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Let H" = R?" x R be the n-dimensional Heisenberg group, Vyn be its sub-elliptic gradient
operator, and p(£) = (|z|* + t?)V4 for £ = (z,t) € H" be the distance function in H".
Denote Q = 2n+ 2 and Q" = Q/(Q — 1). It is proved in this paper that there exists a
positive constant o* such that for any pair 8 and « satisfying 0 < # < Q and % + g <1,

1 o Q-2 aklule’
o|ul
sup / — 1€ fE —— ( d& < 00,
<tJun p(é)ﬁi K

lully1.Q gny k=0

where W2 (H") is the Sobolev space on H". When ;‘—* + g > 1, the above integral is still

finite for any u € W12 (H"). Furthermore the supremum is infinite if o /g + 8/Q > 1,
where aq = Qaé/(Q_”, 00 = [ouo-1 |z|%d . Actually if we replace H" and W2 (H")
by unbounded domain £2 and Wol’Q(.Q) respectively, the above inequality still holds.
As an application of this inequality, a sub-elliptic equation with exponential growth is

considered.
© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Let H" be the n-dimensional Heisenberg group. Recall that the Heisenberg group H" is the space R?>"*! with the

noncommutative law of product

&y, ) - Xy, ) =x+x,y+y, t+t'+2(, X)) — x,¥)),

where x,y,x',y € R", t,t' € R, and (-, -) denotes the standard inner product in R". The Lie algebra of H" is generated by

the left-invariant vector fields

T = 9 Xi = 9 +2 9 Y, = 9 9 i=1 n
T T Vo Ty e T
These generators satisfy the non-commutative formula [X;, Y;] = —46;T. We fix some notations:

z=@xyeR”, E=@neH, p@) ="+,
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where p(&) denotes the Heisenberg distance between & and the origion. We now use |Vgnu| to express the norm of the
sub-elliptic gradient of the function u : H" — R:

n 1/2
|Vynu| = (Z (Xw?* + (Yiu)2)> .

i=1

Let 2 be an open set in H". We use WP (£2) to denote the completion of (5°(£2) under the norm

1/p
IIullwl,p(g)=</ (IVHnu|p+|u|”)df;'> .
Q

The following Trudinger-Moser inequality on bounded domains in the Hesenberg group H" was proved by Cohn and
Lu[1]:

Theorem A. Let H" be a n-dimensional Heisenberg group,Q = 2n+2,Q' =Q/(Q — 1),and ag = Qoé/(Q_l), 0og = fm =1
|z|®d . Then there exists a constant Cy depending only on Q such that for all 2 C H", |§2| < oo,

1 aglul?
sup @ e*eM™ dE < oo.
uewy (@), [ Vgnull o <1 2

If g is replaced by any larger number, then the supremum is infinite.

Remarks. (1) The constant oy was found explicitly in [1] and it is equal to

riG)r+s)

0Q = W2n—-1 !

where w,,_1 is the surface area of the unit sphere in R*".

(2) When |£2| = oo, the above inequality in Theorem A is not meaningful. It is still an open question if any type of
Trudinger-Moser inequality holds on unbounded domains of H". The main purpose of this paper is to establish such an
inequality on any unbounded domain in H". Since the validity of a Trudinger-Moser inequality on H" implies the same
inequality on any subdomains of H", we will only prove the case £2 = H".

(3) Using similar ideas of representation formulas and rearrangement of convolutions as done on the Heisenberg group
in [1], Theorem A was extended to the groups of Heisenberg type in [2] and to general Carnot groups in [3].

(4) The Euclidean version of the above sharp constant for the Moser-Trudinger inequality was obtained by Moser [10]
which sharpened the results of Trudinger [11] and Pohozaev [12].

To state our main theorem, we need to introduce some preliminaries.
Letu : H* — R be a nonnegative function in W2 (H"), Q = 2n + 2, and u* be the decreasing rearrangement of u,
namely

u*(&) == sup{s > 0:& € {u > s}*},

where {u > s}* =B, = {&": p(§') < r}such that |{u > s}| = |B;|. Assume u and v are two nonnegative functions on H"
and uv € L'(H"). Then the Hardy-Littlewood inequality says

(uv)*d¢ < / u*v*de. (1.1)
H" H?
This inequality is attributed to Hardy and Littlewood (see [4,5]).

