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a b s t r a c t

Let Hn
= R2n

× R be the n-dimensional Heisenberg group, ∇Hn be its sub-elliptic gradient
operator, and ρ(ξ) = (|z|4 + t2)1/4 for ξ = (z, t) ∈ Hn be the distance function in Hn.
Denote Q = 2n + 2 and Q ′

= Q/(Q − 1). It is proved in this paper that there exists a
positive constant α∗ such that for any pair β and α satisfying 0 ≤ β < Q and α

α∗ +
β

Q ≤ 1,

sup
∥u∥W1,Q (Hn)≤1


Hn

1
ρ(ξ)β


eα|u|Q

′

−

Q−2
k=0

αk
|u|kQ

′

k!


dξ < ∞,

where W 1,Q (Hn) is the Sobolev space on Hn. When α
α∗ +

β

Q > 1, the above integral is still
finite for any u ∈ W 1,Q (Hn). Furthermore the supremum is infinite if α/αQ + β/Q > 1,
where αQ = Qσ 1/(Q−1)

Q , σQ =

ρ(z,t)=1 |z|Q dµ. Actually if we replace Hn and W 1,Q (Hn)

by unbounded domain Ω and W 1,Q
0 (Ω) respectively, the above inequality still holds.

As an application of this inequality, a sub-elliptic equation with exponential growth is
considered.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Let Hn be the n-dimensional Heisenberg group. Recall that the Heisenberg group Hn is the space R2n+1 with the
noncommutative law of product

(x, y, t) · (x′, y′, t ′) = (x + x′, y + y′, t + t ′ + 2(⟨y, x′
⟩)− ⟨x, y′

⟩),

where x, y, x′, y′
∈ Rn, t, t ′ ∈ R, and ⟨·, ·⟩ denotes the standard inner product in Rn. The Lie algebra of Hn is generated by

the left-invariant vector fields

T =
∂

∂t
, Xi =

∂

∂xi
+ 2yi

∂

∂t
, Yi =

∂

∂yi
− 2xi

∂

∂t
, i = 1, . . . , n.

These generators satisfy the non-commutative formula [Xi, Yi] = −4δijT . We fix some notations:

z = (x, y) ∈ R2n, ξ = (z, t) ∈ Hn, ρ(ξ) = (|z|4 + t2)1/4,
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where ρ(ξ) denotes the Heisenberg distance between ξ and the origion. We now use |∇Hnu| to express the norm of the
sub-elliptic gradient of the function u : Hn

→ R:

|∇Hnu| =


n

i=1


(Xiu)2 + (Yiu)2

1/2

.

LetΩ be an open set in Hn. We use W 1,p(Ω) to denote the completion of C∞

0 (Ω) under the norm

∥u∥W1,p(Ω) =


Ω


|∇Hnu|p + |u|p


dξ
1/p

.

The following Trudinger–Moser inequality on bounded domains in the Hesenberg group Hn was proved by Cohn and
Lu [1]:

Theorem A. Let Hn be a n-dimensional Heisenberg group, Q = 2n+ 2, Q ′
= Q/(Q − 1), and αQ = Qσ 1/(Q−1)

Q , σQ =

ρ(z,t)=1

|z|Q dµ. Then there exists a constant C0 depending only on Q such that for allΩ ⊂ Hn, |Ω| < ∞,

sup
u∈W1,Q

0 (Ω), ∥∇Hnu∥LQ ≤1

1
|Ω|


Ω

eαQ |u|Q
′

dξ < ∞.

If αQ is replaced by any larger number, then the supremum is infinite.

Remarks. (1) The constant σQ was found explicitly in [1] and it is equal to

σQ = ω2n−1
Γ
 1
2


Γ

n +

1
2


n!

,

where ω2n−1 is the surface area of the unit sphere in R2n.
(2) When |Ω| = ∞, the above inequality in Theorem A is not meaningful. It is still an open question if any type of

Trudinger–Moser inequality holds on unbounded domains of Hn. The main purpose of this paper is to establish such an
inequality on any unbounded domain in Hn. Since the validity of a Trudinger–Moser inequality on Hn implies the same
inequality on any subdomains of Hn, we will only prove the caseΩ = Hn.

(3) Using similar ideas of representation formulas and rearrangement of convolutions as done on the Heisenberg group
in [1], Theorem A was extended to the groups of Heisenberg type in [2] and to general Carnot groups in [3].

(4) The Euclidean version of the above sharp constant for the Moser–Trudinger inequality was obtained by Moser [10]
which sharpened the results of Trudinger [11] and Pohozaev [12].

To state our main theorem, we need to introduce some preliminaries.
Let u : Hn

→ R be a nonnegative function in W 1,Q (Hn), Q = 2n + 2, and u∗ be the decreasing rearrangement of u,
namely

u∗(ξ) := sup{s ≥ 0: ξ ∈ {u > s}∗},

where {u > s}∗ = Br = {ξ ′: ρ(ξ ′) ≤ r} such that |{u > s}| = |Br |. Assume u and v are two nonnegative functions on Hn

and uv ∈ L1(Hn). Then the Hardy–Littlewood inequality says
Hn
(uv)∗dξ ≤


Hn

u∗v∗dξ . (1.1)

This inequality is attributed to Hardy and Littlewood (see [4,5]).
It is known from a result of Manfredi and Vera De Serio [6] that there exists a constant c ≥ 1 depending only on Q such

that 
Hn

|∇Hnu∗
|
Q dξ ≤ c


Hn

|∇Hnu|Q dξ (1.2)

for all u ∈ W 1,Q (Hn). Thus we can define

c∗
= inf


c

1
Q−1 :


Hn

|∇Hnu∗
|
Q dξ ≤ c


Hn

|∇Hnu|Q dξ, u ∈ W 1,Q (Hn)


. (1.3)

Then our main result can be stated as the following:
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Theorem 1.1. Let Q , Q ′ and αQ be as in Theorem A. Let α∗ be such that α∗
= αQ /c∗. Then for any pair β and α satisfying

0 ≤ β < Q , 0 < α ≤ α∗, and α
α∗ +

β

Q ≤ 1, there holds

sup
∥u∥W1,Q (Hn)≤1


Hn

1
ρ(ξ)β


eα|u|Q

′

−

Q−2
k=0

αk
|u|kQ

′

k!


dξ < ∞. (1.4)

When α
α∗ +

β

Q > 1, the integral in (1.4) is still finite for any u ∈ W 1,Q (Hn), but the supremum is infinite if further α
αQ

+
β

Q > 1.

