ba

} |V f(u).ho'|PFe
< hIglj(l)lp/ // hP“ ————————dhdudo

Y Ba

R
/\p+e
< limsup///wdhduda
e—0 ht-e

X Ba O

< limsupRE//‘Vf(u).a”p+sduda

e—0
Y Ba
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glimsupRsME//‘Vf(u).o”pdudo
e—0 ¥ B,

< KQ,p/|VHf(u)}pdu. O

2.2. Proof of Theorem 1.1

(a) First, by Lemma 2.2, we have

// P dudv<CQp/|VHf )|Pdu, V5> 0. (2.4)
P>

As consequences, we get

// T dudv<ch/]va )P du. (2.5)

If(U) f(v)|>1

Now, multiplying (2.4) by e6°~1, 0 < ¢ < 1 and integrating the expression obtained with
respect to o over (0,1), we can deduce that

pt+e—1
/// el dudvd§<C’Qp/|VHf )|Pdu.

0 HH
If(w)—=f(v)[>8

Using Lemma 2.1 with a =p+e -1, &(u,v) = |f(u) — f(v)|, ¥(u,v) = m, we

obtain
€|f — f()P*+e €
// )Q+ dudv + mdudv
H H
\f(u v)|<1 [f(u)=f(v)|>1
< C’Q7p/|VHf(u)‘pdu.
Thus,

elf(uw) — f(v)[P*e
p(ufl . U)QH)

dudv < Cg,, / Vi f (w)]”du. (2.6)
[f(w)—f(v)|<1 H

By (2.5) and (2.6), we get the assertion (a).
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(b) From Lemmas 2.4, 2.3, 2.5 and the density argument, we have (b).
(c¢) This is Lemma 2.2.
(d) This is a consequence of Lemmas 2.4, 2.3, 2.5 and the density argument.

3. Proof of Theorem 1.2

The proof is divided into six steps.

Step 1: (1) = (2). This is a consequence of part (a) of Theorem 1.1 and the fact that
[ € WhP(H).

Step 2: (2) = (1). First, we will assume further that f € L°°(H). Then from the
assumption

Elf flo)rre
0251 // v)Q+ dudv + py UQ dudv<oo

U) f(v I<1 If U) f(v [>1

it is easy to deduce that

e p+5
= sup // |f(u ‘ dudv < 0.
0<e<1 plu=t-v)

Now, let (%) be a sequence of smooth mollifiers on H and set

T = f* .

Since f, € LP(H)NC®(H), so fr € WHP(H). By using Theorem 1.1(b), we can conclude
that

Kqp / | Ve fi ()| "du < lim inf / / €|fkgu)_.fk(v)|p+€dudv

H
[ fx( u) fk (v)[<1

pte
< liminf//gm€ (v)] dudv.

e—=0 -1 ’U Q"I‘P

From Jensen’s inequality and the convexity of the function 2P, we can obtain

5|fk v)[F*e )P e
Q+p dudv < o u_l o) Q+ dudv < L(f).

Hence,
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KQp/|Vka )| du<hm1nf//€|f ng)erEdudv < L(f).

Thus, with an extra assumption f € L>°(H), we have that (2) = (1).
For the general case, we make use of the truncated function. For R > 0, define

%%I) , otherwise.

clef(u), if |f(u R,
fR(u){Hf() |f(u)] <

R—0

It is clear that fr € L°°(H) and fr(u) — f(u) pointwise for a.e. u € H. Moreover, it
can be checked that

’fR(u) —fR(v)| < |f(u) = f(v)| for all u,v € H.