It is known from a result of Manfredi and Vera De Serio [6] that there exists a constant ¢ > 1 depending only on Q such
that

/ | Vanu*| ¢ dg gc/ |Vienu|2dg (1.2)
H H

for allu € W2 (H"). Thus we can define

1

= inf{cW:/ |V u*|2de < c/ |Vinu|%dE, u € Wl’Q(H”)} ) (1.3)
H? H?

Then our main result can be stated as the following:
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Theorem 1.1. Let Q, Q' and «q be as in Theorem A. Let o* be such that «* = g /c*. Then for any pair 8 and « satisfying
0<B8<Q0<a« Sa*,ando% + g < 1, there holds

1 , Q-2 _k u kQ’
sup / — el _ ZL dt < oco. (14)
lullyy 1,0 gny =1 S () =k

0
When =% + g > 1, the integral in (1.4) is still finite for any u € W1 (H"), but the supremum is infinite if further % + g > 1.

An analogous result to Theorem 1.1 in the Euclidean space has been recently derived in [7]. It is an easy consequence
of Theorem 1.1 that (1.4) still holds if we replace H* and W ¢ (H") by unbounded domain £2 and WOLQ(Q) respectively.
This is due to the monotonicity of the function ¥ (s) = e° — Zsz_Oz 7{—’: for s > 0. The proof of Theorem 1.1 is based on an
rearrangement argument, and the inequalities (1.1) and (1.2) and Theorem A on bounded domains, which lead to o™ < «q.

Though substantial works have been done for subelliptic equations with polynomial growth using Sobolev embeddings,
it has been absent in the literature on the study of subelliptic equations of exponential growth. This paper is an attempt to
investigate such type of equations in the subelliptic setting by employing the Moser-Trudinger inequality on the Heisenberg
group. As an applications of Theorem 1.1, we consider the existence of weak solutions for the nonhomogeneous singular
problem

=f(5,u)
p(&)P

where V : H" — R is a continuous function satisfying V(§) > Vy > Oforall £ € H", f(&, s) is continuous in H" x R and

— divgn (| Vi u| 22 Vignu) + V[u|22u

+ eh(u), (1.5)

behaves like e?¥1® as |s| — oo, h € (WI2(H")*, h # 0,and ¢ > 0 is a small parameter. Problem (1.5) in the Euclidean
space was studied in [7-9].

Since we are interested in positive solutions, we may assume f(£,s) = 0 for all (£,s) € H" x (—oo, 0]. Moreover we
assume the following growth condition on the nonlinearity f (§, s):

(H;) There exist constants ag, by, b, > 0 such that for all (£, s) € H" x RY,

) ’
Q alést ]

()| < bys@ 4 by { el —
f(&,9)] < bis®" + z[e ; k!
(Hy) There exists . > Q such that forall § € H" and s > 0,

0 < uF(t,s) = u/ FE.5)ds < (&, 5):
0

(H3) There exist constants Ry, My > 0 such that for all £ € H" and s > Ry,
F(§,s) < Mof (§,5).

Define a function space

E= {u e WhemH") : / V() |uE)|%ds < oo} .
Hn

We say that u € E is a weak solution of problem (1.5) if for all ¢ € C5°(H") we have

f (IVart]® Vo uViangp + V[ul® 2ug) d& = / TEW e o f h(E)pde.
Hn Hn ,O(E)ﬂ Hn

The assumption V(§) > V, > 0 implies that E is a reflexive Banach space when equipped with the norm

l[ull = {/ (IVaanu|® JrVILIIQ)dE}Q (1.6)
HP

and for all ¢ > Q, the embedding
E < W@ — [Y(H")

is continuous. For any 0 < 8 < Q, we define a singular eigenvalue by

flul®
b= A0l WO g
Jen PP §
The continuous embedding of W-¢ (H") — LI(H") for all ¢ > Q together with the Hélder inequality implies that Ag >0
forany0 < 8 < Q.
Now we can state a result as an application of Theorem 1.1 as follows:

(1.7)
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Theorem 1.2. Suppose that f (&, s) is continuous in H" X R, f (§, s) = 0inH" x (—oo, 0], V is continuous in H", V(§) > Vo > 0,
V() — ooas p(§) — oo, and (Hy), (Hy) and (Hs) are satisfied. Furthermore we assume

(Hg) limsup FE, )
s—0+ Is|2

< Mg uniformly with respect to & € H".

Then there exists € > 0 such that if 0 < ¢ < ¢, then the Eq. (1.5) has a nontrivial weak solution of the mountain-pass type.