An analogous result to Theorem 1.1 in the Euclidean space has been recently derived in [7]. It is an easy consequence
of Theorem 1.1 that (1.4) still holds if we replace Hn and W 1,Q (Hn) by unbounded domain Ω and W 1,Q

0 (Ω) respectively.
This is due to the monotonicity of the function ψ(s) = es −

Q−2
k=0

sk
k! for s ≥ 0. The proof of Theorem 1.1 is based on an

rearrangement argument, and the inequalities (1.1) and (1.2) and Theorem A on bounded domains, which lead to α∗
≤ αQ .

Though substantial works have been done for subelliptic equations with polynomial growth using Sobolev embeddings,
it has been absent in the literature on the study of subelliptic equations of exponential growth. This paper is an attempt to
investigate such type of equations in the subelliptic setting by employing theMoser–Trudinger inequality on the Heisenberg
group. As an applications of Theorem 1.1, we consider the existence of weak solutions for the nonhomogeneous singular
problem

− divHn(|∇Hnu|Q−2
∇Hnu)+ V |u|Q−2u =

f (ξ , u)
ρ(ξ)β

+ εh(u), (1.5)

where V : Hn
→ R is a continuous function satisfying V (ξ) ≥ V0 > 0 for all ξ ∈ Hn, f (ξ , s) is continuous in Hn

× R and
behaves like eα|s|Q

′

as |s| → ∞, h ∈ (W 1,Q (Hn))∗, h ≠ 0, and ε > 0 is a small parameter. Problem (1.5) in the Euclidean
space was studied in [7–9].

Since we are interested in positive solutions, we may assume f (ξ , s) = 0 for all (ξ , s) ∈ Hn
× (−∞, 0]. Moreover we

assume the following growth condition on the nonlinearity f (ξ , s):
(H1) There exist constants α0, b1, b2 > 0 such that for all (ξ , s) ∈ Hn

× R+,

|f (ξ , s)| ≤ b1sQ−1
+ b2


eα0|s|

Q ′

−

Q−2
k=0

αk
0s

kQ ′

k!


;

(H2) There exists µ > Q such that for all ξ ∈ Hn and s > 0,

0 < µF(ξ , s) ≡ µ

 s

0
f (ξ , s)ds ≤ sf (ξ , s);

(H3) There exist constants R0,M0 > 0 such that for all ξ ∈ Hn and s ≥ R0,

F(ξ , s) ≤ M0f (ξ , s).

Define a function space

E =


u ∈ W 1,Q (Hn) :


Hn

V (ξ)|u(ξ)|Q dξ < ∞


.

We say that u ∈ E is a weak solution of problem (1.5) if for all ϕ ∈ C∞

0 (H
n)we have

Hn


|∇Hnu|Q−2

∇Hnu∇Hnϕ + V |u|Q−2uϕ

dξ =


Hn

f (ξ , u)
ρ(ξ)β

ϕdξ + ε


Hn

h(ξ)ϕdξ .

The assumption V (ξ) ≥ V0 > 0 implies that E is a reflexive Banach space when equipped with the norm

∥u∥ ≡


Hn


|∇Hnu|Q + V |u|Q


dξ
 1

Q

(1.6)

and for all q ≥ Q , the embedding

E ↩→ W 1,Q (Hn) ↩→ Lq(Hn)

is continuous. For any 0 ≤ β < Q , we define a singular eigenvalue by

λβ = inf
u∈E, u≢0

∥u∥Q
Hn

|u(ξ)|Q

ρ(ξ)β
dξ
. (1.7)

The continuous embedding of W 1,Q (Hn) ↩→ Lq(Hn) for all q ≥ Q together with the Hölder inequality implies that λβ > 0
for any 0 ≤ β < Q .

Now we can state a result as an application of Theorem 1.1 as follows:
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Theorem 1.2. Suppose that f (ξ , s) is continuous inHn
×R, f (ξ , s) = 0 inHn

×(−∞, 0], V is continuous inHn, V (ξ) ≥ V0 > 0,
V (ξ) → ∞ as ρ(ξ) → ∞, and (H1), (H2) and (H3) are satisfied. Furthermore we assume

(H4) lim sup
s→0+

QF(ξ , s)
|s|Q

< λβ uniformly with respect to ξ ∈ Hn.

Then there exists ϵ > 0 such that if 0 < ε < ϵ, then the Eq. (1.5) has a nontrivial weak solution of the mountain-pass type.

We finally remark that the ideas and methods used in this paper can be applied to more general stratified groups (for
definitions of stratified groups see for example [13–15]). Therefore, the results derived in this paper hold in that setting as
well. Nevertheless, for the clarity and simplicity of presentation, we have chosen to present it only on the Heisenberg group.

We further remark that multiplicity of solutions can be derived for the non-uniformly subelliptic equations of Q -
Laplacian type. Moreover, we can establish the existence and multiplicity of solutions of such class of subelliptic equations
when the nonlinear term f does not satisfy the well-known Ambrosetti–Rabinowitz condition (H2). We refer the reader
to [16] for these results.