As a consequence, one has

elfr(u) — fr(v)[P**
[ e
H H
[fr(uw)—fr(v)|<1
elfr(u) — fr(v)[P**
- [ e
H H

| fr (u)— fR(v)\S
[f(w)—f(v)[<1

el fr(u) = fr(v)[PTe
+ // (a1 - 0) @ dudv

|fR(“) fR(U)|<1

[f(w)—f(v)[>1
€|f — f)[P*e £
// U)Q+ dudv + Wdudv
H H
\f(u) (U)|S1 [f(w)—f(v)[>1

Also,

< .
// p(u*l mIeE dudv // o(u UQerdudv
H H

|fr(uw)—fr(V)[>1 If u) f(v)\>1

Thus, we have fr € WHP(H). Moreover, by part (b) of Theorem 1.1, one has
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KQ’p /’VHfR(u) ‘pdu
H

. elfr(u) = fr(v)[P**
Sllgl_}élf // IZ(u—l-UI;Qﬂ’ dudv

IfR(u fR (v)|<L1

o Elf — f(w)|P*e
Shg{r}lf[ // 1 )@+ dudv + dudv

F— o)<t F )51
pte
— lim inf / / 5|f ()Q)l dudv.
) f(0)]<1

Since R > 0 is arbitrary, we can deduce that f € WP(H).

Step 3: (1) = (3). This is a consequence of part (c¢) of Theorem 1.1 and the fact that
fe Whr(H).

Step 4: (3) = (1). Suppose that f € LP(H) and there is a constant C' > 0 such that
(

for all 6 € (0,1):
// T v) dudv <C. (3.1)

\f(U) f(v)|>5

Multiplying (3.1) by €657, 0 < ¢ < 1, and integrating with respect to & over (0, 1),
by Lemma 2.1 with o = p+e -1, &(u,v) = |f(u) — f(v)], T(u,v) = W, one has

// 5‘f ()Q)erJrEdudv <C(p+1).

\f(u) v)|<1

Also, by Fatou’s lemma, we also get

// Q dudv<oo

If u) f(v |>1

As a consequence of Step 2, we have f € WP(H).
The proof is now completed.

4. The case p = 1 and BV functions on the Heisenberg group

In this section, we will investigate the special case p = 1. First, we recall the definition
of the space BV (£2) of functions with bounded variation in 2 C H.
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Definition 4.1 (Horizontal vector fields). The space of smooth sections of H (2, the hori-
zontal subbundle on {2, is denoted by I'(H §2). The space I'.(H {2) denotes all the elements
of I'(H {2) with support contained in (2. Elements of I'( H{2) are called horizontal vector
fields.

Definition 4.2 (H-BV functions). We say that a function u € L'({2) is a function of
H-bounded variation if

|Dpul(2) = sup{/udiv¢d£ cp eT(HND), |9 < 1} < oo
7

where the symbol div denotes the Riemannian divergence. We denote by BV({2) the
space of all functions of H-bounded variation.

See [1,8,9] for definitions of BV spaces on more general settings.
In this section, we will prove the following property:

Theorem 4.1. Let f be a function in L'(H) satisfying

sup // —————=—dudv < co.
0<s<1 plu=t-v)@+t

u) f(v)\>5

Then f € BV (H).

Proof. Assume that f € L'(H) and

// T v) Q+1dudv<C (4.1)

If u) f(v)\>5

for some positive constant C' > 0.
Proceeding similarly as in Step 4 of the proof of Theorem 1.2, multiplying (4.1) by
£6°71,0 < e < 1, integrating with respect to d over (0,1), and then using Lemma 2.1,

/ / At =S O v < 20

[f(u f(v <t

we have

By Fatou’s lemma, from (4.1), we also get

// Q+1dudv<C.

If (U) f(v [>1
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Now, we also split the proof into two steps:

Step 1: We suppose further that f € L°°(H). Now, we define f; as in Step 2 of the
proof of Theorem 1.2. Noting that the function t'*¢ is still convex on R, we can also

el fr(u) — fr(v)[**e
// (a1 p)@r! dudv
1+s
[ [
1+e
// E|f v()Q)‘*‘l dudv

\f(U) f v)|<1

// 6|f ()Q)f:s dudv

If(u) f(v)|>1
<20 +2[2)fl] C.

have

Now, we can repeat the proofs of (b) in Theorem 1.1 and Step 2 in Theorem 1.2 to
conclude that f; € BV (H) and

1+e
KoallVufell <hm1nf//€|fk )(Qzl dudv
< liminf{2C +¢[2] f]|] T°C}
T~ e—0 >
=2C.