We finally remark that the ideas and methods used in this paper can be applied to more general stratified groups (for
definitions of stratified groups see for example [13-15]). Therefore, the results derived in this paper hold in that setting as
well. Nevertheless, for the clarity and simplicity of presentation, we have chosen to present it only on the Heisenberg group.

We further remark that multiplicity of solutions can be derived for the non-uniformly subelliptic equations of Q-
Laplacian type. Moreover, we can establish the existence and multiplicity of solutions of such class of subelliptic equations
when the nonlinear term f does not satisfy the well-known Ambrosetti-Rabinowitz condition (H2). We refer the reader
to [16] for these results.

The proof of Theorem 1.2 is based on the conclusion of Theorem 1.1 and the mountain-pass theorem. In the remaining
part of this paper, Theorem 1.1 is proved in Section 2, and Theorem 1.2 is proved in Section 3.

2. Proof of Theorem 1.1

In this section, we will prove Theorem 1.1. The method we used here is combining the Hardy-Littlewood inequality
[4,5], the radial lemma [17], the Young inequality with Theorem A and a rearrangement argument.

Proof of Theorem 1.1. We first prove for any fixedo > 0,8 : 0 < 8 < Q,andu € W Q(H") that
1 , Q-2 _k u kQ’
/ — Je® > o lul dé < oo. (2.1)
w p(§)P = K

Let u* be the decreasing rearrangement of |u|. Notice that (o(§)™#)* = p(&)7#, it follows from (1.1) and (1.2) that
u* € WHS(H) and

1 o Q-2 ak|u|kQ/ 1 Y Q-2 ak|u*|kQ/
et _ d </ —JelwE —— 1 dE. (2.2)
. e { 2w %= ey 2w [

A straightforward calculation shows for any r > 0,

/H )% = / " ()2

p&)=r
r
= f sC M (s)Qwg 1 ds

0

= ST, (2.3)

Here and in the sequel wq_; stands for the area of the unit sphere in H", namely

wo-1 = / df .
p&)=1
It follows from (2.3) that

#1Q
« Q Q ”u ”LQ(H") V H" 0 O
u ) = o P2 £ e H'\ {(0,0)}.

Note that this is known as the Radial Lemma in the Euclidean case [17].
Choosing Rq sufficiently large such that u*(£) < 1 for all p(§) > Ry, we obtain

/ L BT _(22_?0!"|”|le dt < lf o Mur|? +i akju ke’ de
o(6)=Ry PE)P —~ K - Rg p©=k | Q—=D! = k!

flu* )| %k

Tt Dl
< e < (2.4)
Rg o K
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On the other hand, we have by the Hélder inequality and the Young inequality,

, Q=2 k., kQ’ 1/p , 1/p
T2 ) D S P (/ — /d5> (f et dg)
pE)<Ry L&) — K p(&)<rg PE)PP p(&)<Ro

, 1/p
<C </ eap(l+e)\u*—u*(Ro)\Q d§:> (2.5)
p(E)<Ro

for some constant C depending only on n, «, 8, p’ and €, where 1/p + 1/p’ = 1,1 < p’ < Q/B, and ¢ > 0. Since
u* —u*(Ry) € W(}‘Q(IBRO), where By, = {£ € H": p(§) < Ry}, the integral on the left hand side of (2.5) is bounded thanks to
the Trudinger-Moser inequality on bounded domain of H" (Theorem A). Combining (2.2), (2.4) and (2.5), we conclude (2.1).

Next we prove the uniform estimate (1.4) for ¢ < (1 — /Q)a*, where a* = «q/c* and c* is defined in (1.3). Let
U= u/llullwregny. When o > 0, it is easy to see that

. Q=2 Ky, kQ’ Q=2 _krik’
oo E e 0 fer £
wn p(§)P — K wn p(§)P — K

provided that ||u|ly1.o gy < 1. This together with the inequality (1.1) implies that it suffices to prove there exists a uniform
constant C such that for all radially decreasing symmetric functions u € W2 (H") with lullwregn =1,

, Q=2 _ ky,kQ’
f —pé)ﬁ [e%IUIQ - Z o ';' }dg <C, (2.6)
HN .

k=0

where op = (1 — 8/Q)a*. In the following, we assume that u is radially decreasing in H" and ||ul|yy1.ogn) = 1. Take Ry >
(Q/wg_1)"/2. Thanks to (2.4), there holds