The proof of Theorem 1.2 is based on the conclusion of Theorem 1.1 and the mountain-pass theorem. In the remaining
part of this paper, Theorem 1.1 is proved in Section 2, and Theorem 1.2 is proved in Section 3.

2. Proof of Theorem 1.1

In this section, we will prove Theorem 1.1. The method we used here is combining the Hardy–Littlewood inequality
[4,5], the radial lemma [17], the Young inequality with Theorem A and a rearrangement argument.

Proof of Theorem 1.1. We first prove for any fixed α > 0, β : 0 ≤ β < Q , and u ∈ W 1,Q (Hn) that
Hn

1
ρ(ξ)β


eα|u|Q

′

−

Q−2
k=0

αk
|u|kQ

′

k!


dξ < ∞. (2.1)

Let u∗ be the decreasing rearrangement of |u|. Notice that (ρ(ξ)−β)∗ = ρ(ξ)−β , it follows from (1.1) and (1.2) that
u∗

∈ W 1,Q (Hn) and
Hn

1
ρ(ξ)β


eα|u|Q

′

−

Q−2
k=0

αk
|u|kQ

′

k!


dξ ≤


Hn

1
ρ(ξ)β


eα|u∗

|
Q ′

−

Q−2
k=0

αk
|u∗

|
kQ ′

k!


dξ . (2.2)

A straightforward calculation shows for any r > 0,
Hn

u∗(ξ)Q dξ ≥


ρ(ξ)≤r

u∗(ξ)Q dξ

=

 r

0
sQ−1u∗(s)QωQ−1ds

≥
ωQ−1

Q
rQu∗(r)Q . (2.3)

Here and in the sequel ωQ−1 stands for the area of the unit sphere in Hn, namely

ωQ−1 =


ρ(ξ)=1

dξ .

It follows from (2.3) that

u∗(ξ)Q ≤
Q
ωQ−1

∥u∗
∥
Q
LQ (Hn)

ρ(ξ)Q
, ∀ξ ∈ Hn

\ {(0, 0)}.

Note that this is known as the Radial Lemma in the Euclidean case [17].
Choosing R0 sufficiently large such that u∗(ξ) < 1 for all ρ(ξ) ≥ R0, we obtain

ρ(ξ)>R0

1
ρ(ξ)β


eα|u|Q

′

−

Q−2
k=0

αk
|u|kQ

′

k!


dξ ≤

1

Rβ0


ρ(ξ)>R0


αQ−1

|u∗
|
Q

(Q − 1)!
+

∞
k=Q

αk
|u∗

|
kQ ′

k!


dξ

≤

∥u∗
∥
Q
LQ (Hn)

Rβ0

∞
k=Q−1

αk

k!
. (2.4)
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On the other hand, we have by the Hölder inequality and the Young inequality,
ρ(ξ)≤R0

1
ρ(ξ)β


eα|u|Q

′

−

Q−2
k=0

αk
|u|kQ

′

k!


dξ ≤


ρ(ξ)≤R0

1
ρ(ξ)βp

′
dξ
1/p′ 

ρ(ξ)≤R0
eαp|u

∗
|
Q ′

dξ
1/p

≤ C


ρ(ξ)≤R0
eαp(1+ϵ)|u

∗
−u∗(R0)|Q

′

dξ
1/p

(2.5)

for some constant C depending only on n, α, β , p′ and ϵ, where 1/p + 1/p′
= 1, 1 < p′ < Q/β , and ϵ > 0. Since

u∗
− u∗(R0) ∈ W 1,Q

0 (BR0), where BR0 = {ξ ∈ Hn: ρ(ξ) ≤ R0}, the integral on the left hand side of (2.5) is bounded thanks to
the Trudinger–Moser inequality on bounded domain of Hn (Theorem A). Combining (2.2), (2.4) and (2.5), we conclude (2.1).

Next we prove the uniform estimate (1.4) for α ≤ (1 − β/Q )α∗, where α∗
= αQ /c∗ and c∗ is defined in (1.3). Letu = u/∥u∥W1,Q (Hn). When α > 0, it is easy to see that

Hn

1
ρ(ξ)β


eα|u|Q

′

−

Q−2
k=0

αk
|u|kQ

′

k!


dξ ≤


Hn

1
ρ(ξ)β


eα|u|Q ′

−

Q−2
k=0

αk
|u|kQ ′

k!


dξ,

provided that ∥u∥W1,Q (Hn) ≤ 1. This together with the inequality (1.1) implies that it suffices to prove there exists a uniform
constant C such that for all radially decreasing symmetric functions u ∈ W 1,Q (Hn)with ∥u∥W1,Q (Hn) = 1,

Hn

1
ρ(ξ)β


eα0|u|

Q ′

−

Q−2
k=0

α0
k
|u|kQ

′

k!


dξ ≤ C, (2.6)

where α0 = (1 − β/Q )α∗. In the following, we assume that u is radially decreasing in Hn and ∥u∥W1,Q (Hn) = 1. Take R0 >

(Q/ωQ−1)
1/Q . Thanks to (2.4), there holds

ρ(ξ)>R0

1
ρ(ξ)β


eα0|u|

Q ′

−

Q−2
k=0

α0
k
|u|kQ

′

k!


dξ ≤ C . (2.7)

Define the set S = {ξ ∈ BR0 : |u(ξ)−u(R0)| > 2|u(R0)|}. We can assume S is nonempty for otherwise (2.6) already holds
in view of (2.7). Then a straightforward calculation shows for all ξ ∈ S and ϵ > 0,

|u(ξ)|Q
′

= |u(ξ)− u(R0)+ u(R0)|
Q ′

= |u(ξ)− u(R0)|
Q ′


1 +

|u(R0)|

|u(ξ)− u(R0)|

Q ′

≤ |u(ξ)− u(R0)|
Q ′

+ C |u(R0)||u(ξ)− u(R0)|
1

Q−1

≤ (1 + ϵ)|u(ξ)− u(R0)|
Q ′

+ C
|u(R0)|

Q ′

ϵ1/(Q−1)
.