Hence, f € BV (H).

Step 2: The general case. Similarly, we also introduce the truncated function

fi .
ﬁcf(fgl otherwise or >0

cf(u) if |f(u R,
flu) = {Hf() |f(u)] <

Then one has fr € L>®(H), fr(u) fioge f(u) pointwise for a.e. u € H, and

’fR(u) —fR(v)‘ < ’f(u) —f(v)’ for all u,v € H.

As a consequence, one gets
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el () — fa(o)]**
/ / Pl gy
|fR(u) fR(U I<1
el () — fa(w)]**
- / / o

IfR(u) fR(U)|<1
[f(w)=f(v)|<1

el fr(u) — fr(v)[*TE
* // p(u=t - v)@+t dudv

\fR(U) fR(v)\<1

[f(w)—f(v)[>1
€|f — flv)|"*te £
// 1 )Q+1 dudv + Wdudv
H H
If U) f(v\<1 [f(w)—f(v)|>1
Also,
// T v)QH ———dudv < // QHdudv.
H H
[fr(u)=fr(V)|>1 |f (u) f(v)\>1

Thus, we have fr € BV (H). Moreover,

< lim inf // elfr() — Jr(v)["" dudv

e—0 p(u_l . 'U)Q+1

\fﬂ(u) fR(v I<1

o 6\f — flv)|"*+e
gllgélf{ // Co)er dudv

\f(u v)|<1

// Q+1 ———dudv

If(U) f(v)|>1
. 6\f — fl)['**
:hg(x)lf // 1 )@+ dudv.

\f(u) v)|<1

Since R > 0 is arbitrary, we can deduce that f € BV (H). O

Using Theorem 4.1, we can also have the following Lipschitz type characterization of
BV space:
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Theorem 4.2. Let f € L'(H) be such that there exists a nonnegative function F € L'(H)
satisfying

|f(u) = f(v)| < p(u™"-v)(F(u) + F(v)) for a.e. u,v € H. (4.2)
Then f € BV (H).

Before we begin our proof of this theorem, we like to make some remarks. We note that
in our Theorem 1.2, part (4), the Sobolev spaces WP(H) for p > 1 was characterized
if the above estimate (4.2) holds for F' € LP(H). But this characterization does not
hold for p = 1 (see also the paper [17]). Therefore, our theorem can be viewed as the
borderline case of the Sobolev space when p = 1 on the Heisenberg group H. More
recently, it has been shown in [32] that if the above estimate (4.2) holds for F € L' (H),
then f € W1 (H).

Proof of Theorem 4.2. First, we note here that for all § € (0, 1):

{|f(u) = f(v)] > 6} C {p(u™' - v)(F(u) + F(v)) > 6}

Hence, one receives

// e} UQHdUdU

\f(u) v)|>6
1) 1)
= / / ol T pyar udv + / / T )@t udv:
H H
p(u~ ) (w)>$ p(u=1v)F(v)>3
We denote
)
Il = // Wdudv,
H H
p(u=1-0)F(u)>
)
IQ = // mdudv
H H

p(u=tw)F(v)>3

We now estimate 1.
Setting

v=u-ho
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where

ceX={ueH:u =1},
h € [0,00),

one has

76
I = /// ﬁdhduda
T HO

hF(u)>$

S// / %dhduda

H 2Fo(u)

p / / F(w)dudo
Y H

Co / F(u)du.
H

Similarly, by noting that p(u=! - v) = [v~1u|, we also have
I, < CQ/F(u)du.
H

Hence, we have

S // 0 dudv <
up ————dudv < .
0<6<1 A plu=t-v)@+

[f ()= f(v)[>8

By Theorem 4.1, we obtain f € BV(H). O

5. Some generalizations and variants of characterizations

2985

In this section, we will study some generalizations of the above results. The next

Theorem is a generalized result of Theorem 1.2:

Theorem 5.1. Let f € LP(H), 1 < p < o0 and F : [0,00) — [0,00) be continuous such

that

(oo}
/F(t)t‘p_ldt =1.
0
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Set
t
Then we have:

(a) If

0<6<1

Es(1f(w) = f(v)])
sup // (-1 0) @ dudv < 00
H H
and

// T dudv<oo Vo > 0,
plu=t-v)

If (u) f(v [>6

then g € WHP(H).
(b) If g € WLP(H) and

/Fg(t)t_p_ldt < o0, V&6>0,

0

then

Fs(|f(u 7
// 6|u1 UQ+ dudv<0@p/Fa() Pldt/\va )['du, V5> 0.
0

Proof. (b) Setting

Di(f) = {(u,v) e H x H: M(|Vaf])(u) = M(|Vaf])(v)}
Dy(f) = {(u,v) e H x H: M(|Vef])(v) < M(|Vef])(v)},

F(|f
// p(u ‘1 vQ+p Daude
H H
Fi( Fs(|f
// uva+pdd+// ulvmp D dudo.

D1(f) Da(f)

then

Now, we will first concern
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I = // Fsl |f_1 Q(ﬂ)‘) dudv.

D1 (f)

Using (2.1), (i) and noting that on the domain D;(f), one has

M(|Vaf])(w) > M(|Vaf])(v),

we get

_1 . U)Q""p

F5(2A “Loo)M
f< [ [ BaE0al AT g,
H H
Now, by the change of variables and Fubini’s theorem, we obtain

I < ///Es 24q ph M (Vi fl)(u ))dhduda.

hp+1
Y H O

Now, for every o € X', we can have the following estimate:

oo

//F6 QAQphffl\){_qufD( ))dhdu:/[2AQ7PM(|VHf|)(u)]pdu/Fa(t)tipildt
H

0

<0Qp/ tpldt/|va )| du.
0

Similarly, by noting that p(u=! - v) = [v~1u|, we can also receive

I gcQ,p/Fé( )P 1dt/yv f(w)[Pdu.
0 H

Hence, we can conclude that

//Fa If_1 U)Q(+p)l)d udv < Co. 7 Fy(t)tP~ 1dt/|va )P

0 H

(a) The assumptions on F, we can find four positive constants m, M, A and o with
m < M such that

|{t € [m,M]: F(t) > A}| > 0.

Since F is continuous on [0, 00), there exists an interval A # @) such that
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Ac{te[m,M]:F(t) > A}

Since

Fs(|f f()])
su dudv < o0,
0<581// p(u _1 -v)QFp

we get

5P \f(u f)I
sup // Xa( )dudv<oo.

_1 U Q-HD

This implies

: 555+p Ty (L= )
sup /// _1 )@t dudvdé < oo.

0<e<1
0

By Fubini’s theorem,

1
setp—1 |f (u)—f(v)]
sup // /E xal 0 )d5dudv<oo.

0<e<1 " p(u=1 - v)@tr
| f(u) f(v)|<m

Since

) ) _

(5 = )
we have
5Pl > MR fu) — (o)7L

Hence,

o [ e [ (L2 i <

0
\f(U) f(v)|<m

Moreover, since A C [m, M],

[r(t)in= fua(sJar=ea(a=comn v

(5.1)

(5.2)
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Here

oo

O/XA( )d5>0

From (5.1) and (5.2), we get

sup // elftu) = v )‘Eﬂ) 1dud’u<c>o.

0<e<1 p(u=t-v)@+
u) f(v [<m
Also,
// ulv)Q dudv<oo
|.f (u) f(v)|>m
Setting
=/
f =
m

and using Theorem 1.2, we get f € WhP(H). Hence, f € WE?(H). O

2989

The second result in this section is to weaken the statement (3) in Theorem 1.2. More

precisely, we will prove that

Theorem 5.2. Let 1 < p < oo and f € LP(H) be such that

su —" ——dudv < oo.
nEII\)I // )Q

fw)— f(v)\>5

Here (0,)nen is some arbitrary sequence of positive numbers with

=1

5n S 5n—1 S 25n
lim 4,, = 0.
n—oo

Then f € WhHP(H).