1 ’ Q-2 k m kQ’
/ ea0|u|Q . Z ao” Ul de < C. (2.7)
p(&)>Rg p(s)ﬂ k=0 k‘

Define the set § = {§ € Bg,: [u(§) —u(Ro)| > 2|u(Ro)|}. We can assume 4 is nonempty for otherwise (2.6) already holds
in view of (2.7). Then a straightforward calculation shows for all £ € § and € > 0,

u(§)2" = Ju(€) — uRy) + u(Ry)(’

/ u®y)| %
— — u(R Q 1 v
&)~ uko) <+|u(§)—U(R0)|)
< uE) — uR)|® + CluRo)|[u(€) — u(Ro)| T

|u(Ro) [

< (4 Ou(®) — uRo)|? +C

Choosing € such that

1 1/(Q-1)
14+€= = ( ) .
Q’ Q
”VH”UHLQ(Hn) 1- ”u”LQ(Hn)

Applying the mean value theorem to the function ¢(t) = t'/@=D we can find some ¢ : 1— ||u||LQQ(Hn) < ¢ < 1suchthat
1
Q o1 1 20 o
1 (1 ) = G M
Hence
Q Q
Il o gomy . ||U||LQ(HH).

R %1 - Q -1
@ = DeE (1= ul)°

This together with the fact that [u(Ro)| < (Q/®2n)"/?|ull;a gy /Ro leads to

Q/
RIS
el/@Q-1y — 7’
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and thus for all £ € 4§,

— Q’
we e < BO —uRI®

Q'
”VHnu”LQ (H")

Obviously u — u(Rg) € WOLQ(IBRO) and
./ |Van (u — u(Ro))|%dé < | Vignu|dg < 1.
]BRO H"?

Denote (&) = (u(€) — u(Ry))/|IV(u — u(Ro)) I - It is easy to see that

eolul®’ . eolu®’ ) eeolu?’ ;
- — R g
/B PG /gp(é)ﬂ : B \s L) :

Ro

eolil?’
d c(@, <C. 2.8
E/BRO e = (2.8)

Notice that ¢y < (1 — 8/Q)ag, in the last inequality above, we have used the Holder inequality and Theorem A. Thus (2.8)
together with (2.7) implies (2.6). Hence, forallo : 0 < @ < (1 — 8/Q)a™*, we get the uniform estimate (1.4).
Finally we prove forany 8 : 0 < 8 < Qanda > (1 — B8/Q)aq,

1 , Q-2 'k u kQ’
sup / — golul® —Zu d& = oo. (2.9)
lullyy 1.0 ggny <1 Jm 2(6) = Kk
We employ the following Moser function sequence:
(log )@~/ when p(£) < r/L,
Mi§.1) = —75 1 log) ™% log(r/p(€)) whenr/l < p(§) <, (2.10)
% 0 when p (&) > r.
Notice that |V p(§)| = %, where & = (z, t) € H", we immediately have

/ |VHan|Qd§ = ]’
HTI
and thus
IMillw1e@ny = 1+ 0(1/logl).
Let M; = Mi/ | Milly1.0 ). It follows that

-0 Q22 kv ke’ -, Q=2 _kyrrkQ’
/ 1 eaIMl|Q _ Z « |Ml| d'i: > / 1 eoz\Ml\Q _ Z o |Ml| d%—
w p(§)F k! p<t PP k!

k=0 k=0

G %A
> (I”Q %M +O((log1)Q2)) 7(3‘2_ ]ﬂr)quﬁ.

The last term in the above inequality tends to infinity as | — oo, thanks to @ > (1 — 8/Q)aq. Therefore (2.9) holds, and
thus the proof of Theorem 1.1 is completely finished. O

\

3. Proof of Theorem 1.2

In this section, we will prove the existence of weak solution to Eq. (1.5). This problem is solved via variational method.
The concrete tool we used here is Theorem 1.1 and the mountain-pass theorem.

3.1. The functional

For 8:0 < B < Q, we define the functional Jg : E — R by

_1 Q_/ FE.W 4 /h d
Jp@) Q||U|| o D) §—¢ . (§)uds,
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where ||u|| is defined by (1.6) and F(&, s) = fosf(é, 7)dt is the primitive of f (£, s). Assume f satisfies the hypothesis (H;).
Then there exist some positive constants oy and bs such that for all (£, s) € H” x R,

F(&,s) < bs {éxﬂle/(Qil) — SQ_z(O[1, S)} , (3.1)
where
Q-2 kek'
So—2(ay,8) = !
= k!