Choosing ϵ such that

1 + ϵ =
1

∥∇Hnu∥Q ′

LQ (Hn)

=


1

1 − ∥u∥Q
LQ (Hn)

1/(Q−1)

.

Applying the mean value theorem to the function ϕ(t) = t1/(Q−1), we can find some ζ : 1−∥u∥Q
LQ (Hn)

≤ ζ ≤ 1 such that

1 −


1 − ∥u∥Q

LQ (Hn)

 1
Q−1

=
1

Q − 1
ζ

2−Q
Q−1 ∥u∥Q

LQ (Hn)
.

Hence

ϵ =

∥u∥Q
LQ (Hn)

(Q − 1)ζ
Q−2
Q−1


1 − ∥u∥Q

LQ (Hn)

 1
Q−1

≥

∥u∥Q
LQ (Hn)

Q − 1
.

This together with the fact that |u(R0)| ≤ (Q/ω2n)
1/Q

∥u∥LQ (Hn)/R0 leads to

|u(R0)|
Q ′

ϵ1/(Q−1)
≤ C,
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and thus for all ξ ∈ S,

|u(ξ)|Q
′

≤
|u(ξ)− u(R0)|

Q ′

∥∇Hnu∥Q ′

LQ (Hn)

+ C .

Obviously u − u(R0) ∈ W 1,Q
0 (BR0) and

BR0

|∇Hn(u − u(R0))|
Q dξ ≤


Hn

|∇Hnu|Q dξ ≤ 1.

Denoteu(ξ) = (u(ξ)− u(R0))/∥∇(u − u(R0))∥LQ (Hn). It is easy to see that
BR0

eα0|u|
Q ′

ρ(ξ)β
dξ =


S

eα0|u|
Q ′

ρ(ξ)β
dξ +


BR0 \S

eα0|u|
Q ′

ρ(ξ)β
dξ

≤


BR0

eα0|u|Q ′

ρ(ξ)β
dξ + C(Q , β) ≤ C . (2.8)

Notice that α0 < (1 − β/Q )αQ , in the last inequality above, we have used the Hölder inequality and Theorem A. Thus (2.8)
together with (2.7) implies (2.6). Hence, for all α : 0 < α ≤ (1 − β/Q )α∗, we get the uniform estimate (1.4).

Finally we prove for any β : 0 ≤ β < Q and α > (1 − β/Q )αQ ,

sup
∥u∥W1,Q (Hn)≤1


Hn

1
ρ(ξ)β


eα|u|Q

′

−

Q−2
k=0

αk
|u|kQ

′

k!


dξ = ∞. (2.9)

We employ the following Moser function sequence:

Ml(ξ , r) =
1

σ
1/Q
Q

(log l)
(Q−1)/Q when ρ(ξ) ≤ r/l,

(log l)−1/Q log(r/ρ(ξ)) when r/l < ρ(ξ) < r,
0 when ρ(ξ) ≥ r.

(2.10)

Notice that |∇Hnρ(ξ)| =
|z|
ρ(ξ)

, where ξ = (z, t) ∈ Hn, we immediately have
Hn

|∇HnMl|
Q dξ = 1,

and thus

∥Ml∥W1,Q (Hn) = 1 + O(1/ log l).

Let Ml = Ml/∥Ml∥W1,Q (Hn). It follows that
Hn

1
ρ(ξ)β


eα|Ml|

Q ′

−

Q−2
k=0

αk
|Ml|

kQ ′

k!


dξ ≥


ρ≤

r
l

1
ρ(ξ)β


eα|Ml|

Q ′

−

Q−2
k=0

αk
|Ml|

kQ ′

k!


dξ

≥


l

α

σ
1/(Q−1)
Q eO(1) + O


(log l)Q−2 ωQ−1rQ−β

(Q − β)lQ−β
.

The last term in the above inequality tends to infinity as l → ∞, thanks to α > (1 − β/Q )αQ . Therefore (2.9) holds, and
thus the proof of Theorem 1.1 is completely finished. �

3. Proof of Theorem 1.2

In this section, we will prove the existence of weak solution to Eq. (1.5). This problem is solved via variational method.
The concrete tool we used here is Theorem 1.1 and the mountain-pass theorem.

3.1. The functional

For β: 0 ≤ β < Q , we define the functional Jβ : E → R by

Jβ(u) =
1
Q

∥u∥Q
−


Hn

F(ξ , u)
ρ(ξ)β

dξ − ε


Hn

h(ξ)udξ,
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where ∥u∥ is defined by (1.6) and F(ξ , s) =
 s
0 f (ξ , τ )dτ is the primitive of f (ξ , s). Assume f satisfies the hypothesis (H1).

Then there exist some positive constants α1 and b3 such that for all (ξ , s) ∈ Hn
× R,

F(ξ , s) ≤ b3

eα1|s|

Q/(Q−1)
− SQ−2(α1, s)


, (3.1)

where

SQ−2(α1, s) =

Q−2
k=0

αk
1s

kQ ′

k!
.

Thus the functional Jβ is well defined thanks to Theorem 1.1. It is not difficult to check that Jβ ∈ C1(E,R). A straightforward
calculation shows

⟨J ′β(u), φ⟩ =


Hn


|∇Hnu|Q−2

∇Hnu∇Hnφ + V (z, t)|u|Q−2uφ

dξ −


Hn

f (ξ , u)
ρ(ξ)β

φdξ − ε


Hn

h(ξ)φdξ (3.2)

for all φ ∈ E. Hence a weak solution of (1.5) is a critical point of Jβ .