We notice that one could replace number 2 in the condition of the sequence (d,,) by

an arbitrary number ¢ > 1.
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Proof. Setting

sup // dudv < C,
neN

H H
[f(u)=f(v)|>6n
then it is clear that
1 dud C 5.3
H H

If(w)=f(v)[>1

So we just need to prove for all € € (0,1),

// €|f ()Q)er“ dudv < Cg p

\f(u) (v)lél

since by Theorem 1.2, we get the assertion.
Now, for every ¢ € (0, 1), since

// dudv<C’

[f(w)— f(v)\>5

we get for every n > 0:

e(6n — 6ny1)d;, " / / P dudy < Ce (6, — 0p11)05
If(u) f(v)|>6

Hence,

e(0n — Op+1)08 _
2 / / plu 1+3Q+p dudv < CY e —na)0; 1 (5.4)

n>0 n>0
If (u) f(v)\>5

Now, if we denote h(5) = €6°~ !, then we have by the Lebesgue Dominated Convergence
Theorem and noting that h is a decreasing function:

I
=
53]
~
=9
S0
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2 2(571 - §n+1)h(6n)

n>0

§ : —1
- - n+1 .

n>0
Thus, from (5.4), one has

n* n 55+p71
> // POE 1*:};% dudv < C.

n>0
\f(U) f(v)|>5

Note that

e(on —5n+1)(5 -1
Z // (T 0) @+ dudv
n>0
[ f(u)— f(v)\>5

E(6n — Bpgr )0t
> // Z p(u—l ’U)Q+p X{|f(u)—f(v)|>6n}(uvv)dUdv'

|f(w)=f(v)[<1

Now, fix (u,v) such that
0<|f(w) — flv)] <1
and denote n(, ) the smallest integer number such that
Oy < |F(u) = f(0)].

Then

(0, — 5n+1)6f7,+p_1
> — X{|f (u)— f (v)|>6,} (U V)
>0 p(u U)Q"FP

(8 — Opig 0P
= > (T 0)@ X1 ()= £ (0)[ >, } (1 )

N2>N(y,v)

_ Z €(0n — Ony1)05tP !

p(u—l . U)Q"‘p

N>N(y, v)
We claim that

/() = ()] < 15— £,

2 S N (u,v)

Indeed, we could suppose by contradiction that

2991

(5.7)

(5.8)

(5.9)
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Oy < |f(w) ; f(v) < |fw) = f(0)] < bnyoy—1
then
Onuny—1 = Onguny > | F(u) = f(0)] = |f(u) ; f()|
|f(u) — f(v)]
2
> 5n<u,v)

which is impossible by the assumption of the sequence (4,).

Set

e+p—1
k(5) = )

Noting that this function is increasing, arguing as (5.5), we obtain by (5.9):

p(u—1-v)@tp

on the interval 0 < & < |f(u) — f(v)].

1 eftw) = floPt 1 elf(u) = f)P*=
(p+1)2p+1  p(u=1.-0)Q*tr  — (p+e)2rte p(u—l.v)@+r

[fn—F ()

- ./ k(5)ds
0

O u )

< k(d)dd
0
6n

Hence, by (5.6), (5.7), (5.8

) and (5

k(6)ds

nzn(’“’/”5n+1

< D (0n = Gny1)k(0n)
nzn(u,v)
- ¥ e(0n = Op41)05 P!
= — )
nzn(uyv) p(u U)Q-‘rp
.10), we get
_ e+p—1
£0n = On41)0n dudv

%

[f (W)= f(v)[>6n

e(5,, —5n+1 )getp-1

plu=t - v)9FP

=[] 25

n>0
If u) f(v I<1

_1 U Q"FP

X{|f (u)— f (v)|>6,,} (U, v) dudv

(5.10)
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n_ n+1)5$7,+p_1
// Z plu=1 - )@+ dudv
NN (y,v)
u) f('u <1

1 elf(u) = flo)[P*e
/ / T2 plat o)@re

If u) f(v I<1

Thus, we can conclude the assertion

sup // E|f —f )|P+€ dudv < 0.

0<e<1 'U)

\f(U) f v)|<1

By Theorem 1.2 (statement 2), we have f € WYP(H). O
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