Thus the functional J4 is well defined thanks to Theorem 1.1. It is not difficult to check that J € C!(E, R). A straightforward
calculation shows

f&,w
w p(&)P

Uy, ¢) = / (IVert &2 Vit Vinp + V2. 0)|ul® ) d — pdt — ¢ / h(&)pde (32)
H H"

for all ¢ € E. Hence a weak solution of (1.5) is a critical point of /4.
3.2. The geometry of the functional Jg

In this subsection, we check that Jz satisfies the geometric conditions of the mountain-pass theorem without the
Palais-Smale condition. For simplicity, here and in the sequel, we write

=) ki, 1kQ’
Q/@Q-1 o |u
R(a, u) = e*l¥! — So_a(au) = § : 'kf
k=Q—-1 :

Lemma 3.1. Assume that V(§) > V, forall ¢ € H", (Hy), (Hy), and (Hs) are satisfied. Then for any nonnegative, compactly
supported functionu € W2 (H") \ {0}, there holds Jg(tu) — —o0 as T — +o0.

Proof. By (H,) and (H3), there exists Ry > 0 such that for all (£, s) € H" x [Rg, 00), F(§,s) > 0and uF(§,s) < S%F(é, s).

This implies % (InF(&,s)) > % and thus F(&,s) > F(&, Ro)Rg“s". Assume u is supported in a bounded domain 2. Then,
forall (§,s) € 2 x [0, 0c0), there exist ¢y, c; > 0 such that F(§, s) > cys* — c,. It follows that

Q
Jorw) = T ju)® - / FE. ), / h(e)Tuds
2

Q P&
Q
< Gl e [ s o [ jehuide + o).

Since i > Q, this gives the desired result. O

Lemma 3.2. Assume that V(£) > Vg forallé € H", (Hy), and (Hy) hold. Then there exist € > O such thatforanye : 0 < ¢ < ¢,
there exist r, > 0 and ¥, > 0 such that Jg(u) > ¥, for all u with ||u|| = r.

Proof. By (H,), there exist t, § > 0 such that if |s|] < §, then
Ag—T
FEs) < s/ (3.3)
Q
for all ¢ € H". By (H;), we have for |s| > §,

Isl
FE.9) < [ (b + boRen, o))
0

b
< —1[s| + byR(a, 5)]s]
Q
< csls1% ' R(ao, ), (3.4)
where cs = mR?W + g—é. Combining (3.3) and (3.4), we have for all (§,s) € H" x R,
F(€,s) < Q 28 7T 1519 4 CIs|2* R(ro. ). (3.5)

Now we claim the following inequality

f |u|®""R(ao, u)
]H[n

SE) de < Cllu| ¢, Vue whemM). (3.6)
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To this end, we use the symmetrization argument. Assume u* is the decreasing rearrangement of |u|. By the
Hardy-Littlewood inequality (1.1), we have

/ IUIQ“R(Oéo,u)dgi |u*|9T R (o, u*)
wm pE)P B p(&)P

Let y be a positive number to be chosen later, we estimate

Q
[u*| 9T R (g, u*) ||+ goolu* 2T
[ R, et
p<y p(&)P o<y p(&)F
1

epaolu®l®’ J " T )" @+p's’ v
< s * Sd
= /p<y per (fy (&) S> (/m'"' S)

1
R(poto,u*) 1/p< Dp's’ s
<cC / 7(15) || (@FDPS g ,
( o pE)P H"

wherep > 1,1 <s < %, 1/p+1/p’ = 1,and 1/s+1/s’ = 1. This together with Theorem 1.1 and the continuous embedding
of E — LY(H") (g > Q) implies

j4* 1% Rect, )
—=d Cllu| ¢! 3.8
[ e = e (38)

for some constant C depending only on Q, 8 and y, provided that ||u|| is sufficiently small such that pcg ||u||Q/ <a*.
On the other hand, taking y suitably large such that (Q /wq—1)"/%y ~!|lull,o g < 1/2, we obtain by the radial lemma

and the continuous embedding of E < [21(H"),

* 1 * *
/ [u* |2+ R(ao, u )dg _ Rleo,u (V))/ |2+ d
pzy pzy

dt. (3.7)

p(€)P B y#
1
< R (0[0’ E) ||u>k||Q+]
- yhB 1e+1 (")
< Clluf®*! (3.9)

for some constant C. Combining (3.7)—(3.9), we arrive at (3.6), and thus the above claim follows.
Thanks to (3.5), (3.6), and the definition of Ag,

1 I —T u|®
Ljuge = 22 / dg — Cllul %! - s/ h(e)ude
Q Q mn p(§) HP
Qikﬂuun‘2 — Cllul|®*! = &|jhll flu]
T

| (nuqu —Cllul|® — e]lh] ) .