3.2. The geometry of the functional Jβ

In this subsection, we check that Jβ satisfies the geometric conditions of the mountain-pass theorem without the
Palais–Smale condition. For simplicity, here and in the sequel, we write

R(α, u) = eα|u|Q/(Q−1)
− SQ−2(αu) =

∞
k=Q−1

αk
|u|kQ

′

k!
.

Lemma 3.1. Assume that V (ξ) ≥ V0 for all ξ ∈ Hn, (H1), (H2), and (H3) are satisfied. Then for any nonnegative, compactly
supported function u ∈ W 1,Q (Hn) \ {0}, there holds Jβ(τu) → −∞ as τ → +∞.

Proof. By (H2) and (H3), there exists R0 > 0 such that for all (ξ , s) ∈ Hn
× [R0,∞), F(ξ , s) > 0 and µF(ξ , s) ≤ s ∂

∂sF(ξ , s).
This implies ∂

∂s (ln F(ξ , s)) ≥
µ

s , and thus F(ξ , s) ≥ F(ξ , R0)R
−µ

0 sµ. Assume u is supported in a bounded domain Ω . Then,
for all (ξ , s) ∈ Ω × [0,∞), there exist c1, c2 > 0 such that F(ξ , s) ≥ c1sµ − c2. It follows that

Jβ(τu) =
τQ

Q
∥u∥Q

−


Ω

F(ξ , τu)
ρ(ξ)β

dξ − ε


Ω

h(ξ)τudξ

≤
τQ

Q
∥u∥Q

− c1τµ

Ω

|u|µ

ρ(ξ)β
dξ + τ


Ω

|εh(ξ)u|dξ + O(1).

Since µ > Q , this gives the desired result. �

Lemma 3.2. Assume that V (ξ) ≥ V0 for all ξ ∈ Hn, (H1), and (H4) hold. Then there exist ϵ > 0 such that for any ε : 0 < ε < ϵ,
there exist rε > 0 and ϑε > 0 such that Jβ(u) ≥ ϑε for all u with ∥u∥ = rε .

Proof. By (H4), there exist τ , δ > 0 such that if |s| ≤ δ, then

F(ξ , s) ≤
λβ − τ

Q
|s|Q (3.3)

for all ξ ∈ Hn. By (H1), we have for |s| ≥ δ,

F(ξ , s) ≤


|s|

0


b1tQ−1

+ b2R(α0, t)

dt

≤
b1
Q

|s|Q + b2R(α0, s)|s|

≤ cδ|s|Q+1R(α0, s), (3.4)

where cδ =
b1

δQR(α0,δ)
+

b2
δQ

. Combining (3.3) and (3.4), we have for all (ξ , s) ∈ Hn
× R,

F(ξ , s) ≤
λβ − τ

Q
|s|Q + C |s|Q+1R(α0, s). (3.5)

Now we claim the following inequality
Hn

|u|Q+1R(α0, u)
ρ(ξ)β

dξ ≤ C∥u∥Q+1, ∀u ∈ W 1,Q (Hn). (3.6)
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To this end, we use the symmetrization argument. Assume u∗ is the decreasing rearrangement of |u|. By the
Hardy–Littlewood inequality (1.1), we have

Hn

|u|Q+1R(α0, u)
ρ(ξ)β

dξ ≤


Hn

|u∗
|
Q+1R(α0, u∗)

ρ(ξ)β
dξ . (3.7)

Let γ be a positive number to be chosen later, we estimate
ρ≤γ

|u∗
|
Q+1R(α0, u∗)

ρ(ξ)β
dξ ≤


ρ≤γ

|u∗
|
Q+1eα0|u

∗
|

Q
Q−1

ρ(ξ)β
dξ

≤


ρ≤γ

epα0|u
∗
|
Q ′

ρ(ξ)β
dξ

1/p 
ρ≤γ

1
ρ(ξ)βs

dξ
 1

p′s


ρ≤γ

|u∗
|
(Q+1)p′s′dξ

 1
p′s′

≤ C


Hn

R(pα0, u∗)

ρ(ξ)β
dξ
1/p 

Hn
|u∗

|
(Q+1)p′s′dξ

 1
p′s′

,

where p > 1, 1 < s < Q
β
, 1/p+1/p′

= 1, and 1/s+1/s′ = 1. This togetherwith Theorem1.1 and the continuous embedding
of E ↩→ Lq(Hn) (q ≥ Q ) implies

ρ≤γ

|u∗
|
Q+1R(α0, u∗)

ρ(ξ)β
dξ ≤ C∥u∥Q+1 (3.8)

for some constant C depending only on Q , β and γ , provided that ∥u∥ is sufficiently small such that pα0∥u∥Q ′

≤ α∗.
On the other hand, taking γ suitably large such that (Q/ωQ−1)

1/Qγ−1
∥u∥LQ (Hn) < 1/2, we obtain by the radial lemma

and the continuous embedding of E ↩→ LQ+1(Hn),
ρ≥γ

|u∗
|
Q+1R(α0, u∗)

ρ(ξ)β
dξ ≤

R(α0, u∗(γ ))

γ β


ρ≥γ

|u∗
|
Q+1dξ

≤
R

α0,

1
2


γ β

∥u∗
∥
Q+1
LQ+1(Hn)

≤ C∥u∥Q+1 (3.9)

for some constant C . Combining (3.7)–(3.9), we arrive at (3.6), and thus the above claim follows.
Thanks to (3.5), (3.6), and the definition of λβ ,

Jβ(u) ≥
1
Q

∥u∥Q
−
λβ − τ

Q


Hn

|u|Q

ρ(ξ)β
dξ − C∥u∥Q+1

− ε


Hn

h(ξ)udξ

≥
τ

Qλβ
∥u∥Q

− C∥u∥Q+1
− ε∥h∥E′ ∥u∥

= ∥u∥

τ

Qλβ
∥u∥Q−1

− C∥u∥Q
− ε∥h∥E′


.

Since τ > 0, there holds for sufficiently small r > 0,
τ

Qλβ
rQ−1

− CrQ ≥
τ

2Qλβ
rQ−1.

So if we choose ϵ small enough, the conclusion of the lemma follows immediately. �

3.3. Palais–Smale sequence

In this subsection, we analyze the compactness of Palais–Smale sequences of Jβ . This is the key step in the study of
existence results. First we need the following inequality (for Euclidean or Riemannian cases, see [18,19,11]):

Lemma 3.3. Let Br = Br(ξ
∗) be a Heisenberg ball centered at (ξ ∗) ∈ Hn with radius r. Then there exists a positive constant ϵ0

depending only on n such that

sup
Br |∇Hnu|Q dξ≤1,


Br udξ=0

1
|Br |


Br

eϵ0|u|
Q ′

dξ ≤ C0 (3.10)

for some constant C0 depending only on n.



W.S. Cohn et al. / Nonlinear Analysis 75 (2012) 4483–4495 4491

Proof. The proof is more or less standard by now [20,21,11] as long as we have the representation formula for functions
without the compact support on the Heisenberg group first derived in [22]. For completeness, we give the details here.

Assume g ∈ LQ (Br) such that g ≥ 0 and ∥g∥LQ (Br ) = 1. Define an operator T by

Tg(ξ) =


Hn

g(ξ ′)χBr (ξ
′)

ρξ (ξ ′)Q−1
dξ ′,

where ξ = (z, t), ξ ′
= (z ′, t ′), dξ ′

= dz ′dt ′, and ρξ (ξ ′) denotes the Heisenberg distance between ξ and ξ ′. Without loss of
generality, we assume the support of g is a subset of Br . To estimate Tg(ξ), we set 0 < δ < R = 2r . Then

Tg(ξ) ≤


ρξ≤δ

g(ξ ′)

ρξ (ξ ′)Q−1
dξ ′

+


δ<ρξ≤R

g(ξ ′)

ρξ (ξ ′)Q−1
dξ ′. (3.11)

The first integral in the above inequality can be estimated by
ρξ≤δ

g(ξ ′)

ρξ (ξ ′)Q−1
dξ ′

=

∞
k=0


2−k−1δ≤ρξ≤2−kδ

g(ξ ′)

ρξ (ξ ′)Q−1
dξ ′

≤

∞
k=0

(2−k−1δ)1−Q

ρξ≤2−kδ

g(ξ ′)dξ ′

≤ Cδ(Mg)(ξ), (3.12)

where Mg is the Hardy–Littlewood maximum function, C is a constant depending only on Q . Notice that ∥g∥LQ (Br ) = 1, we
have by using the Hölder inequality

δ<ρξ≤R

g(ξ ′)

ρξ (ξ ′)Q−1
dξ ′

≤


δ<ρξ≤R

ρξ (ξ
′)−Q dξ ′

1/Q ′

≤



log R/δ
log 2


k=0


2−k−1R≤ρξ≤2−kR

(ρξ (ξ
′)−Q )dξ ′


1/Q ′

≤ C (log R/δ)1/Q
′

. (3.13)

Inserting (3.12) and (3.13) into (3.11), we obtain

Tg(ξ) ≤ C (log R/δ)1/Q
′

+ CδMg(ξ).

Take δ = δ(ξ) = min{(2CMg(ξ))−1, R}. If Tg(ξ) > 1, then

Tg(ξ) ≤ 2C (log R/δ)1/Q
′

.

Define a set E = {ξ ∈ Br : Tg(ξ) > 1}. Noticing ∥Mg∥LQ (Br ) ≤ A∥g∥LQ (Br ) for some constant A depending only on Q , and
R/δ ≤ 1 + 2CRMg(ξ), we estimate

1
|Br |


E
e


1
2C Tg(ξ)

Q ′

dξ ≤
1

|Br |


E

R
δ
dξ

≤ 1 +
2CR
|Br |


Br

Mg(ξ)dξ

≤ 1 +
2CR

|Br |
1/Q


Br

(Mg(ξ))Q dξ
1/Q

≤ 1 +
2CR
|Br |

A∥g∥LQ (Br ).

Recall R = 2r and ∥g∥LQ (Br ) = 1, we can find a constant C1 depending only on Q such that

1
|Br |


E
e


1
2C Tg(ξ)

Q ′

dξ ≤ C1.

On the other hand, there holds

1
|Br |


Br\E

e


1
2C Tg(ξ)

Q ′

dξ ≤ e1/(2C)
Q ′

.
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Therefore we obtain for some constant C2 depending only on Q ,

1
|Br |


Br

e


1
2C Tg(ξ)

Q ′

dξ ≤ C2. (3.14)

To prove the lemma, it suffices to prove the integrals in (3.10) are bounded for all functions u ∈ W 1,Q (Br) with
∥∇Hnu∥LQ (Br ) = 1 and


Br

udξ = 0. For such u, it was shown in [22] that

|u(ξ)| ≤ C3


Br

|∇Hnu(ξ ′)|

ρξ (ξ ′)Q−1
dξ ′, ∀ξ ∈ Br .