Qg E
Since t > 0, there holds for sufficiently small r > 0,

et ges _Tojeer
QAig 2QAp
So if we choose € small enough, the conclusion of the lemma follows immediately. O

A%

Jg(w)

v

3.3. Palais-Smale sequence

In this subsection, we analyze the compactness of Palais-Smale sequences of Jg. This is the key step in the study of
existence results. First we need the following inequality (for Euclidean or Riemannian cases, see [18,19,11]):

Lemma 3.3. Let B, = B,(£*) be a Heisenberg ball centered at (§*) € H" with radius r. Then there exists a positive constant €g
depending only on n such that
up eoll® gg < ¢ (3.10)
Jor \v[[ﬂnu|(2d,s51,fBr udé =0 By By

for some constant Cy depending only on n.
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Proof. The proof is more or less standard by now [20,21,11] as long as we have the representation formula for functions
without the compact support on the Heisenberg group first derived in [22]. For completeness, we give the details here.
Assume g € L¢(B,) such thatg > 0 and ||g| ;e @, = 1. Define an operator T by

gENxe &) .,
Tg(E) = | 2225 7 g
g2(&) /H e )0 &

where § = (z,t), &' = (Z/, t'), d§’ = dz'dt’, and p; (§') denotes the Heisenberg distance between & and &’. Without loss of
generality, we assume the support of g is a subset of B,. To estimate Tg(£), we set 0 < § < R = 2r. Then

g&) , / g&) ,
T —°° L gg' + AL 3.11
g(g)ffpsgs pe (£/)21 s s<pe<k Pe(§) s G11)

The first integral in the above inequality can be estimated by

g(&) / g(&) /
———d¢' = ——d
/;;S«S pf(s )Q 1 g Z 27 k=15 <pe <2-ks pé(é )Q 1 5

S g0 [ s
=0

pe<27ks

IA

IA

Cs(Mg) (&), (3.12)

where Mg is the Hardy-Littlewood maximum function, C is a constant depending only on Q. Notice that [|g|l;e ) = 1, we
have by using the Holder inequality

1/Q
g(é:,) / / N—Q /
————d d
w/r;<ps<R )OE(S,)Q71 5 = ( 5<p$§R pS(S ) g )

[ng/a] 1/Q’

log2

< (ps(E~)dg’

kZ; \/Z\_k_lRS,OESZ_kR §

< C(logR/8)"/?". (3.13)

Inserting (3.12) and (3.13) into (3.11), we obtain
Tg(§) < C (logR/8)"/% + CoMg(6).

Take § = §(£) = min{(2CMg(£))~ ', R}.If Tg(§) > 1, then
Tg(&) < 2C (logR/8)"/? .

Define aset E = {§ € B,:Tg(§) > 1}. Noticing [Mg|l;e,) < Allgll e, for some constant A depending only on Q, and
R/6 < 1+ 2CRMg(&), we estimate

Q/
S [
|Br| E |Br| Ea

|Br|

0 1/Q
<1+ (/ Mg )2 )

<14 2R
= B, | Ellem)-

Recall R = 2r and ||g|l;e5,) = 1, we can find a constant C; depending only on Q such that

Q/
i/e(%m@) it < C,.
IBr| JE

On the other hand, there holds

IA

Mg(E )dé

Q ,
1 e(%Tg(s)) dt < /0%

IBr| Je\E
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Therefore we obtain for some constant C, depending only on Q,

1
|Br| Br

To prove the lemma, it suffices to prove the integrals in (3.10) are bounded for all functions u € W'2(B,) with
I Vimtllo s, = 1and [ udé = 0.For such u, it was shown in [22] that

| Vinu(§")]
By Ps(f/)Q_l
Setg(§) = |Vynu(§)|. Theng > 0 and ||g]| o,y = 1. Hence we get the desired result from (3.14). O

1 o
o(2TE®) dt < Gy. (3.14)

u@| <G d§', V& €B,.

Lemma 3.4. AssumeV > Vy > 0inH", V(§) — oo as p(§) — oo, (Hy) and (Hy) are satisfied. Let (uy) C E be an arbitrary
Palais-Smale sequence of Jg, i.e.,

Jpw) = ¢, Jpw) — 0 inE’ask — oo.
Then there exists a subsequence of (uy) (still denoted by (uy)) and u € E such that

fGu)  fE.w

p&F  pE)F _
Vui(§) — Vu(é) almost everywhere in H"

’ Q-2
Vi |22V, — [Vu|22Vu  weakly in (LQ (H“))

strongly in Ly, (H")

Furthermore u is a weak solution of (1.5).

Proof. Let (1) be a Palais-Smale sequence of Jg, i.e.,

1. F(E, w)
— ||~ — dé — ¢ h&)udé - ¢ ask — oo, (3.15)
Q m P& H"
| U3, 9)| < wllell forallg € E, (3.16)
where 7, — 0as k — oo. Taking ¢ = u; in (3.16), we have
f(&, wu
AL / h(&)uds — wel® < wellul.
w p§) H"
This together with (3.15) and the hypothesis (H,) leads to
n
(* - 1) llugl|® < C(1+ [Juel).
Q
Hence we conclude that ||u|| is bounded, and thus
£l K F ) K
f (&, wuy dt < C / ¢ u’)dg <cC. (3.17)

Here we have used the hypothesis (H,) again. Thanks to the assumptions on the potential V, the embedding E < LI(H")
is compact for all ¢ > Q, and thus we can assume without loss of generality that u, — u weakly in E, u, — u strongly in
LY(H™) for all ¢ > Q, and uy — u almost everywhere in H". In view of (H;), we have by the Trudinger-Moser inequality and
the Hélder inequality that [ o L}DC (H™"). Noticing that Lemma 2.1 in [23] is applicable in our case, we conclude

p&)P
F&, ) N fé&, w
p(&)P p(&)P

Now we are proving the remaining part of the lemma. Up to a subsequence, we can define an energy concentration set
for any fixed § > 0,

strongly in L, (H"). (3.18)

Y5 = :g € H": lim lim (Vi + |ug|©)de’ > 5} )

r—0 k—o00 Br(£)

Since (uy) is bounded in E, X5 must be a finite set. For any £* € H" \ X, there existsr : 0 < r < dist(£*, Xs) such that

lim (| Vi |2 + |ue|O)dE < 8.

k— o0 By (£%)
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It follows that for large k,

[ Veou® + iy <. (3.19)
Br (%)
Thanks to Lemma 3.3, for sufficiently small § > 0, there exists some q > 1 such that
s u)]?
/ If (5, ui)l it < C. (3.20)
By PE)P

For any M > 0, we denote
Av = {§ € B(§): [u(§)| = M}.

It can be estimated that

’ 1/‘1/
f & w) —fE,w |l ul f (€, w) —f(&, w| )”q / [uld
d d d
» o©)F 5= ( e o@r )\, e ®
- ‘f(é,uk) ‘f(S,U)
- p(§)P/a L9(By (2%, %)) p&)P/a L9(By (5*))
1 1/q ., 1/(q's")
Jabl L (e
PEV sz, e \Jay

., 1/(q's")
§C<f |u|‘“ds> ,
Am

where 1/g + 1/¢ = 1,1/s+ 1/s = 1,and 0 < s < Q/B. Here we have used (3.20) in the last inequality. Since
uelds (B, (%)), we have for any v > 0,

/ If (&, u) —f(E w) [l ul
Am p(g)ﬂ

provided that M is chosen sufficiently large. It follows from (3.18) that
If &, u) —f(&, ) || ul

dé < v, (3.21)

lim dé =0. (3.22)
k=00 JB, (e*)\An p&)P

Combining (3.21) and (3.22), we have
lim If &, w) —f&, |l UIdé .

k=00 Jg (&%) p(&)P
and thanks to the fact that v > 0 is arbitrary,
. IF (5, u) —f(&,u) | ul
lim d
k=00 Jg (£%) p(&)F
On the other hand, we have by using the Holder inequality, (3.18) and (3.20),

lf(gv uk) ” Up — ul ‘ f(%‘, uk) 7
d - /S/
/Mé*) p(&)P 5= 0©P1 |0 | p )P | e — ull g

< C”uk - u”Lq’s’ - 0! (324)