Set g(ξ) = |∇Hnu(ξ)|. Then g ≥ 0 and ∥g∥LQ (Br ) = 1. Hence we get the desired result from (3.14). �

Lemma 3.4. Assume V ≥ V0 > 0 in Hn, V (ξ) → ∞ as ρ(ξ) → ∞, (H1) and (H2) are satisfied. Let (uk) ⊂ E be an arbitrary
Palais–Smale sequence of Jβ , i.e.,

Jβ(uk) → c, J ′β(uk) → 0 in E ′ as k → ∞.

Then there exists a subsequence of (uk) (still denoted by (uk)) and u ∈ E such that
f (ξ , uk)

ρ(ξ)β
→

f (ξ , u)
ρ(ξ)β

strongly in L1loc(H
n)

∇uk(ξ) → ∇u(ξ) almost everywhere in Hn

|∇uk|
Q−2

∇uk ⇀ |∇u|Q−2
∇u weakly in


LQ

′

(Hn)
Q−2

.

Furthermore u is a weak solution of (1.5).

Proof. Let (uk) be a Palais–Smale sequence of Jβ , i.e.,

1
Q

∥uk∥
Q

−


Hn

F(ξ , uk)

ρ(ξ)β
dξ − ε


Hn

h(ξ)ukdξ → c as k → ∞, (3.15)⟨J ′β(uk), ϕ⟩
 ≤ τk∥ϕ∥ for all ϕ ∈ E, (3.16)

where τk → 0 as k → ∞. Taking ϕ = uk in (3.16), we have
Hn

f (ξ , uk)uk

ρ(ξ)β
dξ + ε


Hn

h(ξ)ukdξ − ∥uk∥
Q

≤ τk∥uk∥.

This together with (3.15) and the hypothesis (H2) leads to
µ

Q
− 1


∥uk∥

Q
≤ C(1 + ∥uk∥).

Hence we conclude that ∥uk∥ is bounded, and thus
Hn

f (ξ , uk)uk

ρ(ξ)β
dξ ≤ C,


Hn

F(ξ , uk)

ρ(ξ)β
dξ ≤ C . (3.17)

Here we have used the hypothesis (H2) again. Thanks to the assumptions on the potential V , the embedding E ↩→ Lq(Hn)
is compact for all q ≥ Q , and thus we can assume without loss of generality that uk ⇀ u weakly in E, uk → u strongly in
Lq(Hn) for all q ≥ Q , and uk → u almost everywhere in Hn. In view of (H1), we have by the Trudinger–Moser inequality and
the Hölder inequality that f (ξ ,u)

ρ(ξ)β
∈ L1loc(H

n). Noticing that Lemma 2.1 in [23] is applicable in our case, we conclude

f (ξ , uk)

ρ(ξ)β
→

f (ξ , u)
ρ(ξ)β

strongly in L1loc(H
n). (3.18)

Now we are proving the remaining part of the lemma. Up to a subsequence, we can define an energy concentration set
for any fixed δ > 0,

Σδ =


ξ ∈ Hn: lim

r→0
lim
k→∞


Br (ξ)

(|∇Hnuk|
Q

+ |uk|
Q )dξ ′

≥ δ


.

Since (uk) is bounded in E,Σδ must be a finite set. For any ξ ∗
∈ Hn

\Σδ , there exists r : 0 < r < dist(ξ ∗,Σδ) such that

lim
k→∞


Br (ξ∗)

(|∇Hnuk|
Q

+ |uk|
Q )dξ < δ.
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It follows that for large k,
Br (ξ∗)

(|∇Hnuk|
Q

+ |uk|
Q )dξ < δ. (3.19)

Thanks to Lemma 3.3, for sufficiently small δ > 0, there exists some q > 1 such that
Br (ξ∗)

|f (ξ , uk)|
q

ρ(ξ)β
dξ ≤ C . (3.20)

For anyM > 0, we denote

AM = {ξ ∈ Br(ξ
∗): |u(ξ)| ≥ M}.

It can be estimated that
AM

|f (ξ , uk)− f (ξ , u) ∥ u|
ρ(ξ)β

dξ ≤


AM

|f (ξ , uk)− f (ξ , u)|q

ρ(ξ)β
dξ
1/q


AM

|u|q
′

ρ(ξ)β
dξ

1/q′

≤

 f (ξ , uk)

ρ(ξ)β/q


Lq(Br (z∗,t∗))

+

 f (ξ , u)
ρ(ξ)β/q


Lq(Br (ξ∗))



×

 1
ρ(ξ)β

1/q′

Ls(Br (ξ∗))


AM

|u|q
′s′dξ

1/(q′s′)

≤ C


AM
|u|q

′s′dξ
1/(q′s′)

,

where 1/q + 1/q′
= 1, 1/s + 1/s′ = 1, and 0 < s < Q/β . Here we have used (3.20) in the last inequality. Since

u ∈ Lq
′s′(Br(ξ

∗)), we have for any ν > 0,
AM

|f (ξ , uk)− f (ξ , u) ∥ u|
ρ(ξ)β

dξ < ν, (3.21)

provided thatM is chosen sufficiently large. It follows from (3.18) that

lim
k→∞


Br (ξ∗)\AM

|f (ξ , uk)− f (ξ , u) ∥ u|
ρ(ξ)β

dξ = 0. (3.22)

Combining (3.21) and (3.22), we have

lim
k→∞


Br (ξ∗)

|f (ξ , uk)− f (ξ , u) ∥ u|
ρ(ξ)β

dξ ≤ ν,

and thanks to the fact that ν > 0 is arbitrary,

lim
k→∞


Br (ξ∗)

|f (ξ , uk)− f (ξ , u) ∥ u|
ρ(ξ)β

dξ = 0. (3.23)

On the other hand, we have by using the Hölder inequality, (3.18) and (3.20),
Br (ξ∗)

|f (ξ , uk) ∥ uk − u|
ρ(ξ)β

dξ ≤

 f (ξ , uk)

ρ(ξ)β/q


Lq

 1
ρ(ξ)β

 1
q′

Ls
∥uk − u∥Lq′s′

≤ C∥uk − u∥Lq′s′ → 0, (3.24)

where 1/q + 1/q′
= 1, 1/s + 1/s′ = 1, and 0 < s < Q/β . Combining (3.23) and (3.24), we get

lim
k→∞


Br (ξ∗)

|f (ξ , uk)uk − f (ξ , u)u|
ρ(ξ)β

dξ = 0.