£ = 0. (3.23)

where 1/q+ 1/¢' = 1,1/s+ 1/s' = 1,and 0 < s < Q/B. Combining (3.23) and (3.24), we get

/ If &, uux — f(§, wu
By (£%) p(&)P

A covering argument implies that for any compact set K CC H" \ X,

po [ U uu —fE wul
m
koo Ji Gk

lim

k— o0

d& = 0.

dg = 0. (3.25)
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Next we will prove for any compact set K CcC H" \ X,

lim | |Veug — Vanu|%dE = 0. (3.26)

k—o0 Ji

It suffices to prove for any (§*) € H" \ X5, and r given by (3.19), there holds

lim |Vanuy — Venu|%dg = 0. (3.27)
k=00 Br/2(8%)
For this purpose, we take ¢ € C§°(B,(§*)) with0 < ¢ < 1and ¢ = 10nB,/,(£*). Obviously ¢u is a bounded sequence in
E.Inserting ¢ = ¢uy, and ¢ = ¢u into (3.16) respectively, we have

/ ¢(|VHﬂUk|Q_2VH" U — |VH“U|Q_2VH"U)(VH"UI< — Vmnu)dé
Br(§%)

= / |VH"uk|Q72VH"ukVHI"¢(u — u)dé + / ¢|VH”U|Q72VH”U(VH"U — Vmnuy)dé
Br(§%) Br(§*)
f&, w)
+ / (U — ) ; dé§ + wllpuill + Tllpull — e ph(ux — u)ds. (3.28)
Br (£%) p(&) Br(£)
The integrals on the right side of this inequality can be estimated as below. By the Holder inequality and the compact
embedding of E < L2(H"), we have

lim | Vign |2 Vgt Vign @ (u — ug)dé = 0. (3.29)
k—o0 By (E%)

Since Vynu, — Vynu weakly in (L2 (H"))2 2, there holds

lim & Vi u| L2 Vinu(Vignu — Vinug)dé = 0. (3.30)

k=00 JBr (6%

The Hélder inequality and (3.24) implies that fﬂ%(&*) d(u, — u)fg%g)dé — 0as k — oo. This together with (3.29), (3.30),

u, — u weakly in E, and 7, — 0 implies that the integral sequence on the left side of (3.28) tends to zero as k — c0. Using
an elementary inequality

22%p —q|? < (b|%2%b — |a|®2a,b—a), Va, be RY2,

we derive (3.27) from (3.28). Hence (3.26) holds thanks to a covering argument. Since X is a finite set, it follows that
Veniy converges to Vgnu almost everywhere in H". This immediately implies, up to a subsequence, |Vni |22 Vi —
|Viant| @2 Vgnu weakly in (L2 (Bg))2~2 for any R > 0. For any fixed ¢ € CJ°(H"), there exists some Ry > 0 such that the
support of ¢ is contained in the ball Bg,. Hence

klim (I Vit |22 Vignuy, — | Vignu| 22 Vi) pdé = 0.
— 00 H”

This equality holds for all ¢ € L2 ' (H™), thanks to the density of C{°(H") in L2 ' (H"). Hence we obtain

| Vit € 2 Vg — |Vinu|2 2 Vinu - weakly in (L¢ (H"))2 2. (3.31)
Passing to the limit k — oo in (3.16), we obtain by combining (3.18) and (3.31),

JsW), @) =0, Vg e CH".

Since Cg°(H") is dense in E, the above equation implies that u is a weak solution of (1.5). This completes the proof of the
lemma. O

3.4. Completion of the proof of Theorem 1.2

By Lemmas 3.1 and 3.2, there exists € > O such thatforall0 < ¢ < ¢, Jg satisfies all the hypotheses of the mountain-pass
theorem except for the Palais-Smale condition: Jg € C(E, R); Jg(0) = 0; Jg(u) > & > Owhen ||u|| = r;Jg(e) < Ofor some
e € E with |le|| > r. Then using the mountain-pass theorem without the Palais-Smale condition, we can find a sequence
(up) of E such that

Jp(up) — ¢ >0, ]/g(u,,) —~ 0 inE/’,
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where

¢ = minmaxJg(u) > ¥
yell uey

is the mountain-pass level of J3, where I' = {g € C([0, 1],E):g(0) = 0,g(1) = e}. By Lemma 3.4, there exists a
subsequence of (u,) converges weakly to a solution of (1.5) in E. Finally, this solution must be nontrivial since h # 0.
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