A covering argument implies that for any compact set K ⊂⊂ Hn
\Σδ ,

lim
k→∞


K

|f (ξ , un)un − f (ξ , u)u|
ρ(ξ)β

dξ = 0. (3.25)
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Next we will prove for any compact set K ⊂⊂ Hn
\Σδ ,

lim
k→∞


K

|∇Hnuk − ∇Hnu|Q dξ = 0. (3.26)

It suffices to prove for any (ξ ∗) ∈ Hn
\Σδ , and r given by (3.19), there holds

lim
k→∞


Br/2(ξ∗)

|∇Hnuk − ∇Hnu|Q dξ = 0. (3.27)

For this purpose, we take φ ∈ C∞

0 (Br(ξ
∗))with 0 ≤ φ ≤ 1 and φ ≡ 1 on Br/2(ξ

∗). Obviously φuk is a bounded sequence in
E. Inserting ϕ = φuk and ϕ = φu into (3.16) respectively, we have

Br (ξ∗)

φ(|∇Hnuk|
Q−2

∇Hnuk − |∇Hnu|Q−2
∇Hnu)(∇Hnuk − ∇Hnu)dξ

≤


Br (ξ∗)

|∇Hnuk|
Q−2

∇Hnuk∇Hnφ(u − uk)dξ +


Br (ξ∗)

φ|∇Hnu|Q−2
∇Hnu(∇Hnu − ∇Hnuk)dξ

+


Br (ξ∗)

φ(uk − u)
f (ξ , uk)

ρ(ξ)β
dξ + τk∥φuk∥ + τk∥φu∥ − ε


Br (ξ∗)

φh(uk − u)dξ . (3.28)

The integrals on the right side of this inequality can be estimated as below. By the Hölder inequality and the compact
embedding of E ↩→ LQ (Hn), we have

lim
k→∞


Br (ξ∗)

|∇Hnuk|
Q−2

∇Hnuk∇Hnφ(u − uk)dξ = 0. (3.29)

Since ∇Hnuk ⇀ ∇Hnuweakly in (LQ (Hn))Q−2, there holds

lim
k→∞


Br (ξ∗)

φ|∇Hnu|Q−2
∇Hnu(∇Hnu − ∇Hnuk)dξ = 0. (3.30)

The Hölder inequality and (3.24) implies that


Br (ξ∗)
φ(uk − u) f (ξ ,uk)

ρ(ξ)β
dξ → 0 as k → ∞. This together with (3.29), (3.30),

uk ⇀ uweakly in E, and τk → 0 implies that the integral sequence on the left side of (3.28) tends to zero as k → ∞. Using
an elementary inequality

22−Q
|b − a|Q ≤ ⟨|b|Q−2b − |a|Q−2a, b − a⟩, ∀a, b ∈ RQ−2,

we derive (3.27) from (3.28). Hence (3.26) holds thanks to a covering argument. Since Σδ is a finite set, it follows that
∇Hnuk converges to ∇Hnu almost everywhere in Hn. This immediately implies, up to a subsequence, |∇Hnuk|

Q−2
∇Hnuk ⇀

|∇Hnu|Q−2
∇Hnu weakly in (LQ

′

(BR))
Q−2 for any R > 0. For any fixed ϕ ∈ C∞

0 (H
n), there exists some R0 > 0 such that the

support of ϕ is contained in the ball BR0 . Hence

lim
k→∞


Hn
(|∇Hnuk|

Q−2
∇Hnuk − |∇Hnu|Q−2

∇Hnu)ϕdξ = 0.

This equality holds for all ϕ ∈ LQ
′

(Hn), thanks to the density of C∞

0 (H
n) in LQ

′

(Hn). Hence we obtain

|∇Hnuk|
Q−2

∇Hnuk ⇀ |∇Hnu|Q−2
∇Hnu weakly in (LQ

′

(Hn))Q−2. (3.31)

Passing to the limit k → ∞ in (3.16), we obtain by combining (3.18) and (3.31),

⟨J ′β(u), ϕ⟩ = 0, ∀ϕ ∈ C∞

0 (H
n).

Since C∞

0 (H
n) is dense in E, the above equation implies that u is a weak solution of (1.5). This completes the proof of the

lemma. �

3.4. Completion of the proof of Theorem 1.2

By Lemmas 3.1 and 3.2, there exists ϵ > 0 such that for all 0 < ε < ϵ, Jβ satisfies all the hypotheses of themountain-pass
theorem except for the Palais–Smale condition: Jβ ∈ C1(E,R); Jβ(0) = 0; Jβ(u) ≥ ϑ > 0when ∥u∥ = r; Jβ(e) < 0 for some
e ∈ E with ∥e∥ > r . Then using the mountain-pass theorem without the Palais–Smale condition, we can find a sequence
(un) of E such that

Jβ(un) → c > 0, J ′β(un) → 0 in E ′,
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where

c = min
γ∈Γ

max
u∈γ

Jβ(u) ≥ ϑ

is the mountain-pass level of Jβ , where Γ = {g ∈ C([0, 1], E): g(0) = 0, g(1) = e}. By Lemma 3.4, there exists a
subsequence of (un) converges weakly to a solution of (1.5) in E. Finally, this solution must be nontrivial since h ≠ 0.
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